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Abstract. Transcript is a system that enhances JavaScript with support for trans-
actions. Hosting Web applications can use transactions to demarcate regions that
contain untrusted guest code. Actions performed within a transaction are logged
and considered speculative until they are examined by the host and committed.
Uncommitted actions simply do not take and cannot affect the host in any way.
Transcript therefore provides hosting Web applications with powerful mecha-
nisms to understand the behavior of untrusted guests, mediate their actions and
also cleanly recover from the effects of security-violating guest code.

This paper describes the design of Transcript and its implementation in Fire-
fox. Our exposition focuses on the novel features introduced by Transcript to
support transactions, including a suspend/resume mechanism for JavaScript and
support for speculative DOM updates. Our evaluation presents case studies show-
ing that Transcript can be used to enforce powerful security policies on untrusted
JavaScript code, and reports its performance on real-world applications and
microbenchmarks.

1 Introduction

It is now common for Web applications (host) to include untrusted, third-party
JavaScript code (guest) of arbitrary provenance in the form of advertisements, libraries
and widgets. Despite advances in language and browser technology, JavaScript still
lacks mechanisms that enable Web application developers to debug and understand the
behavior of third-party guest code. Using existing reflection techniques in JavaScript,
the host cannot attribute changes in the JavaScript heap and the DOM to specific guests.
Further, fine-grained context about a guest’s interaction with the host’s DOM and net-
work is not supported. For example, the host cannot inspect the behavior of guest code
under specific cookie values or decide whether to allow network requests by the guests.

This paper proposes to enhance the JavaScript language with builtin support for
introspection of third-party guest code. The main idea is to extend JavaScript with a
new transaction construct, within which hosts can speculatively execute guest code
containing arbitrary JavaScript constructs. In addition to enforcing security policies on
guests, a transaction would allow hosts to cleanly recover from policy-violating ac-
tions of guest code. When a host detects an offending guest, it simply chooses not to
commit the transaction corresponding to the guest. Such an approach neutralizes any
data and DOM modifications initiated earlier by the guest, without having to undo them
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1 <script type="text/javascript">

2 var editor = new Editor(); initialize(editor);

3 var builtins = [], tocommit = true;

4 for(var prop in Editor.prototype) builtins[prop] = prop;

5 var tx = transaction { Guest code: Lines 6–9

6 Editor.prototype.getKeywords = function(content) {...}
...

7 var elem = document.getElementById("editBox");

8 elem.addEventListener("mouseover", displayAds, false);

...

9 document.write(‘<div style="opacity:0.0; z-index:0; ... size/loc params">

<a href="http://evil.com"> Evil Link </a></div>’);

10 };
11 tocommit = gotoIblock(tx); Implements the host’s security policies

12 if (tocommit) tx.commit();

13 ... /* rest of the Host Web application’s code */

14 </script>

Fig. 1. Motivating example. This example shows how a host can mediate an untrusted guest
(lines 6–9). The introspection block (invoked in line 11) enforces the host’s security policies (see
Figure 2) on the actions performed by the guest.

explicitly. The introspection mechanism (transaction) is built within the JavaScript
language itself, thereby allowing guest code to contain arbitrary JavaScript constructs
(unlike contemporary techniques [13,18,36,29,31]).

Let us consider an example of a Web-based word processor that hosts a third-party
widget to display advertisements (see Figure 1). During an editing session, this wid-
get scans the document for specific keywords and displays advertisements relevant to
the text that the user has entered. Such a widget may modify the host in several ways
to achieve its functionality, e.g., it could install event handlers to display advertise-
ments when the user places the mouse over specific phrases in the text. However, as
an untrusted guest, this widget may also contain malicious functionality, e.g., it could
implement a clickjacking-style attack by overlaying the editor with transparent HTML
elements pointing to malicious sites.

Traditional reference monitors [16], which mediate the action of guest code as it ex-
ecutes, can detect and prevent such attacks. However, such reference monitors typically
only enforce access control policies, and would have let the guest modify the host’s
heap and DOM (such as to install innocuous event handlers) until the attack is detected.
When such a reference monitor reports an attack, the end-user faces one of two un-
palatable options: (a) close the editing session and start afresh; or (b) continue with the
tainted editing session. In the former case, the end-user loses unsaved work. In the latter
case, the editing session is subject to the unknown and possibly undesirable effects of
the heap and DOM changes that the widget initiated before being flagged as malicious.
In our example, the event handlers registered by the malicious widget may also imple-
ment undesirable functionality and should be removed when the widget’s clickjacking
attempt is detected.
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Speculative execution allows hosts to introspect all actions of untrusted guest code.
In our example, the host speculatively executes the untrusted widget by enclosing it in
a transaction. When the attack is detected, the host simply discards all changes initiated
by the widget. The end-user can proceed with the editing session without losing unsaved
work, and with the assurance that the host is unaffected by the malicious widget.

This paper describes the Transcript system, that has the following novel features:

(1) JavaScript Transactions. Transcript allows hosting Web applications to specula-
tively execute guests by enclosing them in transactions. Transcript maintains read and
write sets for each transaction to record the objects that are accessed and modified by
the corresponding guest. These sets are exposed as properties of a transaction object
in JavaScript. Changes to a JavaScript object made by the guest are visible within the
transaction, but any accesses to that object from code outside the transaction return the
unmodified object. The host can inspect such speculative changes made by the guest
and determine whether they conform to its security policies. The host must explicitly
commit these changes in order for them to take effect; uncommitted changes simply do
not take and need not be undone explicitly.

(2) Transaction Suspend/Resume. Guest code may attempt operations outside the
purview of the JavaScript interpreter. In a browser, these external operations include
AJAX calls that send network requests, such as XMLHttpRequest. Transcript introduces a
suspend and resume mechanism that affords unprecedented flexibility to mediate exter-
nal operations. Whenever a guest attempts an external operation, Transcript suspends
it and passes control to the host. Depending on its security policy, the host can per-
form the action on behalf of the guest, perform a different action unbeknownst to the
guest, or buffer up and simulate the action, before resuming this or another suspended
transaction.

(3) Speculative DOM Updates. Because JavaScript interacts heavily with the DOM,
Transcript provides a speculative DOM subsystem, which ensures that DOM changes
requested by a guest will also be speculative. Together with support for JavaScript trans-
actions, Transcript’s DOM subsystem allows hosts to cleanly recover from attacks by
malicious guests.

Transcript provides these features without restricting or modifying guest code in any
way. This allows reference monitors based on Transcript to mediate the actions of
legacy libraries and applications that contain constructs that are often disallowed in
safe JavaScript subsets [13,18,36,29,31] (e.g., eval, this and with).

In the rest of the paper, we discuss the design, implementation and evaluation of
Transcript.

2 Overview of Transcript

Transcript enables hosts to understand the behavior of untrusted guests, detect attacks
by malicious guests and recover from them, and perform forensic analysis. We briefly
discuss Transcript’s utility and then provide an overview of its functionality for confin-
ing a malicious guest.
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(1) Understanding Guest Code. Analysis of third-party JavaScript code is often hard
due to code obfuscation. Using Transcript, a host can set watchpoints on objects of
interest. Coupled with suspend/resume, it is possible to perform a fine grained debug
analysis by inspecting the read/write sets on every guest initiated object read/write and
method invocation. Transcript’s speculative execution provides an ideal platform for
concolic unit testing [44,20] of guests. For example, using Transcript, a host can test a
guest’s behavior under different values of domain cookies.

(2) Confining Malicious Guests. Transcript’s speculative execution permits buffering
of network I/O and writing to a speculative DOM, thereby allowing unprecedented
flexibility in confining untrusted guest code. For example, to prevent clickjacking-style
attacks, the host can simply discard guest’s modifications to the speculative DOM.

(3) Forensic Analysis. Since Transcript suspends on external and user-defined oper-
ations, the suspend/resume mechanism is an effective tool for forensic analysis of a
suspected vulnerability exploited by the guest. For example, code-injection attacks us-
ing DOM or host APIs [4] can be analyzed by observing the sequence of suspend calls
and their arguments.

Transcript in Action. We illustrate Transcript’s ability to confine untrusted guests
by further elaborating on the example introduced in Section 1. Suppose that the
word processor hosts the untrusted widget using a <script> tag, as follows: <script
src="http://untrusted.com/guest.js">. In Figure 1, lines 6–9 show a snippet from guest.js,
which displays advertisements relevant to keywords entered in the editor. Line 6 regis-
ters a function to scan for keywords in the editor window by adding it to the prototype of
the Editor object. Lines 7 and 8 show the widget registering an event handler to display
advertisements on certain mouse events. While lines 6–8 encode the core functional-
ity related to displaying advertisements, line 9 implements a clickjacking-style attack
by creating a transparent <div> element, placed suitably on the editor with a link to an
evil URL.

When hosting such a guest, the word processor can protect itself from attacks by
defining and enforcing a suitable set of security policies. These may include policies to
prevent prototype hijacks [41], clickjacking-style attacks, drive-by downloads, stealing
cookies, snooping on keystrokes, etc. Further, if an attack is detected and prevented,
it should not adversely affect normal operation of the word processor. We now illus-
trate how the word processor can use Transcript to achieve such protection and cleanly
recover from attempted attacks.

The host protects itself by embedding the guest within a transaction construct (line 5,
Figure 1) and specifies its security policy (lines D–O, Figure 2). When the transaction
executes, Transcript records all reads and writes to JavaScript objects in per-transaction
read/write sets. Any attempts by the guest to modify the host’s JavaScript objects
(e.g., on line 6, Figure 1) are speculative; i.e., these changes are visible only to the guest
itself and do not modify the host’s view of the JavaScript heap. To ensure that DOM
modifications by the guest are also speculative, Transcript’s DOM subsystem clones the
host’s DOM at the start of the transaction and resolves all references to DOM objects in
a transaction to the cloned DOM. Thus, references to document within the guest resolve
to the cloned DOM.
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A do { Function gotoIblock implements the host’s introspection block: Lines A–R

B var arg = tx.getArgs(); var obj = tx.getObject();

C var rs = tx.getReadSet(); var ws = tx.getWriteSet();

D for(var i in builtins) {
E if (ws.checkMembership(Editor.prototype, builtins[i])) tocommit = false;

F } ... /* definition of ‘IsClickJacked’ to go here */
G if (IsClickJacked(tx.getTxDocument())) tocommit = false;

H ... /* more policy checks go here */ inlined code from libTranscript: Lines I–O

I switch(tx.getCause()) {
J case "addEventListener":

K var txHandler = MakeTxHandler(arg[1]);

L obj.addEventListener(arg[0], txHandler, arg[2]); break;

M case "write": WriteToTxDOM(obj, arg[0]); break; ... /* more cases */

N default: break;

O };
P tx = tx.resume();

Q } while(tx.isSuspended());
R return tocommit;

Fig. 2. An iblock. An iblock consists of two parts: a host-specific part, which encodes the host’s
policies to confine the guest (lines D–H), and a mandatory part, which contains functionality that
is generic to all hosts (lines I–O).

When the guest performs DOM operations, such as those on lines 7–9, and other ex-
ternal operations, such as XMLHttpRequest, Transcript suspends the transaction and passes
control to the host. This situation is akin to a system call in a user-space program causing
a trap into the operating system. Suspension allows the host to mediate external oper-
ations as soon as the guest attempts them. When a transaction suspends or completes
execution, Transcript creates a transaction object in JavaScript to denote the completed
or suspended transaction. In Figure 1, the variable tx refers to the transaction object.
Transcript then passes control to the host at the program point that syntactically follows
the transaction. There, the host implements an introspection block (or iblock) to enforce
its security policy and perform operations on behalf of a suspended transaction.

Transaction Objects. A transaction object records the state of a suspended or completed
transaction. It stores the read and write sets of the transaction and the list of activation
records on the call stack of the transaction when it was suspended. It provides builtin
methods, such as getReadSet and getWriteSet shown in Figure 2, that the host can invoke to
access read and write sets, observe the actions of the guest, and make policy decisions.

When a guest tries to perform an external operation and thus suspends, the resulting
transaction object contains arguments passed to the operation. For example, a transac-
tion that suspends due to an attempt to modify the DOM, such as the call document.write
on line 9, will contain the DOM object referenced in the operation (document), the name of
the method that caused the suspension (write), and the arguments passed to the method.
(Recall that Transcript’s DOM subsystem ensures that document referenced within the
transaction will point to the cloned DOM.) The host can access these arguments using
builtin methods of the transaction object, such as getArgs, getObject and getCause. De-
pending on its policy, the host can either perform the operation on behalf of the guest,
simulate the effect of performing it, defer the operation for later, or not perform it at all.
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The host can resume a suspended transaction using the transaction object’s builtin
resume method. Transcript then uses the activation records stored in the transaction ob-
ject to restore the call stack, and resumes control at the program point following the
instruction that caused the transaction to suspend (akin to resumption of program exe-
cution following a system call). Transactions can suspend an arbitrary number of times
until they complete execution. The builtin isSuspended method determines whether the
transaction is suspended or has completed.

A completed transaction can be committed using the builtin commit method. This
method copies the contents of the write set to the corresponding objects on the host’s
heap, thereby publishing the changes made by the guest. It also synchronizes the host’s
DOM with the cloned version that contains any DOM modifications made by the guest.
A completed transaction’s call stack is empty, so attempts to resume a completed trans-
action will have no effect. Note that Transcript does not define an explicit abort oper-
ation. This is because the host can simply discard changes made by a transaction by
choosing not to commit them. If the transaction object is not referenced anymore, it
will be garbage-collected.

Introspection Blocks. When a transaction suspends or completes, Transcript passes con-
trol to the instruction that syntactically follows the transaction in the code of the host.
At this point, the host can check the guest’s actions by encoding its security policies in
an iblock. The iblock in Figure 2 has two logical parts: a host-specific part that encodes
host’s policies (lines D–H), and a mandatory part that performs operations on behalf of
suspended guests (lines I–O). The iblock in Figure 2 illustrates two policies:

(1) Lines D–E detect prototype hijacking attempts on the Editor object. To do so, they
check the transaction’s write set for attempted redefinitions of builtin methods and fields
of the Editor object.

(2) Line G detects clickjacking-style attempts by checking the DOM for the presence
of any transparent HTML elements introduced by the guest. (The body of IsClickJacked,
which implements the check, is omitted for brevity).

The body of the switch statement encodes the mandatory part of the iblock and imple-
ments two key functionalities, which are further explained in Section 3.1:

(1) Lines J–L in Figure 2 create and attach an event handler to the cloned DOM
when the guest suspends on line 8 in Figure 1. The MakeTxHandler function creates a new
wrapped handler, by enclosing the guest’s event handler (displayAds) within a transaction
construct. Doing so ensures that the execution of any event handlers registered by the
guest is also speculative, and mediated by the host’s security policies. The iblock then
attaches the event handler to the corresponding element (elem) in the cloned DOM.

(2) Line M in Figure 2 speculatively executes the DOM modifications requested when
the guest suspends on line 9 in Figure 1. The WriteToTxDOM function invokes the write call
on obj, which points to the document object in the cloned DOM.

If a transaction does not commit because of a policy violation, the host’s DOM and
JavaScript objects will remain unaffected by the guest’s modifications. For instance,
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... // Code of the host�

tx = transaction {�

 ...�

     node.addEventListener(...);�

 ...�

};�

do {�

   ...  �

   tx = tx.resume();�

   ...�

} while(tx.isSuspended());�

tx.commit();�

... // Rest of the host�
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Fig. 3. Workflow of a Transcript-enhanced host. Part (a) of the figure shows a host enclosing a
guest within a transaction and an inlined introspection block, while part (b) shows the JavaScript
runtime and the DOM subsystem. The labels ①-⑥ in the figure show: ① the host’s DOM be-
ing cloned at the start of the transaction, ② the host’s call stack before a call that suspends the
transaction, ③ the call stack after suspension, ④ the host’s call stack when the transaction is
about to resume; the speculative DOM has been updated with the requested changes, ⑤ the host’s
call stack just after resumption, ⑥ shows the transaction committing, which copies all specula-
tive changes to the host’s DOM and JavaScript heap. The thick lines on the call stacks denote
transaction delimiters. Arrows show control transfer from the transaction to the iblock and back.

when the host aborts the guest after it detects the clickjacking attempt, the host’s DOM
will not contain any remnants of the guest’s actions (such as event handlers registered
by the guest). The host’s JavaScript objects, such as Editor, are also unaffected. Specu-
latively executing guests therefore allows hosts to cleanly recover from attack attempts.

Iblocks offer hosts the option to postpone external operations. For example, a host
may wish to defer all network requests from an untrusted advertisement until the end
of the transaction. It can do so using an iblock that buffers these requests when they
suspend, and thereafter resume the transaction; the buffered requests can be processed
after the transaction has completed. Such postponement will not affect the guest if the
buffered requests are asynchronous, e.g., XMLHttpRequest.

Because a transaction may suspend several times, the iblock is structured as a loop,
whose body executes each time the transaction suspends and once when the transaction
completes. This way, the same policy checks apply whether the transaction suspended
or completed.

3 Design of Transcript

We now describe the design of Transcript’s mechanisms using Figure 3, which sum-
marizes the workflow of a Transcript-enhanced host. The figure shows the operation of
the Transcript runtime system at key points during the execution of the host, which has
included an untrusted guest akin to the one in Figure 1 using a transaction.

When a transaction begins execution, Transcript first provides the transaction with
its private copy of the host’s DOM tree. It does so by cloning the current state of the
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host’s DOM, including any event handlers associated with the nodes of the DOM (① in
Figure 3). When a guest references nodes in the host’s DOM, Transcript redirects these
references to the corresponding nodes in the transaction’s private copy of the DOM.

Next, the Transcript runtime pushes a transaction delimiter on the JavaScript call
stack. Transcript places the activation records of methods invoked within the trans-
action above this delimiter. It also records the locations of JavaScript objects ac-
cessed/modified within the transaction in read/write sets. If the transaction executes
an external operation, the runtime suspends the transaction. To do so, it creates a trans-
action object and (a) initializes the object with the transaction’s read/write sets; (b) pops
all the activation records on the JavaScript call stack until the topmost transaction delim-
iter; (c) stores these activation records in the transaction object; (d) saves the program
counter; and (e) sets the program counter to immediately after the end of the transaction,
i.e., the start of the iblock (steps ② and ③ in Figure 3).

The iblock logically extends from the end of the transaction to the last resume or commit
call on the transaction object (e.g., lines A–R in Figure 2). The iblock can access the
transaction object and its read/write sets to make policy decisions. If the iblock invokes
resume on a suspended transaction, the Transcript runtime (a) pushes a transaction delim-
iter on the current JavaScript call stack; (b) pushes the activation records saved in the
transaction object; and (c) restores the program counter to its saved value. Execution
therefore resumes from the statement following the external operation (see ④ and ⑤).
If the iblock invokes commit instead, the Transcript runtime updates the JavaScript heap
using the values in the transaction object’s write set. The commit operation also replaces
the host’s DOM with the cloned DOM (step ⑥).

The Transcript runtime behaves in the same way even when transactions are nested:
Transcript pushes a new delimiter on the JavaScript call stack for each level of nesting
encountered at runtime. Each suspend operation only pops activation records until the
topmost delimiter on the stack. Nesting is important when a guest itself wishes to con-
fine code that it does not trust. This situation arises when a host includes a guest from a
first-tier advertising agency (1sttier.com), which itself includes code from a second-tier
agency (2ndtier.com). Whether the host confines the advertisement using an outer trans-
action, 1sttier.com may itself confine code from 2ndtier.com using an inner transaction
using its own security policies. If code from 2ndtier.com attempts to modify the DOM,
that call suspends and traps to the iblock defined by 1sttier.com. If this iblock attempts
to modify the DOM on behalf of 2ndtier.com, the outer transaction suspends in turn and
passes control to the host’s iblock. In effect, the DOM modification succeeds only if it
is permitted at each level of nesting.

3.1 Components of an Iblock

As discussed in Section 2, an iblock consists of two parts: a host-specific part, which
codifies the host’s policies to mediate guests, and a mandatory part, which contains
functionality that is generic to all hosts. In our implementation, we have encoded the
second part as a JavaScript library (libTranscript) that can simply be included into the
iblock of a host. This mandatory part implements two functionalities: gluing execution
contexts and generating wrappers for event handlers.
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Gluing Execution Contexts. Guests often use document.write or similar calls to modify
the host’s DOM, as shown on line 9 of Figure 1. When such guests execute within a
transaction, the document.write call traps to the iblock, which must complete the call on
behalf of the guest and render the HTML in the cloned DOM. However, the HTML
code in document.write may contain scripts, e.g., document.write(’<script src = code.js>’).
The execution of code.js, having been triggered by the guest, must then be mediated by
the same security policy that governs the guest.

Thus, code.js should be executed in the same context as the transaction where the
guest executes. To achieve this goal, the mandatory part of the iblock encapsulates the
content of code.js into a function and uses a builtin glueresumemethod of the transaction
object to instruct the Transcript runtime to invoke this function when it resumes the
suspended transaction. The net effect is similar to fetching and inlining the content of
code.js into the transaction. We call this operation gluing, because it glues the code in
code.js to that of the guest.

To implement gluing, the iblock must recognize that the document.write includes
additional scripts. This in turn requires the iblock to parse the HTML argument
to document.write. We therefore exposed the browser’s HTML parser through a new
document.parse API to allow HTML (and CSS) parsing in iblocks. This API accepts a
HTML string argument, such as the argument to document.write, and parses it to recog-
nize <script> elements and other HTML content. It also recognizes inline event-handler
registrations, so that they can be wrapped as described in Section 3.1. When the iblock
invokes document.parse (in Figure 2, it is invoked within the call to WriteToTxDOM on line M),
the parser creates new functions that contain code in <script> elements. It returns these
functions to the host’s iblock, which can then invoke them by gluing. The parser also
renders other (non-script) HTML content in the cloned DOM.

Guest operations involving innerHTML are handled simlarly. Transcript suspends a guest
that attempts an innerHTML operation, parses the new HTML code for any scripts, and
glues their execution into the guest’s context.

Generating Wrappers for Event Handlers. Guests executing within a transaction
may attempt to register functions to handle asynchronous events. For example, line 8 in
Figure 1 registers displayAds as an onMouseOver handler. Because displayAds is guest code,
it is important to associate it with the iblock for the transaction that registered it and
to subject it to the same policy checks. Transcript does so by creating a new function
tx displayAds that wraps displayAds within a transaction guarded by the same iblock, and
registering tx displayAds as the event handler for the onMouseOver event.

To this end, the mandatory part of the iblock includes creating wrappers (such
as tx displayAds) for event handlers. When the guest executes a statement such as
elem.addEventListener(...), it would trap to the iblock, which can then examine the
arguments to this call and create a wrapper for the event handler. Guests can al-
ternatively use document.write calls to register event handlers e.g., document.write (’<div
onMouseOver="displayAds();">’). In this case, the iblock recognizes that an event handler
is being registered by parsing the HTML argument of the document.write call (using the
document.parseAPI) when it suspends, and wraps the call. Our wrapper generator handles
all the event models supported by Firefox [47].
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Besides event handlers, JavaScript supports other constructs for asynchronous exe-
cution: AJAX callbacks, which execute upon receiving network events (XMLHttpRequest),
and features such as setTimeOut and setInterval that trigger code execution based upon
timer events. The mandatory part of the iblock also handles these constructs by wrap-
ping callbacks as just described.

3.2 Hiding Sensitive Variables

The iblock of a transaction checks the guest’s actions against the host’s policies. These
policies are themselves encoded in JavaScript, and may use methods and variables
(e.g., tx, tocommit and builtins in Figure 1) that must be protected from the guest. Without
precautions, the guest can use JavaScript’s extensive reflection capabilities to tamper
with these sensitive variables. Figure 4 presents an example of one such attack, a refer-
ence leak, where the malicious guest obtains a reference to the tx object by enumerating
the properties of the this object, and redefines the method tx.getWriteSet speculatively.
As presented, the example in Figure 1 is vulnerable to such a reference leak.

var tx = transaction { ... //code that suspends ...
for (var x in this) {
if (this[x] instanceof Tx obj) txref = this[x];

}; txref.getWriteSet = function() { };
}

Fig. 4. A guest that implements a ref-
erence leak. The tx object is created and
attached to this when guest suspends.

To protect such sensitive variables, we adopt
a defense called variable hiding that eliminates
the possibility of leaks by construction. This
technique mandates that guests be placed out-
side the scope of the iblock’s variables, such as
tx. The basic idea is to place the guest and the
iblock in separate, lexically scoped functions,
so that variables such as tx, tocommit and builtins
are not accessible to the guest. By so hiding
sensitive variables from the guest, this defense
prevents reference leaks. Figure 8 illustrates this
defense after introducing some more details of our implementation.

4 Security Assurances

Transcript’s ability to protect hosts from untrusted guests depends on two factors: (a) the
assurance that a guest cannot subvert Transcript’s mechanisms, i.e., the robustness of
the trusted computing base; and (b) host-specific policies used to mediate guests.

4.1 Trusted Computing Base

Transcript’s trusted computing base (TCB) consists of the runtime component imple-
mented in the browser and the mandatory part of the host’s iblock. The TCB pro-
vides the following security properties: (a) complete mediation, i.e., control over all
JavaScript and external operations performed by a guest; and (b) isolation, i.e., the abil-
ity to confine the effects of the guest.

(1) Complete Mediation. The Transcript runtime and the mandatory part of the host’s
iblock together ensure complete mediation of guest execution. The runtime: (a) records
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all guest accesses to the host’s JavaScript heap in the corresponding transaction’s
read/write sets; (b) causes a trap to the host’s iblock when the guest attempts an external
operation; and (c) redirects all guest references to the host’s DOM to the cloned DOM.
The mandatory part of the iblock, consisting of wrapper generators and the HTML
parser, ensures that any additional code fetched by the guest or scheduled for later exe-
cution (e.g., event handlers or callbacks for XMLHttpRequest) will itself be enclosed within
transactions mediated by the same iblock. This process recurs so that the host’s policies
mediate all guest code, even event handlers installed by callbacks of event handlers.

(2) Isolation. Transcript isolates guest operations using speculative execution. It
records changes to the host’s JavaScript heap within the guest transaction’s write set,
and changes to the host’s DOM within the cloned DOM. The host then has the opportu-
nity to review these speculative changes within its iblock and ensure that they conform
to its security policies. Observe that a suspended/completed transaction may provide
the host with references to objects modified by the guest, e.g., in Figure 1, a reference
to elem is passed to the iblock via the getObject API. Speculative execution ensures that
if the transaction has not yet been committed, then accesses to the object’s methods
and fields via this reference will still resolve to their values at the beginning of the
transaction. Thus, for instance, a call to the toString method of the elem object in the
iblock of Figure 1 would still work as intended if even if the guest had redefined this
method within the transaction. Note that variables hidden from the guest cannot even
be speculatively modified, thereby automatically isolating them from the guest.

Together, the above properties ensure the following invariant: At the point when a trans-
action suspends or completes execution and is awaiting inspection by the host’s iblock,
none of the host’s JavaScript objects or its DOM would have been modified by the
guest. Further, host variables hidden from the guest will not be modified even after the
transaction has committed. Overall, executing a transaction never incurs any side ef-
fect, and any side effect that would be incurred by committing a transaction can be first
vetted by inspecting the transaction.

4.2 Whitelisting for Host Policies

Hosts can import the speculative changes made by a guest after inspecting them against
their security policies. Even though complete mediation and isolated execution ensure
that the core mechanisms of Transcript cannot be subverted by guest execution (i.e., they
ensure that all of the guest’s speculative actions will be available for inspection by the
host), the ability of the host to isolate itself from the guest ultimately depends on its
policies.

Host policies are necessarily domain-specific and have to be written manually in our
current prototype. Though our experiments (Section 6.4) suggest that the effort required
to write policies in Transcript is comparable to that required in other systems, writing
policies is admittedly a difficult exercise and further research is needed to develop tools
for policy authors to debug/verify the completeness of their policies. However, iblock
policies once written can be reused across applications if applications share similar
protection criteria. As a deployment model, we envision a vendor or community-driven
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curated database of commonly-used iblock policies, which hosts can use to secure un-
trusted guests.

We suggest that iblock authors should employ a whitelist which specifies the host
objects that can legitimately be modified by the guest and reject attempts to modify
objects outside the whitelist. This guideline may cause false positives if the whitelist
is not comprehensive. For example, both window.location and window.location.href can be
used to change the location field of the host, but a whitelist that includes only one
will reject guests that modify guest location using the other. Nevertheless, whitelisting
allows hosts to be conservative when allowing guests to modify their objects.

5 Implementation in Firefox

We implemented Transcript by modifying Firefox (version 3.7a4pre). Overall, our pro-
totype adds or modifies about 6,400 lines of code in the browser 1. The bulk of this
section describes Transcript’s enhancements to SpiderMonkey (Firefox’s JavaScript in-
terpreter) (Section 5.1) and its support for speculative DOM updates (Section 5.2). We
also discuss Transcript’s support for conflict detection (Section 5.3) and the need to
modify the <script> tag (Section 5.4).

5.1 Enhancements to SpiderMonkey

Our prototype enhances SpiderMonkey in five ways:

• Transaction objects. We added a new class of JavaScript objects to denote transac-
tions. This object stores a pointer to the read/write sets, activation records of the trans-
action, and to the cloned DOM. It implements the builtin methods shown in Figure 5.
• A transaction keyword. We added a transaction keyword to the syntax of JavaScript.
When the Transcript-enhanced JavaScript parser encounters this keyword, it (a) com-
piles the body of the transaction into an anonymous function; (b) inserts a new instruc-
tion, JSOP BEGIN TX, into the generated bytecode to signify the start of a transaction;
and (c) inserts code to invoke the anonymous function. The transaction ends when the
anonymous function completes execution. Finally, the anonymous function returns a
transaction object when it suspends or completes execution.
• Read/write sets. Transcript adds read/write set-manipulation to the interpretation of
several JavaScript bytecode instructions. We enhanced the interpreter so that each
bytecode instruction that accesses or modifies JavaScript objects additionally checks
whether its execution is within a transaction (i.e., if an unfinished JSOP BEGIN -
TX was previously encountered in the bytecode stream). If so, the execution of the
instruction also logs an identifier denoting the JavaScript object (or property) ac-
cessed/modified in its read/write sets, which we implemented using hash tables. We
used SpiderMonkey’s identifiers for JavaScript objects; references using aliases to the
same object will return the same identifier.

1 Transcript’s design does not impose any fundamental restrictions on JITing of code within a
transaction. However, to ease the development effort for our Transcript prototype, we chose
not to handle JITed code paths in the prototype.



Enhancing JavaScript with Transactions 395

API Description
getReadSet Exports transaction’s read set to JavaScript.
getWriteSet Exports transaction’s write set to JavaScript.
getTxDocument Returns a reference to the speculative document object.
isSuspended Returns true if the transaction is suspended.
getCause Returns cause of a transaction suspend.
getObject Returns object reference on which a suspension was invoked.
getArgs Returns set of arguments involved in a transaction suspend.
resume Resumes suspended transaction.
glueresume Resumes suspended transaction and glues execution contexts.
isDOMConflict Checks for conflicts between the host’s and cloned DOM.
isHeapConflict Checks for conflicts between the host and guest heaps.
commit Commits changes to host’s JavaScript heap and DOM.

Fig. 5. Key APIs defined on the transaction object

• Suspend. We modified the interpreter’s implementation of bytecode instructions that
perform external operations and register event handlers to suspend when executed
within a transaction. The suspend operation and the builtin resume function of transaction
objects are implemented as shown in Figure 3. We also introduced a suspend construct
that allows hosts to customize transaction suspension. Hosts can include this construct
within a transaction (before including guest code) to register custom suspension points.
The call suspend [obj.foo] suspends the transaction when it invokes foo (if it is a method)
or attempts to read from or write to the property foo of obj.
• Garbage Collection. We interfaced Transcript with the garbage collector to traverse
and mark all heap objects that are reachable from live transaction objects. This avoids
any inadvertent garbage collection of objects still reachable from suspended transac-
tions that could be resumed in the future.

Integrating these changes into a legacy JavaScript engine proved to be a challenging
exercise. We refer interested readers to Appendix A for a description of how our imple-
mentation addressed one such challenge, non-tail recursive calls in SpiderMonkey.

5.2 Supporting Speculative DOM Updates

Transcript provides each executing transaction with its private copy of the host’s docu-
ment structure and uses this copy to record all DOM changes made by guest code. This
section presents notable details of the implementation of Transcript’s DOM subsystem.

Transcript constructs a replica of the host’s DOM when it encounters a JSOP BE-
GIN TX instruction in the bytecode stream. It clones nodes in the host’s DOM tree, and
iterates over each node in the host’s DOM to copy references to any event handlers and
dynamically-attached JavaScript properties associated with the node. If a guest attempts
to modify an event handler associated with a node, the reference is rewritten to point to
the function object in the transaction’s write set.

Crom [35] also implemented DOM cloning for speculative execution (albeit not for
the purpose of mediating untrusted code). Unlike Crom, which implemented DOM
cloning as a JavaScript library, Transcript implements cloning in the browser itself. This
feature simplifies several issues that Crom’s designers faced (e.g., cloning DOM-level
2 event handlers) and also allows efficient cloning.

When a guest references a DOM node within a transaction, Transcript transpar-
ently redirects this reference to the cloned DOM. It achieves this goal by modifying
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the browser to tag each node in the host’s DOM with a unique identifier (uid). During
cloning, Transcript assigns each node in the cloned DOM the same uid as its counterpart
in the host’s DOM. When the guest attempts to access a DOM node, Transcript retrieves
the uid of the node and walks the cloned DOM for a match. We defined a getElementByUID
API on the document object to return a node with a given uid.

If the guest’s operations conform to the host’s policies, the host commits the trans-
action, upon which Transcript replaces the host’s DOM with the transaction’s copy of
the DOM, thereby making the guest’s speculative changes visible to the host.

5.3 Conflict Detection

When a host decides to commit a transaction, Transcript will replace the host’s DOM
with the guest’s DOM. Objects on the host’s heap are also overwritten using the write
set of the guest’s transaction. During replacement, care must be taken to ensure that
the host’s state is consistent with the guest’s state. Consider, for instance, a guest that
performs an appendChild operation on a DOM node (say node N). This operation causes
a new node to be added to the cloned DOM, and also suspends the guest transaction.
However, the host may delete node N before resuming the transaction; upon resumption,
the guest continues to update a stale copy of the DOM (i.e., the cloned version). When
the transaction commits, the removed DOM node will be added to the host’s DOM.

function hasParent(txNode) {
var parent = txNode.parentNode;

if (document.getElementByUID(parent.uid) != null) return true;

else return false;

} ...
var isAllowed = tx.isDOMConflict(hasParent); // tx is the transaction object

Fig. 6. Example showing conflict detection

Transcript adds the
isDOMConflict and isHeapConflict

APIs to the transaction object,
which allow host developers to
register conflict detection poli-
cies. When invoked in the host’s
iblock, the isDOMConflict API
invokes the conflict detection
policy on each DOM node speculatively modified within the transaction (using the
transaction’s write set to identify nodes that were modified). The isHeapConflict API
likewise checks that the state of the host’s heap matches the state of the guest’s heap
at the start of the transaction. The snippet in Figure 6 shows one example of such a
conflict detection policy (using isDOMConflict) encoded in the host’s iblock that verifies
that each node speculatively modified by the guest (txNode) has a parent in the host’s
DOM.

While Transcript provides the core mechanisms to detect transaction conflicts, it does
not dictate any policies to resolve them. The host must resolve such conflicts within the
application-specific part of its iblocks.

5.4 The <script> Tag

The examples presented thus far show hosts including guest code by inlining it within
a transaction. However, hosts typically include guests using <script> tags, e.g., <script
src="http://untrusted.com/guest.js">. Transcript also supports code inclusion using <script>
tags. To do so, it extends the <script> tag so that the fetched code can be encapsulated in a
function rather than run immediately. The host application can use the modified <script>
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tag as: <script src="http://untrusted.com/guest.js" func="foobar">. This tag encapsulates the
code in foobar, which the host can then invoke within a transaction.

By itself, this modification unfortunately affects the scope chain in which the fetched
code is executed. JavaScript code included using a <script> tag expects to be executed
in the global scope of the host, but the modified <script> tag would put the fetched code
in the scope of the function specified in the func attribute (e.g., foobar).

We addressed this problem using a key property of eval. The ECMAScript stan-
dard [9, Section 10.4.2] specifies that an indirect eval (i.e., via a reference to the eval
function) is executed in the global scope. We therefore extracted the body of the com-
piled function foobar and executed it using an indirect eval call within a transaction (see
Figure 8). This transformation allowed all variables and functions declared in the func-
tion foobar to be speculatively attached to the host’s global scope.

6 Evaluation

We evaluated four aspects of Transcript. First, in Section 6.1 we study the applicability
of Transcript to real-world guests, which varied in size from about 1,400 to 7,500 lines
of code. Second, we show in Section 6.2 that a host that uses Transcript can protect itself
and recover gracefully from malicious and buggy guests. Third, we report a performance
evaluation of Transcript in Section 6.3. Last, in Section 6.4, we study the complexity of
writing policies for Transcript. All experiments were performed with Firefox v3.7a4pre
on a 2.33Ghz Intel Core2 Duo machine with 3GB RAM and running Ubuntu 7.10.

6.1 Case Studies on Guest Benchmarks

Benchmark Size (LoC) <script> tags
1 JavaScript Menu [7] 1,417 1
2 Picture Puzzle [40] 1,709 3
3 GoogieSpell [38] 2,671 4
4 GreyBox [39] 2,338 7
5 Color Picker [6] 7,543 6

Fig. 7. Guest benchmarks. We used trans-
actions to isolate each of these benchmarks
from a simple hosting Web page

To evaluate Transcript’s applicability to real-
world guests, we experimented with five
JavaScript applications, shown in Figure 7.
For each guest benchmark in Figure 7, we
played the role of a host developer attempt-
ing to include the guest into the host, i.e., we
created a Web page and included the code
of the guest into the page using <script> tags.
Most of the guests were implemented in sev-
eral files; the <script> column in Figure 7 shows the number of <script> tags that we had
to use to include the guest into the host. We briefly describe these guest benchmarks
and the domain-specific policies that were implemented for each iblock.

(1) JavaScript Menu is a standalone widget that implements pull-down menus.
Figure 8 shows how we confined JavaScript Menu using Transcript. The iblock for
JavaScript menu enforced a policy that disallowed the guest from accessing the net-
work (XMLHttpRequest) or domain cookies.

JavaScript Menu makes extensive use of document.write to build menus, with several of
these calls used to register event handlers, as shown below (event handler registrations
are shown in bold). Each document.write call causes the transaction to suspend and pass
control to the iblock. The iblock uses document.parse to (a) parse the arguments to identify
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1 <script src="jsMenu.js" func="menu"></script> 5 var tx = transaction { e(getFunctionBody(menu));}
2 <script src="libTranscript.js></script> 6 to commit = gotoIblock(tx);

3 <script>(function () { 7 if(to commit) tx.commit();

4 var to commit = true, e = eval; // indirect eval 8 })(); </script>

Fig. 8. Confining JavaScript Menu. (a) lines 1 and 5 demonstrate the enhanced <script> tag
and the host’s use of indirect eval to include the guest, which is compiled into a function (called
menu; line 1) (Section 5.4). getFunctionBody extracts the code of the function menu; (b) line 3 imple-
ments variable hiding (Section 3.2), making tx invisible to the guest; (c) our supporting library
libTranscript (line 2) implements the mandatory part of the iblock and is invoked from gotoIblock.

the HTML element(s) being created; (b) identify whether any event handlers are being
registered and wrap them; and (c) write resulting HTML to the transaction’s speculative
DOM.

(2) Picture Puzzle uses the drag-and-drop features provided by the AJS JavaScript li-
brary [2] to build an application that prompts the user to arrange jumbled pieces of a
picture within a 3 × 3 grid (we adapted this benchmark from [40]). We ran the bench-
mark within a transaction and enforced a domain-specific security policy that prevented
the transaction from committing its changes if it attempted to install a handler to capture
the user’s keystrokes (e.g., any event with onkey as a substring).

(3) GoogieSpell extends the AJS library to provide a spell-checking service. When a
user clicks the “check spelling” button, GoogieSpell sends an XMLHttpRequest to a third-
party server to fetch suggestions for misspelled words. We created a transactional ver-
sion of GoogieSpell, whose iblock implemented a domain-specific policy that prevents
an XMLHttpRequest once the benchmark has read domain cookies or if the target URL of
XMLHttpRequest does not appear on a whitelist.2

(4) GreyBox is content-display application that also extends the AJS library. It can be
used to display external pages, build image galleries, receive file uploads and even show
video or Flash content. The application creates an <iframe> to load new content. Our
transactional version of the GreyBox application encoded a domain-specific iblock pol-
icy that only allowed the creation of <iframe>s to whitelisted URLs.

(5) Color Picker builds upon the popular jQuery library [5] and lets a user pick a color
by moving sliders depicting the intensities of red, blue and green. We executed the entire
benchmark (including all the supporting jQuery libraries) as a transaction and encoded
an iblock that disallowed modifications to the innerHTML property of arbitrary <div> nodes.

However, for this guest, it turns out that an iblock that disallows any changes to the sen-
sitive innerHTML property of any <div> element is overly restrictive. This is because Color
Picker modified the innerHTML property of a <div> element that it created. We therefore
loosened our policy into a history-based policy that let the benchmark change innerHTML
properties of <div> elements that it created. The iblock determines whether a <div> ele-
ment was created by the transaction by querying its write set. The relevant snippet from
the iblock is shown below; the tx variable denotes the transaction:

2 Such cross-origin resource sharing permits cross-site XMLHttpRequests, and is supported by
Firefox-3.5 and higher [37].
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1 var ws = tx.getWriteSet(); ...

2 if (tx.getCause().match("innerHTML") && ws.checkMembership(tx.getObject(), "*")

&& !(tx.getObject() instanceof HTMLBodyElement))

3 // perform action on behalf of untrusted code

6.2 Fault Injection and Recovery

To evaluate how Transcript can help hosts detect and debug malicious guest activity,
we performed a set of fault-injection experiments on a real Web application that al-
lows integration of untrusted guest code. We used the Bigace Web content management
system [3] running on our Web server as the host, and created a Web site that mashed
content from Bigace with content provided by untrusted guests (each guest was included
into the mashup using the <script> tag). We wrote guests that emulated known attacks
and studied host behavior when the host (1) directly included the guest in its protection
domain; and (2) used Transcript to isolate the guest.

Our experiments show that with appropriate iblock policies, speculative execution
ensured clean recovery; neither the JavaScript heap nor the DOM of the host was af-
fected by the misbehaving guest.

(1) Misplaced Event Handler. JavaScript provides a preventDefault method that sup-
presses the default action normally taken by the browser as a result of the event. For
example, the default action on clicking a link is to fetch the page corresponding to the
URL referenced in the link. Several sites use preventDefault to encode domain-specific
actions instead, e.g., displaying a popup when a link is clicked.
In this experiment, we created a buggy guest that displays an advertisement within
a <div> element. This guest mistakenly registers an onClick event handler that uses
preventDefault with the document object instead of with the <div> element. The result of
including this guest directly into the host’s protection domain is that all hyperlinks on
the Web page are rendered unresponsive. We then modified the host to isolate the guest
using a policy that disallows a transaction to commit if it attempts to register an onClick
handler with the document object. This prevented the advertisement from being displayed,
i.e., the <div> element containing the misbehaving guest was not even created, but other-
wise allowed the host to function correctly. JavaScript reference monitors proposed in
prior work can prevent the registration of the onClick handler, but leave the div element
of the misbehaving guest on the host’s Web page.

(2) Prototype Hijacking. We implemented a prototype hijacking attack by writing a
guest that set the Array.prototype.slice function to null. To illustrate the ill-effects of this
attack, we modified the host to include two popular (and benign) widgets, namely Twit-
ter [8] and AddThis [1], in addition to the malicious guest. The prototype hijacking
attack prevented both the benign widgets from functioning properly.
However, when the malicious guest is enclosed within a transaction whose iblock pre-
vents a commit if it detects prototype hijacking attacks, the host and both benign wid-
gets worked normally. We further inspected the transaction’s write set and verified that
none of the heap operations attributed to the malicious guest were actually applied to
the host. Although traditional JavaScript reference monitors can detect and prevent pro-
totype hijacking attacks by blocking further <script> execution, they do not allow the
hosts to cleanly recover from all heap changes.
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Fig. 9. Performance of guest benchmarks. This chart compares the time to load the unmodified
version of each guest benchmark against the time to load the transactional version in the two
variants of Transcript.

(3) Oversized Advertisement. We created a guest that displayed an interactive
JavaScript advertisement within a <div> element. In an unprotected host, this advertise-
ment expands to occupy the full screen on a mouseover event, i.e., the guest registered a
misbehaving event-handler that modifies the size of the <div>. We modified the host to
isolate this guest using a transaction and an iblock that prevents a commit if the size of
the <div> element increased beyond a pre-specified limit. With this policy, we observed
that the host could successfully prevent the undesired <div> modification by discarding
the speculative DOM and JavaScript heap changes made by the event handler executing
within the transaction.

6.3 Performance

We measured the overhead imposed by Transcript both using guest benchmarks, to es-
timate the overall cost of using transactions, and with microbenchmarks, to understand
the impact on specific JavaScript operations.

Guest Benchmarks. To evaluate the overall performance impact of Transcript, we
measured the increase in the load time of each guest benchmark. Recall that each bench-
mark is included in the Web page using a set of <script> tags; the version that uses
Transcript executes the corresponding JavaScript code within a single transaction using
modified <script> tags. The onload event fires at the end of the document loading process,
i.e., when all scripts have completed execution. We therefore measured the time elapsed
from the moment the page is loaded in the browser to the firing of the onload event.

To separately assess the impact of speculatively executing JavaScript and DOM op-
erations, each experiment involved executing the benchmarks on two separate vari-
ants of Transcript, namely Transcript (full) which supports both speculative DOM
and JavaScript operations and Transcript (JS only) which only supports speculative
JavaScript operations (and therefore does not isolate DOM operations of the guest).
Figure 9 presents the results averaged over 25 runs of this experiment. On average,
Transcript (JS only) increased load time by just 0.11 seconds while Transcript (full)
increased the load time by 0.16 seconds. These overheads are typically imperceptible
to end users. Only Color Picker had above-average overheads. This was because (a) the
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guest heavily interacted with the DOM, causing frequent suspension of its transaction;
and (b) the guest had several Array operations that referenced the length of the array. Each
such operation triggered a traversal of read/write sets to calculate the array length.

Note that Transcript only degrades performance of JavaScript code executing within
transactions (i.e., guests). The performance of code executing outside transactions
(i.e., hosts) is not affected by our prototype.

Microbenchmark Overhead
Native Functions

eval("1") 6.69×
eval("if (true)true;false") 6.87×
fn.call(this, i) 1.89×

External operations
getElementById("checkbox") 6.78×
getElementsByTagName("input") 6.89×
createElement("div") 3.69×
createEvent("MouseEvents") 3.82×
addEventListener("click", clk, false) 26.51×
dispatchEvent(evt) 1.20×
document.write("<b>Hi</b>") 1.26×
document.write("<script>x=1;</script>") 2.01×

Fig. 10. Performance of function call
microbenchmarks

Microbenchmarks. We further dissected the
performance of Transcript using microbench-
marks designed to stress specific functionalities.
We used two sets of microbenchmarks: func-
tion calls and event dispatchers. In our ex-
periments, we executed each microbenchmark
within a transaction whose iblock simply per-
mitted all actions and resumed the transaction
without enforcing additional security policies,
and compared its performance against the non-
transactional version.

Function calls. We devised a set of microbench-
marks (Figure 10) that stress the performance of
Transcript’s function call-handling code. Each benchmark invoked the code in first col-
umn of Figure 10 10, 000 times.

Recall that Transcript suspends on function calls that cause external operations and
for certain native function calls, such as eval. Each suspend operation requires Tran-
script to save the state of the transaction, execute the iblock, and restore the transaction
state upon the execution of a resume call. Most of the benchmarks in Figure 10 trigger
a suspension, which induces significant overheads. In particular, addEventListener had an
overhead of 26.51×. The bulk of the overhead was induced by code in the iblock that
generates wrappers for the event handler registered using addEventListener.

Overhead
Event name Normalized Raw (µs)
Drag Event (drag) 1.71× 97
Keyboard Event (keypress) 1.16× 150
Message Event (message) 1.17× 85
Mouse Event (click) 1.54× 86
Mouse Event (mouseover) 2.05× 88
Mutation Event (DOMAttrModified) 2.14× 88
UI Event (overflow) 1.97× 61

Fig. 11. Performance of event dispatch
microbenchmarks

User Events. A JavaScript application ex-
ecuting within a transaction may dispatch
user events, such as mouse clicks and key
presses, which must be processed by the
event handler associated with the relevant
DOM node. The promptness with which
events are dispatched typically affects end-
user experience.

To measure the impact of transactions on
this aspect of browser performance, we de-
vised a set of microbenchmarks that dispatched user events such as clicking a check-
box, moving the mouse, pressing keys, etc. and measured the delay in handling them
(Figure 11).

In each case, code that generated and dispatched the event executed as a transaction
with an iblock that allowed all actions. To measure overhead, we executed this code
1,000 times and compared its performance against a native event dispatcher. Figure 11
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Policy T-LOC C-LOC Policy T-LOC C-LOC
Conscript-#1 7 2 Conscript-#2 5 6
Conscript-#3 6 3 Conscript-#4 9 7
Conscript-#5 9 9 Conscript-#6 5 8
Conscript-#7 7 5 Conscript-#8 5 6
Conscript-#10 9 16 Conscript-#11 12 17
Conscript-#12 5 4 Conscript-#13 4 6
Conscript-#14 3 5 Conscript-#15 6 7
Conscript-#16 6 4 Conscript-#17 7 5

Fig. 12. Policy complexity. Comparing policies in Transcript (T-LOC) and Conscript (C-LOC).
Policies are numbered as in Conscript [34]. We omitted Conscript-#9 since it is IE-specific.

presents the results, which show the normalized overhead as well as the raw delay to
process a single event. As this figure shows, although the normalized overheads range
from 16% to 114%, the raw delays average about 94 microseconds, which is impercep-
tible to end users.

6.4 Complexity of Policies

To study the complexity of writing policies in Transcript, we compared the number of
lines of code needed to write policies in Transcript and in Conscript [34]. We consid-
ered the policies discussed in Conscript and wrote equivalent policies in Transcript;
Figure 12 compares the source lines of code (counting number of semi-colons) of poli-
cies in Transcript and Conscript. This shows that the programming effort required to
encode policies in both systems is comparable.

7 Related Work

This paper builds upon the idea of extending JavaScript with transactions, which was
proposed in a recent position paper [14]. While that paper focused on the semantics of
the extended language, this paper is the first to report the design and implementation of
a complete speculative execution system for JavaScript.

There is much prior work in the broad area of isolating untrusted guests. Transcript
is unique because it allows hosts to recover cleanly and easily from the effects of ma-
licious or buggy guests (Figure 13). In exchange for requiring no modification to the
guest, Transcript requires modifications both to the host (i.e., the server side) and to the
browser (i.e., the client side) to enhance the JavaScript language.

Static Analysis. Despite the dynamic nature of JavaScript, there have been a few efforts
at statically analyzing JavaScript code. Gatekeeper [21] presents a static analysis to
validate widgets written in a subset of JavaScript. It does so by matching widget source
code against a database of patterns denoting unsafe programming practices. Guha et
al. [22] developed static techniques to improve AJAX security. Their work uses static
analysis to enhance a server-side proxy with models of AJAX computation on the client.
The proxy then ensures that AJAX requests from the client conform to these models.

Chugh et al. [12] developed a staged information-flow tracking framework for
JavaScript to protect hosts from untrusted guests. Its static analysis identifies constraints
on host variables that can be read or written by guests. It validates these constraints on
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System Recovery
Unrestricted

guest
Unmodified

browser
Policy

coverage
Transcript ✓ ✓ ✗ Heap + DOM
Conscript [34] ✗ ✓ ✗ Heap + DOM
AdJail [26] ✗ ✓ ✓ DOM(1)

Caja [36] ✗ ✗ ✓ Heap + DOM
Wrappers [29,30,33] ✗ ✓(2) ✓ Heap + DOM
Info. flow [12] ✗ ✓ ✓ Heap
IRMs [42,48,43] ✗ ✓ ✓ Heap + DOM
Subsetting [30,13,18] ✗ ✗ ✓ Static policies(3)

Fig. 13. Techniques to confine untrusted guests. (1) Adjail uses a separate <iframe> to disal-
lows guests from executing in the host’s context. (2) Some wrapper-based solutions [29] restrict
JavaScript constructs allowed in guests. (3) Subsetting is a static technique and its policies are
not enforced at runtime.

code loaded at runtime via eval or <script> tags, and rejects such code if it violates these
constraints. Unlike Transcript, which tracks changes to both the heap and DOM, Chugh
et al.’s work only tracks changes to the heap.

Language Restriction. Several projects have defined subsets of JavaScript that omit
dynamic constructs, such as eval, with and this, to make it amenable to static
analysis [13,18,36,21]. However, designing safe subsets of JavaScript is non-trivial
[31,28,30,19], and also prevents code developers from using arbitrary constructs of the
language in their applications. Transcript places no such restrictions on guest code.

Object Capabilities, Wrappers, and Code Rewriting. Object capability and wrapper-
based solutions (e.g., [33,30,29]) create wrapped versions of JavaScript objects to be
protected, and ensure that such objects can only be accessed by code that has the capa-
bility to do so. In contrast to these techniques, which provide isolation by wrapping the
host’s objects, Transcript wraps guest code using transactions, and mediates its actions
with the host via iblocks. Prior research has also developed solutions to inline runtime
checks into untrusted guests. These include BrowserShield [43], CoreScript [48], and
the work of Phung et al. [42]. Unlike these works, Transcript simply wraps untrusted
code in a transaction, and does not modify it. These works also do not explicitly address
recovery.

Aspect-Oriented Policy Enforcement. Aspect-oriented programming (AOP) techniques
have previously been used to enforce cross-cutting security policies [17,10,16]. Among
the AOP-based frameworks for JavaScript [34,23], our work is most closely related
to Conscript [34], which uses runtime aspect-weaving to enforce policies on untrusted
guests. Both Conscript and Transcript require changes to the browser to support their
policy enforcement mechanisms. However, unlike Transcript, Conscript does not ad-
dress recovery from malicious guests, and also requires guests to be written in a subset
of JavaScript. While recovery may also be possible in hosts that use Conscript, the
hosts would have to encode these recovery policies explicitly. In contrast, hosts that use
Transcript can simply discard the speculative changes made by a policy-violating guest.

Browser-Based Sandboxing. Both BEEP [25] and MashupOS [45] enhance the browser
with new HTML constructs. BEEP’s constructs allow the browser to detect script-
injection attacks, while MashupOS provides sandboxing constructs to improve the se-
curity of client-side mashups. While Transcript requires modified <script> tags as well,
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it provides the ability to speculatively execute and observe the actions of untrusted code,
which neither BEEP nor MashupOS provide.

AdJail aims to protect hosts from malicious advertisements [26]. It confines adver-
tisements by executing them in a separate <iframe>, and uses postMessage to allow the
<iframe> to communicate with the host. Hosts use access control policies to determine
the set of DOM modifications allowed by an advertisement. AdJail is effective at confin-
ing advertisements, which cannot affect the host’s heap. However, it is unclear whether
this approach will work in scenarios where hosts and guests need to interact extensively,
e.g., in the case where the guest is a library that the host wishes to use. The forthcoming
EcmaScript 6 / Harmony modules [15] and HTML5 <iframe sandbox> attribute [24] also
enable new isolation mechanisms by constraining the way guest code interacts with the
host, but unlike Transcript they do not address recovery.

Sandboxing through Speculation. Blueprint [27] and Virtual Browser [11] confine
guests by setting up a virtual environment for their execution. This environment is it-
self written in JavaScript and parses HTML and script content, thereby mediating the
execution of guests on unmodified browsers. However, unlike Transcript, they do not
address recovery. Transcript is most closely related to Worlds [46] in its motivation to
provide first-class primitives that enable programmers to contain side-effects. However,
there are major design and implementation differences including Transcript’s ability to
enforce fine-grained security policies and its implementation in SpiderMonkey.

Using Transactions for Performance. Crom [35] applies speculation to event handlers
and takes non-speculative event handlers to create speculative versions, running them in
a cloned browser context. ParaScript [32] implements a selective checkpointing scheme
which avoids JavaScript constructs that allow code injection like document.write, inner-
HTML, etc., and stops speculation if checkpointing becomes expensive. Both, Crom
and ParaScript use speculation to improve performance. In contrast, Transcript ad-
dresses all scenarios in the design and implementation of a fully speculative JavaScript
engine and required several new contributions, such as the ability to suspend/resume
transactions and wrap event handlers.

8 Conclusion

Our research shows that extending JavaScript with support for transactions allows host-
ing Web applications to speculatively execute and enforce security policies on untrusted
guests. Speculative execution allows hosts to cleanly and easily recover from the effects
of malicious and misbehaving guests. In building Transcript, we made several contribu-
tions, including suspend/resume for JavaScript, support for speculative DOM updates,
and novel strategies to implement transactions in commodity JavaScript interpreters.
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A Non-tail-Recursive Interpreters

1 function f() { document.body.appendChild(...); }
2 var tx = transaction { f(); }
3 g(tx);

(a) Problematic code for an interpreter with non-tail
recursion.

call to JS interpret

Native (C++) stack

call to f

JavaScript stack

tx delimiter

main program

⎫
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(b) When the transaction suspends, the interpreter
removes activation records from the front of the
JavaScript stack, up to and including the (youngest)
transaction delimiter.

call to JS interpret

Native (C++) stack

call to g

JavaScript stack

main program

.

.

.
read set
write set

call to f

tx delimiter

⎧
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transaction
object

(c) Before resuming the transaction, the main pro-
gram may invoke other functions, say g.
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(d) When the transaction is resumed, its activation
records are reinstated onto the front of the JavaScript
stack.

call to JS interpret
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(e) If JS interpret were to implement JavaScript
function calls by calling itself recursively (as happens
in the implementation of certain constructs, such as
eval), an older call to JS interpret (the lower one in
this diagram) would need to return before a younger
one does. Control flow in C++ is not flexible enough
to enable this.

Fig. 14. Native versus JavaScript call stacks

A key challenge in enhancing a legacy
JavaScript interpreter, such as Spider-
Monkey, with support for transactions
is in how the interpreter uses recursion.
To support the suspend/resume mecha-
nism for switching control flow between
a transaction and its iblock, the inter-
preter must not accumulate any activa-
tion records in its native stack (e.g., the
C++ stack, for SpiderMonkey) between
when a transaction starts and when it sus-
pends. In particular, the interpreter must
not represent JavaScript function calls by
C++ function calls. The same issue also
arises when a compiler or JIT interpreter
is used to turn JavaScript code into ma-
chine code.

To illustrate this point, consider
SpiderMonkey, which implements the
bytecode interpreter in C++. The main
entry point to the bytecode interpreter
is the C++ function JS interpret, which
maintains the JavaScript stack as a linked
list of activation records, each of which
is a C++ structure. When one function
calls another in JavaScript, the JS inter-
pret function does not call itself in C++;
instead, it adds a new activation record
to the front of the linked list and con-
tinues with the same bytecode interpreter
loop as before. Similarly, when a func-
tion returns to another in JavaScript, JS -
interpret does not return in C++; instead,
it removes an old activation record from
the front of the linked list and continues
with the same bytecode interpreter loop
as before. For the most part, SpiderMon-
key does not represent JavaScript calls by
C++ calls.

The fact that SpiderMonkey does not
represent JavaScript calls by native calls
helps us add transactions to it without making invasive changes, as the following exam-
ple illustrates. Suppose a transaction invokes a function f that suspends for some reason,
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e.g., in Figure 14(a), the function f calls appendChild. If the C++ call to JS interpret that
executes the transaction were not same as the one that executes the called function f,
then the former, although older, would have to return before the latter returns. As de-
tailed in Figure 14, the former has to return when suspending the transaction, whereas
the latter has to return when resuming the transaction. Even exception handling in C++
does not allow such control flow.

Unfortunately, JS interpret in SpiderMonkey does call itself in a few situations. For
example, it handles the eval construct in this way, and the problem of the C++ stack in
Figure 14(e) does arise if we replace the document.body.appendChild(...) of Figure 14(a) by
eval("document.body.appendChild(...)"). One way to solve this problem requires applying
the continuation-passing-style transformation to the interpreter to put it into tail form,
i.e., convert all recursive calls to JS interpret to tail calls. However, this transformation
is invasive, especially if done manually on legacy interpreters.

Transcript uses a less invasive mechanism to enable suspend/resume in SpiderMon-
key. This mechanism is similar in functionality to gluing (see Section 3.1), and we ex-
plain it with an example. Consider the eval construct, whose functionality is to parse its
input string, compile it into bytecode, and then execute the bytecode as usual. Because
only the last step, i.e., that of executing the bytecode, can suspend, we simply changed
the behavior of eval so that, if invoked inside a transaction, it suspends the transaction
right away. The iblock of the transaction can then compile the string into bytecode and
include the bytecode into the execution of the transaction. This is achieved by adding
a new activation record to the front of the transaction’s JavaScript stack and modi-
fying the program counter to execute this code when the transaction resumes. When
the suspended transaction resumes, it transfers control to the evaled code, which can
freely suspend. Besides eval, our current Transcript prototype also implements gluing
for document.write (as discussed in Section 3.1) and JavaScript builtins call and apply,
which make non-tail recursive calls to JS interpret.




