
Lightweight Polymorphic Effects

Lukas Rytz, Martin Odersky, and Philipp Haller

EPFL, Switzerland
first.last@epfl.ch

Abstract. Type-and-effect systems are a well-studied approach for rea-
soning about the computational behavior of programs. Nevertheless,
there is only one example of an effect system that has been adopted
in a wide-spread industrial language: Java’s checked exceptions. We be-
lieve that the main obstacle to using effect systems in day-to-day pro-
gramming is their verbosity, especially when writing functions that are
polymorphic in the effect of their argument. To overcome this issue,
we propose a new syntactically lightweight technique for writing effect-
polymorphic functions. We show its independence from a specific kind
of side-effect by embedding it into a generic and extensible framework
for checking effects of multiple domains. Finally, we verify the expres-
siveness and practicality of the system by implementing it for the Scala
programming language.

1 Introduction

Type-and-effect systems are a well understood and widely used approach in
the research literature for reasoning about computational effects. Originally de-
signed to delimit the scope of dynamically allocated memory [21], the technique
has been applied to various kinds of effects such as exceptions [8], purity [18],
atomicity [1] or parallel programming [2]. Marino et al. [14] factor out the com-
monalities of different effect systems into a generic framework.

However, when taking a look at the most wide-spread programming languages
used in industry, there is only one example of an effect system that has been
put into practice: Java’s checked exceptions. In addition, this particular system
has earned a lot of critique about its verbosity and lack of expressiveness ([10],
[22]), which in turn influenced language designers not to put effect systems into
their languages ([10], [16]).

We believe that the fundamental property that makes effect systems expressive
enough to be useful in everyday programming is effect-polymorphism. Functions
are often implemented using delegation, by calling functions they receive as
argument, and therefore the effect of a function can depend on the effect of its
arguments. Polymorphic effect systems have been around for more than 20 years
[13], and within limits,1 Java also supports methods that are polymorphic in the
thrown exception type.

1 It is only possible to abstract over a fixed number of exception types

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 258–282, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Lightweight Polymorphic Effects 259

abstract class List<T> {

public <U> List<U> mapM(Function<T, U> f) throws Exception

public <U, E extends Exception> List<U> mapP(FunctionE<T, U, E> f) throws E

}

This example shows two higher-order methods mapM and mapP in Java. The
monomorphic version mapM can only accept functions with arbitrary effects as ar-
gument if it declares the effect throws Exception. The second version is polymor-
phic in the exception type of its argument function. Note that also the function
type FunctionE has to be extended with an explicit exception type parameter.

The crucial issue is that writing effect-polymorphic methods results in code
which is syntactically heavy and hard to understand. Also, polymorphism is tied
to one specific effect domain: adding a new kind of effect system to Java would
often also require to integrate a new syntax for effect-polymorphism.

In this paper, we propose a pragmatic and expressive new way for writing
effect-polymorphic code. We present a system for lightweight polymorphic effect
checking with the following contributions:

– We propose a syntax for writing effect-polymorphic functions which is as
lightweight as writing an ordinary, monomorphic function, without the need
for explicit effect parameters.

– To support these functions in the type system, we introduce a new kind of
function type for effect-polymorphic functions. These types co-exist with or-
dinary function types. In a monomorphic function type T

e=⇒ U , the latent
effect, the effect that might occur when the function is invoked, is anno-
tated as e. For an effect-polymorphic function type T

e−→ U , the latent effect
consists of both e and the latent effect of its argument type T .

– We embed the new kind of functions into a generic effect checking framework
which is independent of a specific effect domain. This extends the generic
effect system proposed in [14] with effect-polymorphism. The framework is
extensible and allows checking multiple kinds of effects at the same time,
given a description of each effect domain. We show that every effect domain
profits from the effect-polymorphism available through the framework.

– The described framework is implemented as a compiler plugin for the Scala
programming language. We added effect checking for exceptions and success-
fully applied polymorphic effects to the core of the Scala collections library.

The rest of this paper is structured as follows. Section 2 gives an informal
overview of the system, Section 3 presents the formalization, in Section 4 we
report our practical experience, Section 5 discusses related work and Section 6
concludes.

2 Overview

In this section, we give an informal overview of our polymorphic type-and-effect
system and we show that it constitutes a pragmatic and practical compromise
between syntactic simplicity and expressivity.

260 L. Rytz, M. Odersky, and P. Haller

2.1 Effect-Polymorphic Function Types

The main idea of our type-and-effect system is to introduce a new kind of function
type which, by definition, denotes effect-polymorphic functions. A function is
said to be effect-polymorphic if its latent effect, the effect that occurs when the
function is applied, depends on the effect of its argument. To give an example,
we define a simple higher-order function hof which applies its argument function
to the constant 1.

val hof = (f: Int ⇒ Int) → f 1

Intuitively, the effect of applying hof to a function f depends on the effect of
the argument f. For instance, if “f = (x: Int) ⇒ x + 1” is a pure function,2
then the invocation of hof does not have any side-effect. But if we apply it to a
function “f = (x: Int) ⇒ throw ex” that throws an exception, then so does the
invocation. We therefore conclude that the function hof is effect-polymorphic in
its argument function f.

To differentiate between effect-polymorphic and ordinary, effect-monomorphic
functions, we use two kinds of arrows in function types. The double arrow ⇒
is used for ordinary function types. For instance, the function (x: Int) ⇒ x + 1

has type Int
⊥=⇒ Int. The effect annotation on the arrow denotes the latent effect

of the function, the effect that may occur when the function is applied. The
symbol ⊥ denotes purity. If the effect annotation is omitted, the largest possible
effect � is assumed.

An effect-polymorphic function type, such as the type of hof, is expressed with
a single arrow →. Like ordinary function types, also polymorphic function types
are annotated with an effect, however the default effect when the annotation is
omitted is ⊥. So the function hof has the following type:

hof: (Int
�=⇒ Int)

⊥−→ Int // equivalent to (Int ⇒ Int) → Int

The crucial property of an effect-polymorphic function type is that its latent
effect consist of two components:

– The annotated effect, an effect that may occur when the function is invoked,
independently of the argument. In the example of hof, this effect is ⊥.

– The effect of the argument.

The second component is the source of effect-polymorphism. For each invocation
of the polymorphic function, the effect of the argument can be different, which
results in a different overall effect. We take a closer look at the types of the two
function literals from the previous example:

val f: (Int
⊥=⇒ Int) = (x: Int) ⇒ x + 1

val g: (Int
throw(ex)=====⇒ Int) = (x: Int) ⇒ throw ex

2 Instead of using the traditional abstraction syntax λx : T.t, we write function literals
in the form (x : T) ⇒ t

Lightweight Polymorphic Effects 261

For each invocation of the function hof, the effect gets computed based on the
actual argument type. Therefore, the invocation “hof f” has no effect, while the
invocation “hof g” has the effect of throwing an exception.

2.2 Programming with Effect-Polymorphic Functions

We believe that the introduction of effect-polymorphic function types is a very
efficient technique for adding polymorphic effect checking to a programming lan-
guage, while keeping the annotation overhead for programmers within reasonable
limits. To illustrate this point, we look at the higher-order function map which
applies a given function to all elements of a list.

val map: IntList
⊥=⇒ (Int ⇒ Int) → IntList =

(l: IntList) ⇒ (f: Int ⇒ Int) → l match {

case Nil => Nil

case Cons x xs => Cons (f x) (map xs f)

}

Even though the signature of the map function is fully effect-polymorphic, there
is only one single effect annotation ⊥, which denotes purity of the outer function.
Since pure functions are very common, especially when currying is used to encode
functions with multiple arguments, it might be worthwhile to introduce syntactic
sugar for pure functions. In this case, the polymorphic map function would not
need any effect annotation at all.

There are many higher-order functions that can be made effect-polymorphic
by replacing a normal function type with an effect-polymorphic one. However,
the type system we introduce does not only apply to functional programming.
On the contrary: the presented ideas are based on our work on a polymorphic
effect system for the Scala programming language. We decided to present the
system using a simpler lambda calculus in order not to distract from the main
concepts. In Section 4 we show how lightweight effect-polymorphism can be
expressed in the object-oriented setting, and we present the results obtained
with our implementation for Scala in Section 4.3.

Effect-polymorphism is a crucial ingredient to make effect-checking practica-
ble in a real-world programming language, and this applies equally to object-
oriented languages. For instance, many of the object-oriented design patterns
identified in [5] are based on delegation. In order to correctly annotate the effect
of methods which are implemented by calling methods of their parameters, poly-
morphic effect annotations are indispensable. The widely used strategy pattern
is the most prominent example: it basically models higher-order functions. A
method that is implemented in terms of its argument strategy is polymorphic in
the effect of that strategy.

The effect system for checked exceptions in Java illustrates the need for effect-
polymorphism. It is possible in Java to write methods that are polymorphic in
the thrown exception type, but doing so is very verbose and therefore often
avoided in practice. This limitation is at the source of the well-known issues

262 L. Rytz, M. Odersky, and P. Haller

with Java’s checked exceptions ([15], [22]): throws declarations are often copy-
pasted from the callee to the caller method, which has a negative impact on the
maintainability and readability of the program code.

2.3 An Extensible Framework for Multiple Effect Domains

The polymorphic type-and-effect system outlined in the previous section is not
tied to a specific kind of side effect, such as exceptions that might be thrown or
state that might be modified. Instead, it defines an extensible framework that
allows effect checking of multiple effect domains in the same language, at the
same time.

In order to add a new kind of side effect to be checked by the framework, a de-
scription of the effect domain in the form of a semi-lattice has to be provided. The
semi-lattice consists of a set of effects for the domain, a join operation to compute
the combination of two effects, and a sub-effect relation which compares two ef-
fects.3 The following example shows a simple effect lattice for tracking IO effects:

– Effect set: EI = {noIO, IO}
– Join operation: e1 �I e2 =

{
IO if (e1 = IO) ∨ (e2 = IO)
noIO otherwise

– Sub-effect relation: e1 �I e2 = (e1 = noIO) ∨ (e2 = IO)

The framework also needs to know the top and bottom elements of each effect
lattice. In the case of IO effects, these are �I = IO and ⊥I = noIO.

In addition to the effect lattice, every concrete effect domain has to define
the effect associated with each syntactic construct of the language. For instance,
an effect system for tracking exceptions declares that a throw expression adds
an effect, and that a try expression can mask effects. This information has to
be provided in the form of a function effD which receives as argument a repre-
sentation of the program fragment in question and returns its side-effect.4 This
function is closely related to the “adjust” function in [14], and we will give a
precise definition in Section 3.3.

In the domain of IO, effects are introduced by calling pre-defined functions
that have a latent IO effect. There are no syntactic constructs that introduce
or mask IO effects, therefore the effI function can be left unspecified and the
framework will use a default definition.

Annotating Multiple Effect Domains. Since the effect checking framework
supports tracking effects from multiple domains, the effect annotations on func-
tion types have to declare an effect for every domain that is being checked.
This is achieved by annotating the function types with a tuple consisting of
3 Note that the lattice operations need to fulfill the common lattice properties, such as

transitivity for . Also, the join and sub-effect operations are related: for all effects
e1, e2, we have e1 e2 ⇐⇒ e1 � e2 = e2.

4 We will discuss the effect domain of exceptions in detail in Section 3.4

Lightweight Polymorphic Effects 263

domain-specific effect annotations. For instance, if there are three effect domains
D1, D2 and D3, a function type has the form T1

eD1 eD2 eD3========⇒ T2.
However, this example shows that the annotation scheme does not scale very

well: effect annotations quickly become long and are hard to maintain. When
adding a new effect domain, the annotation in every function type needs to be
updated. Fortunately, there is a simple solution to this problem. It is based on
the observation that in many cases, function types have either no effect, a small
number of effects, or the topmost effect. To backup this claim, we look at a few
examples:

– The function map accepts as argument a function that can have any effect.
Therefore, this argument is annotated with the topmost effect.

– The implementation of map itself is pure, there is no other effect than the
effect of its argument.

– The map function is only one example of a large class of library functions
that are pure. The same is true for instance for all operations on immutable
datatypes.

– Functions that do have side-effects usually have effects in one or very few
effect-domains. For instance, a random generator is non-deterministic, oper-
ations on mutable data structures modify state, or functions from a file-API
have IO-effects. In addition, these functions might have exceptional behav-
ior. However, it is rather uncommon to have functions with side-effects from
all those domains at the same time.

In order to simplify the multi-domain effect annotations and take the above
observations into account, we introduce two specific effect annotations which, by
definition, range over all effect domains: � and ⊥. When used as such, the two
annotations have the expected meaning: � = �D1 . . . �DN , similarly for ⊥.

The crucial characteristic however is that the multi-domain annotations can be
combined with concrete effect annotations from individual effect domains. For in-
stance, the type T1

⊥ eDi===⇒ T2 denotes a function which can have effect eDi in the
domainDi, but is pure in all other domains. Similarly, combining the� annotation

⊥

⊥ �D1 ⊥ �D2 ⊥ �D3

D1 D2

D3

� ⊥D3

� ⊥D1

� ⊥D2

�

⊥ e3

� e3

Fig. 1. Effect annotations in multiple domains

264 L. Rytz, M. Odersky, and P. Haller

with concrete effects restricts the allowed effect in certain domains. This behavior
is illustrated in Figure 1, showing an example with three effect domains.

3 Formalization

In order to formalize the ideas presented in the previous section, we extend a
simply typed lambda calculus with effect annotations and effect-polymorphic
function types. The syntax of the formal language is summarized in Figure 2.
Note that the syntax for function abstraction is different than usual and does
not use the λ symbol.

t ::= x parameter
| t t application
| v value

v ::= (x : T) ⇒ t monomorphic abstraction
| (x : T) → t effect-polymorphic abstraction

T ::= T
e
=⇒ T function type

| T
e−→ T effect-polymorphic function type

e ::= ⊥ eD | � eD | eD effect annotation
eD ::= eD eD | · concrete effects

Γ ::= ∅ | Γ, x : T parameter context
f ::= ε | x polymorphism context

Fig. 2. Core language syntax

The effect annotation e on a function type declares the latent effect, the effect
that may occur when the function is invoked. Note that e defines an effect
for every active effect domain. Subsection 3.1 explains how the integration of
multiple effect domains into one effect system is handled.

There are two kinds of functions: ordinary, monomorphic functions denoted
using the double arrow ⇒, and effect-polymorphic functions denoted with a
single arrow →. The two kinds of arrows appear in function abstraction terms
and in function types.

A monomorphic function type T1
e=⇒ T2 declares a latent effect e, the effect that

may occur when the function is applied. In the type of an effect-polymorphic
function T1

e−→ T2 however, the annotated effect e does not denote the entire
latent effect of the function. Instead, the effect of such a function consists of
two parts: the concrete, annotated effect e and the effect of its argument of
type T1. Only higher-order functions, functions that take another function as
argument, can be effect-polymorphic. This invariant is checked by the typing
rule T-Abs-Poly which enforces the parameter type T1 to be a function type.
The effect of the argument function is implicitly added to the total effect of an
effect-polymorphic function.

For syntactic convenience, the effect annotations on function types can be
omitted, in which case the following default effects are used:

Lightweight Polymorphic Effects 265

– T1 ⇒ T2 is a equivalent to T1
�=⇒ T2

– T1 → T2 is a equivalent to T1
⊥−→ T2

Example 1. We inspect the type of the simple higher-order function hof intro-
duced in Section 1:

val hof: (Int
�=⇒ Int)

⊥−→ Int = (f: Int
�=⇒ Int) → f 1

Using the default effects mentioned above, the effect annotations in the type of
hof as well as the one in the function abstraction can be omitted:

val hof: (Int ⇒ Int) → Int = (f: Int ⇒ Int) → f 1

3.1 A Multi-domain Effect Lattice

When checking multiple kinds of effects at the same time, every effect domain
needs to be described as a join-semilattice as explained in Section 2.3. For a
domain D, the lattice consists of a set of atomic effects ED, a join operation �D
and a sub-effect relation �D. Additionally, the bottom and top elements ⊥D and
�D of ED have to be specified.

These individual domains are combined into one multi-domain effect lattice
that is used in this section. The elements of this lattice are tuples of effects from
the individual domains:

E = {eD1 . . . eDn | eD1 ∈ ED1 ∧ . . . ∧ eDn ∈ EDn}
The � and � operations are defined element-wise using �Di and �Di for every
domain Di. We omit their definitions here for brevity.

3.2 Subtyping

The subtyping relation of our calculus has the common reflexivity and transitiv-
ity properties.

T <: T
(S-Refl) T ′ <: S S <: T

T ′ <: T
(S-Trans)

The subtyping rules covering the two kinds of function types in our system
are entirely symmetrical.

T1 <: T ′
1 T ′

2 <: T2 e′ � e

T ′
1

e′
=⇒ T ′

2 <: T1
e=⇒ T2

(S-Fun-Mono)

T1 <: T ′
1 T ′

2 <: T2 e′ � e

T ′
1

e′−→ T ′
2 <: T1

e−→ T2

(S-Fun-Poly)

In S-Fun-Mono, a function with a latent effect e′ can only be a subtype of
another function with effect e if e′ � e. As an example, we take a higher-order
function hof that requires its argument to be pure:

val pureHof = (f: Int
⊥=⇒ Int) ⇒ f 1

266 L. Rytz, M. Odersky, and P. Haller

The subtyping rule will only allow pure functions to be passed into pureHof.
When looking at effect-polymorphic function types in S-Fun-Poly, remem-

ber that we defined previously the latent effect of T1
e−→ T2 to consists of two

parts: the annotated effect e plus the latent effect of the argument type T1. This
raises the question why the subtyping rule for polymorphic function types only
compares the annotated effects. Assume we have two functions:

val maybePure: (Int
�=⇒ Int)

⊥−→ Int = ...

val pure: (Int
⊥=⇒ Int)

⊥−→ Int = ...

In general, an invocation of maybePure might have any effect, while an invocation
of pure is always pure. However, the subtyping relation seems to contradict this
observation: due to contra-variance of arguments, the type of maybePure is a
subtype of the type of pure.

To build an intuition why the subtyping rule is correct, we take a closer look
at the two function types. The type of pure says: “Give me a pure function from
Int to Int, and I compute a result without producing a side-effect.” For instance,
in the body of a function m

val m = (pure: (Int
⊥=⇒ Int)

⊥−→ Int) ⇒ ...

the function pure only accepts pure functions. Now assume that we use the
function maybePure where a function of the type of pure is expected, e.g.

m maybePure

As explained before, this is allowed by the subtyping rules. We can now see
that it is also correct, because in the body of method m only pure functions
will be passed into maybePure. Due to effect-polymorphism, those invocations of
maybePure have no effect. In other words, the type of the function maybePure says:
“If you give me a pure function, I also compute a result without producing a
side-effect!”

3.3 Static Semantics

Extensible Type-and-Effect Checking. Since we are creating an extensible
framework for tracking side-effects of multiple effect domains, we want to give
each concrete effect system the possibility of customizing the effect of evalu-
ating a term. For that reason, the typing rules introduced in this section are
parametrized by an auxiliary function eff.

For every effect domain D, the function effD computes the effect of evaluat-
ing a term, given the effects of its sub-terms. It takes two arguments: a name
indicating the syntactic form in question, and a list of effects of its sub-terms.
By default it combines all the argument effects using the �D operator:

effD(∗, e) =
⊔

D e

The default effD function can be specialized by concrete effect domains; we
will discuss the example of exceptions in Section 3.4. However, arbitrary effD

Lightweight Polymorphic Effects 267

functions can make the type-and-effect system unsound. For the system to be
correct, the effD functions needs to meet the following monotonicity requirement.

Lemma 1. Monotonicity.
For every effect domain D and every syntactic form Trm,
1. if ∀ ei ∈ e, di ∈ d . ei � di, then effD(Trm, e) � effD(Trm, d)
2. effD(Trm, e1, . . . , ei1 � ei2, . . . , en) � effD(Trm, e1, . . . , ei1, . . . , en) � ei2

The first clause of the monotonicity lemma requires the effD functions to be mono-
tonic. Implementing effect masking remains possible, as we will see in the effect
domain of exceptions. The second part of the monotonicity lemma prevents the
output effect to depend on the presence of a certain input effect. This restriction
falls in line with the general semantics of effect annotations in type-and-effect sys-
tems: an annotated effect may occur, but it is not required to occur.

The function eff used in the typing statements works on all effect domains at
the same time, similar to the multi-domain lattice operations described in Section
3.1. It is composed of the individual effDi functions in the straightforward way:

eff(Trm, e) = effD1(Trm, e) . . . effDn(Trm, e)

Typing Rules. Terms are assigned a type and an effect using a judgement of
the form Γ ; f � t : T ! e where Γ maps variables to their types. The additional
environment variable f is used for type-checking effect-polymorphic methods.
While its exact role will be discussed later, remember for now that it holds either
a parameter x ∈ Γ , or the special value ε which is distinct from all parameter
names.

As is common, referencing a parameter does not have a side-effect:

x : T ∈ Γ

Γ ; f � x : T ! ⊥ (T-Param)

Next, we look at the typing rules for monomorphic function abstraction and
application.

Γ, x : T1; ε � t : T2 ! e

Γ ; f � (x : T1) ⇒ t : T1
e=⇒ T2 ! ⊥

(T-Abs-Mono)

Γ ; f � t1 : T1
e=⇒ T ! e1

Γ ; f � t2 : T2 ! e2 T2 <: T1

Γ ; f � t1 t2 : T ! eff(App, e1, e2, e)
(T-App-Mono)

The typing rule for abstraction infers the result type T2 and the latent effect e of
a function. By using the value ε in the environment for type-checking the function
body, we propagate the information that the term belongs to a monomorphic
function.

The rule T-App-Mono is a standard typing rule for method applications.
The resulting effect consists of three parts: e1 is the effect of evaluating the
function, e2 is the effect of evaluating the argument and e is the latent effect of

268 L. Rytz, M. Odersky, and P. Haller

the function. These three effects are combined using the eff function introduced
in the beginning of this section.5

Next we analyze the typing rules for effect-polymorphic function abstractions
and invocations. But before that, we take a close look at the functionality of the
extended typing environment Γ ; f .

Suppose we are analyzing the effect of a simple effect-polymorphic function

val hof = (f: Int
�=⇒ Int) → f 1

The computed type should be (Int �=⇒ Int) ⊥−→ Int, i.e., the function hof itself has
effect ⊥. The effect of invoking f can be ignored because it is already expressed
in the function type through effect-polymorphism.

To achieve this special treatment of the argument function, the parameter f
is placed in the extended environment as Γ ; f when type-checking the function
body of an effect-polymorphic function.

T1 = Ta
e1=⇒ Tb Γ, f : T1; f � t : T2 ! e

Γ ; f ′ � (f : T1) → t : T1
e−→ T2 ! ⊥ (T-Abs-Poly)

Note that the typing rule forces the argument type T1 to be a monomorphic
function type — only higher-order functions can be effect-polymorphic. We will
explain later why the argument function has to be monomorphic.

The following typing rule T-App-Param implements the mentioned special
treatment of the argument function f :

f : T1
e=⇒ T ∈ Γ

Γ ; f � t : T2 ! e2 T2 <: T1

Γ ; f � f t : T ! eff(App,⊥, e2,⊥)
(T-App-Param)

When applying a function f which is the parameter of an enclosing effect-
polymorphic function, then the latent effect of f is not taken into account.

The last element of the static semantics is the typing rule for invocations of
effect-polymorphic functions.

Γ ; f � t1 : T1
e−→ T ! e1

Γ ; f � t2 : T2 ! e2 T2 <: T1

Γ ; f � t1 t2 : T ! eff(App, e1, e2, e � latent(T2))
(T-App-Poly)

There is one single but crucial difference to the rule T-App-Mono for monomor-
phic function applications. The latent effect of the function t1 consists of two
components: the concrete effect e annotated in the function type, and the latent
effect of the argument function t2 which is computed using latent(T2).

Note that the rule T-App-Poly is at the root of our effect-polymorphic type
system. We obtain effect-polymorphism by computing for each invocation of t1
the effect of the actual argument type T2.
5 Remember that by default, eff computes the join of its argument effects

Lightweight Polymorphic Effects 269

The parameter type T1 is known to be a monomorphic function type: this is
enforced by the typing rule T-Abs-Poly. Since T2 <: T1, we know that also
T2 is a monomorphic function type. Therefore, the auxiliary function computing
the latent effect is simply defined as

latent(T) = e where T = T1
e=⇒ T2

The reason why only monomorphic functions are allowed as parameters of effect-
polymorphic functions is that the typing rules become simpler without decreasing
the expressiveness. Imagine that a polymorphic function takes another polymor-
phic function as argument:

val highHof = (f: (Int ⇒ Int) → Int) → f ((x: Int) ⇒ x + 1)

When looking at the type of highHof, the information that its argument f is
applied to a pure function cannot be recovered. Therefore, there is no advantage
in allowing effect-polymorphic functions as arguments.

3.4 Examples of Concrete Effect Domains

We now present two extensions of the core calculus that implement effect check-
ing for two concrete effect domains. Both extensions are orthogonal to the mech-
anisms of effect-polymorphism in the base language. Every concrete effect system
that is added to the framework profits from effect-polymorphism without any
additional effort: the extensions would be exactly the same in a monomorphic
effect checking framework.

Exceptions. In order to add effect checking for exceptions, we first need to
extend the base language with primitives to throw and handle exceptions. The
additions to the language syntax are presented in Figure 3. We use a finite set
of exceptions p1 . . . pn that can be thrown and caught, however the system could
be easily extended to an open hierarchy of effects such as the exception types in
languages like Scala or Java. An effect annotation throws(p) denotes that any of
the exceptions in p might be thrown. The effect lattice for the exception domain
E is defined in Figure 4.

To give a valid type to the throw primitive, we introduce a bottom type Nothing
which is a subtype of every other type.

t ::= ...
| throw(p) throwing an exception
| try t catch(p) t catching and handling exceptions

T ::= ...
| Nothing bottom type

eD ::= ...
| throws(p) exception effect annotation

p ::= p1 | . . . | pn exceptions

Fig. 3. Extended syntax for exceptions

270 L. Rytz, M. Odersky, and P. Haller

EE = {throws(p) | p ⊆ {p1, . . . , pi}} throws(p) E throws(q) ⇐⇒ p ⊆ q
⊥E = throws() throws(p) �E throws(q) = throws(p ∪ q)
�E = throws(pi, ..., pn)

Fig. 4. Effect lattice for exceptions

Nothing <: T
(S-Nothing)

The typing rules for the two new syntactic forms are defined as follows:

e = eff(Throw(p))
Γ ; f � throw(p) : Nothing ! e

(T-Throw)

Γ ; f � t1 : T1 ! e1 T1 <: T
Γ ; f � t2 : T2 ! e2 T2 <: T

et = eff(Try, e1) e = eff(Catch(p), et, e2)
Γ ; f � try t1 catch(p) t2 : T ! e

(T-Try)

Finally, to complete the description of the new effect domain we have to inform
the framework that throw expressions can add effects, while try expressions can
mask effects. This is achieved by defining the function effE :

effE(Throw(p)) = throws(p)
effE(Try, e) = e
effE(Catch(p), e1, e2) = throws((q \ p) ∪ s) where throws(q) ∈ e1

throws(s) ∈ e2

Asynchronous Operations. The second extension that we present can be used
to check the correct and/or efficient use of asynchronous computations. Several
popular languages, including C#, F# [20], and Scala, support constructs to start
a computation asynchronously, returning a handle (typically called a “future”)
used to retrieve the result, once it becomes available.

For example, in Scala a long-running computation can be started as follows:

val ft = future {

// long-running computation

}

For efficiency, the body of future is executed on a thread pool. ft is a handle
for the result; when retrieving its result, it blocks the current thread until the
future’s result has been computed or an unhandled exception has been thrown
in the future’s body:

val result = ft()

Retrieving the result as shown above is a blocking operation. However, when
run using a fixed-size thread pool, calling blocking operations inside the bodies

Lightweight Polymorphic Effects 271

t ::= ...
| future t asynchronous expression
| block blocking expression
| blocking t delimiting blocking expression

eD ::= ...
| B | noB blocking / non-blocking effect annotation

Fig. 5. Extended syntax for asynchronous operations

of futures is problematic. Blocking operations are operations that may cause the
underlying thread to wait indefinitely. Examples are waiting for the completion
of a synchronous I/O operation, or waiting on a condition variable inside a
monitor. Such thread-blocking operations may lead to starvation, and, in the
worst case, may lock up the entire thread pool [9].

Using an effect system, it is possible to prevent these system-induced dead-
locks at compile time. The idea is to require wrapping blocking operations, so
that the underlying thread pool can be resized temporarily. This approach to sup-
porting blocking operations has been adopted in the fork/join pool of Java 7 [12].
In the following we present an effect system which guarantees that all blocking
operations are properly wrapped, thereby eliminating an entire class of concur-
rency errors when using thread pools.

The additions to the language syntax are presented in Figure 5. For simplic-
ity, we use a fixed blocking expression block; in practice, many more expres-
sions could be potentially blocking, for example, functions for synchronization
or blocking I/O. The future t expression asynchronously runs an expression t
which must be non-blocking, i.e., pure in this effect system. The fact that an
expression is blocking is expressed using the B effect annotation. We omit the
definition of the effect lattice, since it is trivial in this case. Finally, the blocking t
expression wraps a potentially blocking expression t, such that the effect of the
wrapped expression is non-blocking.

The typing rules for the three new syntactic forms are defined as follows:

Γ ; ε � t : T ! e B /∈ e

Γ ; f � future t : T ! eff(Future, e)
(T-Future)

Γ ; f � block : T ! eff(Block)
(T-Block)

Γ ; f � t : T ! e

Γ ; f � blocking t : T ! eff(Blocking, e)
(T-Blocking)

Finally, to complete the description of the new effect domain we have to define
an effB function:

effB(Future, e) = e
effB(Block) = B

effB(Blocking, e1) = noB

272 L. Rytz, M. Odersky, and P. Haller

The effB function expresses the fact that block expressions add a blocking effect,
while blocking expressions mask a blocking effect.

3.5 Dynamic Semantics

In order to model the runtime behavior of our formal language we define a big-
step operational semantics. A term t reduces in one step to either a value v or
an error throw(p), written t ⇓ 〈r, S〉 where r ::= v | throw(p). The set S contains
the effects that occurred while evaluating the term. Every element e ∈ S is an
atomic effect, i.e., S ⊆ E where E is the effect lattice defined in Section 3.1.

Extensible Effect Domains. In the sprit of extensibility to multiple effect
domains, the evaluation rules are parametrized by an auxiliary function dynEff
which computes the effect of evaluating a term based on the effects of its sub-
terms. This function is closely related to the function eff used in the typing
judgements, but it operates on sets of effects instead of atomic effects. The
reason is that in contrast to the static semantics, the operational semantics does
not approximate the occurrence of two distinct atomic effects by their join, but
keeps both effects in the resulting set S.

In the case of exceptions, the function dynEffE is defined as follows:

dynEffE(App, S1, S2, Sl) = S1 ∪ S2 ∪ Sl

dynEffE(Throw(p)) = throws(p)
dynEffE(Try, S) = S
dynEffE(Catch(p), S1, S2) = (S1 \ {throws(pi) | pi ∈ p}) ∪ S2

In order for the type system to be sound, the eff function needs to model
dynEff conservatively and correctly. This requirement is explained in Section
3.6.

Evaluation Rules. We now present the evaluation rules.

t1 ⇓ 〈throw(p), S1〉
S = dynEff(App, S1, ∅, ∅)

t1 t2 ⇓ 〈throw(p), S〉
(E-App-E1)

t1 ⇓ 〈v1, S1〉 t2 ⇓ 〈throw(p), S2〉
S = dynEff(App, S1, S2, ∅)

t1 t2 ⇓ 〈throw(p), S〉
(E-App-E2)

When evaluating an application, if one of the two terms evaluates to throw(p)
for some exception p, then so does the entire expression.

t1 ⇓ 〈(x : T) �→ t, S1〉 t2 ⇓ 〈v2, S2〉
t[v2/x] ⇓ 〈r, Sl〉 S = dynEff(App, S1, S2, Sl)

t1 t2 ⇓ 〈r, S〉 (E-App)

In the evaluation rule for applications, we write t[v/x] for the term t with all
occurrences of the variable x replaced by value v. We use the special arrow �→
to range over both, effect-polymorphic and monomorphic functions.

Lightweight Polymorphic Effects 273

S = dynEff(Throw(p))
throw(p) ⇓ 〈throw(p), S〉 (E-Throw)

A throw expression does not evaluate, but the evaluation rule still computes the
set of dynamic effects of the expression.

t1 ⇓ 〈throw(p), S1〉 p ∈ p
t2 ⇓ 〈r2, S2〉 St = dynEff(Try, S1)

S = dynEff(Catch(p), St, S2)
try t1 catch(p) t2 ⇓ 〈r2, S〉 (E-Try-E)

The evaluation of a try-catch expression depends on the result obtained for the
first subterm t1. In case it evaluates to an error throw(p), and the exception p is
handled by the catch clause, then the final result is the evaluation of the handler
t2. Otherwise the following rule applies.

t1 ⇓ 〈r1, S1〉 S = dynEff(Try, S1)
try t1 catch(p) t2 ⇓ 〈r1, S〉

(E-Try)

The last evaluation rule applies to try-catch expressions in which the evaluation
of t1 either does not raise an exception, or it raises an exception that is not
handled by the catch(p) clause. In this case, the obtained result r1, which might
be an error, is propagated.

3.6 Effect Soundness

In this section we state two important theorems for the soundness of the type sys-
tem presented in Section 3.3 with respect to the dynamic semantics introduced
in the previous section.

We use the following notational convenience: in the static semantics, every
expression has an effect e, while in the dynamic semantics, the evaluation of an
expression yields a set of effects S. We write S � e to express that every effect
in S is smaller than e, i.e., ∀es ∈ S . es � e.

Theorem 1. Preservation.
If Γ ; f � t : T ! e is a valid typing statement for term t and the term evaluates
as t ⇓ 〈r, S〉, then there is valid a typing statement Γ ; f � r : T ′ ! e′ for r with
T ′ <: T .

Theorem 2. Effect soundness.
If Γ ; f � t : T ! e and t ⇓ 〈r, S〉, then S � e � latent(Γ (f)).

The effect soundness theorem states that every effect that occurs when evaluating
a term t is represented in the typing derivation for t. Remember that in the typing
rule for effect-polymorphic functions, T-Abs-Poly, the argument function f is
propagated in the extended environment Γ ; f . Invocations of f are thereafter
treated as pure by typing rule T-App-Param.

Therefore, given a typing statement Γ ; f � t : T ! e, the effect that might
occur when evaluating t consists of e and the latent effect of f , latent(Γ (f)).

274 L. Rytz, M. Odersky, and P. Haller

Consistency Requirement. In both semantics, we use an auxiliary function
to compute the effect that occurs when evaluating a term. The preservation and
soundness theorems are based on the assumption that the static eff function
conservatively models the behavior of the dynEff function in the operational
semantics.

Lemma 2. Consistency.

– Let S = dynEff(Trm, S) be the set of dynamic effects that occur when eval-
uating a term t of the form Trm. The list S contains an effect set for every
subterm of t.

– Let Γ ; f be an environment and e be a list of static effects such that every
effect set in S is approximated by Si � ei � latent(Γ (f)).

– Then the static effect e = eff(Trm, e) is a conservative approximation of the
effects in S, i.e., S � e � latent(Γ (f)).

This consistency lemma has to be verified for every effect domain. In the case
of exceptions or asynchronous operations, the verification is straightforward and
therefore omitted here.

Proof Sketch. We give a proof sketch for the effect soundness theorem. In
addition to preservation, the proof makes use of a lemma showing that effects
are preserved in typing statements under value substitution. This lemma comes
in two flavors: one for monomorphic and one for effect-polymorphic abstractions.

Lemma 3. Preservation under substitution for monomorphic abstractions.
If Γ, x : T1; f � t : T ! el, f �= x and Γ ; g � v : T2 ! ⊥ with T2 <: T1,
then Γ ; f � t[v/x] : T ′ ! e′l such that T ′ <: T and e′l � el.

Lemma 4. Preservation under substitution for polymorphic abstractions.
If Γ, x : T1; x � t : T ! el and Γ ; f � v : T2 ! ⊥ with T2 <: T1,
then Γ ; ε � t[v/x] : T ′ ! e′l such that T ′ <: T and e′l � el � latent(T2).

The two lemmas state that the type and the effect of a term t decrease when a
free variable in t is replaced by a value with a conforming type.

The proof of Theorem 2 is carried out using induction on the evaluation rules
for a term t. We look at the most interesting case E-App that produces the
following derivations:

t = t1 t2
t1 ⇓ 〈(x : T ′

1) �→ t11, S1〉
t2 ⇓ 〈v2, S2〉
t11[v2/x] ⇓ 〈r, Sl〉
S = dynEff(App, S1, S2, Sl)

There are multiple typing rules for type-checking an application expression. We
investigate the key case T-App-Poly and obtain the following sub-derivations:

Lightweight Polymorphic Effects 275

Γ ; f � t1 : T1
el−→ T ! e1

Γ ; f � t2 : T2 ! e2

T2 <: T1

e = eff(App, e1, e2, el � latent(T2))

Our goal is to show that in environment Γ ; f , the static effect e correctly ap-
proximates the dynamic effects S, i.e., S � e � latent(Γ (f)).

We see that t1 evaluates to a function abstraction. The preservation theo-
rem states that the type of this resulting function is a subtype of t1’s original
type T1

el−→ T . Since the term is a function abstraction, the subtyping rules
restrict the type to be a polymorphic function type. Looking at the canonical
forms, we observe that the term can only be a polymorphic function abstraction
(x : T ′

1) → t11, and we obtain the following typing derivation:
Γ, x : T ′

1; x � t11 : T ′ ! e′l with T1 <: T ′
1, T ′ <: T and e′l � el

Applying preservation to the term t2, we obtain v2 : T ′
2 with T ′

2 <: T2. Using
transitivity of subtyping, we obtain T ′

2 <: T ′
1, and we can apply the substitution

Lemma 4 to obtain
Γ ; ε � t11[v2/x] : T ′′ ! e′′l with T ′′ <: T ′ and e′′l � e′l � latent(T ′

2)

By applying the induction hypothesis on the subterm t11[v2/x], we obtain
Sl � e′′l � latent(Γ (ε))
Sl � e′l � latent(T ′

2) by e′′l � e′l � latent(T ′
2) and latent(Γ (ε)) = ⊥

Since T ′
2 <: T2 we can easily verify that latent(T ′

2) � latent(T2). Together with
the induction hypotheses on t1 and t2, we now have the necessary conditions to
apply the consistency Lemma 2:

S1 � e1 � latent(Γ (f))
S2 � e2 � latent(Γ (f))
Sl � el � latent(T2)

We obtain the desired result:
dynEff(App, S1, S2, Sl) � eff(App, e1, e2, el � latent(T2)) � latent(Γ (f))

The proofs of the remaining cases are conducted in a similar fashion. A full proof
for all lemmas and both theorems is available in a separate technical report [19].

4 Lightweight Polymorphic Effects in Scala

We implemented the ideas presented in the previous section as a generic frame-
work for polymorphic effect-checking in the Scala programming language. The
implementation comes in the form of a compiler plugin which adds new phases
to the compilation pipeline. These phases are executed after the unaltered type-
checking transformation and therefore, effect-checking can be seen as a pluggable
type system [3].

276 L. Rytz, M. Odersky, and P. Haller

4.1 Effect-Polymorphic Methods

Using the same ideas as in the formal system presented above, we extended Scala
with a new syntactic form for defining effect-polymorphic methods. While ordi-
nary methods are defined using the keyword def, an effect-polymorphic method
is introduced with fun:6

fun h(f: Int => Int): Int = f(1)

The method h is polymorphic in the effect of its argument. When applying it to
a pure function, then that invocation of h does not have a side-effect:

h(x => x + 1)

However, we glossed over one important property of Scala: it is an object-oriented
language, and the arguments passed to methods are objects. This is equally true
for first-class functions like f from the example. Concretely, a unary function in
Scala is represented as an object of type Function1:

– The trait Function1 has one abstract method named apply:
trait Function1[+A, -R] {

def apply(x: A): R

}

– The type Int => Int is a shorthand for Function1[Int, Int]
– The function literal x => x + 1 is syntactic sugar for an anonymous class7

new Function1[Int, Int] {

def apply(x: Int): Int = x + 1

}

This observation raises the question what it means for the method h to be effect-
polymorphic in its argument f, since f is an object. The answer is that in the
object-oriented case, a method is polymorphic in the effect of the member meth-
ods of its argument. In the example, method h is effect-polymorphic in the apply

method of its argument f.
The definition of effect-polymorphism for the object-oriented case is a slight

extension of the definition we used in the formal system: a method can be effect-
polymorphic in multiple argument methods. For instance, in

fun m(a: A): B = a.b()

the method m is effect-polymorphic in all members of a, not only in a.b. In the
same way, if an effect-polymorphic method has multiple parameters, it is effect-
polymorphic in all of them.

This extension is however not a fundamental change, because methods cannot
be partially applied. This means that when a method is invoked, all the param-
eters are defined and therefore all the argument methods and their effects are
known. The same situation could be simulated in our calculus using tuples.
6 This syntactic adjustment is the only language change that was performed. Alter-

natively, we could also have left the language unchanged and used an annotation.
7 Local type inference defines the two type parameters of Function1

Lightweight Polymorphic Effects 277

4.2 Effect Annotations in Scala

In order to annotate the latent effect of a method in Scala, our framework uses
standard type annotations on the return type of the method. For instance, the
following signature describes a method that might throw an exception:

def doIO(file: String): Unit @throws[IOException] = ...

Ordinary methods defined with the keyword def are impure by default. The
method doIO therefore allows any side-effects in effect domains other than ex-
ceptions. The annotation @pure marks a method as pure in all effect domains,
like the ⊥ annotation in Section 3.1.

Effect-polymorphic methods defined using fun are pure by default.
One question is how the effect of anonymous functions should be annotated.

For instance, the function literal (x: Int) => x + 1 has type Function1[Int, Int],
but this type does not have any effect annotation.

In order to propagate the effect information of anonymous functions using
their types, the effect checking framework makes use of refinement types [16].
Concretely, the type of the above function literal is extended to

Function1[Int, Int] {

def apply(x: Int): Int @pure

}

To make function types with effects more compact, we are planning to introduce
syntactic sugar for the above case, for instance Int ⇒ Int @pure.

4.3 Practical Experience

We verified the expressiveness of our polymorphic effect system by applying it
to the Scala collections framework. To illustrate the process of making a library
effect-polymorphic, we look at the method map which applies an argument func-
tion to all elements of a collection. This method is implemented at the root of the
collection hierarchy in class TraversableLike [17] and shared by all descending
collection classes such as lists, maps, sets and vectors.

In essence, the parent collection class TraversableLike has one abstract method
foreach which we make effect-polymorphic by changing def to fun:

fun foreach[U](f: Elem => U): Unit

Using this method, the class provides concrete implementations of common col-
lection operations that are shared across all collection types: filter, map, flatMap,
partition, forall and many more. The implementation of method map is as follows:

trait TraversableLike[+A, +Repr]

// ...

fun map[B, That](f: A => B,

implicit bf: CanBuildFrom[Repr, B, That]): That = {

val b: Builder[B, That] = bf.apply(this)

this.foreach(x => b += f(x))

278 L. Rytz, M. Odersky, and P. Haller

b.result

}

}

A detailed explanation of this code can be found in [17]. For every collection type
extending TraversableLike, the type parameter A represents the element type of
the collection, and Repr is the collection type itself. The method map takes the
target element type B and the target collection type That as argument. Allowing
map to produce a different collection type than the current Repr is important in
some situations, as explained in [17].

The additional value argument bf is called the “builder factory”. It is used to
obtain a builder object of type Builder[B, That]. The builder is a simple buffer
which collects elements of type B and produces a collection of type That with
these elements. Note that the builder factory is an implicit argument which does
not have to be provided by the programmer when using map, instead it is searched
and inserted by the compiler.

Using the method foreach, every element of the current collection is mapped
with the argument function f and added to the builder. At the end, the resulting
collection is obtained from the builder using result.

As previously with foreach, the only change we performed to make map effect-
polymorphic is changing the definition keyword from def to fun. Now, the method
map is effect-polymorphic in the argument function f, and in all member methods
of the builder factory bf. However, the class CanBuildFrom has only one member
method which is annotated pure:

trait CanBuildFrom[-From, -Elem, +To] {

def apply(from: From): Builder[Elem, To] @pure

}

Therefore the builder factory does not contribute any effect, and map is effect-
polymorphic in its argument function f.

Remember that effect-polymorphic functions are pure by default. Therefore,
the implementation of map is not allowed to have any side-effects, except the
effect of the argument f. If we look for instance at exceptions, purity can be
easily verified:

– Invoking bf.apply does not have an effect, as already discussed
– Adding elements to the builder and obtaining the final result do not throw

exceptions (i.e., the += and result methods are pure)
– The effect of calling foreach is the effect of the argument function; the

function x => b += f(x) calls the function f, which is allowed by effect-
polymorphism

This line of reasoning is applied by the framework for every checked effect do-
main. Verifying purity with respect to state modifications in this example is less
straightforward. However, a recent type-and-effect system for purity [18] is ex-
pressive enough to verify this case, and we are working on integrating it into our
framework.

Lightweight Polymorphic Effects 279

If an effect system is added to the framework in which the implementation
of map is not pure, then the return type of map has to be annotated with the
corresponding effect.

4.4 Implementing Concrete Effect Domains

We implemented the framework for polymorphic type-and-effect systems pre-
sented in this paper as a plugin for the Scala compiler. Extending the framework
with a new effect domain is simple, as explained in Section 2.3: the programmer
needs to provide

– an implementation of the effect lattice,
– the annotation definitions for annotating latent effects in the source code,
– two methods describing how to serialize and de-serialize the annotations into

lattice elements, and
– an implementation of the eff function in the form of a abstract syntax tree

traverser.

This information suffices the framework to verify a new effect domain.

Exceptions. The implementation of an effect system for exceptions was as
straightforward as expected. Empirical validation shows that the annotation
overhead is greatly reduced compared to the non-polymorphic throws clauses
found in Java. The work on anchored exceptions [22] gives more detailed insights
to research in this area.

There are however a few cases where a static effect analysis cannot compute
the possibly thrown exceptions of an expression correctly. Even though these
limitations are unrelated to the polymorphic effect checking framework presented
in this paper, we still mention them for completeness.

To make an example, assume that the method head of a list class throws an
exception when the list is empty. If we analyze the method

def headOrZero(l: List[Int]) = if (l.isEmpty) 0 else l.head

we clearly see that the invocation l.head will not throw an exception. However,
the effect system does not take conditional control flow into account and will
therefore conclude that the expression might throw an exception.

In Java, this specific problem is bypassed by having unchecked exceptions,
a class of exception types which are not tracked by the effect system. The
NoSuchElementException in Java is such an unchecked exception, and therefore
the example expression would be treated as pure.

Another solution we are considering is to allow programmers to override the
inferred effects by introducing syntax for effect casting. We think that this can
prevent programmers from disabling effect checking altogether just because in
some situations, the analysis computes an imprecise result.

280 L. Rytz, M. Odersky, and P. Haller

5 Related Work

Polymorphic effect systems are introduced in [13] as part of the fx program-
ming language [7]. The overhead of having explicit effect and region parameters
is overcome by later work on type and effect inference [21]. However, type recon-
structions requires the whole program to be known and does not allow modular
reasoning about effects. Our approach allows modular effect checking using la-
tent effect annotations and effect-polymorphic method types. It also enables
more immediate feedback while developing an application, for instance in an
IDE.

The work on anchored exceptions [22] extends the throws annotations in Java’s
checked exceptions to express effect-polymorphism. Instead of listing the con-
crete exception types that might be thrown, an annotation can take the form
throws like a.m() where a is a parameter of the method. Their system is tied
to checked exceptions, however we believe that the main ideas can be equally
applied in a generic system. In order to do so, our type system could be extended
with dependent types, allowing effect annotations to refer to parameter names.

Marino et al. [14] describe a generic type-and-effect system that can be instan-
tiated to different effect domains. Our effect framework can be seen as an exten-
sion of their work with effect polymorphism. There are a few differences however;
most importantly they support a tagging system for run-time values. Recon-
structing which tags can flow into a function argument uses a whole-program
analysis; the authors refer to type qualifier inference [4]. Our system is designed
to work modularly on the basis of annotations.

There exist a number of other approaches than type-and-effect systems to
delimit the scope of side effects. The most common alternative is monadic en-
capsulation of effects, which has been shown to be equivalent to effect systems
by Wadler et al. in [23]. One aspect of type-and-effect systems shown in Section
3.1 is that combining multiple effect domains is straightforward, while compos-
ing monads on the other hand is difficult [11]. Applicative functors [6] are one
promising upcoming alternative to monads which facilitate composition.

6 Conclusions and Future Work

We designed an extensible framework for polymorphic effect checking where
multiple effect domains can be integrated modularly. Annotating functions as
effect-polymorphic is lightweight in syntax and independent of specific effect
domains. We implemented the framework for the Scala programming language
in the form of a compiler plugin and successfully applied polymorphic effect
checking to real-world examples such as the Scala collections library.

We are studying two directions to make the presented type-and-effect system
more expressive. First, we investigate how annotations for effect-polymorphism
can be generalized using dependent types. This extension allows us to express
effect masking behavior in function types, and to denote the behavior of meth-
ods more precisely in the object-oriented case by stating which members of the
arguments contribute to effect-polymorphism.

Lightweight Polymorphic Effects 281

As a second extension, we are studying a generalization to support flow-
sensitive effects, so that more effect systems can be expressed as a plugin to
our framework. One example of a flow-sensitive effect system is the purity anal-
ysis presented in [18].

When integrating a type-and-effect system into an existing programming lan-
guage, there are also practical issues that need consideration. One question is how
to handle the interaction with legacy code that does not provide effect annota-
tions. A possible solution is to consider whole-program effect analysis techniques
to reconstruct effect annotations for existing libraries.

References

1. Abadi, M., Birrell, A., Harris, T., Isard, M.: Semantics of transactional mem-
ory and automatic mutual exclusion. In: Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2008, pp. 63–74. ACM, New York (2008)

2. Bocchino Jr., R.L., Adve, V.S.: Types, Regions, and Effects for Safe Programming
with Object-Oriented Parallel Frameworks. In: Mezini, M. (ed.) ECOOP 2011.
LNCS, vol. 6813, pp. 306–332. Springer, Heidelberg (2011)

3. Bracha, G.: Pluggable type systems. In: OOPSLA 2004 Workshop on Revival of
Dynamic Languages (2004)

4. Foster, J.S., Johnson, R., Kodumal, J., Aiken, A.: Flow-insensitive type qualifiers.
ACM Trans. Program. Lang. Syst. 28, 1035–1087 (2006)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1995)

6. Gibbons, J., Oliveira, B.C.D.S.: The essence of the iterator pattern. In: McBride,
C., Uustalu, T. (eds.) Mathematically-Structured Functional Programming (2006)

7. Gifford, D.K., Jouvelot, P., Sheldon, M.A., O’Toole, J.W.: Report on the FX pro-
gramming language. Technical report (1992)

8. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java(TM) Language Specification,
3rd edn. Addison-Wesley Professional (2005)

9. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theor. Comput. Sci. 410(2-3), 202–220 (2009)

10. Hejlsberg, A.: The trouble with checked exceptions (2003),
http://www.artima.com/intv/handcuffs.html

11. King, D., Wadler, P.: Combining monads. In: Mathematical Structures in Com-
puter Science, pp. 61–78 (1992)

12. Lea, D.: A Java fork/join framework. In: Java Grande, pp. 36–43 (2000)
13. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: Proceedings of the

15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1988, pp. 47–57. ACM, New York (1988)

14. Marino, D., Millstein, T.: A generic type-and-effect system. In: Proceedings of the
4th International Workshop on Types in Language Design and Implementation,
TLDI 2009, pp. 39–50. ACM, New York (2009)

15. Mikhailova, A., Romanovsky, A.: Supporting evolution of interface exceptions, pp.
94–110. Springer-Verlag New York, Inc., New York (2001)

16. Odersky, M.: The Scala language specification (2011),
http://www.scala-lang.org/docu/files/ScalaReference.pdf

282 L. Rytz, M. Odersky, and P. Haller

17. Odersky, M., Moors, A.: Fighting bit rot with types (experience report: Scala col-
lections). In: Kannan, R., Narayan Kumar, K. (eds.) IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2009). Leibniz International Proceedings in Informatics (LIPIcs), vol. 4, pp. 427–
451. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl (2009)

18. Pearce, D.J.: JPure: A Modular Purity System for Java. In: Knoop, J. (ed.) CC
2011. LNCS, vol. 6601, pp. 104–123. Springer, Heidelberg (2011), doi:10.1007/978-
3-642-19861-8_7

19. Rytz, L., Odersky, M.: Lightweight polymorphic effects - proofs. Technical report,
EPFL (2012)

20. Syme, D., Petricek, T., Lomov, D.: The F# Asynchronous Programming Model.
In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp. 175–189.
Springer, Heidelberg (2011)

21. Talpin, J.-P., Jouvelot, P.: Polymorphic type, region and effect inference. Journal
of Functional Programming 2(3), 245–271 (1992)

22. van Dooren, M., Steegmans, E.: Combining the robustness of checked exceptions
with the flexibility of unchecked exceptions using anchored exception declara-
tions. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2005,
pp. 455–471. ACM, New York (2005)

23. Wadler, P., Thiemann, P.: The marriage of effects and monads. ACM Trans. Com-
put. Logic 4, 1–32 (2003)

