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Abstract. R is a dynamic language for statistical computing that combines lazy
functional features and object-oriented programming. This rather unlikely linguis-
tic cocktail would probably never have been prepared by computer scientists,
yet the language has become surprisingly popular. With millions of lines of R
code available in repositories, we have an opportunity to evaluate the fundamen-
tal choices underlying the R language design. Using a combination of static and
dynamic program analysis we assess the success of different language features.

1 Introduction

Over the last decade, the R project has become a key tool for implementing sophis-
ticated data analysis algorithms in fields ranging from computational biology [7] to
political science [11]. At the heart of the R project is a dynamic, lazy, functional, object-
oriented programming language with a rather unusual combination of features. This
computer language, commonly referred to as the R language [15,16] (or simply R), was
designed in 1993 by Ross Ihaka and Robert Gentleman [10] as a successor to S [1]. The
main differences with its predecessor, which had been designed at Bell labs by John
Chambers, were the open source nature of the R project, vastly better performance, and,
at the language level, lexical scoping borrowed from Scheme and garbage collection [1].
Released in 1995 under a GNU license, it rapidly became the lingua franca for statisti-
cal data analysis. Today, there are over 4 000 packages available from repositories such
as CRAN and Bioconductor.1 The R-forge web site lists 1 242 projects. With its 55 user
groups, Smith [18] estimates that there are about 2 000 package developers, and over 2
million end users. Recent interest in the financial sector has spurred major companies
to support R; for instance, Oracle is now bundling it as part of its Big Data Appliance
product.2

As programming languages go, R comes equipped with a rather unlikely mix of fea-
tures. In a nutshell, R is a dynamic language in the spirit of Scheme or JavaScript, but
where the basic data type is the vector. It is functional in that functions are first-class
values and arguments are passed by deep copy. Moreover, R uses lazy evaluation by
default for all arguments, thus it has a pure functional core. Yet R does not optimize
recursion, and instead encourages vectorized operations. Functions are lexically scoped
and their local variables can be updated, allowing for an imperative programming style.
R targets statistical computing, thus missing value support permeates all operations.

1 http://cran.r-project.org and http://www.bioconductor.org
2 http://www.oracle.com/us/corporate/press/512001
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The dynamic features of the language include forms of reflection over its environment,
the ability to obtain source code for any unevaluated expression, and the parse and
eval functions to dynamically treat text as code. Finally, the language supports ob-
jects. In fact, it has two distinct object systems: one based on single-dispatch generic
functions, and the other on classes and multi-methods. Some surprising interactions be-
tween the functional and object parts of the language are that there is no aliasing, object
structures are purely tree-shaped, and side effects are limited.

The R language can be viewed as a fascinating experiment in programming language
design. Presented with a cornucopia of programming models, which one will users
choose, and how? Clearly, any answer must be placed in the context of its problem
domain: data analysis. How do these paradigms fit that problem domain? How do they
strengthen each other and how do they interfere? Studying how these features are used
in practice can yield insights for language designers and implementers. As luck would
have it, the R community has several centralized code repositories where R packages
are deposited together with test harnesses. Thus, not only do we have all the open source
contributions made in the last 15 years, but we also have them in an executable format.
This paper makes the following contributions:

– Semantics of Core R: Some of the challenges dealing with R come from the fact
it is defined by a single implementation that exposes its inner workings through
reflection. We make the first step towards addressing this issue. Combining a careful
reading of the interpreter sources, the R manual [16], and extensive testing, we give
the first formal account of the semantics of the core of the language. We believe
that a precise definition of lazy evaluation in R was hitherto undocumented.

– TraceR Framework: We implemented TraceR, an open source framework for analy-
sis of R programs. TraceR relies on instrumented interpreters and off-line analyzers
along with static analysis tools.

– Corpus Gathering: We curated a large corpus of R programs composed of over
1 000 executable R packages from the Bioconductor and CRAN repositories, as
well as hand picked end-user codes and small performance benchmark programs
that we wrote ourselves.

– Implementation Evaluation: We evaluate the status of the R implementation. While
its speed is not acceptable for use in production systems, many end users report
being vastly more productive in R than in other languages. R is decidedly single-
threaded, its semantics has no provisions for concurrency, and its implementation
is hopelessly non-thread safe. Memory usage is also an issue; even small programs
have been shown to use immoderate amounts of heap for data and meta-data. Im-
proving speed and memory usage will require radical changes to the implementa-
tion, and a tightening of the language definition.

– Language Evaluation: We examine the usage and adoption of different language
features. R permits many programming styles, access to implementation details,
and little enforcement of data encapsulation. Given the large corpus at hand, we
look at the usage impacts of these design decisions.

The code and data of our project are available in open source from:
http://r.cs.purdue.edu/
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2 An R Primer

We introduce the main concepts of the R programming language. To understand the
design of R, it is helpful to consider the end-user experience that the designers of R and
S were looking for. Most sessions are interactive, the user loads data into the virtual
machine and starts by plotting the data and making various simple summaries. If those
do not suffice, there are some 4 338 statistical packages that can be applied to the data.
Programming proper only begins if the modeling steps become overly repetitive, in
which case they can be packaged into simple top-level functions. It is only if the existing
packages do not precisely match the user’s needs that a new package will be developed.
The design of the language was thus driven by the desire to be intuitive, so users who
only require simple plotting and summarization can get ahead quickly. For package
developers, the goal was flexibility and extendibility. A tribute to the success of their
approach is the speed at which new users can pick up R; in many statistics departments
the language is introduced in a week.

The basic data type in R is the vector, an ordered collection of values of the same kind.
These values can be either numerics, characters, or logicals. Other data types include
lists (i.e., heterogeneous vectors) and functions. Matrices, data frames, and objects are
built up from vectors. A command for creating a vector and binding it to x is:

x <- c(1, 2.1, 3, NA)

Missing values, NA, are crucial for statistical modeling and impact the implementation,
as they must be represented and handled efficiently. Arithmetic operations on vectors
are performed element by element, and shorter vectors are automatically extended to
match longer ones by an implicit extension process. For instance,

v <- 1 + 3*x

binds the result of the expression 1+3*x to v. There are three different vectors: x and
two vectors of length one, namely the numeric constants 1 and 3. To evaluate the expres-
sion, R will logically extend the constant vectors to match the length of x. The result
will be a new vector equivalent to c(4,7.3,10,NA). Indexing operators include:

v1 <- x[1:3]; v2 <- x[-1]; x[is.na(x)] <- 0

here v1 is bound to a new vector composed of the first three elements of x, v2 is bound
to a new vector with everything but the first value of x, and finally, x is updated with 0
replacing any missing values.

In R, computation happens by evaluating functions. Even the assignment, x<-1, is
a call to the built-in assign("x",1). This design goes as far as making the ( in a
parenthesized expression a function call. Functions are first class values that can be
created, stored and invoked. So,

pow <- function(b,e=2) if(e==1) b else b*pow(b,e-1)

creates a function which takes two arguments and binds it to pow. Function calls can
specify parameters either by position or by name. Parameters that have default values,
such as e above, need not be passed. Thus, there are three equivalent ways to call pow:

pow(3); pow(3,2); pow(e=2,3)
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The calls all return the 1-element vector 9. Named arguments are significantly used;
functions such as plot accept over 20 arguments. The language also supports ‘...’
in function definition and calls to represent a variable number of values. Explicit type
declarations are not required for variables and functions. True to its dynamic roots, R
checks type compatibility at runtime, performing conversions when possible to provide
best-effort semantics and decrease errors.

R is lazy, thus evaluation of function arguments is delayed. For example, the with
function can be invoked as follows:

with(formaldehyde, carb*optden)

Its semantics is similar to the JavaScript with statement. The second argument is eval-
uated in the context of the first which must be an environment (a list or a special kind
of vector). This behavior relies on lazy evaluation, as it is possible that neither carb or
optden are defined at the point of call. Arguments are boxed into promises which con-
tain the expression passed as an argument and a reference to the current environment.
Promises are evaluated transparently when their value is required. The astute reader will
have noticed that the above example clashes with our claim that R is lexically scoped.
As is often the case, R is lexically scoped up to the point it is not. R is above all a
dynamic language with full reflective access to the running program’s data and repre-
sentation. In the above example, the implementation of with sidesteps lexical scoping
by reflectively manipulating the environment. This is done by a combination of lazy
evaluation, dynamic name lookup, and the ability turn code into text and back:

with.default <- function(env, expr, ...)

eval(substitute(expr),env, enclose=parent.frame())

The function uses substitute to retrieve the unevaluated parse tree of its second
argument, then evaluates it with eval in the environment constituted by composing the
first argument with the lexically enclosing environment. The ‘...’ is used to discard
any additional arguments.

R associates attributes to all data structures, thus every vector, list, or function has
a hidden map that associates symbols to values. For a vector, these include length, di-
mensions, and column names. Attributes are a key to R’s extensibility. They are used as
hooks for many purposes. As we will see in the next section, the object system relies on
attributes to encode class membership. It is sometimes the case that all the interesting
data for some value is squirreled away in attributes. Attributes can be updated by an
assignment, e.g., to turn the vector x into a 2-by-2 matrix:

attr(x, "dim") <- c(2,2)

R has two different object systems. The simplest one uses a class attribute for imple-
menting ad-hoc polymorphism. This attribute holds a series of strings denoting base
class and parent classes in order. Any data structure can be labeled as the programmer
wishes. The new object system allows for true class definitions and instance creation. It
gives the programmer a similar multiple inheritance model as the early object system,
but now allows for virtual classes and multi-method dispatch.

3 The Three Faces of R

We now turn to R’s support for different paradigms.
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3.1 Functional

R has a functional core reminiscent of Scheme and Haskell.

Functions as first-class objects. Functional languages manipulate functions as first-
class objects. Functions can be created and bound to symbols. They can be passed as
arguments, or even given alternate names such as f<-factorize; f(v).

Scoping. Names are lexically scoped with no difference between variable and function
declarations, as in Scheme [6]. All symbols introduced during the evaluation of a func-
tion are collected in a frame. Frames are linked to their lexically enclosing frame to
compose environments. However, unlike many languages, bindings are performed dy-
namically [8]. Symbols can be added to an environment after it has been entered. This
forces name resolution to be performed during function evaluation. The mechanism is
subtle and has led to mistaken claims that R is not lexically scoped3. Consider,

function(){ f<-function()x; x<-42; f() }

where the function bound to f accesses a variable, x, that does not exist at the time
of definition. But when f is called, lookup will succeed as x is in scope. Scoping has
another somewhat surprising wrinkle, lookup is context sensitive. Looking up c and c()
can yield different results from CommonLisp [19] or Scheme. By default, c is bound to
the built-in function that creates new vectors. In these examples, the first code fragment

c <- 42

c(2,3)

c <- 42

d <- c

d(2,3)

binds 42 to c. When c is looked up in the function call,
the binding is skipped because 42 is not a function, and
lookup instead returns the default definition of c which
is indeed a function. The second code fragment adds an
assignment of c to d. When d is looked up, the only
definition of d in the environment is the one that binds it
to 42, so the call fails.4 This is an example of best effort semantics; the lookup rules try
to find a function when in a call context, which can yield surprising results.

Lazy. R does not evaluate function arguments at calls. Instead, expressions are boxed into
promises that capture the lexical environment. Promises are forced whenever their value
is required by the computation. Languages like Haskell [9] delay evaluation as much as
possible. This allows, e.g., for the elegant definition of infinite data structures. The R
manual [16] does not state when promises are forced. As R is not purely functional, the
order of evaluation is observable through side effects performed or observed by promises.
Our investigation uncovered that promises are evaluated aggressively. They typically do
not outlive the function that they are passed into.5 Another surprising discovery is that
name lookup will force promises in order to determine if a symbol is bound to a function.
Consider the following three-argument function declaration:

function(y, f, z) { f(); return( y ) }

3 E. Blair, A critique of R (2004) http://fluff.info/blog/arch/00000041.htm
4 Our core R semantics models this behavior with the [FORCEF] and [GETF] rules of Fig. 3.
5 Unbounded data structures can be created by hiding promises in closures, e.g., Cons
<-function(x,y)list(function()x, function()y). An application is needed
to get the value, e.g., Car <-function(cons)cons[[1]]().
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If it is not a function, evaluation forces f. In fact, each definition of f in the lexical
environment is forced until a function is found. y is forced as well and z is unevaluated.

Referential transparency. A language is referentially transparent if any expression can
be replaced by its result. This holds if evaluating the expression does not side effect
other values in the environment. In R, all function arguments are passed by value, thus
all updates performed by the function are visible only to that function. On the other
hand, environments are mutable and R provides the super assignment operator (<<-) in
addition to its local one (<-). Local assignment, x<-1, either introduces a new symbol
or updates the value of an existing symbol in the current frame. This side effect remains
local and is arguably easier to reason about than generalized side effects. The super
assignment operator is a worse offender as it skips the current frame and operates on
the rest of the environment. So, x<<-1, will ignore any definition of x in the current
frame and update the first existing x anywhere in the environment or, if not found,
define a new binding for x at the top-level. This form of side effect is harder to reason
about as it is non-local and may be observed directly by other functions.

my <-

function(a,k=min(d),...,p=TRUE){

a <- as.matrix(a);

d <- dim(a);

l <- k+1;

if (p) # some behavior.
}

Parameters. R gives programmers
much freedom in how functions are
defined and called. Function declara-
tions can specify default values and a
variable number of parameters. Func-
tion calls can pass parameters by posi-
tion or by name, and omit parameters
with default values. Consider the my function declaration, it has three parameters, a, k,
and p. The ellipsis specifies a variable number of parameters which can be accessed by
the array notation or passed on to another function in bulk. This function can be called
in different ways, for instance,

my(x); my(x, y); my(x, y, z); my(k=y, x, z, p=FALSE)

A valid call must have at least one, positional, parameter. Any argument with a default
value may be omitted. Any argument may be passed by name, in which case the order in
which it appears is irrelevant. Arguments occurring after an ellipsis must be passed by
name. The default values of arguments can be expressions; they are boxed into promises
and evaluated within the same environment as the body of the function. This means that
they can use internal variables in the function’s body. So min(d) above refers to d,
which is only created during evaluation of the function. As k is always forced after d
has been defined, the function will work as intended. But this shows that code can be
sensitive to the order of evaluation, which can lead to subtle bugs.

3.2 Dynamic

Given R’s interactive usage, dynamic features are natural. These features are intended
to increase the expressiveness and flexibility of the language, but complicate the imple-
mentor’s task.

Dynamic typing. R is dynamically typed. Values have types, but variables do not. This
dynamic behavior extends to variable growth and casting. For instance:
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v <- TRUE; v[2] <- 1; v[4] <- "1"

Vector v starts as a logical vector of length one, then v grows and is cast by the assign-
ment to a numerical vector of length two, equivalent to c(1, 1). The last assignment
turns v into a string vector of length four, equivalent to c("1", "1", NA, "1").

Dynamic evaluation. R allows code to be dynamically evaluated through the eval

function. Unevaluated expressions can be created from text with the quote function,
and variable substitution (without evaluation) can be done with substitute and partial
substitution with bquote. Further, expressions can be reduced back to input strings with
the substitute and deparse functions. The R manual [16] mentions these functions
as useful for dynamic generation of chart labels, but they are used for much more.

Extending the language. One of the motivations to use lazy evaluation in R is to ex-
tend the language without needing macros. But promises are only evaluated once, so
implementing constructs like a while loop, which must repeatedly evaluate its body
and guard, takes some work. The substitute function can be used to get the source
text of a promise, the expression that was passed into the function, and eval to execute
it. Consider this implementation of a while loop in user code,

mywhile <- function(cond, body)

repeat if(!eval.parent(substitute(cond))) break

else eval.parent(substitute(body))
Not all language extensions require reflection, lazy evaluation can be sufficient. The
implementation of tryCatch is roughly,

tryCatch <- function(expr, ...) {

# set up handlers specified in ...
expr

}

Explicit Environment Manipulation. Beyond these common dynamic features, R’s re-
flective capabilities also expose its implementation to the user. Environments exist as
a data type. Users can create new environments, and view or modify existing ones, in-
cluding those used in the current call stack. Closures can have their parameters, body, or
environment changed after they are defined. The call stack is also open for examination
at any time. There are ways to access any closure or frame on the stack, or even return
the entire stack as a list. With this rich set of building blocks, user code can implement
whatever scoping rules they like.

3.3 Object Oriented

R’s use of objects comes from S. Around 1990, a class attribute was added to S3 for
ad-hoc polymorphism [4]. The value of this attribute was simply a list of strings used
to dispatch methods. In 1998, S4 added proper classes and multi-methods [3].

S3. In the S3 object model there are neither class entities nor prototypes. Objects are nor-
mal R values tagged by an attribute named classwhose value is a vector of strings. The
strings represent the classes to which the object belongs. Like all attributes, an object’s
class can be updated at any time. As no structure is required on objects, two instances that
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have the same class tag may be completely different. The only semantics for the values
in the class attribute is to specify an order of resolution for methods. Methods in S3 are
functions which, in their body, call the dispatch function UseMethod. The dispatch func-
tion takes a string name as argument and will perform dispatch by looking for a function
name.cl where cl is one of the values in the object’s class attribute. Thus a call to
who(me) will access the me object’s class attribute and perform a lookup for each class
name until a match is found. If none is found, the function who.default is called. This
mechanism is complemented by NextMethod which calls the super method according
to the Java terminology. The function follows the same algorithm as UseMethod, but
starts from the successor of the name used to find the current function. Consider the fol-
lowing example which defines a generic method, who, with implementations for class
the man as well as the default case, and creates an object of class man. Notice that the

who <- function(x) UseMethod("who")

who.man <- function(x) print("Ceasar!")

who.default <- function(x) print("??")

me <- 42; who(me) # prints ”??”
class(me) <- ’man’;who(me) # prints ”Ceasar!”

vector me dynamically
acquires class man as a
side effect. UseMethod

may take multiple ar-
guments, but dispatches
only on the first one.

S4. The S4 object model, reminiscent of CLOS [12], adds a class-based system to R.
A class is defined by a call to setClass with an ordered list of parent classes and a
representation. Multiple inheritance is supported, and repeated inheritance is allowed,
but only affects the method’s dispatch algorithm. A class’ representation describes the
fields, or slots, introduced by that class. Even though R is dynamically typed, slots must
be assigned a class name. Slots can be redefined covariantly, i.e., a slot redefinition can
be a subclass of the class tag used in the previous declaration. When a class inherits a slot
with the same name from two different paths, the class tag coming from the first super-
class is retained, and tags from other parents must be subclasses of that tag. Classes can
be redeclared at any time. When a class is modified, existing instances of the class retain
their earlier definition. Redeclaration can be prevented by the sealClass function. Ob-
jects are instantiated by calling new. A prototype object is created with the arguments
to new and passed along to the initialize generic function which copies the proto-
type into the new object’s slots. This prototype is only a template and does not contain
any methods. Any values left unset become either NA, or a zero-length vector. Classes
without a representation, or classes with VIRTUAL in their representation, are abstract
classes and cannot be instantiated. Another mechanism for changing the behavior of ex-
isting classes is to define class unions. A class union introduces a new virtual class that
is the parent of a list of existing classes. The main role of class union is to change the
result of method dispatch for existing classes. The following example code fragment
defines a colored point class, creates an instance of the class, and reads its color slot.

setClass("Point", representation(x="numeric", y="numeric"))

setClass("Color", representation(color="character"))

setClass("CP", contains=c("Point","Color"))

l <- new("Point", x = 1, y = 1)

r <- new("CP", x = 0, y = 0, color = "red")

r@color
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Methods are introduced at any point outside of any class by a call to setGeneric. In-
dividual method bodies for some classes are then defined by setMethod. R supports
multi-methods [2], i.e., dispatch considers the classes of multiple arguments to deter-
mine which function to call. Multi-methods make it trivial to implement binary meth-
ods, they obviate the need for the visitor pattern or other forms of double dispatch, and
reduce the number of explicit subclass tests in users’ code. The following defines an
add method that will operate differently on points and colored points:

setGeneric("add", function(a, b) standardGeneric("add"))

setMethod("add", signature("Point", "Point"),

function(a, b) new("Point", x= a@x+b@x, y=a@y+b@y))

setMethod("add", signature("CP", "CP"),

function(a, b) new("CP",x=a@x+b@x,y=a@y+b@y,color=a@color)

R does not prevent the declaration of ambiguous multi-methods. At each method call,
R will attempt to find the best match between the classes of the parameters and the
signatures of method bodies. Thus add(r, l) would be treated as the addition of
two “Point” objects. The resolution algorithm differs from Clos’s and if more than one
method is applicable, R will pick one and emit a warning. One unfortunate side ef-
fect of combining generic functions and lazy evaluation is that method dispatch forces
promises to assess the class of each argument. Thus when S4 objects are used, evalua-
tion of arguments becomes strict.

4 A Semantics for Core R

This section gives a precise semantics to the core of the R language. To the best of
our knowledge this is the first formal definition of key concepts of the language. The
semantics was derived from test cases and inspection of the source code of version
2.12 of the R interpreter. Core R is a proper subset of the R language. Any expres-
sion in Core R behaves identically in the full language. Some features are not covered

e::= n | s | x | x[[e]] | {e; e}
| function(f) e
| x(a) | x<− e | x<<− e

| x[[e]]<− e | x[[e]]<<−e

| attr(e, e) | attr(e, e)<− e

| u | ν(a)
f::= x | x = e

a::= e | x = e

Fig. 1. Syntax

for brevity: logicals and complex numbers,
partial keywords, variadic argument lists,
dot-dot symbols, superfluous arguments, gen-
eralized array indexing and subsetting. Gener-
alized assignment, f(x)<-y, requires small
changes to be properly supported, essen-
tially desugaring to function calls such as
‘f<-‘(x,y) and additional assignments. Per-
haps the most glaring simplification is that we
left out reflective operation such as eval and
substitute. As the object system is built
on those, we will only hint at its definition.
The syntax of Core R, shown in Fig. 1, consists of expressions, denoted by e, ranging
over numeric literals, string literals, symbols, array accesses, blocks, function decla-
rations, function calls, variable assignments, variable super-assignments, array assign-
ments, array super-assignments, and attribute extraction and assignment. Expressions
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also include values, u, and partially reduced function calls, ν(a), which are not used
in the surface syntax of the language but are needed during evaluation. The parame-
ters of a function declaration, denoted by f, can be either variables or variables with
a default value, an expression e. Symmetrical arguments of calls, denoted a, are ex-
pressions which may be named by a symbol. We use the notation a to denote the
possibly empty sequence a1 . . . an. Programs compute over a heap, denoted H , and a

H ::= ∅ | H [ι/F ]
| H [δ/eΓ ] | H [δ/ν]
| H [ν/κα]

α::= ν⊥ ν⊥ u ::= δ | ν
κ::= num[n] | str[s]
| gen[ν] | λf.e, Γ

F ::= [] | F [x/u]
Γ ::= [] | ι ∗ Γ
S::= [] | eΓ ∗ S

Fig. 2. Data

stack, S, as shown in Fig. 2. For simplicity, the heap dif-
ferentiates between three kinds of addresses: frames, ι,
promises, δ, and data objects, ν. The notation H [ι/F ]
denotes the heap H extended with a mapping from ι
to F . The metavariable ν⊥ denotes ν extended with the
distinguished reference ⊥ which is used for missing val-
ues. Metavariable α ranges over pairs of possibly missing
addresses, ν⊥ ν′⊥. The metavariable u ranges over both
promises and data references. Data objects, κα, consist
of a primitive value κ and attributes α. Primitive val-
ues can be either an array of numerics, num[n1 . . . nn],
an array of strings, str[s1 . . . sn], an array of references
gen[ν1 . . . νn], or a function,λf.e, Γ , whereΓ is the func-
tion’s environment. A frame, F , is a mapping from a sym-

bol to a promise or data reference. An environment,Γ , is a sequence of frame references.
Finally, a stack, S, is a sequence of pairs, eΓ , such that e is the current expression and
Γ is the current environment.

Reduction relation. The semantics of Core R is defined by a small step operational
semantics with evaluation contexts [21]. The reduction relation S;H =⇒S’;H’, shown
in Fig. 3, takes a stack S and a heap H and performs one step of reduction. The rules

[EXP]
eΓ ; H → e′; H ′

C[e] Γ ∗ S; H =⇒ C[e′] Γ ∗ S; H ′

[FORCEP]
H(δ) = eΓ ′

C[δ] Γ ∗ S; H =⇒ eΓ ′ ∗C[δ] Γ ∗ S; H

[FORCEF]
getfun(H, Γ, x) = δ

C[x(a)] Γ ∗ S; H =⇒ δ Γ ∗C[x(a)] Γ ∗ S; H

[GETF]
getfun(H, Γ, x) = ν

C[x(a)] Γ ∗ S; H =⇒ C[ν(a)] Γ ∗ S; H
[INVF]

H(ν) = λf.e, Γ ′ args(f, a, Γ, Γ ′, H) = F, Γ ′′, H ′

C[ν(a)] Γ ∗ S; H =⇒ eΓ ′′ ∗C[ν(a)] Γ ∗ S; H ′

[RETP]
H ′ = H[δ/ν]

R[ν] Γ ′ ∗C[δ] Γ ∗ S; H =⇒ C[δ] Γ ∗ S; H ′

[RETF]

R[ν] Γ ′ ∗C[ν′(a)] Γ ∗ S; H =⇒ C[ν] Γ ∗ S; H ′

Evaluation Contexts:

C ::= [] | x<−C | x[[C]] | x[[e]] <−C | x[[C]] <− ν | {C; e} | {ν;C}
| attr(C, e) | attr(ν,C) | attr(e, e) <−C | attr(C, e) <− ν | attr(ν,C) <− ν

R ::= [] | {ν;R}

Fig. 3. Reduction relation =⇒
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rely on two evaluation contexts, C, to return the next expression to evaluate and R, to
return the result of a sequence of expressions. There are seven reduction rules. Rule
[EXP] deals with expressions, where C[e] uniquely identifies the next expression e to
evaluate. The expression is reduced in a single step, eΓ ;H → e′;H ′, where e′ is
resulting expression. H ′ is the modified heap. If the expression is a promise, C[δ], and
δ has not been evaluated, rule [FORCEP] will push a new frame on the stack containing
the body of the promise, e δ ∗ Γ ′. Rule [RETP] pops a fully evaluated promise frame
and binds the result to a promise address. Context sensitive lookup is implemented by
[FORCEF] and [GETF]. The former forces the evaluation of promises bound to the name
of the function being looked up, the latter selects a reference, ν, to a function. The
getfun() auxiliary function, defined in Fig. 4, looks up x in the environment, skipping
over bindings to data objects. Function invocation is handled by [INVF], which retrieves
the function bound to ν and invokes args() to process the arguments a and the default
values f of the call. The output of args() is a mapping from parameters to values, F , an
environment, Γ ′′, and a modified heap, H ′. For each argument, a promise is allocated
in the heap and the current environment is captured. The rule [RETF] simply pops the
evaluated frame and replaces the call with its result.

The → relation has fourteen rules dealing with expressions, shown in Fig. 5, along
with some auxiliary definitions given in Fig. 18 (where s and g denote functions that con-
vert the type of their argument to a string and vector respectively). The first two rules
deal with numeric and string literals. They simply allocate a vector of length one of the

[GETF1]
Γ = ι ∗ Γ ′ ι(H, x) = ν H(ν) = λf.e, Γ ′′

getfun(H, Γ, x) = ν

[GETF2]
Γ = ι ∗ Γ ′ ι(H, x) = ν H(ν) �= λf.e, Γ ′′

getfun(H, Γ, x) = getfun(H, Γ ′, x)

[GETF3]
Γ = ι ∗ Γ ′ ι(H, x) = δ H(δ) = ν H(ν) = λf.e, Γ ′′

getfun(H, Γ, x) = ν

[GETF4]
Γ = ι ∗ Γ ′ ι(H, x) = δ H(δ) = eΓ ′′

getfun(H, Γ, x) = δ

[GETF5]
Γ = ι ∗ Γ ′ ι(H, x) = δ H(δ) = ν H(ν) �= λf.e, Γ ′′

getfun(H, Γ, x) = getfun(H, Γ ′, x)

[SPLIT1]
split(a, P, N) = P ′, N ′

split(x = e a, P, N) = P ′, x = eN ′

[SPLIT2]
split(a, P, N) = P ′, N ′

split(e a, P, N) = eP ′, N ′

[SPLIT3]

split([], P, N) = P, N

[ARGS]
split(a, [], []) = P, N ι fresh Γ ′′ = ι ∗ Γ ′ args2(f, P, N, Γ, Γ ′′, H) = F, H ′ H ′′ = H ′[ι/F ]

args(f, a, Γ, Γ ′, H) = F, Γ ′′, H ′′

[ARGS1]
(f0 ≡ x ∨ f0 ≡ x = e′) N ≡ N ′x = eN ′′

args2(f, P, N ′N ′′, Γ, Γ ′, H) = F, H ′

δ fresh H ′′ = H ′[δ/eΓ ]

args2(f0f, P, N, Γ, Γ ′, H) = F [x/δ], H ′′

[ARGS2]
(f0 ≡ x ∨ f0 ≡ x = e′) x �∈ N
args2(f, P, N, Γ, Γ ′, H) = F, H ′

δ fresh H ′′ = H ′[δ/eΓ ]

args2(f0f, eP, N, Γ, Γ ′, H) = F [x/δ], H ′′

[ARGS3]
x �∈ N

args2(f, [], N, Γ, Γ ′, H) = F, H ′

args2(x f, [], N, Γ, Γ ′, H) = F [x/⊥], H ′

[ARGS4]
x �∈ N args2(f, [], N, Γ, Γ ′, H) = F, H ′

δ fresh H ′′ = H ′[δ/eΓ ′]

args2(x = e f, [], N, Γ, Γ ′, H) = F [x/δ], H ′′

[ARGS5]

args2([], [], [], Γ, Γ ′, H) = [], H

Fig. 4. Auxiliary definitions: Function lookup and argument processing
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[NUM]

ν fresh α = ⊥⊥
H ′ = H [ν/num[n]α]

nΓ ;H → ν;H ′

[STR]

ν fresh α = ⊥⊥
H ′ = H [ν/str[s]α]

sΓ ;H → ν;H ′

[FUN]

ν fresh α = ⊥⊥
H ′ = H [ν/λf.e, Γα]

function(f) eΓ ;H → ν;H ′

[FIND]

Γ (H,x) = u

xΓ ;H → u;H

[GETP]

H(δ) = ν

δ Γ ;H → ν;H ′

[ASS]

cpy(H,ν) = H ′, ν′ Γ = ι ∗ Γ ′ H(ι) = F F ′ = F [x/ν′] H ′′ = H ′[ι/F ′]

x<− ν Γ ;H → ν;H ′′

[DASS]

cpy(H,ν) = H ′, ν′ Γ = ι ∗ Γ ′ assign(x, ν′, Γ ′, H ′) = H ′′

x<<− ν Γ ;H → ν;H ′′

[GET]

Γ (H,x) = ν′ readn(ν,H) = m get(ν′, m,H) = ν′′,H ′

x[[ν]]Γ ;H → ν′′;H ′

[SETL]

cpy(H,ν′) = H ′, ν′′ Γ = ι ∗ Γ ′ ι(H ′, x) = ν′′′

readn(ν,H ′) = m set(ν′′′, m, ν′′,H ′) = H ′′

x[[ν]] <− ν′ Γ ;H → ν′;H ′′

[SETG]

cpy(H,ν′) = H ′, ν′′ Γ = ι ∗ Γ ′ H ′(ι) = F x �∈ F Γ ′(H ′, x) = ν′′′

cpy(H ′, ν′′′) = H ′′, ν′′′′ F ′ = F [x/ν′′′′] H ′′′ = H ′′[ι/F ′]
readn(ν,H) = m set(ν′′′′, m, ν′′,H ′′′) = H ′′′′

x[[ν]] <− ν′ Γ ;H → ν′;H ′′′′

[GETA]

H(ν) = κα α = ν⊥ ν′
⊥ index(ν′, ν′

⊥, H) = n get(ν⊥, n, H) = ν′′

attr(ν, ν′)Γ ;H → ν′′;H
[REPLA]

H(ν) = κα α = ν⊥ ν′
⊥ index(ν′, ν′

⊥,H) = n set(ν,n, ν′′,H) = H ′

attr(ν, ν′)<− ν′′ Γ ;H → ν′′;H ′

[SETA]

cpy(H,ν′′) = H ′, ν′′′ H ′(ν) = κν⊥ ν′
⊥ index(ν′, ν′

⊥, H
′) = ⊥ reads(ν′,H ′) = s

H ′(ν⊥) = gen[ν]α H ′(ν′
⊥) = str[s]α

′
H ′′ = H ′[ν⊥/gen[νν′′′]α][ν′

⊥/str[ss]α
′
]

attr(ν, ν′)<− ν′′ Γ ;H → ν′′;H ′′

[SETB]

cpy(H, ν′′) = H ′, ν3 H ′(ν) = κ⊥⊥ ν4, ν5 fresh reads(ν′,H ′) = s

H ′′ = H ′[ν4/gen[ν3]⊥⊥][ν5/str[s]⊥⊥]

attr(ν, ν′)<− ν′′ Γ ;H → ν′′;H ′′

Fig. 5. Reduction relation →

corresponding type with the specified value in it. By default, attributes for these values
are empty. A function declaration, [FUN], allocates a closure in the heap and captures the
current environment Γ . Variable lookup, [FIND], returns the value of the variable from
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the environment. The value of an already evaluated promise is returned by [GETP]. The
assignment, [ASS], and super-assignment, [DASS], rules will either define or redefine the
target symbol. The value being assigned and all of its attributes are copied recursively.
The auxiliary function assign walks the stack and performs the assignment in the first
environment that has a binding for the target symbol. If not found, the symbol is added
at the top-level. The [GET] rule for array access, x[[ν]], is straightforward, it accesses the
array at the offset passed as argument. Note that the value returned must be packed in
a newly allocated vector of length one of the right type. There are two rules for vector
assignment x[[ν]]<− ν′. Rule [SETL] applies when the vector is a local variable of the
current frame. In that case, the value to be assigned is copied and the assignment is per-
formed in place. Rule [SETG] is more complex. If the variable holding the vector does not
occur in the current scope, a new variable will be added to the current scope, the vector is
copied with its attributes into the new variable, and finally the assignment is performed.6

Notice also that all assignment rules yield the right hand side value and not its copy. Fi-
nally, there are four rules dealing with attributes. Reading an attribute, attr(ν, ν′), uses
ν′ as a key to find the corresponding value in the attribute vector ([GETA]).7 The auxiliary
function index() returns the index of a string in a vector of strings or⊥ if not found. The
rules for updating attributes, attr(ν, ν′)<− ν′′, must consider the two cases. First, when
an attribute already exists, the update is done directly ([REPLA]). Second, when an at-
tribute is not present, then the value and name sequences must grow to accommodate the
new attribute ([SETA]). Finally, if the attributes are empty, rule [SETB] will create them.
It is noteworthy that attributes are modified in place; the objects that they decorate are
not copied.

Observations. One of our discoveries while working out the semantics was how eager
evaluation of promises turns out to be. The semantics captures this with C[]; the only
cases where promises are not evaluated is in the arguments of a function call and when
promises occur in a nested function body, all other references to promises are evaluated.
In particular, it was surprising and unnecessary to force assignments as this hampers
building infinite structures. Many basic functions that are lazy in Haskell, for example,
are strict in R, including data type constructors. As for sharing, the semantics cleary
demonstrates that R prevents sharing by performing copies at assignments. The R imple-
mentation uses copy-on-write to reduce the number of copies. With super-assignment,
environments can be used as shared mutable data structures. The way assignment into
vectors preserves the pass-by-value semantics is rather unusual and, from personal ex-
perience, it is unclear if programmers understand the feature. Extending the semantics
to supporting reflection and objects should be possible. Objects are encoded by vectors
with attributes that hold their class, as a vector of strings, fields. Methods are functions
that abide by a particular naming convention. Dispatch is done by reflecting over de-
fined functions. It is noteworthy that objects are mutable within a function (since fields
are attributes), but are copied when passed as an argument.

6 Our semantics only allows extension of vector at the end. R allows vector to be extended at
arbitrary offsets, with missing values added in unused positions.

7 In R, attributes are represented by a normal vector (values) which, itself, has attributes (names).
We simplify the structure for conciseness in the semantics.
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5 Corpus Analysis

Given the mix of programming models available to the R user, it is important to under-
stand what features users favor and how they are using those in practice. This section
describes the tools we have developed to analyze R programs and the extensive corpus
of R programs that we have curated.

5.1 The TraceR Framework

TraceR is a suite of tools for analyzing the performance and characteristics of R code. It
consists of three data collection tools built on top of version 2.12.1 of R and several post-
processing tools. TrackeR generates detailed execution traces, ProfileR is a low-overhead
profiling tool for the internals of the R VM, and ParseR is static analyzer for R code.

TrackeR. To precisely capture user-code behavior, we built TrackeR, a heavily instru-
mented R VM which records almost every operation executed at runtime. TrackeR’s
design was informed by our previous work on JavaScript [17]. TrackeR exposes inter-
actions between language features, such as evaluation of promises triggered by function
lookups, and how these features are used. It also records promise creation and evalua-
tion, scalar and vector usage, and internally triggered actions (e.g. duplications used
for copy-on-write mechanisms). These internal effects are recorded through a mix of
trace events and counters. Complex feature interactions such as lazy evaluation and
multi-method dispath can result in eager argument evaluation. To capture the triggers
for this behavior, prologues are emitted for function calls and associated with the trig-
gering method. Properly tracking the uniqueness of short lived objects, like promises,
is complicated by the recycling memory of addresses during garbage collection. R’s
memory allocations are too large and numerous to use memory maps to resolve this.
Instead, a tagging system was used to track the liveness of traced objects. Since, at
runtime, function objects are represented as closure with no name, we use R built-in de-
bugging information to map closure addresses to source code. Moreover, control flow
can jump between various parts of the call stack when executions are abandoned (e.g.
with tryCatch or break function calls). Keeping the trace consistent requires effort
since the implementation of the VM is riddled with calls to longjmp. Off-line analysis
of traces can quickly exceed machine memory if they are analyzed in-core. Therefore,
the tree is processed during its construction and most of it is discarded right away. Spe-
cialized trace filters use hooks to register information of interest (e.g. promises currently
alive in the system).

ProfileR. While TrackeR reveals program evaluation flow and effects, its heavy instru-
mentation makes it unsuitable for understanding the runtime costs of language features.
For this we built ProfileR, a dedicated counter based profiler which tracks the time costs
of operations such as memory management, I/O and foreign calls. Unlike a sampling
profiler, ProfileR is precise. It was implemented with care to minimize runtime over-
heads. The validity of its results was verified against sampling profilers such as oprofile
and Apple Instruments. The results are consistent with those tools, and provide more
accurate context information. The only notable differences are for very short functions
called very frequently, which we avoided instrumenting. R also has a built-in sampling
profiler but we found that it did not deliver the accuracy or level of detail we needed.
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ParseR. Tracing only yields information on code triggered in a given execution. For
a more comprehensive view, ParseR performs static analysis of R programs. It is built
on a LL-parser generated with AntLR [14]. Our R grammar seems comprehensive as
it parses correctly all R code we could find. Lexical filters can be easily written by
using a mixture of tree grammars and visitors. Even though ParseR can easily find
accurate grammatical patterns, the high dynamism of R forced us to rely on heuristics
when looking for semantic information. ParserR was also used to synchronize the traces
generated by TrackeR with actual source code of the programs.

5.2 A Corpus of R Code

We assembled a body of over 3.9 million lines of R code. This corpus is intended to
be representative of real-world R usage, but also to help understand the performance
impacts of different language features. We classified programs in 5 groups. The Bio-
conductor project open-source repository collects 515 Bioinformatics-related R pack-
ages.8 The Shootout benchmarks are simple programs from the Computer Language
Benchmark Game9 implemented in many languages that can be used to get a perfor-
mance baseline. Some R users donated their code; these programs are grouped under the
Miscellaneous category. The fourth and largest group of programs was retrieved from
the R package archive on CRAN.10 The last group is the base library that is bundled
with the R VM. Fig. 6 gives the size of these datasets. A requirement of all packages

Name Bioc. Shoot. Misc. CRAN Base

# Package 515 11 7 1 238 27
# Vignettes 100 11 4 – –
R LOC 1.4M 973 1.3K 2.3M 91K
C LOC 2M 0 0 2.9M 50K

Fig. 6. Purdue R Corpus

in the Bioconductor repository is the
inclusion of vignettes. Vignettes are
scripts that demonstrate real-world
usage of these libraries to potential
users. Vignettes also double as simple
tests for the programs. They typically
come with sample data sets. Out of
the 515 Bioconductor programs, we
focused on the 100 packages with the longest running vignettes. Some CRAN pack-
ages do not have vignettes; this is unfortunate as it makes them harder to analyze. We
retained 1 238 out of 3 495 available CRAN packages. It should be noted that while
some of the data associated to vignettes are large, they are in general short running.

The Shootout benchmarks were not available in R, so we implemented them to
the best of our abilities. They provide tasks that are purely algorithmic, determinis-
tic, and computationally focused. Further, they are designed to easily scale in either
memory or computation. For a fair comparison, the Shootout benchmarks stick to the
original algorithm. Two out of the 14 Shootout benchmarks were not used because
they required multi-threading and one because it relied on highly tuned low-level li-
braries. We restricted our implementations to standard R features. The only excep-
tion is the knucleotide problem, where environments served as a substitute for
hash maps.

8 http://www.bioconductor.org
9 http://shootout.alioth.debian.org/

10 http://cran.r-project.org/
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6 Evaluating the R Implementation

Using ProfileR and TraceR, we get an overview of performance bottlenecks in the cur-
rent implementation in terms of execution time and memory footprint. To give a rela-
tive sense of performance, each diagnostic starts with a comparison between R, C and
Python using the shootout benchmarks. Beyond this, we used Bioconductor vignettes
to understand the memory and time impacts in R’s typical usage.

All measurements were made on an 8 core Intel X5460 machine, running at 3.16GHz
with the GNU/Linux 2.6.34.8-68 (x86 64) kernel. Version 2.12.1 of R compiled with
GCC v4.4.5 was used as a baseline R, and as the base for our tools. The same compiler
was used for compiling C programs, and finally Python v2.6.4 was used. During bench-
mark comparisons and profiling executions, processes were attached to a single core
where other processes were denied. Any other machine usage was prohibited.

6.1 Time

We used the Shootout benchmarks to compare the performance of C, Python and R. Re-
sults appear in Fig. 7. On those benchmarks, R is on average 501 slower than C and 43
times slower Python. Benchmarks where R performs better, like regex-dna (only 1.6
slower than C), are usually cases where R delegates most of its work to C functions.11
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Name Input
S-1 Binary trees 16
S-2 Fankuch redux 10
S-3 Fasta 2.5M
S-4 Fasta redux 2.5M
S-5 K-nucleotide 50K
S-6 Mandelbrot 4K
S-7 N-body 500K
S-8 Pidigits 500
S-9 Regex-dna 2.5K
S-10 Rev. complement 5M
S-11 Spectral norm 640
S-12 Spectral norm alt 11K

Fig. 7. Slowdown of Python and R, normalized to C for the Shootout benchmarks

To understand where time is typically spent, we turn to more representative R pro-
grams. Fig. 8 shows the breakdown of execution times in the Bioconductor dataset ob-
tained with ProfileR. Each bar represents a Bioconductor vignette. The key observation
is that memory management accounts for an average of 29% of execution time.

11 For C and Python implementations, we kept the fastest single-threaded implementations. When
one was not available, we removed multi-threading from the fastest one. The pidigits prob-
lem required a rewrite of the C implementation to match the algorithm of the R implementation
since the R standard library lacks big integers.
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Fig. 8. Breakdown of Bioconductor vignette runtimes as % of
total execution time

Memory management breaks
down into time spent in
garbage collection (18%), al-
locating cons-pairs (3.6%),
vectors (2.6%), and duplica-
tions (4%) for call-by-value
semantics. Built-in functions
are where the true computa-
tional work happens, and on
average 38% of the execu-
tion time. There are some in-
teresting outliers. The max-
imum spent in garbage col-
lection is 70% and one pro-
gram spends 63% copying ar-
guments. Lookup (4.3% and
match 1.8%) represent time
spent looking up variables
and matching parameters with
arguments. Both of these
would be absent in Java as
they are resolved at compile time. Variable lookup would also be absent in Lisp or
Scheme as, once bound, the position of variables in a frame are known. Given the na-
ture of R, many numerical functions are written in C or Fortran; one could thus expect
execution time to be dominated by native libraries. The time spent in calls to foreign
functions, on average 22%, shows that this is clearly not the case.

6.2 Memory
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Fig. 9. Heap allocated memory (MB log scale). C vs. R.

Not only is R slow, but it also
consumes significant amounts
of memory. Unlike C, where
data can be stack allocated, all
user data in R must be heap
allocated and garbage collected.
Fig. 9 compares heap memory
usage in C (calls to malloc)
and data allocated by the R vir-
tual machine. The R allocation
is split between vectors (which
are typically user data) and lists
(which are mostly used by the
interpreter for, e.g., arguments
to functions). The graph clearly
shows that R allocates orders
of magnitude more data than C.
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In many cases the internal data required is more than the user data. Call-by-value se-
mantics is implemented by a copy-on-write mechanism. Thus, under the covers, func-
tion arguments are shared and duplicated when needed. Avoiding duplication reduces
memory footprint; on average only 37% of arguments end up being copied. Lists are
created by pairlist and mostly used by the R VM. In fact, the standard library only
has three calls to pairlist, the whole CRAN code only eight, and Bioconductor none.
The R VM uses them to represent code and to pass and process function call arguments.
It is interesting to note that the time spent on allocating lists is greater than the time
spent on vectors. Cons cells are large, using 56 bytes on 64-bit architectures, and take
up 23 GB on average in the Shootout benchmarks.

Another reason for the large footprint, is that all numeric data has to be boxed into
a vector; yet, 36% of vectors allocated by Bioconductor contain only a single number.
An empty vector is 40 bytes long. This impacts runtime, since these vectors have to be
dereferenced, allocated and garbage collected.

Observations. R is clearly slow and memory inefficient. Much more so than other dy-
namic languages. This is largely due to the combination of language features (call-by-
value, extreme dynamism, lazy evaluation) and the lack of efficient built-in types. We
believe that with some effort it should be possible to improve both time and space usage,
but this would likely require a full rewrite of the implementation.

7 Evaluating the R Language Design

One of the key claims made repeatedly by R users is that they are more productive with
R than with traditional languages. While we have no direct evidence, we will point out
that, as shown by Fig. 10, R programs are about 40% smaller than C code. Python is
even more compact on those shootout benchmarks, at least in part, because many of
the shootout problems are not easily expressed in R. We do not have any statistical
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analysis code written in Python and R, so a more meaningful comparison is difficult.
Fig. 11 shows the breakdown between code written in R and code in Fortran or C in
100 Bioconductor packages. On average, there is over twice as much R code. This is
significant as package developers are surely savvy enough to write native code, and
understand the performance penalty of R, yet they would still rather write code in R.

7.1 Functional

Side effects. Assignments can either define or update variables. In Bioconductor, 45%
of them are definitions, and only two out of 217 million assignments are definitions in
a parent frame by super assignment. In spite of the availability of non-local side effects
(i.e., <<- ), 99.9% of side effects are local. Assignments done through functions such as
[]<- need an existing data structure to operate on, thus they are always side effecting.
Overall they account for 22% of all side effects and 12% of all assignments.
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Fig. 12. Histogram of the number of function arguments in
Bioconductor. (Log scale)

Scoping. R symbol lookup
is context sensitive. This fea-
ture, which is neither Lisp nor
Scheme scoping, is exercised
in less than 0.05% of func-
tion name lookups. However,
even though this number is low,
the number of symbols actually
checked is 3.6 on average. The
only symbols for which this fea-
ture actually mattered in the Bio-
conductor vignettes are c and
file, both popular variables
names and built-in functions.

Parameters. The R function dec-
laration syntax is expressive and
this expressivity is widely used.
In 99% of the calls, at most
3 arguments are passed, while
the percentage of calls with
up to 7 arguments is 99.74%
(see Fig. 12). Functions that
are close to this average are
typically called with positional
arguments. As the number of
parameters increases, users are
more likely to specify function
parameters by name. Similarly,
variadic parameters tend to be
called with large numbers of
arguments.
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Bioc Shootout Misc CRAN Base
stat. dyn. stat. dyn. stat. dyn. stat. stat.

Calls 1M 3.3M 657 2.6G 1.5K 10.0G 1.7G 71K
by keyword 197K 72M 67 10M 441 260M 294K 10K
# keywords 406K 93M 81 15M 910 274M 667K 18K
by position 1.0M 385M 628 143M 1K 935M 1.6G 67K
# positional 2.3M 6.5G 1K 5.2G 3K 18.7G 3.5G 125K

Fig. 13. Number of calls by category

Fig. 13 gives the
number of calls in our
corpus and the total num-
ber of keyword and vari-
adic arguments. Positional
arguments are most com-
mon between 1 and 4 ar-
guments, but are used all
the way up to 25 argu-
ments. Function calls with between 1 and 22 named arguments have been observed.
Variadic parameters are used to pass from 1 to more than 255 arguments. Given the per-
formance costs of parsing parameter lists in the current implementation, it appears that
optimizing calling conventions for function of four parameters or less would greatly
improve performance. Another interesting consequence of the prevalent use of named
parameters is that they become part of the interface of the function, so alpha conversion
of parameter names may affect the behavior of the program.

Laziness. Lazy evaluation is a distinctive feature of R that has the potential for reducing
unnecessary work performed by a computation. Our corpus, however, does not bear
this out. Fig. 14(a) shows the rate of promise evaluation across all of our data sets. The
average rate is 90%. Fig. 14(b) shows that on average 80% of promises are evaluated in
the first function they are passed into. In computationally intensive benchmarks the rate
of promise evaluation easily reaches 99%. In our own coding, whenever we encountered
higher rates of unevaluated promises, finding where this occurred and refactoring the
code to avoid those promises led to performance improvements.

Promises have a cost even when not evaluated. Their cost in in memory is the same
as a pairlist cell, i.e., 56 bytes on a 64-bit architecture. On average, a program allocates
18GB for them, thus increasing pressure on the garbage collector. The time cost of
promises is roughly one allocation, a handful of writes to memory. Moreover, it is a data
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Fig. 14. Promises evaluation in all data sets. The y-axis is the number of programs.
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type which has to be dispatched and tested to know if the content was already evaluated.
Finally, this extra indirection increases the chance of cache misses. An example of how
unevaluated promises arise in R code is the assign function, which is heavily used in
Bioconductor with 23 million calls and 46 million unevaluated promises.

function(x,val,pos=-1,env=as.environment(pos),immediate=TRUE)

.Internal(assign(x,val,env))

This function definition is interesting because of its use of dependent parameters. The
body of the function never refers to pos, it is only used to modify the default value of
env if that parameter is not specified in the call. Less than 0.2% of calls to assign

evaluate the promise associated with pos.
It is reasonable to ask if it would be valid to simply evaluate all promises eagerly. The

answer is unfortunately no. Promises that are passed into a function which provides a
language extension may need special processing. For instance in a loop, promises are
intended to be evaluated multiple times in an environment set up with the right variables.
Evaluating those eagerly will result in a wrong behavior. However, we have not seen any
evidence of promises being used to extend the language outside of the base libraries. We
infer this from calls to the substitute and assimilate functions. Another possible
reason for not switching the evaluation strategy is that promises perform and observe
side effects.

x <- y <- 0

fun <- function(a, b) if(runif(1)>.5) a+b else b+a

fun(x<-y+1, y<-x+2) # Result is always a+b, but can be either 4 or 5

This code snippet will yield different results depending on the order the two promises
passed to fun are going to be evaluated. Taking into account the various oddities of R,
such as lookups that force evaluation of all promises in scope, it is reasonable to wonder
if relying on a particular evaluation order is a wise choice for programmers.

7.2 Dynamic

Eval. The eval function is widely used in R code with 8 500 static calls in CRAN and
5 800 calls in Bioconductor. The total number of dynamic calls in our benchmarks was
2.2 million. These are rather large numbers. We focus on the 15 call sites where each
represents more than 1% of the total dynamic calls. Together these call sites account
for 88% of eval. The match.arg function is the highest user with 54% of all calls
to eval. In the 14 other call sites to eval, we see two uses cases. The most common
is the evaluation of the source code of a promise retrieved by substitute in a new
environment. This is done in the with function. The other use case is the invocation of
a function whose name or arguments are determined dynamically. For this purpose, R
provides do.call, and thus using eval is overkill.

Substitute. Promises provide a kind of limited automatic quoting of arguments as the
substitute function can retrieve the textual representation of the source expression
of any promise. A typical use case is to add a legend to a chart when no text is provided;
this is done by retrieving the expression passed to the plot function and using it as a
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legend. However, this usage is limited to one level of nesting, and passing a promise to
another function will destroy that information.

f <- function(x) substitute(x)

b <- function(x) (function(y) substitute(y))(x)

f(1 + 1) # 1 + 1
b(1 + 1) # x

The example above shows that substitute only retrieves the text of the last argument.
In Bioconductor, substitute is called from 51 call sites 3.6 million times, but only
11 call sites are in user code (the rest comes from the standard library). They account
for 2% of dynamic calls.

match.arg. The match.arg function takes arguments arg and choices; it matches
arg against a table of candidate values as specified by choices. In practice, 75% of
the calls to this function only pass the first argument, like the following code snippet:

magic <- function(type=c("mean","median","trimmed"))

return (match.arg(type))

A call to magic("t") returns trimmed. Notice that the string trimmed only occurs in
the default argument which is not used in this case as a value of "t" is provided. What
happens is that match.arg reaches into its caller, reflectively finds the default value
for type and uses it as the value of choices; this is done as follows,

match.arg <- function (arg, choices)

if (missing(choices)) {

formal.args <- formals(sys.function(sys.parent()))

choices <- eval(formal.args[[deparse(substitute(arg))]])

...

The first line checks if the choices argument was passed to the function. The second
line gathers the list of parameters of the caller. Finally, the last line extracts from this
list the parameter that has the same name as arg and evals it.

Environments. Explicit environment manipulation hinders compiler optimizations. In
our benchmarks these functions are called often. But it turns out that they are most often
used to short-circuit the by-value semantics of R. We discovered that 87% of the calls
to remove, which deletes a local variable from the current frame, are used as part of
an implementation of a hash map. R also allows programs to change the nesting of an
environment with parent.env. But 69% of these changes are used by the R VM’s lazy
load mechanism, and 30% by the proto library which implements prototypes [20] and
uses environments to avoid copies.

7.3 Objects

The S4 object model has been promoted as a replacement for S3 by parts of the R com-
munity [16,3]. However, our numbers do show this happening. Thirteen years after the
introduction of S4, S3 classes still dominate. From the number of methods introduced
and the number of times they are redefined, S3 classes seem to be used quite differently
than S4 classes.
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Bioc Misc CRAN Base Total

S3

# classes 1 535 0 3 351 191 3 860
# methods 1 008 0 1 924 289 2 438
Avg. redef. 6.23 0 7.26 4.25 9.75
Method calls 13M 58M - - 76M
Super calls 697K 1.2M - - 2M

S4

# classes 1 915 2 1 406 63 2 893
# singleton 608 2 370 28 884
# leaves 819 0 621 16 1 234
Hier. depth 9 1 8 4 9
Direct supers 1.09 0 1.13 0.83 1.07
# methods 4 136 22 2 151 24 5 557
Avg. redef. 3 1 3.9 2.96 3.26
Redef. depth 1.12 1 1.21 1.08 1.14
# new 668K 64 - - 668K
Method calls 15M 266 - - 15M
Super calls 94K 0 - - 94K

Fig. 15. Object usage in the corpus

Fig. 15 summarizes the use
of object-orientation in the cor-
pus. In our corpus, 1 055 S3
classes, or roughly one fourth
of all classes, have no meth-
ods defined on them and 1 107
classes, 30%, have only a print
or plot method. Fig. 16 gives
the number of redefinitions of
S3 methods. Any number of def-
initions larger than one suggest
some polymorphism. Unsurpris-
ingly, plot and print domi-
nate. While important, does the
need for these two functions re-
ally justify an object system? At-
tributes already allow the pro-
grammer to tag values, and
could easily be used to store clo-
sures for a handful of methods like print and plot. A prototype-based system would
be simpler and probably more efficient than the S3 object system. Finally, only 30% of
S3 classes are really object-oriented. This translates to one class for every two packages.
This is quite low and makes rewriting them as S4 objects seem feasible. Doing so could
simplify and improve both R code and the evaluator code.
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Fig. 16. S3 method redefinitions (on x axis)

S4 objects on the other hand, seem to
be used in a more traditional way. The
class hierarchies are not deep (maximum
is 9), however they are not flat either.
The number of parent classes is surpris-
ingly low (see [5] for comparison), but
reaches a maximum of 50 direct super-
classes. In Fig. 15, singleton classes, i.e.,
classes which are both root and leaf, are
ignored. At first glance, the number of
method redefinitions seems to be a bit
smaller than what we find in other ob-
ject languages. This is partially explained
by the absence of a root class, the use of
class unions, and because multi-methods
are declared outside of classes. The num-
ber of redefinitions, i.e., one method ap-
plied to a more specific class, is very low
(only 1 in 25 classes). This pattern suggests that the S4 object model is mostly used to
overcome an absence of structure declarations rather than to add objects in statistical
computing. Even when biased by Bioconductor, which pushes for S4 adoption, the use
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of S4 classes remains low. Part of the reason may be the perception that S3 classes are
less verbose and clumsy to write than S4; it may also come from the fact that the base
libraries use S3 classes intensively and this is reflected in our data.

7.4 Experience

Implementing the shootout problems highlighted some limitations of R. The pass-by-
value semantics of function calls is often cumbersome. The R standard library does not
provide data structures such as growable arrays or hash maps found in many other lan-
guages. Implementing them efficiently is difficult without references. To avoid copying,
we were constrained to either use environments as a workaround, or to inline these op-
erations and then make use of scoping and <<- as needed. Either choice makes the code
unnecessarily verbose and readability suffers. Moreover, the former choice brings the
question of whether the environments are used as intended, and the latter has a serious
impact on code maintenance.

We found performance hard to predict. Without a solid understanding

Input size 12 13 14
Base time 6s 12s 31s
() +7.4% +5.3% +6.3%
return +4.6% +5.4% +5.4%

Fig. 17. Adding overheads

of the implementation, users are bound to be sur-
prised by the impact of seemingly small changes to
their code. In the binary tree program, adding an
extra (and unneeded) return statement or a pair
of parentheses () will impact performance in a no-
ticeable way. Fig. 17 shows impact of adding these
operations on performance for different input sizes.

8 Conclusions

This paper reports on our investigations into the design and implementation of the R
language. Despite having millions of users and being, in many respects, a success story,
R has received little attention from our community. With the exception of [13], which
mistakenly characterized R as strict and imperative, ours is the first attempt to introduce
R to a mainstream computer science audience.

Our first challenge was to understand the unconventional semantics of the language
and the sometimes subtle interactions between its features. While some documentation
exists, it is incomplete. The language is effectively defined by the successive releases of
its implementation. Relying on an implementation as the authoritative specification of a
language is unsatisfactory; the R interpreter is constrained by implementation decisions
and presents a programming model that is at same time overconstrained and ambiguous.
Implementation details are exposed and slowly bleed into the language. We have found
it useful, for our own sake, to formalize the current implementation of R, focusing
on features such as lazy evaluation, variable scoping and binding, and copy-semantics.
Even though our semantics does not cover all of R, we did not oversimplify. We present
a proper subset of R; we are confident that we will be able to extend it to larger portions
of the language. As a language, R is like French; it has an elegant core, but every rule
comes with a set of ad-hoc exceptions that directly contradict it.

A language definition is only part of the picture. The next question is how it is used in
practice. Even the most elegant feature can be misused, and the ugliest language design
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can be used well when sufficient discipline is employed. To understand R in the wild,
we implemented the TraceR framework and gathered over 3 million lines of code from
various sources to form the largest open source R benchmark suite. Armed with these
tools we started looking at how the exotic features of R are used by programs and what
are the overheads and costs involved in supporting those features.

The R user community roughly breaks down into three groups. The largest groups
are the end users. For them, R is mostly used interactively and R scripts tend to be short
sequences of calls to prepackaged statistical and graphical routines. This group is mostly
unaware of the semantics of R, they will, for instance, not know that arguments are
passed by copy or that there is an object system (or two). The second, smaller and more
savvy, group is made up of statisticians who have a reasonable grasp of the semantics
but, for instance, will be reluctant to try S4 objects because they are “complex”. This
group is responsible for the majority of R library development. The third, and smallest,
group contains the R core developers who understand both R and the internals of the
implementation and are thus comfortable straddling the native code boundary.

One of the reasons for the success of R is that it caters to the needs of the first group,
end users. Many of its features are geared towards speeding up interactive data analysis.
The syntax is intended to be concise. Default arguments and partial keyword matches
reduce coding effort. The lack of typing lowers the barrier to entry, as users can start
working without understanding any of the rules of the language. The calling convention
reduces the number of side effects and gives R a functional flavor. But, it is also clear
that these very features hamper the development of larger code bases. For robust code,
one would like to have less ambiguity and would probably be willing to pay for that
by more verbose specifications, perhaps going as far as full-fledged type declarations.
So, R is not the ideal language for developing robust packages. Improving R will re-
quire increasing encapsulation, providing more static guarantees, while decreasing the
number and reach of reflective features. Furthermore, the language specification must
be divorced from its implementation and implementation-specific features must be dep-
recated.

The balance between imperative and functional features is fascinating. We agree with
the designers of R that a purely functional language whose main job is to manipulate
massive numeric arrays is unlikely to be a success. It is simply too useful to be able to
perform updates and have a guarantee that they are done in place rather than hope that
a smart compiler will be able to optimize them. The current design is a compromise be-
tween the functional and the imperative; it allows local side effects, but enforces purity
across function boundaries. It is unfortunate that this simple semantics is obscured by
exceptions such as the super-assignment operator (<<-) which is used as a sneaky way
to implement non-local side effects.

One of the most glaring shortcomings of R is its lack of concurrency support. In-
stead, there are only native libraries that provide behind-the-scenes parallel execution.
Concurrency is not exposed to R programmers and always requires switching to native
code. Adding concurrency would be best done after removing non-local side effects,
and requires inventing a suitable concurrent programming model. One intriguing idea
would be to push on lazy evaluation, which, as it stands, is too weak to be of much use
outside of the base libraries, but could be strengthened to support parallel execution.
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The object-oriented side of the language feels like an afterthought. The combination
of mutable objects without references or cyclic structures is odd and cumbersome. The
simplest object system provided by R is mostly used to provide printing methods for
different data types. The more powerful object system is struggling to gain acceptance.

The current implementation of R is massively inefficient. We believe that this can, in
part, be ascribed to the combination of dynamism, lazy evaluation, and copy semantics,
but it also points to major deficiencies in the implementation. Many features come at
a cost even if unused. That is the case with promises and most of reflection. Promises
could be replaced with special parameter declarations, making lazy evaluation the ex-
ception rather than the rule. Reflective features could be restricted to passive introspec-
tion which would allow for the dynamism needed for most uses. For the object system,
it should be built-in rather than synthesized out of reflective calls. Copy semantics can
be really costly and force users to use tricks to get around the copies. A limited form of
references would be more efficient and lead to better code. This would allow structures
like hash maps or trees to be implemented. Finally, since lazy evaluation is only used
for language extensions, macro functions à la Lisp, which do not create a context and
expand inline, would allow the removal of promises.
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[READS]
H(ν) = num[n]α

reads(ν, H) = n

[READB]
H(ν) = str[s]α

readn(ν, H) = s

[GETN]
H(ν) = num[n1 . . . nm . . .]α

ν′ fresh H ′ = H[ν′/num[nm]⊥⊥]

get(ν, m, H) = ν′, H ′

[GETS]
H(ν) = str[s1 . . . sm . . .]α

ν′ fresh H ′ = H[ν′/str[sm]⊥⊥]

get(ν, m, H) = ν′, H ′

[GETG]

H(ν) = gen[ν1 . . . νm . . .]α

get(ν, m, H) = νm, H
′

[SETN]
readn(ν′, H) = n

H(ν) = num[n1 . . . nm . . .]α

H ′ = H[ν/num[n1 . . . n . . .]α]

set(ν, m, ν′, H) = H ′

[SETS]
reads(ν′, H) = s

H(ν) = str[s1 . . . sm . . .]α

H ′ = H[ν/str[s1 . . . s . . .]α]

set(ν, m, ν′, H) = H ′

[SETG]

H(ν) = gen[ν1 . . . νm . . .]α

H ′ = H[ν/gen[ν1 . . . ν′ . . .]α]

set(ν, m, ν′, H) = H ′

[SETNE]
readn(ν′, H) = n

H(ν) = num[n1 . . . nm]
α

H ′ = H[ν/num[n1 . . . nm n]
α]

set(ν, m + 1, ν′, H) = H ′

[SETSE]
reads(ν′, H) = s

H(ν) = str[s1 . . . sm]
α

H ′ = H[ν/str[s1 . . . sm s]
α]

set(ν, m + 1, ν′, H) = H ′

[SETGE]

H(ν) = gen[ν1 . . . νm]
α

H ′ = H[ν/gen[ν1 . . . νm ν′]α]

set(ν, m + 1, ν′, H) = H ′

[SETNS]
reads(ν′, H) = s H(ν) = num[n1 . . . nm . . .]α

H ′ = H[ν/str[s(n1) . . . s . . .]α]

set(ν, m, ν′, H) = H ′

[SETNG]

H(ν′) = gen[ν1 . . .]α
′

H(ν) = num[n1 . . . nm . . .]α

H ′ = H[ν/str[g(n1) . . . ν′ . . .]α]

set(ν, m, ν′, H) = H ′

[SETSN]
readn(ν′, H) = n H(ν) = str[s1 . . . sm . . .]α

H ′ = H[ν/str[s1 . . . s(n) . . .]α]

set(ν, m, ν′, H) = H ′

[SETSG]

H(ν′) = gen[ν1 . . .]α
′

H(ν) = str[s1 . . . sm . . .]α

H ′ = H[ν/gen[g(s1) . . . ν′ . . .]α]

set(ν, m, ν′, H) = H ′

[SETNSE]
reads(ν′, H) = s H(ν) = num[n1 . . . nm]

α

H ′ = H[ν/str[s(n1) . . . s(nm) s]
α]

set(ν, m + 1, ν′, H) = H ′

[SETNGE]

H(ν′) = gen[ν1 . . .]α
′

H(ν) = num[n1 . . . nm]
α

H ′ = H[ν/str[g(n1) . . . g(nm) ν′]α]

set(ν, m + 1, ν′, H) = H ′

[SETSNE]
readn(ν′, H) = n H(ν) = str[s1 . . . sm]

α

H ′ = H[ν/str[s1 . . . sm s(n)]α]

set(ν, m + 1, ν′, H) = H ′

[SETSGE]

H(ν′) = gen[ν1 . . .]α
′

H(ν) = str[s1 . . . sm]
α

H ′ = H[ν/gen[g(s1) . . . g(sm) ν′]α]

set(ν, m + 1, ν′, H) = H ′

[LOOK0]
H(ι) = F F (x) = ν

ι(H, x) = ν

[LOOK1]
Γ = ι ∗ Γ ′ ι(H, x) = ν

Γ (H, x) = ν

[LOOK2]
Γ = ι ∗ Γ ′ H(ι) = F x �∈ dom(F ) Γ ′(H, x) = ν

Γ (H, x) = ν

[COPY0]
cpy(H, ν⊥) = H ′, ν′′

⊥ cpy(H ′, ν′
⊥) = H ′′, ν′′′

⊥
cpy(H, ν⊥, ν′

⊥) = H ′′, ν′′
⊥, ν′′′

⊥

[COPY1]

cpy(H,⊥) = H,⊥
[COPY2]

H(ν) = κα α = ν⊥ν′
⊥ cpy(H, ν⊥, ν′

⊥) = H ′ ν′′
⊥, ν′′′

⊥ ν′′ fresh H ′′ = H ′[ν′′/κν′′
⊥ ν′′′

⊥ ]

cpy(H, ν) = H ′′, ν′′

[SUPER1]
Γ = ι ∗ Γ ′ H(ι) = F x ∈ dom(F ) F ′ = F [x/ν] H ′ = H[ι/F ′]

assign(x, ν, Γ, H) = H ′

[SUPER2]
Γ = ι ∗ Γ ′ H(ι) = F x �∈ dom(F ) assign(x, ν, Γ ′, H) = H ′

assign(x, ν, Γ, H) = H ′

[SUPER3]
Γ = ι H(ι) = F F ′ = F [x/ν] H ′ = H[ι/F ′]

assign(x, ν, Γ, H) = H ′

Fig. 18. Auxiliary definitions




