
Cloud Types

for Eventual Consistency

Sebastian Burckhardt1, Manuel Fähndrich1,
Daan Leijen1, and Benjamin P. Wood2

1 Microsoft Research
2 University of Washington

Abstract. Mobile devices commonly access shared data stored on a
server. To ensure responsiveness, many applications maintain local repli-
cas of the shared data that remain instantly accessible even if the server
is slow or temporarily unavailable. Despite its apparent simplicity and
commonality, this scenario can be surprisingly challenging. In particular,
a correct and reliable implementation of the communication protocol and
the conflict resolution to achieve eventual consistency is daunting even
for experts.

To make eventual consistency more programmable, we propose the
use of specialized cloud data types. These cloud types provide eventually
consistent storage at the programming language level, and thus abstract
the numerous implementation details (servers, networks, caches, proto-
cols). We demonstrate (1) how cloud types enable simple programs to use
eventually consistent storage without introducing undue complexity, and
(2) how to provide cloud types using a system and protocol comprised
of multiple servers and clients.

1 Introduction

As technology progresses, new applications emerge. Of growing popularity are
downloadable applications, so-called apps, that offer specialized functionality on
a mobile device such as a phone or a tablet. Often, these apps include social
aspects where users share information online. The capability of sharing data be-
tween devices is typically achieved by developing custom webservices. Increas-
ingly, such services are deployed in the cloud, hosted environments that offer
virtualized storage and computing resources.

Some apps require synchronization of data among multiple devices by the same
users. For example, users may want to share settings, calendars, contact lists, or
personal music databases. Other apps empower data sharing and communication
among multiple users. For example, a simple grocery list can help family members
keep track of items to be purchased on the next trip to the store. Moreover, many
apps can benefit from including social features that let users share information,
comments, reviews, achievements, high scores, and so on.

A pervasive requirement for apps is that they remain responsive at all times.
Unfortunately, server connections are notoriously prone to slowness or temporary

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 283–307, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

284 S. Burckhardt et al.

outages. Another important requirement is that apps consume little battery
power, and do not transfer much data. Thus, well-engineered apps must avoid
reliance on excessive server communication.

A common technique is to maintain a replica of the data on each device. Since
this replica is always available for queries and updates, apps remain responsive
even if the device is disconnected. When reconnected, updates can be propa-
gated to all other replicas in such a way that the resulting data is eventually
consistent [12,11]. Not only does this ensure responsiveness, but users can limit
connections to times where power or bandwidth are ample (such as while the
device is charging at home and connected to a home network).

Clearly, sharing data via eventually consistent local replicas is an attractive
solution for many applications; unfortunately, it can be daunting to implement.
Typical challenges include:

– Representation. Because app programming is at the intersection of
historically separate communities, programmers often end up writing and
maintaining inordinate amounts of code to translate between different data
representations (SQL, HTTP, JSON, XML, object heaps). Moreover, app
programmers are forced to write custom web services, and may have to deal
with subtle programming platform differences between clients and servers.

– Consistency. Since multiple devices can update their local replicas at the
same time while disconnected, clients can detect conflicts only after the fact,
when sending changes to the server. When such transactions fail, one must
write code explicitly to resolve the conflict. For example, if several users
update the same entry in a grocery list, we must be careful not to lose
updates.

– Change sets. Support for disconnected operation typically means that an
app must store not just a local replica, but also log a delta of all the updates
that are performed locally. When the device is reconnected, these are the
updates that are now sent to the server replica. Reliably resolving conflicting
operations inside a large change set can be a difficult problem.

Given these hurdles and challenges it is not surprising that many apps do not im-
plement our requirements fully: for example, updates can often only be performed
while connected, and the app blocks while the transaction takes place. Other apps
allow non-blocking updates but do not guarantee eventual consistency.

To make it easier for app developers to share data in the cloud, we propose the
use of cloud types at the programming language level. Cloud types provide an
abstraction layer that frees app developers of the recurring engineering challenges
(web service implementation, communication protocol, local storage) and allows
them to focus on the essentials: declaring the data strucures and writing client
code that accesses them. The two main ingredients of our solution are:

1. Cloud Types. Programmers declare the data they wish to share using special
cloud types. This data is automatically shared between all devices, and is
automatically persisted both on local storage as well as in cloud storage.
Our cloud types include both simple types (cloud integers, cloud strings)

Cloud Types for Eventual Consistency 285

and structured types (cloud arrays, cloud entitities). Because cloud types
are carefully chosen to behave predictably under concurrent modfication,
conflict resolution is automatic and the developer need not write special
code to handle merging.

2. Revision Consistency. Our system uses revision diagrams to guarantee even-
tual consistency, as proposed in [1]. Conceptually, the cloud stores the main
revision, while devices maintain local revisions that are periodically synchro-
nized. Revision diagrams are reminiscent of source control systems and pro-
vide an excellent intuition for reasoning about multiple versions and eventual
consistency.

Our approach integrates all aspects of the data model (declarations, queries,
and updates) directly into the programming language. Thus, there is only one
program and only one data format. Code can read and modify the data directly,
without buffering or copying, and without blocking. Note that we do not propose
a new language as such. Many existing languages could be extended seamlessly
with support for our data model, or use libraries to expose the functionality.
Currently, we have a partial implementation of our model in the TouchDevelop
[17] language and development environment.

Although cloud servers are used tomaintain consistency, the app developer does
not write any code that executes on the server. The data declarations completely
determine the functionality of the server. For the purpose of this paper, we leave
out session and authorization management as they can be dealt with separately.

Overall, we make the following contributions:

– We present a data model that directly integrates support for eventually
consistent data into the programming language. We demonstrate how this
model allows us to write simple programs for common scenarios by walking
through several examples (Section 2).

– We show how the data schema can be composed from basic cloud types
(Section 2.4), and how advanced cloud types (such as observed-remove sets
[13]) can be built up from simpler ones (Section 5).

– We provide a comprehensive formal syntax and semantics. It connects a
small, but sufficiently expressive programming language (Section 3) with a
detailed operational model of a distributed system containing a server-pool
and multiple client devices (Section 4). These models are connected by a
fork-join automaton (an abstract data type supporting eventual consistency)
derived automatically from the schema (Section 5). Together, these models
extend and concretize earlier work on eventually consistent transactions [1].

2 Overview

In this section we introduce our model in more detail, by gradually introduc-
ing the basic cloud types (cloud integers, cloud strings, cloud arrays, and cloud
entitites) using examples. Along the way, we explain the execution model (revi-
sion diagrams) and the synchronization primitives (yield, flush). We start with a

286 S. Burckhardt et al.

simple grocery list, followed by a customer database, and conclude with a seat
reservation example.

For the purposes of this paper, all examples are in pseudocode using a typed
javascript-like language. We believe that the essential features of our system can
be incorporated in most real-world static or dynamic languages in a seamless
way. We currently have a partial implementation directly in the TouchDevelop
language and as a library in C#.

2.1 Cloud Integers and Cloud Arrays

A simple but quite common scenario is the ever popular grocery list application
found on all mobile devices. We show the code for this example in Fig. 1, and
now proceed to explain it in detail.

// declaration of cloud data

global totalItems : CInt ;

array Grocery[name : String]
{
toBuy : CInt ;

}

// operations representing user actions

function ToBuy(name : String, count : Int)
{
totalItems.add(count) ;
Grocery[name].toBuy.add(count) ;

}

function Bought(name : String, count : Int)
{
totalItems.add(− count) ;
Grocery[name].toBuy.add(− count) ;

}

function Display()
{
foreach g in entries Grocery.toBuy
{
Print(g.toBuy.get() + ” ” + g.name) ;

}
Print(totalItems.get() + ” total”) ;

}

// main event loop

function main()
{

bool done = false ;
while (not done)
{
//allow send/receive of updates
yield() ;

match (NextUserCommand()) with
{

buy s n:
ToBuy(s, n) ;

bought s n:
Bought(s, n) ;

display:
Display() ;

quit:
done = true ;

}
}

}

Fig. 1. Pseudocode for the grocery list example

Cloud Types for Eventual Consistency 287

First, consider the cloud data declarations (Fig. 1, left column, top). We
use the term “cloud data” to emphasize that the data declared in this section
is automatically replicated across all devices. One could say we are declaring
global variables, literally. For this example, we chose to store both (1) a count
of the total groceries to buy, and (2) a count for each individual grocery item.
Although not really important for this example, storing the total count is helpful
to illustrate the consistency model later on.

– To represent the total count, we declare a variable called TotalCount of type
CInt. This type is a primitive datatype for storing and manipulating cloud
integers. It differs from ordinary integer variables in that it offers higher level
operations that have better conflict resolution semantics than using get and
set operations alone. In particular, it offers an add operation to express a
relative change, reminiscent of atomic or interlocked instructions in shared-
memory programming.

– To represent the quantity of each item, we use a cloud array called Grocery.
The array is indexed by the name of the grocery item, and each entry stores
the quantity toBuy. This quantity is again of type CInt.

Cloud arrays are a bit different from standard arrays as the index type can be
infinite (as in this case, strings). Cloud array entries can have multiple fields,
although there is only one in this example (toBuy). Moreover, all array entries are
always defined, and we guarantee that all fields are initialized with the default
value (which is 0 for CInt). Next, consider the actions on the data (Fig. 1)

– (ToBuy) When adding count items of name name, we adjust both the total
totalItems as well as the specific item count stored in the array, using the
primitive add which is supported by the cloud integer type. To access the
array entry, we use the name of the cloud array (Grocery) and an index [name]

and field (toBuy).

– (Bought) When removing items from the list, we proceed the same way, but
subtract the quantity rather than adding it.

– (Display) To display the list, we need to iterate over the array. This requires
a bit of extra thought since we cannot just iterate over all (infinitely many)
strings. Rather, we iterate over entries Grocery.toBuy, which returns only array
entries for which the field toBuy is not the default value (0 for CInt). Thus,
we print the name and the count of all items for which the count is not zero.

Finally, consider the pseudocode for the main program (Fig. 1, right column).
Since the grocery list is an interactive program, it executes some form of loop to
handle user commands.1 The important part is the yield statement. Essentially,
the yield statement gives the runtime system the permission to both (1) propa-
gate changes made locally to the replica to other devices, and (2) apply changes
made by other devices to the local replica. yield is nonblocking and guaranteed

1 In a realistic event-based application framework the API is likely to be different, but
we believe our simple loop is sufficient to convey the idea.

288 S. Burckhardt et al.

to execute very quickly. yield does not force synchronization: it is perfectly ac-
ceptable for yield to do nothing at all (which is in fact all it can do in situations
where the device is not connected).

Another way to describe the effect of yield is that the absence of a yield guaran-
tees isolation and atomicity; yield statements thus partition the execution into a
form of transaction (called eventually consistent transactions in [1]). Effectively,
this implies that everything is always executing inside a transaction. The resulting
atomicity is important for maintaining invariants; in this example, it guarantees
that the total count is always equal to the sum of all the individual counts, since
all changes made to Grocery and totalCount are always applied atomically.

2.2 Revision Diagrams and Cloud Types

Now that we have sketched some basic language features, it is time to explain the
execution model in more detail. Our semantics are based on concurrent revisions
[2], and rely on the following main concepts:

– Revision diagrams are reminiscent of source control systems, and show the
order in which revisions are forked and joined. Conceptually, each revision
keeps a log of all the updates that were performed in it. When a revision is
joined into another revision, it replays all logged updates into that revision.

– Cloud types are abstract data types that offer a precisely defined collection of
update and query operations. Moreover, cloud types can provide optimized
fork and join implementations and space-bounded representations of logs.

For example, consider a cloud variable x of type CInt and the revision diagram
examples in Fig 2. Note that join is not symmetric; join orders updates of the
joined revision after the updates of the joining revision, and update operations
are not always commutative (for example, two add operations do commute, but
set operations do not commute).

2.3 Execution Model and Eventual Consistency

We can now employ revision diagrams to build an eventually consistent dis-
tributed system. The idea is to keep the main revision on the server, and to keep
some revision always available on each device, whether connected or not. We can

x.get() → 5

x.set(5) x.set(1)

x.get() → 6

x.add(5) x.set(1)

x.get() → 1

x.set(1) x.add(5)

Fig. 2. Conflict resolution for CInt. Updates of the revision are replayed at the join
point.

Cloud Types for Eventual Consistency 289

send revisions from the server to clients, and vice versa, and perform forks and
joins on either one.

Program execution is nondeterministic if multiple devices are involved.2 Both
of the following revision diagrams represent possible executions of the grocery
list example. Because of timing differences, the Display() on device 2 may either
see the first update by device 1 (left) or not see it (right).

ToBuy(egg,2)

yield()

ToBuy(oil,1)

yield()

Display()
 8 egg
 1 oil
 9 total

ToBuy(egg,6)

yield()

Bought(egg, 6)

yield()

Device 2 Device 1
Server

ToBuy(egg,2)

yield()

ToBuy(oil,1)

yield()

Display()
 2 egg
 1 oil
 3 total

ToBuy(egg,6)

yield()

Bought(egg, 6)

yield()

Device 2 Device 1
Server

A

A

A

A

B

B

C

B

Forking and joining of revisions on the server is straightforward. The imple-
mentation of yield on the device is a bit more clever, since it is guaranteed to
always execute quickly and never block (regardless of message speed or lost mes-
sages). We achieve this by distinguishing 3 cases (labeled A,B,C in the executions
above): (A) If we are not currently expecting a server response, we send the cur-
rent revision to the server, after forking a new revision for continued local use.
(B) If a revision from the server has arrived, we merge the current local revision
into it. (C) If we are expecting a revision from the server but it is not present
yet, we do nothing.

As long as clients repeatedly call yield, and as long as messages are eventually
delivered (using retransmission if necessary), eventual consistency is achieved.
We present formal operational semantics for yield in Section 4.

Since revision diagrams are quite general, a wide variety of implementation
choices beyond the one sketched above can be employed (such as servers orga-
nized as trees, or clients bundled with servers connected peer-to-peer).We discuss
one specific multi-server implementation model (a server pool) in Section 4.

2.4 Entities

Our model is versatile enough to store complex relational data. In Fig. 3, we
consider a mobile application that maintains a database of customers and orders
(as may be used by a small business in an emerging market).

2 Determinism makes no sense for eventually consistent systems, since such systems
are expected to adapt opportunistically to unpredictable message latency and loss.

290 S. Burckhardt et al.

entity Customer
{

name : CString
}
array Product[id : string]
{

name : CString
price : CInt

}
entity Order(customer : Customer)
{

time : CTime
totalprice : CInt

}
array CartItem [

customer : Customer,
product : Product]

{
quantity : CInt ;

}
array OrderItem [

order : Order,
product : Product]

{
quantity : CInt
price : CInt

}
function AddToCart(c: Customer,

p: Product, q: int)
{

CartItem[c,p].quantity.add(q) ;
}
function DeleteCustomer(c: Customer)
{ delete c ; }

function SubmitOrder(customer : Customer)
{

// create fresh order
var order = new Order(customer) ;
order.time.set(now()) ;
// move items from cart
foreach cartitem in entries CartItem.quantity

where cartitem.customer == customer
{

var oitem = OrderItem[order, cartitem.product] ;
oitem.quantity = cartitem.quantity ;
oitem.price = cartitem.quantity

∗ cartitem.product.price ;
cartitem.quantity.add(−oitem.quantity) ;
order.totalprice.add(oitem.price) ;

}
}

function ShowOrders(customer : Customer)
{

foreach order in all Order
where order.Customer == customer
orderby order.time

{
Print(”Order of ” + order.time) ;
foreach(i in all OrderItem)

where i.order == order
{

Print(i.quantity + ” ” + i.product.name +
” for ” + i.price) ;

}
}

}

Fig. 3. Pseudocode for the customer database example

Since arrays do not support dynamic creation or deletion of entries, we intro-
duce an alternative form of data structures, called entities.3 We model customers
and orders as entities rather than array entries, which has two advantages: (1)
we can create them without first determining an index by which to identify them
uniquely, and (2) we can delete them explicitly, which removes them (as well as
all associated data) from the database.

3 Note that both our arrays and our entities are special cases of the general notion
of entities as used in Chen’s entity-relationalship model [3]. The distinction is that
our array entries have visible primary keys (the indexes), and can not be created or
deleted, while our entities have hidden, automatically managed primary keys, and
are explicitly created and deleted by the user.

Cloud Types for Eventual Consistency 291

Product is an array of products, indexed by a unique id, and CartItem is an array
of cart items, indexed by customers and products, storing the quantity. The entity
Order takes a customer as a construction argument (construction arguments are
like immutable fields, but also play an additional role explained below), and the
array OrderItem stores the quantity of each product in each order.

The function AddToCart adds items to a customer’s cart, just as we added items
to the grocery list in the previous example. The function SubmitOrder creates a new
order entity for the customer, then iterates through the cart items of this customer,
and adds them to the order, totaling the prices. Note that since there is no yield in
this function, we need not worry about the order entity becoming visible to other
devices before all of its information is computed. The function ShowOrders prints all
orders bya customer, sortedbydate. It uses thequery all Order where order.Customer

== order which returns all order entities belonging to this customer.
The function DeleteCustomer is simple, but has some interesting effects. Not

suprisingly, it deletes the customer entity. But beyond that, it also clears all
entries in all arrays that have the deleted customer as an index, and it even
deletes all orders that have the deleted customer as a construction argument.4

2.5 Stronger Consistency

Eventual consistency is not always sufficient. Some problems, such as reserving
a seat on an airplane, or withdrawing money from a bank account, involve a
limited resource and require true arbitration. In such cases, we must establish
a server connection and wait for a response. In this section, we show how to
reintroduce strong synchronization.

Consider an application making seat reservations, which may attempt some-
thing like the following:

array Seat [
row : int,
letter : string]

{
assignedTo : CString ;

}

function NaiveReserve(seat: Seat, customer : string)
{

if (seat.assignedTo.get() == ””)
seat.assignedTo.set(customer) ;

else
print(”reservation failed”) ;

}
Unfortunately, this does not work as desired: a seat may appear empty in the local
revision, but already be filled on the server. In this case, the NaiveReserve function
would appear to succeed, but in fact may overwrite another reservation once the
update reaches the server. We fix this problem by introducing a primitive opera-
tion setIfEmpty for the cloud type CString. This operation sets the string only if it
is currently empty, and this condition is reevaluated when the update operation
is applied on the server. Thus, existing reservations are never overwritten.

4 Entities whose existence depends on other entities are sometimes called ‘weak enti-
ties’ in the literature. In our system, those ’weak entities’ correspond to (1) entities
that have other entities appearing in their construction arguments, and (2) array
entries that have entities appearing as an index.

292 S. Burckhardt et al.

However, yield is still not sufficient to force mutual exclusion, since we can
not tell when the update has reached the server. Thus we support an additional
synchronization primitive called flush. Upon flush, execution blocks until (1) all
local updates have been applied to the main revision, and (2) the result has
become visible to the local revision. Now we can implement the body of the
reservation function as follows:

seat.assignedTo.setIfEmpty(customer) ;
flush ;
if (seat.assignedTo.get() �= customer) print(”reservation failed”) ;

Since flush could block indefinitely if the device is not connected, our implemen-
tation supports the specification of a timeout.

This example is interesting since it shows that our model is at least as ex-
pressive as shared-memory programming with locks (locks can be implemented
analogously). However, it does not represent the type of application for which our
model is most suited. On the contrary, for applications that frequently require
strong synchronization, the benefits of our model are marginal, and traditional
OLTP (online transaction processing) is likely more appropriate.

3 Syntax, Types, and Local Semantics

Figure 4 describes the syntax of types, schemas, and expressions. We distinguish
three kinds of types. The index type ι is the type of values that can be used as
indices into an array or entity, and consists of simple read-only values like Int,
String, and array and entity identifiers (A and E). The cloud type ω is used for
mutable cloud values that are persisted. We prefix such types with the letter C to
distinguish them from regular value types. Examples of cloud types are CInt and
CString. In Section 5 we give precise semantics to these cloud values using fork-
join automata. The type CSet〈ι〉 is the type of observed-remove sets as described
by Shapiro [13]. Finally, we have expression types τ which includes index types
ι, functions, products, and regular sets. We denote the trivial product (n = 0)
by Unit.

A schema S consists of a sequence of declarations. A declaration is either an
array A, an entity E, or a property p. Properties map an index ι to a mutable
cloud type ω. In our examples, we used the following syntactic sugar to define
properties as part of an array or entity declaration:

entity E(k1 : ι1, ..., km : ιm) { p1 : ω1, ..., pn : ωn}
≡ entity E(k1 : ι1, ..., km : ιm); property p1 : E → ω1; ...; property pn : E → ωn

array A[k1 : ι1, ..., km : ιm] { p1 : ω1, ..., pn : ωn}
≡ array A[k1 : ι1, ..., km : ιm]; property p1 : A→ ω1; ...; property pn : A→ ωn

Also, global persisted values (as used for example in the grocery list in Figure 1)
are syntactic sugar for cloud arrays without any keys and a single value property:

global x : ω ≡ array x[] { value : ω }

Cloud Types for Eventual Consistency 293

entity names Ent � E ::= ...
array names Arr � A ::= ...

index types ι ::= Int | String | E | A
cloud types ω ::= CInt | CString | CSet〈ι〉 | ...
expression types τ ::= ι | Set〈τ 〉 | τ → τ | (τ1, ..., τn)

key names k ::= ...
property names p ::= ...

declarations decl ::= entity E(k1 : ι1, ..., kn : ιn)
| array A[k1 : ι1, ..., kn : ιn]
| property p : ι→ ω

schema S ::= decl1; ...; decln

unique id’s Uid � uid ::= ... (abstract)
constants Con � c ::= ... (integer and string literals)
updates opu ::= ... (predefined)
queries opq ::= ... (predefined)
operations op ::= opu | opq

values Val � v ::= A[v1, ..., vn] | E[uid, v1, ..., vn]
| c | x | (v1, ..., vn) | λ(x : τ). e

expressions e ::= new E(e1, ..., en)
| delete e
| A[e1, ..., en]
| e.p.op(e1, .., en)
| e.k
| all E
| entries p
| yield | flush
| v | e1 e2 | e1; e2 | (e1, ..., en)

program program ::= S ; e

Fig. 4. Syntax of types, schemas, and expressions. A subscript n without an explicit
bound is assumed n � 0.

where all operations on x are replaced with operations on the array value:

x.op(e1, ..., en) ≡ x[].value.op(e1, ..., en)

The syntax of expressions is separated into values v and expressions e to facilitate
the description of the evaluation semantics. Values can be regular values such

294 S. Burckhardt et al.

as literals c, variables x, products of values, or lambda expressions. Moreover,
we have array and entity values which encode a particular entry of an array,
as A[v1, ..., vn], or a particular entity as E[uid, v1, ..., vn]. The entity value is
not an expression that users can write down themselves and only occurs in the
evaluation semantics as the result of a new expression (which also supplies the
unique id uid for the entity value).

Expressions consist of both cloud specific expressions, and of regular expres-
sions like applications e1 e2, sequence e1; e2, products and lambda expressions.
The keywords new and delete respectively create and delete entities. The ex-
pression A[e1, ..., en] is used to index into an array. The operation expression
e.p.op(e1, ..., en) invokes an update or query operation op on a property p in-
dexed by e. The creation keys of an entity, or the indices of an array expression
can be queried using the e.k expression.

The all and entries keywords return all elements of an entity or all non-initial
entries of a property respectively. These primitive expressions allow us to con-
struct general queries. Finally, the yield and flush operations are used for syn-
chronization with the cloud.

Figure 5 defines a type system for our expression language. A derivation S, Γ �
e : τ states that for a certain (well-formed) schema S and type environment Γ ,
the expression e is well-typed with a type τ . The initial Γ is written as Γ0 and
contains the type of primitive functions (i.e. add : (Int, Int)→ Int), together with
the types of primitive cloud type operations (i.e. CInt.add : (Int)→ Unit).

Most rules are standard and self-explanatory. There are some important de-
tails though. In particular, in the type rule for operation expressions, we can see
that the type ω of the mutable cloud value never ‘escapes’: values with a cloud
type ω are not first-class and expressions always have a type τ (which does not
include ω). This is by construction since an operation expression e.p.op(e1, ..., en)
always occurs as a bundle and the cloud value never occurs in isolation.

3.1 Client Execution

Figure 6 and 7 give the evaluation semantics for local client execution. Figure 6
defines the evaluation order within an expression. An execution context E is an
expression “with a hole �”, and we use the notation E�e� to denote the expres-
sion obtained from E by replacing the hole with e. Essentially, the execution
context acts as an abstraction of a program counter and specifies where the next
evaluation step can take place.

Figure 7 defines the operational semantics in the form of transition rules
e;σ → e′;σ′ where an expression e with a local state σ is evaluated to a new
expression e′ and updated local state σ′. The client state σ is the state of the
schema fork-join automaton ΣS described in Section 5.

The first three rules, new, delete, and operation expressions just update the lo-
cal state by invoking the corresponding updates on the fork-join automaton. The
following three query rules just return the result of executing the corresponding
query on the fork-join automaton. The fresh uid for the create call is produced
locally. We assume each client can generate such globally unique ids.

Cloud Types for Eventual Consistency 295

entity E(k1 : ι1, ..., kn : ιn) ∈ S S , Γ � ei : ιi

S , Γ � new E(e1, ..., en) : E

S , Γ � e : E

S , Γ � delete e : Unit

array A[k1 : ι1, ..., kn : ιn] ∈ S S , Γ � ei : ιi

S , Γ � A[e1, ..., en] : A

entity E(...) ∈ S
S , Γ � E[uid, v1, ..., vn] : E

S , Γ � e : ι property p : ι→ ω ∈ S ω.op : (τ1, ..., τn)→ τ ∈ Γ S , Γ � ei : τi

S , Γ � e.p.op(e1, ..., en) : τ

entity E(...) ∈ S
S , Γ � all E : Set〈E〉

S , Γ � e : E entity E(..., k : ι, ...) ∈ S
S , Γ � e.k : ι

property p : ι→ ω ∈ S
S , Γ � entries p : Set〈ι〉

S , Γ � e : A array A[..., k : ι, ...] ∈ S
S , Γ � e.k : ι

x : τ ∈ Γ
S , Γ � x : τ

S , (Γ, x : τ1) � e : τ2

S , Γ � λ(x : τ1). e : τ1 → τ2

S , Γ � e1 : τ2 → τ S , Γ � e2 : τ2
S , Γ � e1 e2 : τ

S , Γ � ei : τi

S , Γ � (e1, ..., en) : (τ1, ..., τn)

S , Γ � e1 : τ1 S , Γ � e2 : τ2
S , Γ � e1; e2 : τ2 S , Γ � yield : Unit S , Γ � flush : Unit

Fig. 5. Types of expressions

E ::= �
| new E(v1, ..., vi, E , ej , ..., en)
| delete E
| A[v1, ..., vi, E , ej , ..., en]
| E .p.op(e1, ..., en)
| v.p.op(v1, ..., vi, E , ej , ..., en)
| E .k
| E e | v E | E ; e
| (v1, ..., vi, E , ej , ..., en)

Fig. 6. Evaluation contexts

The final four rules are standard evaluation rules on the expressions and do
not use the local state at all. Note that we chose to keep the creation keys of
arrays and entities around explicitly in the value representation which makes the
key selection a completely local operation. However, realistic implementations
can use just the uid to represent entities and store the creation values in the
local state (and similarly for arrays).

The operations yield, flush, and barrier cannot be described as local operations
and are handled by the semantic rules defined over the clients and servers as
shown in the next section.

296 S. Burckhardt et al.

E�newE(v1, ..., vn)�; σ → E�E[uid, v1, ..., vn]�;σ.createE(E[uid, v1, ..., vn]) (fresh uid)

E�deleteE[uid, ...]�;σ → E�()�; σ.deleteE(uid)

E�v.p.opu(v1, ..., vn)�; σ → E�()�; σ.updatep(v, opu(v1, ..., vn))

E�v.p.opq(v1, ..., vn)�; σ → E�σ.queryp(v, opq(v1, ..., vn))�; σ

E�all E�;σ → E�σ.allE�;σ

E�entries p�;σ → E�σ.entriesp�; σ

E�A[v1, ..., vn].ki�; σ → E�vi�; σ

E�E[uid, v1, ..., vn].ki�; σ → E�vi�; σ

E�(λ(x : τ).e) v]�; σ → E�e[v/x]�; σ

E�v; e�;σ → E�e�; σ

Fig. 7. Expression semantics

4 System Model and Distribution

In the previous section, we have established the local execution semantics of ex-
pressions. In this section, we present an operational whole-system model includ-
ing multiple clients and an elastic server pool. We follow the general blueprint
for modeling eventually consistent systems presented in [1], where we prove that
to achieve eventual consistency, it is sufficient to enforce that all executions pro-
duce proper revision diagrams, and that we use proper fork and join functions
to manage the state of replicas.

Fig. 8(a) shows a brief example of an execution with three servers in the pool,
and two clients. Clients that perform yield or flush initiate transitions of two kinds,
push and pull. These transitions communicate with an eligible server in the pool.
Not all servers are eligible, as we will explain shortly. Servers behave similarly
to clients, initiating push and pull transitions with other eligible servers.

When synchronizing, clients and servers need to ensure that proper revision
diagrams result. In particular, they must observe the join rule [1]: joiners must
be downstream from the fork that forked the joinee (see Fig. 8b for examples).
To ensure this condition, we assign round numbers to servers and clients, and
use round maps (a form of vector clocks) to determine eligibility (by determining
which forks are in the visible history). We show round numbers in Fig. 8(a). All
clients and servers start with round 0, except the main revision that starts (and
forever remains) in round 1.

We now proceed to give formal definitions of the ideas outlined above. We
begin by introducing some notation to prepare for the operational rules in Fig. 9
and Fig. 10. We define a system configuration C to be a partial function from
identifiers (representing servers or clients) to a server or client state, respectively.
For a client identifier c, the client state C(c) is a tuple (r, e, σ) consisting of a
round number r, an expression e, and the revision σ. For a server identifier s,
the server state C(s) is a tuple (r, R, σ) consisting of a round number r, a round
map R and a revision state σ.

Cloud Types for Eventual Consistency 297

[YieldPull]

[YieldPush]

s1

[FlushPush]

s3 c2

[FlushPull]

s2 c1

[SyncPush]

[SyncPull]

[SyncPush]

[SyncPush]

[SyncPull]

[SyncPull]

[YieldPull]

[YieldPush]

NO

OK

Join rule

1 0 0

1

0 0

1

1

1

2

2 2

3

4

3

4

Fig. 8. (a) (left) An illustration of an execution with 2 clients and 3 servers. (b)
(right) An illustration of the join rule.

The revision state σ represents the state of the current replica. We defer the
description of the implementation of σ until Section 5, where we discuss cloud
types and define fork-join automata. For now, we simply postulate that σ is in
some set Σ, supports all the local data operations, has an initial state σ0, and
supports fork and join functions fork : Σ → Σ × Σ and join : Σ × Σ → Σ,
respectively. Moreover, we assume that fork (σ0) = (σ0, σ0) (forking from the
initial state yields the initial state).

The round numbers r are used to track which clients (and servers) can syn-
chronize with particular servers. After each fork, the round number of a client
or server is incremented. The round map R on a server s is a total function that
maps each identifier i of a client or server to a round number R(i) which is the
number of the last round whose fork is in the visible history of s. The initial
round map R0 maps all clients and servers to round 0 (since round 0 is always
forked from the initial state of the main revision, it is retroactively in the visible
history). The rules are set up to enforce that a client c (or server s) with round
number r can only communicate with a server where R(c) = r.

Fig. 9 presents transition rules of the form C ⇒ C′ where cloud state C updates
to C′. We use the pattern match notation C(a1 �→ b1, ..., an �→ bn) to match on
a partial function C satisfying C(ai) = bi ∀i.1 � i � n. We write C[a �→ b] to
denote a partial function that is equivalent to C except that C(a) = b.

For any cloud state there are potentially many valid transitions which capture
the inherent concurrency and non-determinism of cloud execution. For example,
clients can be spawned at any time using the rule [Spawn],and clients can arbi-
trarily interleave local evaluation.

The rules [Yield-Nop], [Yield-Push] and [Yield-Pull] describe how clients synchro-
nize with servers. The [Yield-Nop] states that a yield instruction can be ignored,

298 S. Burckhardt et al.

[Eval]

e; σ → e′; σ′

C(c �→ (r, e, σ)) ⇒ C[c �→ (r, e′, σ′)]

[Spawn]

c �∈ dom(C)
C ⇒ C[c �→ (0, e, σ0)]

[Yield-Push]

R(c) = r R′ = R[c �→ r + 1] fork(σc) = (σ′
c, σ

′′
c) join(σs, σ′

c) = σ′
s

C(s �→ (rs, R, σs), c �→ (r, E�yield�, σc)) ⇒ C[s �→ (rs, R′, σ′
s), c �→ (r + 1, E�()�, σ′′

c)]

[Yield-Pull]

R(c) = r R′ = R[c �→ r + 1] fork (σs) = (σ′
s, σ

′′
s) join(σ′′

s , σc) = σ′
c

C(s �→ (rs, R, σs), c �→ (r, E�yield�, σc)) ⇒ C[s �→ (rs, R′, σ′
s), c �→ (r + 1, E�()�, σ′

c)]

[Yield-Nop] C(c �→ (r, E�yield�, σ)) ⇒ C[c �→ (r, E�()�, σ)]

Fig. 9. Cloud evaluation rules for clients

[Create]

s �∈ dom(C)
C ⇒ C[s �→ (0, R0, σ0)]

[Sync-Push] Rs(t) = rt R′
s = max(Rs, Rt)

R′′
s = R′

s[t �→ rt + 1] fork(σt) = (σ′
t, σ

′′
t) join(σs, σ

′
t) = σ′

s

C(s �→ (rs, Rs, σs), t �→ (rt, Rt, σt)) ⇒ C[s �→ (rs, R
′′
s , σ

′
s), t �→ (rt + 1, Rt, σ

′′
t)]

[Sync-Pull] Rs(t) = rt R′
t = max(Rs, Rt)

R′
s = Rs[t �→ rt + 1] fork(σs) = (σ′

s, σ
′′
s) join(σ′′

s , σt) = σ′
t

C(s �→ (rs, Rs, σs), t �→ (rt, Rt, σt)) ⇒ C[s �→ (rs, R
′
s, σ

′
s), t �→ (rt + 1, R′

t, σ
′
t)]

[Retire]

Rs(t) = rt R′
s = max(Rs, Rt) join(σs, σt) = σ′

s

C(s �→ (rs, Rs, σs), t �→ (rt, Rt, σt)) ⇒ C[s �→ (rs, R
′
s, σ

′
s), t �→ ⊥]

Fig. 10. Cloud evaluation rules for servers

allowing disconnected clients to keep executing. The rule [Yield-Push] sends a re-
vision to an eligible server, while the rule [Yield-Pull] receives a revision from an
eligible server. In both cases, the round number of the client is incremented and
the round map of the server is updated. The new states of the client and server
are determined by forking/joining revisions appropriately (see Fig. 8).

Figure 10 shows the rules for server synchronization. The rules [Create] and
[Retire] create and retire servers on demand. The [Sync] rule is the synchroniza-
tion rule for servers and is like a simplified (more synchronous) version of [Yield].
The premise ensures that the round number matches, the round number is in-
cremented, and the state is first joined and then forked again. What is different
is that the round maps of both servers are also joined using R = max(Rs, Rt)
(taking the pointwise max of the vector clocks).

Cloud Types for Eventual Consistency 299

[Flush-Push]

R(c) = r R′ = R[c �→ r + 1] join(σs, σc) = σ′
s

C(s �→ (rs, R, σs), c �→ (r, E�flush�, σc)) ⇒ C[s �→ (rs, R′, σ′
s), c �→ (r + 1, E�block�, σc)]

[Flush-Pull]

R(cflush) = r fork (σs) = (σ′
s, σ

′
c)

C(s �→ (rs, R, σs), c �→ (r, E�block�, σc)) ⇒ C[s �→ (rs, R, σ′
s), c �→ (r, E�()�, σ′

c)]

[Commit]

R′ = R[∀c. cflush �→ R(c))

C(smain �→ (0, R, σ)) ⇒ C[smain �→ (0, R′, σ)]

Fig. 11. Semantics of the flush operation

4.1 Flush

To describe the flush operation, we distinguish an initial main server smain. The
flush operation must not only guarantee that all updates of a client are joined in
the main server smain, but also that the client sees all the state changes in the
main server that were applied before the client state was joined.

To track which client updates have been seen by the main server, we add
an extra round number cflush in the round map. As shown in Figure 11, the
main server can always execute the rule [Commit] to set the cflush entries to
the corresponding round numbers of the clients that have synchronized with
the main server. Through rule [Sync] (Fig 10) any servers that synchronize with
the main server will propagate these cflush entries automatically.

The rule [Flush-Push] is applied whenever the client does a flush operation. The
rule is similar to [Yield-Push] but blocks the client. Also, only the state of the
client is joined with the server state, but the client state itself does not fork a
new revision. The round map of the server s is updated though with the new
round number c �→ r+1. Now, servers can execute [Sync] until the state changes
are propagated all the way up to smain. At that point, the main server can make a
[Commit] transition, making cflush �→ r+1. After again doing more [Sync] transitions,
the new cflush entry makes it back to the original server. At this point, [Flush-Pull]
can apply where the server state is forked now into a new server state σ′

s and
client state σ′

c, and where the client is unblocked again.

4.2 Message Protocols and Server State

The rules presented are still somewhat more abstract than needed for an ac-
tual implementation, to keep the presentation from becoming too technical. In
practice, all communication is asynchronous (based on message delivery) and
unreliable. Thus, our actual implementation breaks synchronous transition rules
(like Yield-Push, Yield-Pull, Sync, Flush-Pull, Flush-Push) into message proto-
cols, uses state machines that are locally persisted, and retransmits messages if
they are lost.

300 S. Burckhardt et al.

Another very important optimization concerns the size of messages. Sending
the full replica state in messages is of course impractical. Thus we use compres-
sion by sending diffs of the state.

5 Cloud Types

We now examine our cloud type implementations in more detail. To this end
we define the concept of a fork-join automaton. Fork-join automata are concrete
implementations of cloud types, consisting of implementations for the abstract
update and query operations, and concrete implementations of fork and join.

Definition 1. A fork-join automaton (FJA) is a tuple (Q,U,Σ, σ0, f , j) where

– Q is an abstract set of query operations
– U is an abstract set of update operations
– Σ is a set of states
– σ0 ∈ Σ is the initial state
– Queries and updates have an interpretation as functions, specifically (1) each

query operation q ∈ Q defines a function q# : Σ → Val, and (2) each update
operation u ∈ U defines a function u# : Σ → Σ.

– f : Σ → Σ ×Σ is a function for splitting the current state on a fork.
– j : Σ ×Σ → Σ is a function for merging states on a join.

Fork-join automata must satisfy a correctness conditions: they must correctly
track and apply updates when revisions are forked and joined (as we illustrated
earlier in Section 2.2). We discuss this condition only informally here, since its
definition depends on the definition of revision diagrams, which is outside the
scope of this paper. A full exposition is available in [1].

In the remainder of this section, we define a fork-join automaton for the entire
cloud state (i.e. for all cloud data declared by the user). First, we define fork-join
automata for the primitive cloud types CInt and CString. Then we show how to
define the cloud types for entities and arrays. Finally, we show how to provide
the cloud type CSet as syntactic sugar.

5.1 A Fork-Join Automaton for CInt

For cloud integers, we support operations get and set to read and write the
current value, as well as add (Fig. 12). In the state, we store three values: a
boolean indicating whether the current revision performed any set operations, a
base value, and an offset. On fork, the boolean is reset, the base value is set to
the current value, and the offset is set to zero. Add operations change only the
offset, while set operations set the boolean to true, set the base value, and reset
the offset. On join, we assume the value of the joined revision (if it performed
a set) or add its offset (otherwise). This produces the desired semantics (see
Section 2.2 for examples).

Cloud Types for Eventual Consistency 301

QCInt : {get}
UCInt : {set(n) | n ∈ int} ∪ {add(n) | n ∈ int}
ΣCInt : bool× int× int

σCInt0 : (false, 0, 0)

add(n)# (r, b, d) = (r, b, d+ n)

set(n)# (r, b, d) = (true, n, 0)

get# (r, b, d) = b+ d

f CInt (r, b, d) = (r, b, d), (false, b+ d, 0)

jCInt (r1, b1, d1)(r2, b2, d2) =

{
(true, b2, d2) if r2 = true
(r1, b1, d1 + d2) otherwise

Fig. 12. Fork-join automaton for CInt

5.2 A Fork-Join Automaton for CString

For cloud strings, we support operations get and set to read and write the current
value, and a conditonal operation setIfEmpty (Fig. 13). In the state, we record the
current value and whether it has not been written (⊥), has been written (wr), or
has been conditionally written (cond). A conditional write succeeds only if the
current value is empty, and this test is repeated on merge.

5.3 A Fork-Join Automata for the Complete State

For a fixed schema S, we can now define the entire state as a fork-join automaton.
First, we define the query operations QS and the update operations US as in
the following table.

QCString : {get}
UCString : {set(s) | s ∈ string} ∪ {setIfEmpty(s) | s ∈ string \ {””}}
ΣCString : {⊥,wr, cond(string)} × string

σ
CString
0 : (⊥, ””)
set(s)# (r, t) = (wr, s)

setIfEmpty(s)# (r, t) =

⎧⎪⎪⎨
⎪⎪⎩

(wr, s) if r = wr ∧ t =””
(cond(s), s) if r = ⊥ ∧ t =””
(cond(s), t) if r = ⊥ ∧ t �=””
(r, t) otherwise

get# (r, s) = s

fCString (r, s) = (r, s), (⊥, s)

jCString (r1, s1)(r2, s2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(wr, s2) if r2 = wr
(wr, s) if r1 = wr ∧ s1 = ”” ∧ r2 = cond(s)
(cond(s), s) if r1 = ⊥ ∧ s1 = ”” ∧ r2 = cond(s)
(cond(s), s1) if r1 = ⊥ ∧ s1 �= ”” ∧ r2 = cond(s)
(r1, s1) otherwise

Fig. 13. Fork-join automaton for CString

302 S. Burckhardt et al.

operation argument types return type entity/property definition
allE Set〈E〉 entity E(k1 : ι1, ..., kn : ιn)
createE(e) E entity E(k1 : ι1, ..., kn : ιn)
deleteE(e) E entity E(k1 : ι1, ..., kn : ιn)
entriesp Set〈ι〉 property p : ι→ ω
queryp(i, q) ι, Qω Val property p : ι→ ω
updatep(i, u) ι, U

ω property p : ι→ ω

Next, we define the state space to consist of separate components for each
entity type and each property

ΣS =
∏
p∈S

Σp ×
∏
E∈S

ΣE .

For each declaration property p : ι → ω we store a total function from keys to
values, where keys are of the corresponding index type, and values belong to the
state space of the corresponding fork-join automaton:

Σp = ι→ Σω

For each declaration entity E(k1 : ι1, ..., kn : ιn) we store a total function from
entities to a state that indicates whether this entity is not yet created (⊥), exists
as a normal entity (ok), or has been deleted (�):

ΣE = E → {⊥, ok,�}
For a state σ ∈ ΣS , we let σp and σE be the projection on the respective
components.

Naturally, in the initial state σS
0 , we map all property indexes to Σω

0 (the
initial state of the corresponding fork-join automaton) and all entities to ⊥. We
show the implementation of queries, updates, fork, and join in Fig. 14, using
pseudocode, and explain them in the following.

– Create adds a fresh element to an entity by mapping it to ok. We assume
each client can create fresh elements (based on a local id and counter).

– Delete maps the deleted element to � to mark it as deleted. We cannot simply
remove it because at joins, it would be impossible to determine if one side
is fresh, or the other deleted. Extra book-keeping can be used to eventually
collect these tombstones.
Deletion also causes any dependent entities to be deleted. This is achieved
by Propagate. Note that entity dependencies cannot be cyclic, since an entity
can only be used in the creation of another when it is already defined.

– allE returns all non-deleted values of a given entity.
– A query q on an entry i of property p is answered by delegating it to the

FJA of p at i, provided that i is not deleted.
– Similarly, an update u on an entry i of property p is delegated to the FJA

of p at i, provided i is not deleted.
– entriesp returns all the entries of a property p that map to non-default FJAs

and are not deleted.

Cloud Types for Eventual Consistency 303

– Forking the overall FJA turns into a point-wise forking of all the FJA’s of
each property. The entity maps are unaffected by forking.

– Joining is similarly performed point-wise on all properties. For entities, join-
ing requires computing the maximum in the order ⊥ < ok < �. This achieves
deleting the entry, provided any one side has it deleted, or keeping it allo-
cated, if any one side has it allocated. At joins, we also need to repropagate
deletions to all dependent elements, as new deletions can be merged into the
revision.

It is remarkable that the complete state FJA operations are commutative by
themselves. The only non-commutative operations are in the FJAs implementing
cloud types. This property makes using arrays and entities very natural and
does not introduce unexpected conflict resolutions. Furthermore, our design was
careful to enable a completely modular implementation of the complete state
FJA with respect to the cloud type implementations. In part, this structure
makes a single parameterized, reusable implementation of cloud storage and
synchronization possible. Any schema and any extensions of cloud types can be
supported without further changes.

5.4 Implementation of CSet

Rather than defining sets directly, we encode them relationally, building on the
abstraction mechanism provided by entities. Given a schema definition for a
property of type CSet〈ι〉, we rewrite it to an entity definition whose entities
represent “instances” of additions of elements:

property p: ι′ → CSet〈ι〉 ≡ entity Ep[index : ι′, element : ι]

Then we encode operations as follows:

x.add(i) ≡ { new Ep(x, i) ; }
x.contains(i) ≡ { return (all Ep where index == x and element == i).isNotEmpty() ; }
x.remove(i) ≡ { foreach (e in all Ep where index == x and element == i) e.delete() ; }
Our indirect encoding has two advantages (illustrated in the picture below):

– Removing an element from a set only removes instances that were visibly
added before the remove. This is known as observed-remove behavior, as
proposed in [13] as a reasonable semantics for eventually consistent sets (see
examples on the left and in the middle below).

– If the user deletes an entity, that entity disappears automatically from all
sets that contain it (see example on the right below).

x.contains(e)
 →true

x.add(e)
x.remove(e)

x.add(e) delete e x.add(e)

x.contains(e)
 →false

x.add(e)
x.remove(e)

x.add(e)

x.contains(e)
 →false

304 S. Burckhardt et al.

// operations on entities

createE(e) {
σE(e) := σE(e)[e �→ ok] ;

}
deleteE(e) {

σE(e) := σE(e)[e �→ �] ;
propagate() ;

}
allE {

return {e ∈ E | σE(e) = ok} ;
}

// auxiliary functions

propagate() {
while exists E, e such that
σE(e) �= � and deleted(e)

do
σE(e) := σE(e)[e �→ �] ;

}
deleted(i) {

match i with
A[i1, . . . , in]:

return (exists j such that deleted(ij)) ;
E[uid, i1, . . . , in]:

return σE(i) = �
or (exists j such that deleted(ij)) ;

else // string or int
return false ;

}
isdefault(σ) {

if σ ∈ ΣCInt

return get#σ = 0 ;

else if σ ∈ ΣCString

return get#σ =”” ;

else if σ ∈ ΣCSet〈ι〉

return elems#σ = ∅ ;
}

// operations on properties

queryp(i, q) {
if (deleted(i))
return ⊥ ;

else
return σp(i).q ;

}
updatep(i, u) {

if (not deleted(i))
σp(i).u ;

}
entriesp {

return all i ∈ ι
where (not isdefault(σp(i))
and (not deleted(i))

}

// fork and join functions

fork() {
var σ′ = σ ; // copy the state
foreach property p : ι→ ω
foreach i ∈ ι
(σp(i), σ

′
p(i)) := f ω(σp(i)) ;

return σ′ ;
}

join(σ′) {
foreach property p : ι→ ω
foreach i ∈ ι
σp(i) := jω(σp(i), σ

′
p(i)) ;

foreach entity E(k1 : ι1, ..., kn : ιn)
foreach e ∈ E
σE(e) := max(σE(e), σ

′
E(e))) ;

propagate() ;
}

max(s1, s2) uses the order ⊥ < ok < �

Fig. 14. Complete fork-join automaton

6 Related Work

At the heart of our work is the idea of using revision diagrams and fork-join
automata to achieve eventual consistency, which was introduced in [1]. In this
paper we extend and concretize this idea, by (1) devising a composable way to

Cloud Types for Eventual Consistency 305

construct schema from basic cloud types, which eliminates the need for user-
defined conflict resolution code, (2) giving examples of concrete programs and
cloud types, (3) devising primitives that are sufficient to recover stronger syn-
chronization. Moreover, we provide a formal syntax and semantics that connects
a small, but sufficiently expressive programming language with a detailed oper-
ational system model.

Eventual consistency is motivated by the impossibility of achieving strong
consistency, availability, and partition tolerance at the same time, as stated by
the CAP theorem [5]. Eventual consistency across the literature uses a variety of
techniques to propagate updates (e.g. general causally-ordered broadcast [14,15],
or pairwise anti-entropy [10]). For a general high-level comparison of our work
with various notions of eventual consistency appearing in the literature, we refer
to the discussion in [1].

Most closely related to ourwork are conflict-free replicated data types (CRDTs)
[14] and Bayou’s weakly consistent replication [16].

– CRDTs are very similar to our cloud types, insofar that they separate the
use of eventually consistent data types from their implementation. In fact,
CRDTs can serve as cloud types (as exemplified by the observed-remove set
proposed in [13]). However, we are not aware of prior work on how to compose
individual CRDTs into a larger schema. Furthermore, CRDTs only support
commutative operations, whereas our approach supports non-commutative
operations while still achieving eventual consistency. Furthermore, we sup-
port stronger synchronization primitives like flush when necessary, in the
same framework.

– In Bayou [16], and in the original Concurrent Revisions work[2], conflict
resolution is achieved by explicit merge functions written by the user. In
contrast, this paper uses conflict resolution that is automatically inferred
from the structure of the type declarations.

Research on persistent data types [8] is related to our definition of cloud types
insofar it concerns itself with efficient implementations of data types that permit
retrieval and mutations of past versions. However, it does not concern itself with
apects related to transactions or distribution.

Prior work on operational transformations [15] can be understood as a special-
ized form of eventual consistency where updates are applied to different replicas
in different orders, and modified in such a way as to guarantee convergence.
This specialized formulation can provide highly efficient broadcast-based real-
time collaboration, but poses significant implementation challenges [7].

There is of course a large body of work on transactions. Most academic work
considers strong consistency (serializable transactions) only, and is thus not di-
rectly applicable to eventual consistency. Nevertheless there are some similarities,
such as:

– [6] provides insight on the limitations of serializable transactions, and pro-
poses similar workarounds as used by eventual consistency (timestamps and
commutative updates). However, transactions remain tentative during dis-
connection.

306 S. Burckhardt et al.

– Snapshot isolation [4] relaxes the consistency model, but transactions can
still fail, and can not commit in the presence of network partitions.

– Automatic Mutual Exclusion [9], like our work, uses yield statements to sep-
arate transactions.

7 Conclusion

Providing good programming abstractions for cloud storage, synchronization,
and disconnected operation appears crucial to accelerate the production of use-
ful and novel applications on today’s and tomorrow’s mobile devices. In this
paper, we provided a sound foundation upon which to build such programming
abstractions through the use of automatically synchronized cloud data types
that can be composed into a larger data schema using indexed arrays and enti-
ties. The design we presented allows implementing all the difficult parts of such
a system (the cloud service, the local persistence, the caching, the conflict res-
olution, and the synchronization) once and for all, while guaranteeing eventual
consistency. An application programmer declares only the data schemas and fo-
cuses on writing code performing operations on the data, as well as identifying
points in his program where synchronization is desired.

References

1. Burckhardt, S., Leijen, D., Fähndrich, M., Sagiv, M.: Eventually Consistent Trans-
actions. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol. 7211,
pp. 67–86. Springer, Heidelberg (2012)

2. Burckhardt, S., Leijen, D.: Semantics of Concurrent Revisions. In: Barthe, G. (ed.)
ESOP 2011. LNCS, vol. 6602, pp. 116–135. Springer, Heidelberg (2011)

3. Chen, P.P.-S.: The entity-relationship model toward a unified view of data. ACM
Trans. Database Syst. 1, 9–36 (1976)

4. Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., Shasha, D.: Making snapshot
isolation serializable. ACM Trans. Database Syst. 30(2), 492–528 (2005)

5. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33, 51–59 (2002)

6. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a
solution. SIGMOD Record 25, 173–182 (1996)

7. Imine, A., Rusinowitch, M., Oster, G., Molli, P.: Formal design and verification
of operational transformation algorithms for copies convergence. Theoretical Com-
puter Science 351, 167–183 (2006)

8. Kaplan, H.: Persistent data structures. In: Handbook on Data Structures and Ap-
plications, pp. 241–246. CRC Press (1995)

9. Martin, A., Birrell, A., Harris, T., Isard, M.: Semantics of transactional mem-
ory and automatic mutual exclusion. In: Principles of Programming Languages
(POPL), pp. 63–74 (2008)

10. Petersen, K., Spreitzer, M., Terry, D., Theimer, M., Demers, A.: Flexible update
propagation for weakly consistent replication. Operating Systems Review 31, 288–
301 (1997)

Cloud Types for Eventual Consistency 307

11. Saito, Y., Shapiro, M.: Optimistic replication. ACM Computing Surveys 37, 42–81
(2005)

12. Shapiro, M., Kemme, B.: Eventual consistency. In: Encyclopedia of Database Sys-
tems, pp. 1071–1072. Springer (2009)

13. Shapiro, M., Preguica, N., Baquero, C., Zawirski, M.: A comprehensive study of
convergent and commutative replicated data types. Technical Report Rapport de
recherche 7506, INRIA (2011)

14. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-Free Replicated Data
Types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011)

15. Sun, C., Ellis, C.: Operational transformation in real-time group editors: issues,
algorithms, and achievements. In: Conference on Computer Supported Cooperative
Work, pp. 59–68 (1998)

16. Terry, D., Theimer, M., Petersen, K., Demers, A., Spreitzer, M., Hauser, C.:
Managing update conflicts in bayou, a weakly connected replicated storage sys-
tem. SIGOPS Oper. Syst. Rev. 29, 172–182 (1995)

17. Tillmann, N., Moskal, M., de Halleux, J., Fähndrich, M.: Touchdevelop: Pro-
gramming cloud-connected mobile devices via touchscreen. In: ONWARD 2011
at SPLASH (also available as Microsoft TechReport MSR-TR-2011-49) (2011)

