
Object Initialization in X10

Yoav Zibin1, David Cunningham2, Igor Peshansky1, and Vijay Saraswat2

1 Google (work done at IBM)
{yzibin,igorp}@google.com

2 IBM research in TJ Watson
{dcunnin,vsaraswa}@us.ibm.com

Abstract. X10 is an object oriented programming language with a sophisticated
type system (constraints, class invariants, non-erased generics, closures) and
concurrency constructs (asynchronous activities, multiple places). Object initial-
ization is a cross-cutting concern that interacts with all of these features in deli-
cate ways that may cause type, runtime, and security errors. This paper discusses
possible designs for object initialization, and the “hardhat” design chosen and
implemented in X10 version 2.2. Our implementation includes a fixed-point inter-
procedural (intra-class) data-flow analysis that infers, for each method called dur-
ing initialization, the set of fields that are read, and those that are asynchronously
and synchronously assigned. Our codebase of more than 200K lines of code only
had 104 annotations. Finally, we formalize the essence of initialization checking
with an effect system intended to complement a standard FJ style formalization
of the type system for X10. This system is substantially simpler than the masked
types of [10], and it is more practical (for X10) than the free-committed types
of [12]. This is the first formalization of a type and (flow-sensitive) effect system
for safe initialization in the presence of concurrency constructs.

1 Introduction

Constructing an object in a safe way is not easy: it is well known that dynamic dispatch
or leaking this during object construction is error-prone [2,11,6], and various type sys-
tems and verifiers have been proposed to handle safe object initialization [7,14,4,10].
As languages become more and more complex, new pitfalls are created due to the inter-
actions among language features.

X10 is an object oriented programming language with a sophisticated type system
(constraints, class invariants, non-erased generics, closures) and concurrency constructs
(asynchronous activities, multiple places). This paper shows that object initialization is
a cross-cutting concern that interacts with other features in the language. We discuss
several language designs that restrict these interactions, and explain why we chose the
hardhat design for X10.

Hardhat [6] is a design that prohibits dynamic dispatch or leaking this (e.g., storing
this in the heap) during construction. Such a design limits the user but also protects her
from future bugs (see Fig. 1 below for two such bugs). X10’s hardhat design is more
complex due to additional language features such as concurrency, places, and closures.

On the other end of the spectrum, Java and C# allow dynamic dispatch and leaking
this. However, they still maintain type and runtime safety by relying on the fact that
every type has a default value (also called zero value, which is either 0, false, or null),
and all fields are zero-initialized before the constructor begins. As a consequence, a

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 207–231, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

208 Y. Zibin et al.

half-baked object can leak before all its fields are set. Phrased differently, when reading
a final field, one can read the default value initially and later read a different value.
Another source of subtle bugs is related to the synchronization barrier at the end of a
constructor [9] after which all assignments to final fields are guaranteed to be written.
The programmer is warned (in the documentation only!) that immutable objects (using
final fields) are thread-safe only if this does not escape its constructor. Finally, if the
type-system is augmented, for example, with non-null types, then a default value no
longer exists, which leads to complicated type-systems for initialization [4,10].

C++ sacrifices type-safety on the altar of performance: fields are not zero-initialized.
(X10 has both type-safety and the performance for not zero-initializing fields.) There-
fore if this leaks in C++, one can read an uninitialized field resulting in an arbitrary
value. Moreover, method calls are statically bound during construction, which may re-
sult in an exception at runtime if one tries to invoke a virtual method of an abstract class
(see Fig. 3b below). (Determining whether this happens is intractable [5].) We believe
a design for object initialization should have these desirable properties:

Cannot read uninitialized fields. One should not be able to read uninitialized fields.
In C++ it is possible to read uninitialized fields, returning an unspecified value which
can lead to unpredictable behavior. In Java, fields are zero initialized before the
constructor begins to execute, so it is possible to read the default or zero value, but
never an unspecified value.

Single value for final fields. Final fields can be assigned exactly once, and should be
read only after assigned. In Java it is possible to read a final field before it was
assigned, therefore returning its default value.

Immutable objects are thread-safe. Immutable classes are a common pattern where
fields are final/const and instances have no mutable state, e.g., String in Java. Im-
mutable objects are often shared among threads without any explicit synchronization,
because programmers assume that if another thread gets a handle to an object, then
that thread should see all assignments done during initialization. However, weak
memory models today do not necessarily have this guarantee and immutable objects
could be thread-unsafe! Sec. 1.3 below will show that this can happen in Java if this
escapes from the constructor [9].

Simple. The order of initialization should be clear from the syntax, and should not sur-
prise the user. Dynamic dispatch during construction disrupts the order of initializa-
tion by executing a subclass’s method before the superclass finished its initialization.
This kind of initialization order is error-prone and often surprises the user.

Flexible. The user should be able to express the common idioms found in other lan-
guages with minor variations.

Type-safe. The language should continue to be statically type-safe even if it has rich
types that do not have a default or zero value, such as non-null types (T{self!=null}
in X10’s syntax). Type-safety implies that reading from a non-null type should never
return null. Adding non-null types to Java [3,4,10] has been a challenge precisely
due to Java’s relaxed initialization rules.

We took the ideas of prohibiting dynamic dispatch or leaking this during construc-
tion from [6], and materialized them into a set of rules that cover all aspects of X10
(type-system, closures, generics, properties, and concurrent and distributed constructs).
This hardhat design in X10 (version 2.2) has the above desirable properties, however

Object Initialization in X10 209

they come at a cost of limiting flexibility: it is not possible to express cyclic immutable
structures in X10. We chose simplicity over flexibility in our design choices, e.g., X10
prohibits creating an alias of this during object construction (whereas a more flexible
design could track aliases via alias-analysis, at the cost of sacrificing simplicity). To our
knowledge, X10 is the first object-oriented (OO) language to adopt the strict hardhat
initialization design.

Because one cannot read uninitialized fields in X10, there is no need zero-initialize
the object’s fields (as done in Java before the constructor executes). A recent study [13]
measured the direct cost of zero initialization, which “is surprisingly high: up to 12.7%,
with average costs ranging from 2.7 to 4.5% on a high performance virtual machine on
IA32 architectures.” (Note that the indirect costs due to caching might even be higher.)

X10 version 2.0 till 2.2 had an alternative initialization design called proto that
allowed cyclic immutable structures at the cost of a more complicated design. In OOP-
SLA’11, Summers and Müller [12] presented an initialization type-system that is al-
most identical to our proto proposal, but with different terminology: fully initialized
objects are termed committed (non-proto), and objects under initialization are termed
free (proto). Whereas in our proto proposal one cannot read uninitialized fields, in Sum-
mers’ type-system reading uninitialized fields is allowed and it returns an unclassified
type (and reading non-null fields from an unclassified type is allowed but it may return
null). Phrased differently, reading a field is always allowed, but it may return null even
for non-null fields. In contrast, X10 and C++ have types that cannot contain null (in
C++ only pointers may be null, and X10 has structs which are inlinable objects that
may not contain null), thus Summers’ type-system is not applicable in such languages.
Moreover, proto was used in X10 in the past 3 years prior to X10 2.2, and it was made
obselete in favor of the hardhat design presented in this paper because proto did not
work well in practice. For example, consider an implementation of LinkedList that has
a non-null field header:
class LinkedList extends SuperClass {
final Entry header = new Entry();
LinkedList(Collection c) { addAll(c); }
public boolean addAll(Collection c) {
// this.header is null if SuperClass calls addAll in its constructor.

}
}

During construction we must read from this.header, but this is still proto and it is
illegal to read from a proto object (in Summer’s type-system, reading is allowed but
it may return null). It is tempting to think that a dataflow algorithm can prove that
header was already assigned, however the dataflow must be inter-procedural, and it is
further complicated by overriding and this escaping. For example, if SuperClass calls
addAll in its constructor, then header will still have the default value of null. The newly
proposed hardhat design can modularly type-check this code assuming that addAll is
annotated as non-escaping (see Sec. 2).

The contributions of this paper are: (i) a complete and strict hardhat design in a
full-blown advanced OO language with many cross-cutting concerns (default values,
final fields, dataflow analysis, overriding, and especially the concurrent and distributed
aspects), (ii) an inter-procedural fixed-point algorithm for definite-async assignment,
(iii) implementation inside the X10 open-source compiler and converting the entire
X10 code-base (+200K lines of code) to conform to the hardhat principles, (iv) FX10

210 Y. Zibin et al.

formalism which is the first to present a flow-sensitive effect system with concurrency
constructs and a soundness theorem stating that one can never read an uninitialized field
in a statically correct program.

For object initialization rules, the details matter. Instead of basing our work on ab-
stract theoretical discussions, we have chosen to work with a concrete language (X10,
see Sec. 3) in which all these rules have been worked out to illustrate the subtleties in-
volved. Our analysis and design will be applicable to any OO language with fine-grained
concurrency. Object initialization rules must be dealt with in order to support determi-
nate computation. For example, Deterministic Parallel Java (DPJ) [1] also have similar
rules for object initialization to prevent this from leaking: “the DPJ type and effect
system ensures that no other task can access this until after the constructor returns.”

The remainder of this introduction presents common initialization pitfalls (in sequen-
tial, concurrent, and distributed code in both Java and X10) and how the hardhat design
prevents them. Specifically, it presents initialization pitfalls in sequential code (Sec. 1.1),
concurrent code (Sec. 1.3), and distributed X10 code (Sec. 1.4), and the crux of the hard-
hat design that prevents these sequential pitfalls (Sec. 1.2).

1.1 Initialization Pitfalls in Sequential Code

Fig. 1a demonstrates the two most common initialization pitfalls in Java: leaking this
and dynamic dispatch. We will first explain the surprising output due to dynamic dis-
patch, and then the less known possible bug due to leaking this.

Executing new B() prints a=42,b=0, which is surprising to most Java users. One would
expect b to be 2, and a to be either 1 or 44. However, due to initialization order and
dynamic dispatch, the user sees the default value for b which is 0, and therefore the value
of a is 42. We will trace the initialization order for new B(): we first allocate a new object
with zero-initialized fields, and then invoke the constructor of B. The constructor of B first
calls super(), and only afterward it will run the field initializer which sets b to 2. This
is the cause of surprise, because syntactically the field initializer comes before super(),
however it is executed after. (And writing b=2;super(); is illegal in Java because calling
super must be the first statement). During the super() call we perform two dynamic
dispatches: the two calls (initA() and toString()) execute the implementation in B (and
recall that b is still 0). Therefore, initA() returns 42, and toString() returns a=42,b=0.
This bug might seem pretty harmless, however if we change the type of b from int to
Integer, then this code will throw a NullPointerException, which is more severe.

The second pitfall is leaking this before the object is fully-initialized, for example,
S.add(this). Note that we leak a partially-initialized object, i.e., the fields of B have not
yet been assigned and they contain their default values. Suppose that some other thread
iterates over S and prints them. Then that thread might read b=0. In fact, it might even
read a=0, even though we just assigned 42 to a two statements ago! The reason is that
this write is guaranteed to be seen by other threads only after an implicit synchronization
barrier that is executed after the constructor ends. Sec. 1.3 further explains final fields
in Java and the implicit synchronization barrier.

1.2 The Crux of the Hardhat Design

The hardhat design in X10 (described in Sec. 2) prevents both pitfalls, because its rules
allow dynamic dispatching only when this cannot be accessed (first pitfall) and prohibit

Object Initialization in X10 211

class A {
static HashSet S = new HashSet();
final int a;
A() {
a = initA(); // dynamic dispatch!
System.out.println(toString());
S.add(this); // leakage!
}
int initA() { return 1; }
public String toString() {
return "a="+a; }

}
class B extends A {
int b = 2;
int initA() { return b+42; }
public String toString() {
return super.toString()+",b="+b;}

}

(a) Initialization pitfalls

class A {
static HashSet S = new HashSet();
final int a;
protected A() {
a = initA(); // ok
System.out.println(toStringOfA());
// S.add(this); // Would be an error
}
@NoThisAccess int initA() {return 1;}
public String toString() {
return toStringOfA(); }
@NonEscaping final String toStringOfA(){
return "a="+a; }
public static A createA() {
A res = new A(); S.add(res);
return res;
}
}
class B extends A {
int b = 2;
@NoThisAccess int initA() {return 42;}
public String toString() {
return super.toString()+",b="+b;}
public static B createB() {
B res = new B(); S.add(res);
return res;
}
}

(b) Fixed to conform to the hardhat design

Fig. 1. Two initialization pitfalls in Java: leaking this and dynamic dispatch

leaking this (second pitfall). We use two method annotations to mark that a method is
non-escaping: @NonEscaping and @NoThisAccess; the first prohibits leaking this, and
the second is even more strict and prohibits any access of this. The essence of the
hardhat design are these two rules: (i) Constructors and non-escaping methods may
leak/alias this only to other non-escaping methods (i.e., this can only be used as the
receiver of a non-escaping method call), (ii) Non-escaping methods are either private
or final (thus they cannot be overridden), except @NoThisAccess methods that may be
overridden but they cannot access this. These two rules prevent the two pitfalls of
leaking this and dynamic dispatching.

Initialization in X10 has the following main attributes: (i) this is the only accessible
raw/uninitialized object in scope, (ii) only @NoThisAccess methods can be dynamically
dispatched during construction, (iii) one can read a field only after it was assigned, and
all fields are assigned by the time the constructor finishes, (iv) reading a final field
always results in the same value. (In contrast to Java and [12] where reading a final
field might return different values at different times.) Furthermore, with the hardhat
rules there is even no need to zero-initialize all fields before executing the constructor
(as done in Java), thus reducing the program runtime. (We are now in the process of
measuring this reduction in runtime; Using a simple bytecode verifier it is possible to
ensure that this optimization is safe.)

212 Y. Zibin et al.

Fig. 1b shows how to convert the code of Fig. 1a to the hardhat design and thus avoid
these two pitfalls (but the original program behavior is changed). We made the follow-
ing changes: (i) toString now delegates to a final non-escaping method toStringOfA,
and the constructor of A can call toStringOfA; B cannot override this method because it
is final, (ii) initA is @NoThisAccess and therefore B.initA cannot read the field b (which
has not been assigned yet), (iii) instead of leaking this into S in the constructor of A, we
refactored the code into two factory methods that create instances of A and B, and only
then add the fully-initialized instance to S.

1.3 Initialization Pitfalls in Concurrent Code

We will start with an anecdote: suppose you have a friend that playfully removed all the
occurrences of the final keyword from your legal Java program. Would your program
still run the same? On the face of it, final is used only to make the compiler more strict,
i.e., to catch more errors at compile time (to make sure a method is not overridden, a
class is not extended, and a field or local is assigned exactly once). After compilation
is done, final should not change the runtime behavior of the program. However, this is
not the case due to interaction between initialization and concurrency: a synchronization
barrier is implicitly added at the end of a constructor [9] ensuring that assignments to
final fields are visible to all other threads. (Assignments to non-final fields might not be
visible to other threads!)

The synchronization barrier was added to the memory model of Java 5 to ensure
that the common pattern of immutable objects is thread-safe. The memory model does
not guarantee sequential consistency, but only weak consistency. (The barrier would not
be needed with sequential consistency.) Without this barrier another thread might see
the default value of a field instead of its final value. For example, it is well-known that
String is immutable in Java, and its implementation uses three final fields: char[] value,
and two int fields named offset and count. The following code "AB".substring(1)
will return a new string "B" that shares the same value array as "AB", but with offset
and count equal to 1. Without the barrier, another thread might see the default values
for these three fields, i.e., null for value and 0 for offset and count. For instance, if
one removes the final keyword from all three fields in String, then the following code
might print B (the expected answer), or it might print A or an empty string, or might even
throw a NullPointerException:

final String name = "AB".substring(1);
new Thread() { public void run() {

System.out.println(name); } }.start();

A similar bug might happen in Fig. 1a because this was leaked into S before the barrier
was executed. Consider another thread that iterates over S and reads field a. It might
read 0, because the assignment of 42 to a is guaranteed to be visible to other threads
only after the barrier was reached.

Java’s documentation recommends using final fields when creating an immutable
class, and avoid leaking this in the constructor. However, javac does not even give a
warning if that recommendation is violated. To summarize, final fields in Java enable
thread-safe immutable objects, but the user must be careful to avoid the pitfall of leaking
this. The hardhat design in X10 prevents any leakage of this, thus making it safe and
easy to create immutable classes.

Object Initialization in X10 213

1.4 Initialization Pitfalls in Distributed X10 Code

X10 supports parallelism in the form of both concurrent and distributed code. Next we
describe parallelism in X10 and its interaction with object initialization.

Concurrent code uses asynchronous un-named activities that are created with the
async construct, and it is possible to wait for activities to complete with the finish
construct. Informally, statement async S executes statement S asynchronously; we say
that the newly created activity locally terminated when it finished executing S, and
that it globally terminated when it locally terminated and any activity spawned by S
also globally terminated. Statement finish S blocks until all the activities created by S
globally terminated.

Distributed code is run over multiple places that do not share memory, therefore ob-
jects are (deeply) copied from one place to another. The expression at(p) E evaluates p
to a place, then copies all captured references in E to place p, then evaluates E in place
p, and finally copies the result back to the original place. Note that at is a synchronous
construct, meaning that the current activity is blocked until the at finishes. This con-
struct can also be used as a statement, in which case there is no copy back (but there is
still a notification that is sent back when the at finishes, in order to release the blocked
activity in the original place).

Fig. 2a (and Fig. 2b) shows how to (correctly) calculate the Fibonacci number fib(n)
in X10 using concurrent and distributed code. The keywords val and var are modifiers
that correspond to final and non-final variables, respectively. Note how fib(n-2) is
calculated asynchronously at the next place (next() returns the next place in a cyclic
ordering of all places), while simultaneously recursively calculating fib(n-1) in the
current place (that will recursively spawn a new activity, and so on). Therefore, the
computation will recursively continue to spawn activities at the next place until n is
1. When both calculations globally terminate, the finish unblocks, and we sum their
result into the final field fib.

We note that using final local variables for fib2 and fib1 instead of fields would
have made this example more elegant, however we chose the latter because this paper
focuses on object initialization. X10 has similar initialization rules for final locals and
final fields, but it is outside the scope of this paper to present all forms of initialization
in X10 (including local variables and static fields). Details of those can be found in
X10’s language specification at x10-lang.org.

There are two possible pitfalls in this example. The first is a distributed pitfall, where
one assigns to a field of a copy of this in another place (instead of assigning in the
original place). Leaking this to another place before it is fully initialized might also
cause bugs in custom serialization code (see Sec. 2.10). The second is a concurrency
pitfall, where we forget to use finish, and therefore we might read from a field be-
fore its assignment was definitely executed. Java has definite-assignment rules (using
an intra-procedural data-flow analysis) to ensure that a read can only happen after a
write; The hardhat design in X10 adopted those rules and extended them in the face of
concurrency to support the pattern of asynchronous initialization where an async must
have an enclosing finish (using an intra-class inter-procedural analysis, see Sec. 2.11).

The hardhat design in X10 prevents both pitfalls by ensuring that all fields of an
object are definitely-synchronously assigned when construction of that object ends, and
that only fully initialized objects can cross places.

214 Y. Zibin et al.

class Fib {
val fib2:Int, fib1:Int, fib:Int;
def this(n:Int) {

async {
val p = here.next();
at(p) if (n<=1)
fib2 = 0; else // Err1
fib2 = new Fib(n-2).fib; // Err1

}

if (n<=0)
fib1 = 0;
else if (n<=1)
fib1 = 1;
else
fib1 = new Fib(n-1).fib;
fib = fib2+fib1; // Err2

}
}

(a) Initialization pitfalls in X10

class Fib {
val fib2:Int, fib1:Int, fib:Int;
def this(n:Int) {
finish {
async {
val p = here.next();
fib2 = at(p) (n<=1) ?
0 :
new Fib(n-2).fib;

}
}
if (n<=0)
fib1 = 0;
else if (n<=1)
fib1 = 1;
else
fib1 = new Fib(n-1).fib;
fib = fib2+fib1;

}
}

(b) Fixed to conform to the hardhat design

Fig. 2. Concurrent and distributed Fibonacci example in X10. Concurrent code is expressed using
async and finish: async starts an asynchronous activity, and finish waits for all spawned
activities to finish. Distributed code uses at to shift among places; here denotes the current place.
at(p) E evaluates expression E in place p, and finally copies the result back; any final variables
captured in E from the outer environment (e.g., n) are first copied to place p. The two initialization
pitfalls: (1) write to field this.fib2 in another place, which causes (an uninitialized) this to be
copied to p, so one writes to a copy of this (and the original object is never fully initialized!),
(2) read from fib2 before its write definitely finished.

The rest of this paper is organized as follows. Sec. 2 presents the hardhat initializa-
tion rules of X10 version 2.2 using examples, by slowly adding language features and
describing their interaction with object initialization. Sec. 3 outlines our implementa-
tion within the X10 compiler using the polyglot framework, the compilation time over-
head of checking these initialization rules, and the annotation overhead in our X10 code
base. Sec. 4 presents Featherweight X10 (FX10), which is a formalization of core X10
that includes finish, async, and flow-sensitive type-checking rules. Sec. 5 summarizes
previous work in the field of object initialization. Finally, Sec. 6 concludes.

2 X10 Initialization Rules

X10 is an advanced object-oriented language with a complex type-system and concur-
rency constructs. This section describes how object initialization interacts with X10
features. We begin with object-oriented features found in mainstream languages, such
as constructors, inheritance, dynamic dispatch, exceptions, and inner classes. We then
proceed to X10’s type-system features, such as constraints, properties, class invariants,
closures, (non-erased) generics, and structs, followed by the parallel features of X10 for

Object Initialization in X10 215

writing concurrent code (finish and async), and distributed code (at). Finally, we de-
scribe the inter-procedural data-flow analysis that ensures that a field is read only after
it has been assigned.

2.1 Constructors and Inheritance

Inheritance is the first feature that interacts with initialization: when class B inherits
from A then every instance of B has a sub-object that is like an instance of A. When we
initialize an instance of B, we must first initialize its A sub-object. We do this in X10
by forcing the constructors of B to make a super call, i.e., call a constructor of A (either
explicitly or implicitly).

Fig. 3 shows X10 code that demonstrates the interaction between inheritance and
initialization, and explains by example why leaking this during construction can cause
bugs. In all the examples, all errors issued by the X10 compiler are marked with //err
(and if there is no such mark then the code is correct).

We say that an object is raw (also called partially initialized) before its constructor
ends, and afterward it is cooked (also called fully initialized). Note that when an object
is cooked, all its sub-objects must be cooked as well. X10 prohibits any aliasing or
leaking of this during construction, therefore only this or super can be raw (any other
variable is definitely cooked).

Object initialization begins by invoking a constructor, denoted by the method defini-
tion def this(). The first leak would cause a problem because field a was not assigned
yet. However, even after all the fields of A have been assigned, leaking is still a problem
because fields in a subclass (field b) have not yet been initialized. Note that leaking is
not a problem if this is not raw, e.g., in m1().

We begin with two definitions: (i) when an object is raw, and (ii) when a method is
non-escaping. (i) Variables this and super are raw during the object’s construction, i.e.,
in field initializers and in non-escaping methods (methods that cannot escape or leak
this). (ii) Obviously constructors are non-escaping, but you can also annotate methods
explicitly as @NonEscaping, or they can be inferred to be implicitly non-escaping if they
are called on a raw this receiver.

For example, m2 is implicitly non-escaping (and therefore cannot leak this) because
of the call to m2 in the constructor. The user could also mark m2 explicitly as non-
escaping by using the annotation @NonEscaping. (Like in Java, @ is used for annotations
in X10.) We recommend explicitly marking non-escaping methods as @NonEscaping to
show intent, as done on method m3. Without this annotation the call super.m3() in B
would be illegal, due to rule 2. (We could infer that m3 must be non-escaping, but that
would cause a dependency from a subclass to a superclass, which is not natural for peo-
ple used to separate compilation.) Finally, we note that all errors in this example are due
to rule 1 that prevents leaking a raw this or super.

2.2 Dynamic Dispatch

Dynamic dispatch may transfer control to the subclass before the superclass completed
its initialization. Fig. 3b demonstrates why dynamic dispatch is error-prone during con-
struction: calling m1 in A would dynamically dispatch to the implementation in B that
would read the default value.

216 Y. Zibin et al.

class A {
val a:Int;
def this() {
LeakIt.foo(this); //err
this.a = 1;
val me = this; //err
LeakIt.foo(me);
// so m2 is implicitly non-escaping
this.m2();

}
// permitted to escape
final def m1() {
LeakIt.foo(this);

}
// implicitly non-escaping
final def m2() {
LeakIt.foo(this); //err

}
// explicitly non-escaping
@NonEscaping final def m3() {
LeakIt.foo(this); //err
} }
class B extends A {
val b:Int;
def this() {
super(); this.b = 2; super.m3();
}
}

(a) Escaping this example

abstract class C {
val a1:Int, a2:Int;
def this() {
// Can only call non-escaping methods
this.a1 = m1(); //err1
this.a2 = m2();
m4(); m5();
}
abstract def m1():Int;
@NoThisAccess abstract def m2():Int;
@NonEscaping def m3():void {} // err
@NonEscaping final def m4():void {}
@NonEscaping private def m5():void {}
}
class D extends C {
var b:Int = 3; // non-final field
def m1() {
val x = super.a1;
val y = this.b;
return 1;
}
@NoThisAccess def m2() {
// Cannot use this or super
val x = super.a1; //err2
val y = this.b; //err3
return 2;
}
}

(b) Dynamic dispatch example

Fig. 3. Definition of raw: this and super are raw in non-escaping methods and in field initial-
izers. Definition of non-escaping: A method is non-escaping if it is a constructor, or annotated
with @NonEscaping or @NoThisAccess, or a method that is called on a raw this receiver. Rule
1: A raw this or super cannot escape or be aliased. Rule 2: A call on a raw super is allowed
only for a @NonEscaping method. Rule 3: A non-escaping method must be private or final, unless
it has @NoThisAccess. Rule 4: A method with @NoThisAccess cannot access this or super
(neither read nor write its fields).

X10 prevents dynamic dispatch by requiring that non-escaping methods must be
private or final (so overriding is impossible). For example, err1 is caused by rule 3
because m1 is neither private nor final nor @NoThisAccess.

However, sometimes dynamic dispatch is required during construction. For exam-
ple, if a subclass needs to refine initialization of the superclass’s fields. Such refine-
ment cannot have any access to this, and therefore such methods must be marked with
@NoThisAccess. For example, err2 and err3 are caused by rule 4 that prohibits access
this or super when using @NoThisAccess. @NoThisAccess prohibits any access to this,
however, one could still access the method parameters. (If the subclass needs to read a
certain field of the superclass that was previously assigned, then that field can be passed
as an argument.)

Object Initialization in X10 217

In C++, the call to m1 is legal, but at runtime methods are statically bound, so you
will get a crash trying to call a pure virtual function. In Java, the call to m1 is also legal,
but at runtime methods are dynamically bound, so the implementation of m1 in B will
read the default values of a1 and b.

2.3 Exceptions

Constructing an object may not always end normally, e.g., building a date object from
an illegal date string should throw an exception. Exceptions combined with inheritance
interact with initialization in the following way: a cooked object must have cooked sub-
objects, therefore if a constructor ends normally (thus returning a cooked object) then
all preceding constructor calls (either super(...) or this(...)) must end normally as
well. Phrased differently, in a constructor it should not be possible to recover from an
exception thrown by a this or super constructor call. This is one of the reasons why a
constructor call must be the first statement in Java; failure to verify this led to a famous
security attack [2].

class B extends A {
def this() {
try { super(); } catch(e:Throwable){} //err

}
}

Fig. 4. Exceptions example: if a constructor ends normally (without throwing an exception), then
all preceding constructor calls ended normally as well. Rule 5: If a constructor does not call
super(...) or this(...), then an implicit super() is added at the beginning of the constructor;
the first statement in a constructor is a constructor call (either super(...) or this(...)); a
constructor call may only appear as the first statement in a constructor .

Fig. 4 shows that it is an error to try to recover from an exception thrown by a
constructor call; the reason for the error is rule 5 that requires the first statement to be
super().

2.4 Inner Classes

Inner classes usually read the outer instance’s fields during construction, e.g., a list iter-
ator would read the list’s header node. Therefore, X10 requires that the outer instance
is cooked, and prohibits creating an inner instance when the receiver is a raw this.

Fig. 5a shows it is an error in X10 to create an inner instance if the outer is raw (from
rule 6), but it is ok to create an instance of a static nested class, because it has no outer
instance.

In fact, it is possible to view this rule as a special case to the rule that prohibits leaking
a raw this (because when you create an inner instance on a raw this receiver, you create
an alias of this, and now you have two raw objects: Inner.this and Outer.this). We
wish to keep the invariant that only one this can be raw.

In our rules, we assume that there is a single this reference, because we can convert
all inner, anonymous and local classes into static nested classes by passing the outer
instance and all other captured variables explicitly as arguments to the constructor.

218 Y. Zibin et al.

class Outer {
val a:Int;
def this() {
// Outer.this is raw
Outer.this. new Inner(); //err
new Nested(); // ok
a = 3;

}
class Inner {
def this() {
// Inner.this is raw, but
// Outer.this is cooked
val x = Outer.this.a;

}
}
static class Nested {}

}

(a) Inner class example: the outer instance is
always cooked.

class DefaultValuesExample {
val i0:Int; //err
// Note the fields below are non-final
var i1:Int; //ok, has default
// no default
var i2:Int{self!=0}; //err
// ok, has initializer
var i3:Int{self!=0} = 3;

var i4:Int{self==42}; //err

var s1:String;
var s2:String{self!=null}; //err

var b1:Boolean;
var b2:Boolean{self==true}; //err

}

(b) Default value example.

Fig. 5. Rule 6: a raw this cannot be the receiver of new.
Definition of has-zero: A type has-zero if it contains the zero value (which is either null, false,
0, or zero in all fields for user-defined structs) or if it is a type parameter guarded with haszero
(see Sec. 2.8). Rule 7: A var field that lacks a field initializer and whose type has-zero, is implic-
itly given a zero initializer..

We now turn our attention to X10’s sophisticated type-system features not found in
mainstream languages: constraints, properties, class invariants, closures, (non-erased)
generics, and structs.

2.5 Constraints and Default/Zero Values

X10 supports constrained types using the syntax T{c}, where c is a boolean expression
that can use final variables in scope, literals, properties (described below), the special
keyword self that denotes the type itself, field access, equality (==) and disequality (!=).
There are plans to add arithmetic inequality (<, <=) to X10 in the future, and one can
plug in any constraint solver into the X10 compiler.

As a consequence of constrained types, some types do not have a default value, e.g.,
Int{self!=0}. Therefore, in X10, the fields of an object cannot be zero-initialized as
done in Java. Furthermore, in Java, a non-final field does not have to be assigned in a
constructor because it is assumed to have an implicit zero initializer. X10 follows the
same principle, and a non-final field is implicitly given a zero initializer if its type has-
zero. Fig. 5b defines when a type has-zero, and gives examples of types without zero.
Note that i0 has to be assigned because it is a final field (val), as opposed to i1 which
is non-final (var).

2.6 Properties and the Class Invariant

Properties are final fields that can be used in constraints, e.g., Array has a size prop-
erty, so an array of size 2 can be expressed as: Array{self.size==2}. The differences

Object Initialization in X10 219

between a property and a final field are both syntactic and semantic, as seen in class E
of Fig. 6. Syntactically, properties are defined after the class name, must have a type
and cannot have an initializer, and must be initialized in a constructor using a property
call statement written as property(...). Semantically, properties are initialized before
all other fields, and they can be used in constraints with the prefix self.

class E(a:Int) { class F(b:Int) {b==a} extends E {
def this(x:Int) { val f1 = a+b, f2:Int, f3:E{this.a==self.a};

property(x); def this(x:Int) {
} super(x);

} val i1 = super.a;
val i2 = this.b; //err
val i3 = this.f1; //err
f2 = 2; //err (must be after property(x))
property(x);
f3 = new E(this.a);

}
}

Fig. 6. Properties and class invariant example: properties (a and b) are final fields that are ini-
tialized before all other fields using a property call (property(...); statement). If a class does
not define any properties, then an implicit property() is added after the (implicit or explicit)
super(...). Field initializers are executed in their declaration order after the (implicit or ex-
plicit) property call. Rule 8: If a constructor does not call this(...), then it must have exactly
one property call, and it must be unconditionally executed (unless the constructor throws an ex-
ception). Rule 9: The class invariant must be satisfied after the property call. Rule 10: The super
fields can only be accessed after super(...), and the fields of this can only be accessed after
property(...).

When using the prefix this, you can access both properties and other final fields.
The difference between this and self is shown in field f3 in Fig. 6: this.a refers to the
property a stored in this, whereas self.a refers to a stored in the object to which f3
refers. (In the constructor, we indeed see that we assign to f3 a new instance of E whose
a property is equal to this.a.)

Properties must be initialized before other fields because field initializers and field
types can refer to properties (see initializer for f1 and the type of f3). The superclass’s
fields can be accessed after the super call, and the other fields after the property call;
field initializers are executed after the property call.

The class invariant ({b==a} in Fig. 6) may refer only to properties, and it must be
satisfied after the property call (rule 9).

2.7 Closures

Closures are functions that can refer to final variables in the enclosing scope, e.g., they
can refer to final method parameters, locals, and this. When a closure refers to a vari-
able, we say that the variable is captured by the closure, and the variable is thus stored
in the closure object. Closures interact with initialization when they capture this during
construction.

Fig. 7a shows why it is prohibited to capture a raw this in a closure: that closure can
later escape to another place which will serialize all captured variables (including the

220 Y. Zibin et al.

class A {
var a:Int = 3;
def this() {
val closure1 = ()=>this.a; //err
at(here.next()) closure1();
val local_a = this.a;
val closure2 = ()=>local_a;

}

}

(a) Closures example.

class B[T] {T haszero} {
var f1:T;
val f2 = Zero.get[T]();
}
struct WithZeroValue(x:Int,y:Int) {}
struct NoZeroValue(x:Int{self!=0}) {}
class Usage {
var b1:B[Int];
var b2:B[Int{self!=0}]; //err
var b3:B[WithZeroValue];
var b4:B[NoZeroValue]; //err
}

(b) haszero type predicate example.

Fig. 7. Rule 11: A closure cannot capture a raw this.
Rule 12: A type must be consistent, i.e., it cannot contradict method guards or class invariants.

raw this, which should not be serialized, see Sec. 2.10). The work-around for using a
field in a closure is to define a local that will refer only to the field (which is definitely
cooked) and capture the local instead of the field as done in closure2.

2.8 Generics and Structs

Structs in X10 are header-less inlinable objects that cannot inherit code (i.e., they can
implement interfaces, but cannot extend anything). Therefore an instance of a struct
type has a known size and can be inlined in a containing object. Java’s primitive types
(int, byte, etc) are represented as structs in X10. Structs, as opposed to classes, do not
contain the value null.

Generics in X10 are reified, i.e, not erased as in Java. For example, a Box[T] has
a single field of type T, and instances of Box[Byte] and Box[Double] have the same
size in Java but different sizes in X10. Although generics are not a new concept, the
combination of generics and the lack of default values leads to new pitfalls. For example,
in Java and C#, it is possible to define an equivalent to

class A[T] { var a:T; }
However, this is illegal in X10 because we cannot be sure that T has-zero (see Fig. 5b),
e.g., if the user instantiates A[Int{self!=0}] then field a cannot be assigned a zero value
without violating type-safety. Therefore X10 has a type predicate written X haszero
that evaluates to true if type X has-zero. Using haszero in a constraint (e.g., in a class
invariant or a method guard), makes it possible to guarantee that a type-parameter will
be instantiated with a type that has-zero.

Fig. 7b shows an example of a generic class B[T] that constrains the type-parameter
T to always have a zero value. According to rule 7, field f1 has an implicit zero field
initializer. It is also possible to write the initializer explicitly (as done in field f2) by
using the static method Zero.get[X]() (that is guarded by X haszero). Next we see
two struct definitions: the first has two properties that has-zero, and the second has a
property that does not have zero. According to the definition of has-zero in Fig. 5b, a
struct has-zero if all its fields has-zero, therefore WithZeroValue haszero is true, but
NoZeroValue haszero is false. Finally, we see an example of usages of B[T], where two
usages are legal and two are illegal (see rule 12).

Object Initialization in X10 221

We now turn our attention to the parallel features of X10 for concurrent programming
(finish and async) and distributed programming (at). Sec. 1.4 already explained how
parallel code is written in X10, and what are the common pitfalls of initialization in
parallel code. Next we present the rules that prevent these pitfalls.

2.9 Concurrent Programming and Initialization

class A {
var f1:Int; // note: var field
val f2:Int; // note: val field
val f3:Int;
//err: f2 was not definitely assigned
def this() {
async f1 = 1; async f2 = 2;
finish { async f3 = 3; }

}
}

(a) Concurrency in initialization example: asyn-
chronously assign to a field.

class A {
val f:Int;

//err: f was not definitely assigned
def this() {
// Execute at another place
at (here.next())
this.f = 1; //err: this escaped

}
}

(b) Distributed initialization example.

Fig. 8. Rule 13: A constructor must finish assigning to all fields at least once. Rule 14: A final
field can be assigned at most once.
Rule 15: a raw this cannot be captured by an at.

Fig. 8a shows how to asynchronously assign to fields. Recall that we wish to guaran-
tee that one can never read an uninitialized field, therefore rule 13 ensures that all fields
are assigned at least once.

All three fields in A are asynchronously assigned, however, only f2 is not definitely
assigned at the end of the constructor. Assigning to f3 has an enclosing finish, so it is
definitely assigned. Field f1 is also definitely assigned, because it is non-final so from
rule 7 it has an implicit zero field initializer. However, field f2 is final so it does not
have an implicit field initializer. Moreover, f2 is only asynchronously assigned, and the
constructor does not have to wait for this assignment to finish, thus violating rule 13.
(The exact data-flow analysis to enforce rule 13 is described in Sec. 2.11.) Rule 14 is
the same as in Java: a final field is assigned at most once (and, combined with rule 13,
we know it is assigned exactly once).

2.10 Distributed Programming and Initialization

X10 programs can be executed on a distributed system with multiple places that
have no shared memory. Objects are copied from one place to another when cap-
tured by an at. Copying is done by first serializing the object into a buffer, send-
ing the buffer to the other place, and then de-serializing the buffer at the other place.
As in Java, one can write custom serialization code in X10 by implementing the
CustomSerialization interface, and defining the method serialize():SerialData and
the constructor this(data:SerialData).

Fig. 8b shows a common pitfall where a raw this escapes to another place, and the
field assignment would have been done on a copy of this. We wish to de-serialize only
cooked objects, and therefore rule 15 prohibits this to be captured by an at. Conse-
quently, we also report that field f was not definitely assigned.

222 Y. Zibin et al.

2.11 Read and Write of Fields

We now present a data-flow analysis for guaranteeing that a field is read only after it was
written, and that a final field is assigned exactly once. Java performs an
intra-procedural data-flow analysis in constructors to calculate when a final field is
definitely-assigned and definitely-unassigned. In contrast, X10 performs an
inter-procedural fixed-point data-flow analysis in all non-escaping methods (and con-
structors) to calculate when a field (both final and non-final) is definitely-assigned,
definitely-asynchronously-assigned, and definitely-unassigned. The details are explained
using examples (Fig. 9) by comparison with Java; the full analysis is described in X10’s
language specification.

X10, like Java, allows writing to a final field only when it is definitely-unassigned,
and it allows reading from a final field only when it is definitely-assigned. X10 also has
the same read restriction on non-final fields (recall that rule 7 adds a field initializer if
the field’s type has-zero).

Consider first only final fields. They are easier to type-check because they can only be
assigned in constructors. X10 extends Java rules, by calculating for each non-escaping
method m the set of final fields it reads, and calling m is legal only if these fields have been

class A {
val a:Int;
def this() {
readA(); //err1
finish {
async {
a = 1;
// assigned={a}
readA();

}
// asyncAssigned={a}
readA(); //err2

}
// assigned={a}
readA();

}
// reads={a}
private def readA() {
val x = a;

}

}

(a)

class B {
var i:Int{self!=0}, j:Int{self!=0};
def this() {
finish {
asyncWriteI(); // asyncAssigned={i}
} // assigned={i}
writeJ();// assigned={i,j}
readIJ();

}
// asyncAssigned={i}
private def asyncWriteI() {
async i=1;

}
// reads={i} assigned={j}
private def writeJ() {
if (i==1) writeJ(); else this.j = 1;

}
// reads={i,j}
private def readIJ() {
val x = this.i+this.j;

}
}

(b)

Fig. 9. Read-Write order for fields. We infer for each method three sets: (i) fields it reads (i.e.,
these fields must be assigned before the method is called), (ii) fields it assigns, (iii) fields it
assigns asynchronously. The data-flow maintains these three sets before and after each state-
ment; assigned becomes asyncAssigned after an async, and asyncAssigned becomes
assigned after a finish. In this example, we omitted empty sets. Rule 16: A field may be
read only if it is definitely-assigned. Rule 17: A final field may be written only if it is definitely-
unassigned.

Object Initialization in X10 223

definitely assigned. For example, in class A, method readA reads field a and therefore
cannot be called before a is assigned (e.g., err1). Note that Java does not perform this
check, and it is legal to call readA which will return the zero value of a. X10 also adds
the notion of definitely-asynchronously-assigned which means a field was definitely-
assigned within an async (so it cannot be read, e.g., err2), but after an enclosing finish
it will become definitely-assigned (so it can be read). The flow maintains three sets:
reads, assigned, and asyncAssigned. If a method reads an uninitialized field, then
we add it to its reads set; however, if a constructor reads an uninitialized field, then it
is an error. Phrased differently, the reads set of a constructor must be empty.

Now consider non-final fields. They can be assigned and read in methods, thus re-
quiring a fixed-point algorithm. For example, consider method writeJ. Initially, reads
is empty, while assigned and asyncAssigned are the entire set of fields. In the first
iteration, we add i to reads, and when we join the two branches of the if, assigned
is decreased to only j. The fixed-point calculation, in every iteration, increases reads
and decreases assigned and asyncAssigned, until a fixed-point is reached.

3 Implementation

This section discusses our implementation inside the X10 compiler of the hardhat ini-
tialization rules. Our X10 code-base of more than 200K lines of code (loc) uses only
104 annotations. We give some measurements such as compilation time and annotation
overhead, and conclude with two examples for @NonEscaping and @NoThisAccess.

The X10 compiler is based on the Polyglot extensible compiler framework, which
includes a dataflow framework that has 1309 loc. X10 initialization rules extend this
dataflow framework using two classes: one for checking definite-initialization for local
variables (805 loc), and another for fields (951 loc). (The rules of local variables are
simpler than those for fields because local variables do not span multiple methods and
they must be assigned before use. The focus point of this paper has been object initial-
ization, therefore these rules were not described in this paper.) The dataflow algorithm
tracks for each field (or local) the flow of this information: (i) whether the field was read
(to find the set of fields each non-escaping method reads), (ii) the minimal and maximal
number of times it was sequential and asynchronously written (to make sure a variable
is assigned before read, and that final variables are assigned exactly once). The number
of times a variable is assigned is sufficient to range between 0, 1, and more-than-one,
because the error message is the same whether a final variable was assigned twice or
more. When flowing out of an async, sequential writes become asynchronous writes,
and the opposite happens for a finish.

Our code-base consists of 5 major components: (i) XRX: X10 runtime and libraries,
(ii) SPECjbb: SPECjbb from 2005 converted to X10, (iii) M3R: map-reduce in X10,
(iv) UTS: global load balancing library, (v) MISC: those include examples from our pro-
grammer guide, our test suite, jira issues, and samples. SPECjbb and M3R are still under
development and not publicly available, whereas the rest are open-source and available
at x10-lang.org (see revision 23028 of https://x10.svn.sf.net/svnroot/x10/trunk).

Tab. 1 shows the compilation times broken down according to the time spent for
checking fields and locals. We can see that the initialization rules take only a small
fraction (0-2%) from the total compilation time, and a maximum of 3.3 seconds for the
entire M3R project.

224 Y. Zibin et al.

Table 1. Compilation times in milliseconds of our code-base broken down into the time spent by
the initialization rules for fields and locals. We used a standard lenovo T500 laptop with 4GB of
RAM and Intel Core 2 Duo processor.

XRX SPECjbb M3R UTS MISC
Total compilation time 65,241 78,952 254,020 72,205 548,547
Time of checks for fields 156 1,649 3,330 1,272 2,862
Time of checks for locals 32 51 117 33 126

Tab. 2 shows the annotation burden in our code-base. X10 has only two possible
method annotations: @NonEscaping and @NoThisAccess. Recall that all methods transi-
tively called from a constructor are implicitly non-escaping, i.e., the user does not have
to explicitly annotate them as @NonEscaping, however the compiler issues a warning
recommending that they should be marked as such to show intent. Obviously, the num-
ber of non-escaping methods is always greater or equal to the number of @NonEscaping
annotations. As can be seen, the annotations burden is minor: only 104 annotations in
total.

Table 2. The annotation burden in our code-base

XRX SPECjbb M3R UTS MISC
of lines 27,153 14,603 71,682 2,765 155,345
of files 257 63 294 14 2,283
of constructors 276 267 401 23 1,297
of methods 2,216 2,475 2,831 124 8,273
of non-escaping methods 8 38 34 3 83
of @NonEscaping 7 7 13 1 62
of @NoThisAccess 1 0 1 0 12

Our applications only use @NoThisAccess twice: once in M3R to allow a subclass to
determine the value of a final field of the superclass during initialization, and the second
time in XRX in method typeName() of interface Any (this method may be overridden and
it is often called during construction for debugging purposes).

The following example shows a common pattern for using @NonEscaping and a com-
mon refactoring that was done when converting Java code to X10. Class HashMap in Java
calls put in two constructors: the deserialization constructor and the copy constructor
(that gets a map argument and creates a copy of that map). However, put is not a final
method and it might be useful to override it in subclasses, and therefore it cannot be
called during construction. Thus, we refactored this code in X10 and called instead a
non-escaping method called putInternal and method put delegates to that method:

public def put(k: K, v: V) { putInternal(k,v); }
@NonEscaping protected final def putInternal(k:K, v:V) { ... }

A similar refactoring was also done in HashMap for method rehash.
Asynchronous initialization was not used in our big applications because they pre-

date this feature. (It is used in our smaller examples and tests more than 50 times.)

Object Initialization in X10 225

This pattern is especially useful for local variables, and more importantly, the analysis
prevents bugs such as:

val x:Int; val y:Int;
finish { async { x = doCalculation1(); }
y = doCalculation2(); // WRONG to use variable x here

} // OK to use variable x now

4 Formalism: FX10

Featherweight X10 (FX10) is a formal calculus for X10 intended to complement Feath-
erweight Java (FJ). It models imperative aspects of X10 including the concurrency con-
structs finish and async. FX10 models the heart of the field initialization problem: a
field can be read only after it is definitely assigned.

The basic idea behind the formalization is very straightforward. We break up the
formalization into two distinct but interacting subsystems, a type system (Sec. 4.2) and
an effect system (Sec. 4.3). The type system is completely standard – think the system
of FJ, adapted to the richer constructs of FX10.

The effect system is built on a very simple logic of initialization assertions. The
primitive formula +x (+p.f) asserts that the variable x (the field f of p) is definitely
initialized with a cooked object, and the formula −x (−p.f) asserts that it is being
initialized by a concurrent activity (and hence it will be definitely initialized once an
enclosing finish is crossed). An initialization formula φ or ψ is simply a conjunction
of such formulas φ∧ψ. An effects assertion φ S ψ (for a statement S) is read as a
partial correctness assertion: when executed in a heap H that satisfies the constraint φ,
S will on termination result in a heap H ′ that satisfies ψ. Since we do not model null,
our formalization can be particularly simple: variables, once initialized, stay initialized,
hence H ′ will also satisfy φ (see Sec. 4.4 for a definition of heaps and when a heap
satisfy φ).

Another feature of our approach is that, unlike Masked Types [10], the source pro-
gram syntax does not permit the specification of initialization assertions. Instead we
use a standard least fixed point computation to automatically decorate each method
def m(x : C){S} with pairs (φ,ψ) (in the free variables this,x) such that under the as-
sumption that all methods satisfy their corresponding assertion we can show that φ S ψ.1

This computation must be sensitive to the semantics of method overriding, that is a
method with decoration (φ,ψ) can only be overridden by a method with decoration
(φ′,ψ′) that is “at least as strong as” (φ,ψ) (viz, it must be the case that (φ � φ′ and
ψ′ � ψ). Further, if the method is not marked @NonEscaping, then φ is required to entail
+this (that is, this is cooked), and if it marked @NoThisAccess then φ,ψ cannot have
this free.

1 Note that this approach permits a formal x to a method to be completely raw (φ does not entail
+x or +x.f for any field f) or partially raw (φ does not entail +x but may entail +x.f for some
fields f). As a result of the method invocation the formal may become more cooked. In X10, in
order for the inference to be intra-class, we require that all method parameters x (except this)
are cooked, i.e., +xi. In FX10 we are more relaxed and allow methods to receive and initialize
raw parameters.

226 Y. Zibin et al.

By not permitting the user to specify initialization assertions we make the source
language much simpler than [10] and usable by most programmers. The down side is
that some initialization idioms, such as cyclic initialization, are not expressible.

For reasons of space we do not include the details behind the decoration of meth-
ods with initialization assertions. We also omit many extensions (such as generics, in-
terfaces, constraints, casting, inner classes, overloading, co-variant return types, final,
field initializers etc.) that were discussed in the first half of the paper. FX10 also does
not model places because the language design decision to only permit cooked objects
to cross places means that the rules for at are routine.

We use the usual notation of x to represent a vector or set of x1, . . . ,xn. A program P
is a pair of class declarations L (that is assumed to be global information) and a state-
ment S.

4.1 Syntax

Fig. 10 shows the syntax of FX10. Expression val x = e;S evaluates e, assigns it to a
new variable x, and then evaluates S. The scope of x is S.

The syntax is similar to the real X10 syntax with the following difference: FX10
does not have constructors; instead, an object is initialized by assigning to its fields or
by calling non-escaping methods.

P ::= L,S Program.
L ::= class C extends D { F; M } cLass declaration.
F ::= varf : C Field declaration.
M ::= G def m(x : C) : C{S} Method declaration.
G ::= @NonEscaping | @NoThisAccess Method modifier.
p ::= l | x Path.
e ::= p.f | new C Expressions.
S ::= p.f= p; | p.m(p); | val x = e;S
| finish {S} | async {S} | S S Statements.

Fig. 10. FX10 Syntax. The terminals are locations (l), parameters and this (x), field name (f),
method name (m), class name (B,C,D,Object), and keywords (new, finish, async, val). The
program source code cannot contain locations (l), because locations are only created during
execution/reduction in R-NEW of Fig. 12.

4.2 Type System

The type system for FX10 checks that every parameter and variable has a type (a type
is the name of a class), and that a variable of type C can be assigned only expressions
whose type is a subclass of C, and can only be the receiver of invocations of methods
defined in C. The type system is formalized along the lines of FJ. No complications are
introduced by the extra features of FX10 – assignable fields, local variable declarations,
finish and async. We omit details for lack of space and because they are completely
routine. In the rest of this section we shall assume that the program being considered
L,S is well-typed.

Object Initialization in X10 227

φ �+p.f φ,+x S ψ
φ val x = p.f;S ψ (T-ACCESS)

φ S ψ
φ val x = new C;S ψ (T-NEW)

φ �+q
φ p.f= q +p.f

(T-ASSIGN)

φ S ψ
φ finish {S} +ψ
φ async {S} −ψ

(T-FINISH,ASYNC)

φ S1 ψ1 φ∧ψ1 S2 ψ2
φ S1 S2 ψ1 ∧ψ2

(T-SEQ)
m(x) :: φ′ ⇒ ψ′ φ � φ′[p/this,p/x]

φ p.m(p) ψ′[p/this,p/x] (T-INVOKE)

Fig. 11. FX10 Effect System (φ S ψ)

4.3 Effect System

We use a simple logic of initialization for our basic assertions. This is an intuitionistic
logic over the primitive formulas +p (the variable or parameter p is initialized), +p.f
(the field p.f is initialized), and −p,−p.f (it is being concurrently initialized). We are
only concerned with conjunctions and existential quantifications over these formulas:
φ,ψ::=true | + x | + p.f | − p.f | φ∧ψ

The notion of substitution on formulas φ[x/z] is specified in a standard fashion.
The inference relation is the usual intuitionistic implication over these formulas, and

the following additional proof rules: (1) if φ �+p then φ � −p; (2) if φ �+p.f then φ �
−p.f; (3) if φ �+p (φ � −p) then φ �+p.f (φ � −p.f); and (4) if the exact class of p is
C, and C has the fields f, then φ �+p (φ � −p) if φ �+p.fi (φ � −p.fi), for each i. (We
only know the exact class for a local p when val p = new C;S.)

The proof rules for the judgement φ S ψ are given in Figure 11. They use two syntac-
tic operations on initialization formulas defined as follows. +ψ is defined inductively as
follows: +true= true, +± x=+x, +± p.f=+p.f, +(φ∧ψ) = (+φ)∧ (+ψ). −ψ is
defined similarly:−true= true,−±x=−x,−±p.f=−p.f,−(φ∧ψ)= (−φ)∧(−ψ).

The rule (T-ACCESS) can be read as asserting: if φ entails the field p.f is initialized
(together with +x which states that x is initialized to a cooked object), we can establish
that execution of S satisfies the assertion ψ then we can establish that execution of
val x = p.f;S in (a heap satisfying) φ establishes ψ. Here we must take care to project
x out of ψ since x is not accessible outside its scope S; similarly we must take care to
project x out of φ when checking S. The rule (T-NEW) can be read in a similar way except
that when executing S we can make no assumption that x is initialized, since it has been
initialized with a raw object (none of its fields are initialized). Subsequent assignments
to the fields of x will introduce effects recording that those fields have been initialized.
The rule (T-ASSIGN) checks that q is initialized to a cooked object and then asserts that p.f
is initialized to a cooked object. The rule (T-FINISH) can be understood as recording that
after a finish has been “crossed” all asynchronous initializations ψ can be considered
to have been performed φ. Conversely, the rule (T-ASYNC) states that any initializations
must be considered asynchronous to the surrounding context. The rule (T-SEQ) is a slight
variation of the stadard rule for sequential composition that permits φ to be used in the
antecedent of S2, exploiting monotonicity of effects. Note the effects recorded for S1 S2
are a conjunction of the effects recorded for S1 and S2. The rule (T-INVOKE) is routine.

228 Y. Zibin et al.

As an example, consider the following classes. Assertions are provided in-line.

class A extends Object {
var f:Object; var g:Object; var h:Object;
@NonEscaping def build(a:Object) {
// inferred decoration: phi => psi
// phi= +this.g, +a
// psi= -this.h, +this.f
// checks phi implies +this.g
val x = this.g;
async { this.h = x; } // psi= -this.h
finish {

// checks phi implies +a
async { this.f = a; } // psi= -this.h,-this.f

} // psi= -this.h,+this.f
}

}
class B extends A { e:Object; }

Method build synchronously (asynchronously) initializes fields this.f (this.h), and it
assumes that this.g and a are cooked. The following statement completely initializes
b:

val b = new B();
val a = new Object(); // psi= +a
b.g = a; // psi= +a,+b.g
finish {
b.build(a); // psi= +a,+b.g,+b.f,-b.h
async { b.e = a; } // psi= +a,+b.g,+b.f,-b.h,-b,-b.e,-b

} // psi= +a,+b

4.4 Reduction

A heap H is a mapping from a given set of locations to objects. An object is a pair C(F)
where C is a class (the exact class of the object), and F is a partial map from the fields
of C to locations. We say the object l is total/cooked (written cookedH(l)) if its map is
total, i.e., H(l) = C(F) dom(F) = fields(C).

We say that a heap H satisfies φ (written H � φ) if the plus assertions in φ (ignoring
the minus assertions) are true in H, i.e., if φ �+l then l is cooked in H and if φ �+l.f
then H(l) = C(F) and F(f) is cooked in H.

The reduction relation is described in Figure 12. An S-configuration is of the form
S,H where S is a statement and H is a heap (representing a computation which is to exe-
cute S in the heap H), or H (representing terminated computation). An E-configuration
is of the form e,H and represents the computation which is to evaluate e in the config-
uration H. The set of values is the set of locations; hence E-configurations of the form
l,H are terminal.

Two transition relations� are defined, one over S-configurations and the other over
E-configurations. For X a partial function, we use the notation X [v �→ e] to represent the
partial function which is the same as X except that it maps v to e. The rules defining
these relations are standard. The only minor novelty is in how async is defined. The
critical rule is the last rule in (R-STEP) – it specifies the “asynchronous” nature of async

Object Initialization in X10 229

S,H� H ′
finish {S},H� H ′
async {S},H� H ′
S S′,H� S′,H ′

(R-TERM)

S,H� S′,H ′
finish {S},H� finish {S′},H ′
async {S},H� async {S′},H ′
S S1,H� S′ S1,H ′
async {S1} S,H� async {S1} S

′,H ′

(R-STEP)

e,H� l,H ′
val x = e;S,H� S[l/x],H ′ (R-VAL)

l′
∈ dom(H)
new C,H� l′,H[l′ �→ C()]

(R-NEW)
H(l′) = C(. . .) mbody(m,C) = x.S
l′.m(l),H� S[l/x,l′/this],H (R-INVOKE)

H(l) = C(f �→ l′)
l.fi,H� l′i,H

(R-ACCESS)
H(l) = C(F) cookedH(l′)

l.f= l′,H� H[l �→ C(F [f �→ l′])] (R-ASSIGN)

Fig. 12. FX10 Reduction Rules (S,H� S′,H ′ | H ′ and e,H� l,H ′)

by permitting S to make a step even if it is preceded by async {S1}. The rule (R-NEW)

returns a new location that is bound to a new object that is an instance of C with none
of its fields initialized. The rule (R-ACCESS) ensures that the field is initialized before it is
read (fi is contained in f).

4.5 Results

We say a heap H is correctly cooked (written � H) if a field can point only to cooked
objects, i.e., for every object o = C(F) in the range of H and every field f ∈ dom(F)
it is the case that every object l = H(F(f)) is cooked (cookedH(l)). We shall only
consider correctly cooked heaps (valid programs will only produce correctly cooked
heaps). As the program is executed, the heap monotonically becomes more and more
cooked. Formally, H ′ is more cooked than H (written H ′ � H) if for every l ∈ dom(H),
we have H(l) = C(F), H ′(l) = C(F ′), and dom(F)⊆ dom(F ′).

A heap typing Γ is a mapping from locations to classes. H is said to be typed by
Γ if for each l ∈ dom(H), the class of H(l) is a subclass of Γ(l). Since our treatment
separates out effects from types, and the treatment of types is standard, we shall assume
that all programs and heaps are typed.

A statement S is closed (written � S) if it does not contain any free variables. We say
that S is annotatable if there exists φ,ψ such that φ S ψ can be established.2

We say that a program P = LS is proper if it is well-typed and each method in L can
be decorated with pre-post assertions (φ,ψ), and S is annotatable. The decorations must
satisfy the property that under the assumption that every method satisfies its assertion
(this is for use in recursive calls) we can establish for every method def m(x : C){S} with
assertion (φ,ψ) that it is the case that the free variables of φ,ψ are contained in this,x,
and that φ S ψ.

2 An example of a statement that is not annotatable is val x = new C;val y = x.f;z.g = y
where C has a field f. This attempts to read a field of a variable initialized with a brand-new
object.

230 Y. Zibin et al.

We prove the following theorems. In all these theorems the background program P
is assumed to be proper. The first theorem is analogous to subject-reduction for typing
systems.

Theorem 1. Preservation Let φ S ψ, � S, �H, H � φ. (a) If S,H�H ′ then �H ′, H ′ �H,
H ′ �+ψ. (b) If S,H� S′,H ′ then � S′, �H ′, H ′ �H, there exists φ′,ψ′ such that H ′ � φ′,
φ′ S′ ψ′, φ′ � φ, ψ′ � ψ.

Theorem 2. Progress Let φ S ψ, � S, � H, H � φ. The configuration S,H is not stuck.

For proofs, please see associated technical report.
Because our reduction rules only allow reads from initialized fields, a corollary is

that a field can only be read after it was assigned, and an attempt to read a field will
always succeed.

5 Related Work

A static analysis [11], has been used to find some default value reads in Java programs,
and supports our belief that default value reads can be found in real programs and
should be considered errors. Our approach is stronger (detecting all errors at the expense
of some correct programs) and considers additional language constructs that are not
present in Java.

There has been a study on a large body [6] of Java code, showing that initialization
order issues pervade projects from the real world. A bytecode verification system for
Java initialization has also been explored [7].

An early work to support non-null types in Java [3] has the notion of a type con-
structor raw that can be applied to object types and means that the fields of the object
(in X10 terminology) may violate the constraints in their types. Our approach permits
optimization of the representation of fields whose types are very constrained, since they
will never have to hold a value other than the values allowed by their type constraint.

A later work [4,10] allows to specify the time (in the type) when the object will
be fully constructed. Field reference types of a partially constructed objects must be
fully constructed by the same time, which allows graphs of objects to be constructed
like our proto design. However the system is more complicated, allowing the object to
become fully constructed at a given future time, instead of at the specific time when its
constructor terminates.

Masked types [10] present types that describe the exact fields that have not yet been
initialized. Summers and Müller [12] describe a simpler type system that is almost
identical to our proto design, however they only treat non-null types and they allow
reading a field before it was assigned. Our type system is simpler but less expressive
because it cannot handle immutable cyclic structures.

There is also a time-aware type system [8] that allows the detection of data-races, and
understands the concept of shared variables that become immutable only after a certain
time (and can then be accessed without synchronization). The same mechanisms can
also be used to express when an object becomes cooked.

Ownership types can be used to create immutable cycles [14]. This is comparable
to our proto design because it also allows this to be linked from an incomplete object.
However the ownership structure is used to implement a broader policy, allowing code

Object Initialization in X10 231

in the owner to use a reference to its partially constructed children, whereas we only
allow code to use a reference to objects that are being partially constructed in some
nesting stack frame. Our approach does not use ownership types.

6 Conclusion

The hardhat design in X10 is strict but it protects the user from error-prone initialization
idioms, especially when combined with a rich type system and parallel code. This pa-
per showed the interaction between initialization and other language features, possible
pitfalls in Java, and how they can be prevented in X10. It also presented the rules of
this design, the virtues of these rules, and possible design alternatives. The rules were
incorporated in the open-source X10 compiler, and are being used in production code.

References

1. Bocchino Jr., R.L., Adve, V.S., Dig, D., Adve, S.V., Heumann, S., Komuravelli, R., Overbey,
J., Simmons, P., Sung, H., Vakilian, M.: A type and effect system for deterministic parallel
java. In: OOPSLA 2009, pp. 97–116. ACM, New York (2009)

2. Dean, D., Felten, E., Wallach, D.S.: Java security: From hotjava to netscape and beyond. In:
IEEE Symposium on Security and Privacy, pp. 190–200 (1996)

3. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-oriented
language. In: OOPSLA 2003, pp. 302–312 (2003)

4. Fähndrich, M., Xia, S.: Establishing object invariants with delayed types. In: OOPSLA 2007,
pp. 337–350 (2007)

5. Gil, J., Itai, A.: The Complexity of Type Analysis of Object Oriented Programs. In: Jul, E.
(ed.) ECOOP 1998. LNCS, vol. 1445, pp. 601–634. Springer, Heidelberg (1998)

6. Gil, J.Y., Shragai, T.: Are We Ready for a Safer Construction Environment? In: Drossopoulou,
S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 495–519. Springer, Heidelberg (2009)

7. Hubert, L., Jensen, T., Monfort, V., Pichardie, D.: Enforcing Secure Object Initialization in
Java. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345,
pp. 101–115. Springer, Heidelberg (2010)

8. Matsakis, N.D., Gross, T.R.: A time-aware type system for data-race protection and guaran-
teed initialization. In: OOPSLA 2010, pp. 634–651 (2010)

9. Pugh, W.: JSR 133: Java memory model and thread specification revision (2004),
http://jcp.org/en/jsr/detail?id=133

10. Qi, X., Myers, A.C.: Masked types for sound object initialization. In: POPL 2009, pp. 53–65
(2009)

11. Seo, S., Kim, Y., Kang, H.-G., Han, T.: A static bug detector for uninitialized field references
in java programs. IEICE - Trans. Inf. Syst. E90-D, 1663–1671 (2007)

12. Summers, A.J., Müller, P.: Freedom before commitment - a lightweight type system for ob-
ject initialisation. In: OOPSLA 2011 (2011)

13. Yang, X., Blackburn, S.M., Frampton, D., Sartor, J.B., McKinley, K.S.: Why nothing matters:
the impact of zeroing. In: OOPSLA 2011, pp. 307–324. ACM, New York (2011)

14. Zibin, Y., Potanin, A., Li, P., Ali, M., Ernst, M.D.: Ownership and immutability in generic
java. In: OOPSLA 2010, pp. 598–617 (2010)

