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Abstract. Sessional dataflow provides a compositional semantics for dataflow
computations that can be scheduled at compile-time. The interesting issues arise
in enforcing static flow requirements in the composition of actors, ensuring that
input and output rates of actors on related channels match, and that cycles in
the composition of actors do not introduce deadlock. The former is ensured by
flowstates, a form of behavior type that constrains the firing behavior of dataflow
actors. The latter is ensured by causalities, a form of constraints that record de-
pendencies in the firing behavior. This article considers an example variant of the
sessional dataflow approach for dataflow applications, expressing known ideas
from signal processing in a compositional fashion.

1 Introduction

Dataflow has an honored tradition in declarative parallel programming [12,10]. It has
renewed significance today, given the importance attached to deterministic parallelism
as a way of coping with the challenges of scalable parallel programming. Many of the
applications of parallel processing are in stream processing, e.g., streaming multimedia
data, again motivating interest in dataflow processing. Part of the challenge of dataflow
processing is in scheduling the execution of dataflow graphs without unbounded buffer-
ing of data between actors in the net. In signal processing, synchronous dataflow has
enjoyed some success for multi-rate applications, with many variations of the basic idea
developed over the years [13].

The purpose of sessional dataflow is to provide a compositional semantics for dataflow
computations that can be scheduled at compile-time. To explain why compositionality
is important, in synchronous dataflow and its variants, a dataflow graph is described
in terms of atomic actors, and flow edges connecting them. A compositional seman-
tics allows both atomic actors, and subnets resulting from the composition of actors,
to be viewed uniformly as dataflow actors. Compositionality is obviously important for
scaling dataflow programming. The interesting issues arise in enforcing static flow re-
quirements in the composition of actors, ensuring that input and output rates of actors
on related channels match, and that cycles in the composition of actors do not introduce
deadlock. Ultimately the purpose of sessional dataflow is to support dynamic opera-
tions on subnets, including update and reconfiguration, while ensuring that assumptions
underlying static scheduling are not violated by these operations.
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In the embedded systems and digital signal processing community, a very useful
class of restricted Kahn networks has been identified, the so-called synchronous dataflow
(SDF) [13] networks. SDF networks assumed fixed static input and output rates for
actors when they fire in a dataflow network. Such networks are important because
they can be scheduled statically by the compiler, ensuring a fixed upper bound on the
amount of buffer space needed. Numerous extensions of SDF have been defined over the
years, all pushing the envelope of expressivity while remaining in the space of dataflow
applications that can be scheduled statically.

More recently, new domain-specific languages such as Streamit [16] have been de-
fined, based on the principles of SDF, but also providing support for compiling pro-
grammer code to run on modern parallel architectures. Streamit is a dataflow language
intended for the efficient compilation of stream processing programs. Its design ra-
tionale is that of structured dataflow. Rather than allowing arbitrary dataflow graphs,
Streamit imposes structure on the graph, in order to facilitate compiler analysis and
optimization. This is enforced by only supporting certain forms of nodes in a dataflow
graph.

In this work, we consider another form of dataflow language. We go back to Kahn’s
original idea, of a dataflow network consisting of a collection of software components
that communicate asynchronously via buffered message-passing. Deterministic paral-
lelism is provided by preventing contention for message channels, and by preventing
components from polling message channels. As with Kahn’s original proposal, our core
language is a conventional imperative language. We impose a type system on this lan-
guage that ensures the static behavior required for compile-time scheduling, as with
SDF. This allows the incremental construction of dataflow graphs as composite ac-
tors, based on connecting input and output channels in two graphs (that may be the
same graph). There are two components to the compositional description: a notion of
flowstate, analogous to typestate in object-oriented languages, that captures the static
message-passing behavior of a process, and a notion of causalities, that allows the
liveness of a dataflow graph to be checked compositionally even while channels are
encapsulating in composite graphs.

In Sect. 2 we introduce sessional dataflow with the interface and implementation
specification for a simple (atomic) actor. This relates the constraints on actor behav-
ior reflected in an actor interface, with the actual internal implementation of the actor
that is encapsulated by this interface. These two are not traditionally related in work on
synchronous dataflow and its derivative techniques, where actors are treated as “black
boxes” and the actor code left unanalyzed. In Sect. 3 we consider a compositional ap-
proach to building actor implementations, based on binding communication channels
between two existing actors. As an exercise in statically ensuring that the composition
of actors is well-formed, we require that the result of composing actors into a dataflow
net, effectively a composite actor, be statically schedulable. We provide a type system
in Sect. 4 and an operational semantics in Sect. 5. Sect. 6 considers related work, while
Sect. 7 provides our conclusions.
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2 Actors

In this section, we provide an example of a form of static dataflow that has been found
useful for parallel processing in signal processing and embedded systems. So-called
synchronous dataflow (SDF), more aptly named static dataflow, assumes that on each
actor “firing,” a statically fixed number of inputs is consumed on each input channel and
a statically fixed number of outputs is produced on each output channel. With this re-
striction on a fixed number inputs and outputs for each firing, and a further requirement
that there be no cyclic data dependencies in the graph connecting the actros, the schedul-
ing of a synchronous dataflow net can be performed by the compiler. All scheduling
decisions, and the amount of buffer space required, are determined at compile-time.

An actor specification needs a few other aspects to be defined. Although firing is
atomic in SDF, our semantics for firing is implemented in a C-like core language, that
consumes and produces messages one at a time. For modeling the states of an actor,
we use the notion of flowstate, that tracks the state of an actor during a firing cycle. In
addition, we need a specification of the input and output channels of an actor, that will
subsequently be coupled with channels for other actors to form a dataflow network. An
example of a specification for an actor in our type system is provided by the following:

actor interface IActor

{
in channel<float> a;

in channel<float> b;

out channel<float> c;

causality a < c, b< c;

flowstate 3’a, b, 2’c.

}
This is the expression of an actor type in our system. The type specifies input and out-
put communication channels, and allowable communications on those channels using a
flowstate specification. The flowstate rule in the example above requires that the actor
consume three inputs on the a channel and one input on the b channel, and produces two
outputs on the c channel. In what order should these inputs and outputs be performed? It
is tempting to restrict firings so that all inputs are consumed before any outputs are pro-
duced, but once we compose actors into composite actors (dataflow nets), it is no longer
possible to ensure this. Even if we restricted actors to only inputs or only outputs, but
not a mixture of the two, we could still have scenarios where the consumption of an
input in one actor depended on the production of an output in another actor. Therefore
we must allow for aribtirary interleavings of inputs and outputs, while avoiding dead-
lock where for example an output channel and input channel are linked to the same
underlying channel.

Therefore we enrich actor interfaces with a notion of causalities. This is demon-
strated in the example above, where the causalities specify that outputs on channel c
depend causally on inputs on channel a and on channel b (a< c and b< c). The exact
number of inputs is provided by the multiplicities in the flowstate.

Why provide the causalities, since in this example all of the outputs depend on all
of the inputs? This will be true in general for simple atomic actors, but may not be
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true once we compose actors into nets of arbitrary complexity, with subnets running in
parallel. The causalities are then useful to ensure that connecting an input and an output
channel in such a composite actor does not introduce deadlock in the execution of the
dataflow graph.

(a) Composite Actor with Internal Parallelism

(b) Composite Actor with Input depending on
Output

Fig. 1. Sequential and Parallel Inputs

Fig. 1(a) and Fig. 1(b) demonstrate two composite actors. Fig. 1(a) provides a com-
posite actor where two actors on the left consume inputs in parallel, and these are then
consumed in a particular order by the actor on the right. We define causalities to reflect
the fact that message sending is asynchronous, so in some sense the outputs of an actor,
once their causally preceding input events occur, may occur in an indeterminate order.
Fig. 1(b) provides another composite actor, one where the output on channel c must
causally precede the input on channel a, since the output on internal channel d causally
precedes the input on internal channel a. Outputs are parallel despite the fact that they
are produced by a single sequential thread.

Our actor semantics is effectively a limited form of cyclostatic dataflow [2]. In the
latter, an actor has a finite state control logic, and transitions between states of this logic
on each firing. Its firing pattern then depends on the current state that it is in. Because we
are providing specifications for input consumption and output production at the level of
individual communication steps, the semantics of a “firing” in the traditional SDF sense
is non-atomic, and we are essentially tracking a finite state control logic in the process
of a firing. We consider how the language can be extended to cyclostatic firing at the
end of Sect. 4.
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The specifications of the input-output behavior make no reference to the actual values
that are transmitted. For simplicity we have assumed that the channel types are fixed,
so that only values of the declared type may be transmitted on a channel. In practice
it may be beneficial to relax this restriction, though we defer these considerations to
future work. We comment further on this and other future extensions in Sect. 6.

An implementation of this actor specification uses a conventional programming lan-
guage to define the actor behavior, in the style of Kahn’s original proposal for dataflow
networks:

actor Actor implements IActor

{
float x1, x2, x3, y1;

loop {
x1 = a↓; x2 = a↓; x3 = a↓; y1 = b↓;
c ↑ (x1+x2); c ↑ (y1+x3);

}
}
The definition of the actor implementation inherits the interface specification: input and
output channels, causalities and flowstates. The operation for reading from an input
channel c is denoted by c↓, while the operation of writing a value (asynchronously)
to an output channel is denoted by c ↑ v. The body of the actor is otherwise conven-
tional C code, except for the top-level loop construct that guarantees the actor is always
able to offer the specified firing behavior. The flowstate in the actor specification estab-
lishes behavior obligations for its execution, subject to the constraints imposed by the
causalities.

(a) Feedback Loop Requiring
a Delay

(b) Feedback Loop Not Re-
quiring a Delay

Fig. 2. Causality and Feedback

Fig. 2 clarifies the point of the causalities. In general the issue is to detect when con-
necting two open channels in the same actor may introduce a cycle in the dependencies
between the channels. To avoid this cycle which woud lead to deadlock, the connection
of the channels is required to introduce a “delay,” by filling the buffer for the channel
with default initial values. Fig. 2(a) illustrates this, where the single output channel of
an actor is connected to its input channel. The actor first reads from the input channel
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a, before outputing to the output channel b. Note that we do not try to track data flow
dependencies, our interest is in the control flow dependency from the consumption of
input on a to the production of output on b. Suppose these two open channels are con-
nected to the same shared channel, We assume an obvious causality from the output
end of a shared channel to the input end, so this binding will introduce the causality
b < a. This will introduce a cycle in the causalities, which we cannot allow. Therefore
in this case the connection of two channels a and b on the same underlying channel
must include a delay, as indicated by the diamond in Fig. 2(a).

In the example in Fig. 2(b), on the other hand, the appending of data to the output
buffer is done before input is performed. This results in the causality b< a for the actor
body. This does not necessarily mean that data flows from the output event to the input
event, but there is at least a causal dependency, in that the occurrence of the output event
is a prerequisite for the occurrence of the input event. When these input and output open
channels are connected using the same shared input channel, then the output produced
on the output channel does indeed propagate to the input channel to be consumed, but
this is immaterial as far as scheduling is concerned, since communication is strictly
internal to the actor. The causality b < a that is added as a result of this binding of
channels b and a adds no further constraints, since there is already a dependency from
b to a, and no scheduling cycle is introduced, so a delay is not necessary.

3 Dataflow Nets

In the previous section, we considered the “programming-in-the-small” aspects of en-
suring that an actor satisfied its behavior specification. In this section, we consider
the “programming-in-the-large” aspect of ensuring that the composition of actors is
in some sense well-formed. We consider the case of ensuring that the composition of
synchronous dataflow actors is schedulable, based on the static firing rates of the actors.

In general, the approach to composition of actors is to provide a binary connection
operation for linking the output data channel on one actor with the input data channel
of another. We denote this operation by connect(A.a,B.b). Here it is important to
distinguish between open channels and shared channels. An open channel is one of the
form described in the previous section, a channel that is declared in an actor interface,
and referred to in an actor body by operations for consuming messages and appending
messages to message buffers.

For deterministic semantics, it is important that there be no nondeterministic con-
tention for access to a channel. For example, a nondeterministic merge might be pro-
vided by allowing multiple actors to send simultaneously to the same merge channel.
Synchronization on access to the channel, performed by the compiler and runtime sys-
tem, could ensure that the message append operations are atomic. However the order in
which messages are appended would be nondeterministic, based on dynamic schedul-
ing of actors and interleaving of their multithreaded executions. While nondeterminis-
tic merge is a useful operation in some cases, our intention is to establish a baseline
that ensures deterministic execution, before considering later how to extend this with
nondeterminism.
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(a) Initial net (b) After combining A1.c1
and A3.a3

(c) After combining A2.a2
and A1.a1

(d) After combining A2.b2
and A4.a4

(e) After combining A3.b3
and A4.c4

(f) After combining A4.b4
and A1.b1,

Fig. 3. Dataflow nets

Our approach is to ensure exclusive access to a communication channel between
two actors, the one actor sending on that channel and the other actor receiving on that
channel. The connection operation connect(A.a,B.b) creates a new private commu-
nication channel, binds the a output channel on the A actor to the output part of this
new private channel, and binds the b input channel on the B actor to the input part of
this new private channel. We refer to such a private channel as a shared channel. Since
(for now) we provide no way for an actor to send any of its communication channels to
another actor, exclusive access by a pair of actors to a shared channel is ensured.1

What is the result of connecting actors? The semantics should be compositional, so
that the connection of two actors should be indistinguishable to outside observers from
a single actor. For synchronous dataflow, the only part of the outside interface of note
for a combined actor is the remaining open channels after a connection, and the firing
rates for those channels.

A type system for interconnection should guarantee that the actors being combined
are in some sense compatible, so that the resulting actor is statically schedulable. The
firing rates for actors that are interconnected may be different on the channel on which
they are connected. The purpose of static scheduling is to match the relative input
and output rates of communicating actors during execution. For connection of distinct

1 Actor interfaces include polarity information about access to channels, and the connection
operation requires that the accesses by the actors be complementary. It is indeed possible that
the actors being connected are the same. The connection operation requires knowledge of when
it is the case that the same actors are being connected, as we will see.
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actors, it is always the case that their firing rates are compatible: Simply adjust their
relative firing rates so that, on the connecting channel, their rates are the least common
multiple of the original rates on that channel.

Fig. 3(a) depicts four characters: A1, A2, A3 and A4. Each of these actors has open
channels with firing rates. For example, actor A1 has open channel a1 with firing rate 1,
open channel b1 with firing rate 2, and open channel c1 with firing rate 4. The names
of these channels outside the actor are not significant, and we assume for simplicity that
all channels are renamed apart.

In Fig. 3(b), the actors A1 and A3 are connected by binding the open channels A1.c1
and A3.a3 along an anonymous shared channel. Since the output rate of A1 does not
match the input firing rate of A3, we adjust the firing rates of the two actors to make them
compatible. The connection of an output channel of A1 to the input channel of A3 causes
the addition of the causality c1< a3. Although a3 is elided in the resulting interface
(since it has been bound to the output end of a communication channel), transitive
closure of causalities adds the constraint b1< b3 (from b1< a3 and a3< b3).

Fig. 3(c) depicts the result of connecting the composite actor connect(A1.c1,A3.a3)
with the actor A2, by binding the open channels connect(A1.c1,A3.a3).a1and A2.a2
to a shared channel. In this case, the data rates of the actors on the respective open
channels match, so no adjustment of firing rates is necessary.

Fig. 3(d) depicts the result of connecting the composite actor from Fig. 3(c) with
the actor A4. This connection is done on the b2 and a4 open channels. Because of the
difference in data rates, the firing rates for A4 must be adjusted

At this point, we have only one (composite) actor, with some remaining open chan-
nels. We now complete the net by connecting different channels within the same actor.
Fig. 3(e) depicts the result of connecting the b3 and c4 channels on this composite
actor.

This actor can be completed by forming a feedback loop by connecting the output of
the b4 channel to the input of the b1 channel. The types, and in particular the inclusion
b4< 24, reveals the existing data dependency from the output channel b4 to the input
channel b1. This data dependency, revealed in the inclusion constraint in the interface,
signals that linking the output channel to the input channel will in this case introduce a
feedback loop. In order to ensure that the resulting net does not deadlock, a delay must
be introduced in this new channel connection, as depicted by the diamond in Fig. 3(f).

What could possibly go wrong? Fig. 4 demonstrates how the checking during the
composition of actors may fail. We have three actors, B1, B2 and B3, with data rates
as described in Fig. 4(a). We compose B1 and B2 by binding the channels B1.a1 and
B2.a2 to a shared channel, adjusting the firing rates as necessary to make their data
rates on the shared channel match. We repeat this exercise by composing the resultant
composite actor with B3, binding the b1 and a3 channels to a shared channel. At this
point, there is a problem: It is not possible to bind the remaining open channels b2 and
b3 to each other, because they have different data rates.

To analyse the problem, we note that in general the scheduling of SDF actors can be
thought of as the solution of a homogeneous system of linear equations. The indepen-
dent variables in this system of equations are the number of times each actor fires on an
iteration of the dataflow net, and the equations specify the constraint that the amount of



492 D. Duggan and J. Yao

(a) Initial net (b) After combining B1.c1 and B2.a2.a3

(c) After combining B1.b1 and B3.a3 (d) Attempting to combine B2.b2 and B3.b3

Fig. 4. Unschedulable dataflow net

outputs produced by each actor must match the number of inputs consumed, on each net
iteration. If this constraint is not satisfied, then some message buffers will grow without
bound during the execution of the net.

For the example above, we obtain the following system of equations, where FBi

denotes the number of firings of actor Bi on each iteration of the net:

2 ·FB2− 3 ·FB1 = 0

2 ·FB3− 3 ·FB2 = 0

FB3− 2 ·FB1 = 0

Solving for the independent variables by eliminating FB3, we obtain the equation:

3 ·FB2− 4 ·FB1 = 0

Then using this and the first of the original equations to eliminate FB2, we obtain the
equation:

9 ·FB1− 8 ·FB1 = 0

The only solution to this equation is to fire B1, and therefore the other actors, zero
times, i.e., to never run the dataflow net. This demonstrates the importance of being
able to distinguish the cases when we are combining two distinct actors, and when we
are connecting two open channels in the same actor. In the former case, when the actors
are distinct, we can adjust the actors’ firing rates so that the data rates on the connecting
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channel are the least common multiple of the data rates on the corresponding open
channels in the actors. In the latter case, when we are connecting channels on the same
actor, the data rates must match on the corresponding open channels. If they do not,
we do not have the extra degree of freedom that we have with distinct actors to adjust
firing rates. Indeed, discovering different data rates on the channels is an important part
of ensuring, at composition time, that we do not compose two actors into a composite
actor (i.e., a dataflow net) that cannot be scheduled.

Variable aliasing is a potentially troublesome issue, for two reasons. First, commu-
nication on a channel changes the type of that channel, since the channel type reflects
the communications that may be performed on that channel. we avoid the problem of
variable aliasing by not allowing aliased references to communication channels. This is
compatible with approaches such as for example session types that similarly constrain
the bindings of variables to resources whose usage is tracked by linear or affine types.

A second potentially troublesome issue is with the connection of actors. As we have
seen, connecting different actors provides a degree of freedom in adjusting the firing
rates of the actors so that they match on the channels on which they are connrected. If
we allow aliasing of actor references, then we must face the issue of how to deal with
scenarios such as the following:

IActor2 f (IActor A, IActor B)

return connect(A.a,B.b);
}
How can we prevent a scenario such as f(A0,A0), for some actor A0 that implements
the IActor specification? This is a known issue in type systems for safe resource man-
agement, as discussed in Sect. 6. In our semantics, we avoid this issue because the
connect operation makes copies of the two actors being composed. This is a potentially
expensive operation, and a better choice of operations might split this into a connection
operation that performed update in place on the argument actor specifications, and an
explicit clone operation for explicitly making a copy of an actor. This choice however
makes the actor connection operation a “strong update,” modifying the interface of the
original actor, which in turn requires ensuring that there be no references to the original
actor remaining in the program (including aliases). Our copying semantics avoids this
complication.

4 Type System

In this section we consider a core language to support the examples in the previous
sections, including a type system to ensure valid program executions. We consider an
operational semantics and type soundness in the next section. We name this kernel lan-
guage SSDF. We only consider synchronous dataflow in this account, but we comment
on the extension to the cyclostatic case at the end of this section.

The syntax of types is provided in Fig. 5. For simplicity we assume a single base type
of float, for floating point values. Similarly we assume that only floating point values
are exchanged between actors in each message exchange, so the channel type does not
need to describe the type of data exchanged on the channel. Although the polyadic pi-
calculus generalizes messages to include tuples of values, this is not necessary in our
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T ∈ Type ::= float | AS | channel π
AS ∈ Actor sig ::= actsig(O,FS)

K ∈ Causalities ::= {} | {a < b} | K1 ∪K2
O ∈ Open channels ::= {} | O1∪O2 | {((c,c) : channel π)}

π ∈ Polarity ::= + | - | ±
ES ∈ Event set ::= {} | {n ·a} | ES1 $ES2
FS ∈ Flowstate ::= ES | {FS | K} | (FS1;FS2) | (FS1 ‖ FS2) | FS∗ | FSω

Fig. 5. Abstract syntax of SSDF Types

current framework because channels are private to a single sender and receiver. We do
record polarity information for a channel, which records whether it can be used by that
actor for input (polarity +), or for output (polarity -), or both (polarity ±).

The type of interest is that of actors. An actor signature has three parts, as we have
seen:

1. A causality set K is a set of causality constraints between channels, of the form a <
b, that reflects firing constraints between channels: If a < b, then in a firing of the
actor or dataflow net, a communication on b depends on a communication on a. For
simplicity, we assume that all communications on b depend on all communications
on a. This set of dependencies must never contain a cycle.

2. A set of open channels O. Each element of this set is a triple ((c,c) : T ), recording
for an “open” channel its channel type. This channel type has the form channel π ,
where T is the type of data transmitted on the channel (we only allows floats to be
transmitted in this article), and π is the polarity of the open channel. The channel
has two names: its internal name c by which it is identified internally in the ac-
tor, and its external name c by which it is referenced when composing with other
actors. We distinguish these names in order to allow renaming apart of internal
channel names when actors are composed, without affecting the external interface.
The internal and external names in different open channel bindings should obvi-
ously be distinct from each other. We define the domain of an open channel set
as:

dom(O) = {c | ((c,c) : T ) ∈O}.
We define the external domain of an open channel set as:

edom(O) = {c | ((c,c) : T ) ∈ O}.
3. The flowstate of an actor records its expected firing behavior. The primitive form

of an actor flowstate is an event state, a multiset of communication events {m1 ·
a1, . . . ,mk · ak}, where each ai represents a communication event, either a sending
of a message on a channel or a receipt of a message on a channel. In either case, we
use the channel name to denote the event; whether it is an input or an output event
can be determined by the channel’s polarity. The multiplicities m1, . . . ,mk record
the number of occurrences of each event in an actor execution. The remaining forms
of flowstate are used to describe the flowstate resulting from joining computations,
either sequentially (FS1;FS2) or in parallel (FS1 ‖ FS2). Note that in the latter case
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there may be communication dependencies between the actors running in parallel.
The other forms of flowstates are for computations that can repeat an arbitrary
number of times (FS∗) and that loop infinitely often (FSω ). The latter corresponds
to the top-level flowstate of an actor, primitive or composite.

v ∈ Values ::= n | a | x
s ∈ Statement ::= (var x = e; s) Bind variables

| if (v) s1; else s2 Conditional
| while (v) s Loop
| loop s Infinite loop
| fireK s Firing
| skip Do nothing
| (s1;s2) Sequential

e ∈ Expression ::= f (v1, . . . ,vk) Builtin
| v1 = v2 Assignment
| run v Run a network
| c ↓ Receive a message
| c ↑ v Send a message
| actor(O,s) Atomic actor
| connectm,n(v1.c1,v2.c2) Connect two actors
| connectSelfm(v1.c1,v1.c2) Connect within an actor
| connectSelfDelaym(v1.c1,v1.c2) Connect with delay

Fig. 6. Abstract syntax of SSDF statements

Fig. 6 provides the abstract syntax for programs in SSDF. Values are numbers n,
names a (for actors and channels, both allocated on the heap), and variables x. The syn-
tax of statements includes a conditional2, while loops, and a construct for doing nothing.
We also have a construct (fire) for explicitly specifying the firing behavior of an actor
body. The construct of interest is the binding statement, which introduces a new vari-
able bound to the result of evaluating a definition. Some of the definitional expressions
return a dummy value (the number 0). In these cases, the variable binding expression
is used solely to sequence the computation. Why do we also include the sequencing
of statements? Our expressional language is in A-normal form, but we have constructs
such as the while loop and the conditional that do not fit the definition of an execution
step in A-normal form. If we convert this language, both expressions and statements,
into A-normal form, we obtain an exponential blow-up in code size unless we resid-
ualize the continuation of a conditional. We avoid these complications by including
sequencing of statements.

The simplest form of definition is the invocation of builtin functions, presumably to
perform arithmetic operations on numeric values. We also allow assignment, though
only for values of base type, i.e., floating point values, because of the aliasing issue
described in Sect. 3. As expected, we also have operations for receiving and sending
messages.

2 We are assuming that our language has no round-off error. Obviously a more complete lan-
guage definition would include integers and Booleans.
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�Σ {} ok
ENV EMPTY �Σ Γ ok Γ �Σ T

�Σ Γ ,x : T ok
ENV EXTEND

�Σ Γ ok

Γ �Σ n : float
CONST

�Σ Γ ok (x : T ) ∈ Γ
Γ �Σ x : T VAR

�Σ Γ ok (a : T ) ∈ Γ
Γ �Σ a : T NAME

Γ ,K �Σ e : T : FS1 x /∈ dom(Γ ) (Γ ∪{(x : T )}),K �Σ s : FS2

Γ ,K �Σ (var x = e;s) : (FS1;FS2)
BIND

�Σ Γ ok

Γ ,K �Σ skip : {} SKIP
Γ �Σ v : float Γ ,K �Σ s1 : FS Γ ,K �Σ s2 : FS

Γ ,K �Σ (if (v) s1; else s2) : FS
IF

Γ �Σ v : float Γ ,K �Σ s : FS
Γ ,K �Σ (while (v) s) : FS∗ WHILE

Γ ,K �Σ s : FS
Γ ,K �Σ (loop s) : FSω LOOP

Γ ,K �Σ s : FS
Γ ,{} �Σ (fireK s) : {FS | K} FIRE

( f :
−−→
float → float) ∈ Σ

−−−−−−−−−→
Γ �Σ vk : float

Γ ,K �Σ f (v1, . . . ,vk) : float : {} BUILTIN

v1 ∈ {x, l} Γ �Σ v1 : float Γ �Σ v2 : float

Γ ,K �Σ v1 = v2 : float : {} ASSIGN

(c : channel π) ∈ Γ π ≤ - Γ �Σ v : float

Γ ,K �Σ c ↑ v : float : {1 · c} SEND
(c : channel π) ∈ Γ π ≤ +

Γ ,K �Σ c ↓: float : {1 · c} RECEIVE

Γ �Σ v : actsig({},FS)
Γ ,K �Σ run v : {} RUN

Γ ,K �Σ s1 : FS1 Γ ,K �Σ s2 : FS2

Γ ,K �Σ (s1;s2) : (FS1;FS2)
SEQ

Γ ,K �Σ s : FS0 Γ �Σ FS Γ ,K �Σ FS0 ∼= FS
Γ ,K �Σ s : FS

STMT EQ

Fig. 7. Type system

The next three definitions are for defining actors: the definition of an atomic actor,
and operations for connecting actors on complementary open channels, with and with-
out a delay. An atomic actor has a causality set, open channel set and flowstate specifi-
cation, as with actor signatures. In addition, the actor has a (single-threaded) actor body,
an expression that is constrained by the flowstate specification. The final definition re-
turns no values, but starts the asynchronous execution of an actor that has no remaining
open channels.

To describe a type system for this simple minilanguage, we add a type environment
Γ , described as follows:

Γ ::= {} | Γ1∪Γ2 | {(a : T )} | {(x : T )}
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Γ0 = {(c : T ) | ((c,c) : T ) ∈ O} Γ0,K0 �Σ s : FS

Γ ,K �Σ actor(O,s) : actsig(O,FS) : {} ACTOR

Γ �Σ vi : actsig(Oi,{ESi | K}ω )
dom(O1)∩dom(O2) = {} edom(O1)∩ edom(O2) = {} ((ci,ci) : Ti) ∈ Oi

m =| ES1 |c1 ,n =| ES2 |c2 , j ·m = k ·n = lcm(m,n)
K = (K1 ∪K2)\{c1,c2} O = (O1 ∪O2)\{c1,c2} π1 = +,π2 = -

FS = {(( j ·ES1 $ k ·ES2)\{c1,c2}) | K}ω

Γ ,K �Σ connectm,n(v1.c1,v2.c2) : actsig(O,FS) : {} CONN

Γ �Σ v : actsig(O,{ES | K}ω ) ((c1,c1) : T1),((c2,c2) : T2) ∈ O
K0 = K \{c1,c2} | ES |c1= m =| ES |c2 π1 = +,π2 = -

ES0 = ES\{c1,c2} O0 = O\{c1,c2} K,Γ �Σ c1 < c2

Γ ,K �Σ connectSelfm(v.c1,v.c2) : actsig(O0,{ES0 | K0}ω ) : {} CONN SELF

Γ �Σ v : actsig(O,{ES | K}ω ) ((c1,c1) : T1),((c2,c2) : T2) ∈ O
K0 = K \{c1,c2} | ES |c1= m =| ES |c2 π1 = +,π2 = -

ES0 = ES\{c1,c2} O0 = O\{c1,c2} K,Γ �Σ c1 < c2

Γ ,K �Σ connectSelfDelaym(v.c1,v.c2) : actsig(O0,{ES0 | K0}ω ) : {} CONN DELAY

Fig. 8. Actor type rules

The type environment is not treated linearly, since we are not tracking usage of re-
sources. We instead rely on matching a statement against a flowstate during type-
checking. We also rely on some other meta-notations:

1. The expression O \V denotes the removal of all bindings for channel names in V
from O:

O\V = {((c,c) : T ) ∈ O | c /∈V}.
We sometimes denote O\ {c} by O\ c.

2. For a set of causalities K, we denote the removal of all constraints involving chan-
nels in V by K \V . In other words, K \V = {(c1 < c2) ∈ K |V ∩{c1,c2}= {}}.

3. For event states, we denote a multiset by the set of elements with their multi-
plicities, so ES = {m1 · a1, . . . ,mk · ak} contains mi occurrences of ai (assuming
ai /∈ {a1, . . . ,ai−1,ai+1, . . . ,ak}). Denote the number of occurrences of ai in ES by |
ES |ai=mi, and say that c∈ES if and only if |ES |c> 0. The disjoint union ES1$ES2

adds the multiplicities of common elements, so | ES1$ES2 |c=| ES1 |c + | ES2 |c.
The expression ES \ {n · c} denotes the removal of n of occurrences of c from the
multiset ES, so | ES \ {n · c} |c= max(| ES |c −n,0). The expression n ·ES denotes
the multiplication of the multiplicities in ES by n: n ·ES = {n ·m ·a | m ·a ∈ ES}.

4. Finally we denote the projection of an event state onto the names that are in a set
of variables (typically the domain of a type environment) by:

ES[[V ]] = {(m · c) ∈ ES | c ∈V}.
The homomorphic extension of this to the projection of a flowstate is denoted by
FS[[V ]].
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π ≤ π ±≤ + ±≤ -

Γ � K ok (c1 < c2) ∈ K

Γ ,K �Σ c1 < c2
CAUS HYP

Γ ,K �Σ c1 < c2 Γ ,K �Σ c2 < c3

Γ ,K �Σ c1 < c3
CAUS TRANS

Fig. 9. Subtyping and subflow rules

The type system is formulated using judgements of the following forms:

�Σ Γ ok Environment
Γ �Σ T Type
Γ �Σ K Causal Set
Γ ,K �Σ a < b Causality
Γ �Σ v : T Value
Γ ,K �Σ e : T : FS Expression
Γ ,K �Σ s : FS Statement

The main type rules are provided in Fig. 7. The CONST, VAR and NAME rules are
used to type check values; variables and names should be bound in the environment
Γ . The skip construct has empty effect, while the conditional is required to have the
same effect in both branches of the conditional. There are two looping constructs. The
default rule, for while loops, has an iteration type FS∗. This may not be sufficient for
some circumstances, in particular for the top-level loop of an actor that is required to
always offer the specified behavior (after a complete firing). Therefore we provide an
additional loop construct, to separate loops in the type system that are guaranteed to
never terminate. While our type system sometimes requires infinite loops, it does not
attempt to prevent infinite loops, so it is possible for an actor network to fail to make
observable progress because an actor is stuck in an internal loop. The progress result for
the operational semantics guarantees that the network can always make progress, even
if this progress is just the iteration of an infinite loop without observable behavior.

For tracking flowstate, the key rule is the BIND rule, which evaluates an expression e,
and binds a new variable x to the result of this evaluation when evaluating the statement
s. Since the expression may include message sending or receiving, it has a flowstate that
is combined with the flowstate of the statement continuation.

The various forms of expressions are typed by the remaining rules in Fig. 7. The
BUILTIN rule type-checks a arithmetic expression resulting from the application of a
built-in function. The ASSIGN rule type-checks an assignment expression, which again
is restricted to primitive values of base type (i.e., float). The SEND and RECEIVE rules
type-check the message sending and receiving operations. The channel must have the
appropriate polarity in the environment, - for sending and + for receiving. The RUN

rule runs a dataflow network for which all open channels have been resolved. The return
value is a dummy value. The dataflow network operates asynchronously with the parent
network.
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The STMT EQ rule allows the flowstate for a statement to be replaced with a flowstate
that is provably equal to it. We define the notion of equality between flowstates in the
next section, defining it as a bisimulation between flowstate computations.

The difficult rules are those for connecting actors together into composite actors.
These rules are provided in Fig. 8, where the rules for actor expressions are provided.
The ACTOR rule type checks an atomic actor expression, checking the body of the actor
in an environment binding the open channels with the appropriate polarities. The CONN

rule handles the case where two different actors are being connected. As we have seen,
it is because of this rule, and the difficulties with aliasing, that we do not allow actor
references to be copied in this language. The rule requires that the open channel names
in the two actors are distinct. In practice it would obviously be useful to have a way
to rename these when necessary, but it is not essential for the current account. The
top-level flowstate is required to be an infinite loop type for each actor, and the new
flowstate results from a merging of these infinite loop types, removing all references to
the open channels on which the actors are being linked. These channel names are also
removed from the open channel set for the resulting combination.

The CONN SELF and CONN DELAY rules handle the linking of two open channels in
the same actor. The first of these handles the case where the addition of the new binding
does not introduce a feedback loop, as reflected by the causality rules that require the
data paths in elided channels within the actor. The second of these two rules handles the
case where the linking would result in a feedback loop, and therefore fills the buffer for
the private channel linking the open channels to introduce a delay in firing.

Our language is essentially synchronous data flow, however its generalization to
cyclostatic is straightforward. We restrict the flowstate of an actor to have the form
{FS | K}ω . To extend this to cyclostatic behavior, we generalize the form of the body
({FS1 | K1}; . . . ;{FSm | Km})ω . The main complication is in the type rules for connect-
ing actors, and we eschew the details in this account.

5 Semantics

In this section, we consider an operational semantics for the language described in the
previous section. We provide a heap-based semantics that binds three kinds of values
on the heap:

1. Values n of base type, i.e., of type float. Every variable of type float is assumed to
be mutable, therefore we bind such variables to locations l that point to their heap
binding.

2. Actor values A, which may be either atomic or composite, resulting from allocating
atomic actors and then connecting them together on open channels. We extend ac-
tors with shared channel bindings S, containing bindings of the form (c : (k,m,T )).
An atomic actor is a special case of a composite actor:

actor(O,s) ≡ actor(O,{},s)

That is, an atomic actor has no shared channels, only open channels, and a single
thread.
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T ∈ Type ::= [T ]k
S ∈ Shared Channels ::= {} | {(c : (k,n,T ))} | S∪S

H ∈ Heap ::= ε | l �→ n | a �→ A | c �→ B | H1 $H2

HT ∈ Heap Type ::= ε | l : float | a : AS | c : channel π | HT1$HT2

A ∈ Actor ::= actor(O,S,P)

P ∈ Process ::= stop | FS | (P1 | P2)

B ∈ Buffer ::= εk | [v]k | B1@kB2

C ∈ Configuration ::= (e,H) | (s,H) | (P,H)

Fig. 10. Syntax of configurations

3. Message buffers B, which hold the values transmitted between actors on shared
channels. A message buffer is simply a sequence, ensuring FIFO delivery, where
@k is the operation for appending buffers. We assume that buffers have bounded
size, provided by a parameter k in the constructors and in the buffer type; the con-
structor operations are undefined for the case where the resulting buffer is larger
than the maximum size. We denote the number of items in a buffer by | B |, and the
maximum size of a buffer by size(B). We write [v1,v2, . . . ,vm]k as an abbreviation
for [v1]k@k[v2]k@k. . .@k[vm]k, where m≤ k. We use v ::k B to denote [v]k@kB. We
use [T ]k to denote the type of a buffer that contains values of type T . These buffer
types are not first class, since buffers are handled by the compiler. Furthermore for
simplicity we restrict the contents of buffers to be floating point values, so T = float
for any buffer type [T ]k.

To describe the operational semantics, we generalize the form of an actor, as described
in Fig. 10. An open channel always has polarity of + or -, reflecting the fact that it
is a uniplex channel. When two such shared channels are bound to the endpoints of a
shared channel, the latter has polarity ±. For open channels, we use the channel names
as representatives of events, since an open channel is either input or output, but not
both. When we instantiate open channels to shared channels, we need to distinguish the
sending and receiving ends of the shared channel, for dependency checking purposes,
since we need to distinguish sending and receiving events on that channel. We assume
a naming convention where, for any shared channel c, there are distinguished names c+

and c− for the receiving and sending parts, respectively, of that channel. The receiving
end c+ of a shared channel has polarity +, while the sending end c− has polarity -

(while the channel c itself has polarity ±). Whereas open channels have environment
bindings of the form (c : channel +) and (c : channel -), a shared channel binding has
the form (c : (k,n,channel ±)), that also implicitly binds the names c+ and c− for the
two ends of the channel. The parameter k denotes the maximum size required of the
corresponding buffer, while the parameter n denotes that a delay must be introduced in
the channel for a buffer, by initializing that buffer with n default values (either n = k or
n = 0). We denote the operation of adjusting these parameters, as a result of connecting
two actors and adjusting their firing rates, by:
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j ·S = {(c : ( j · k, j ·n,T )) | (c : (k,n,T )) ∈ S}.

In addition to the set of open channels O in an actor interface, we now also have a set
of shared channels S. We associate with each shared channel in S a number that is the
number of initial values to be inserted into a buffer when it is created. When this value
is non-zero, the buffer is required to provide a delay in the firing semantics.

The other extension to an actor expression is that the body is generalized from a
single thread to multiple threads, arising from the linking of actors together into a com-
posite actor or dataflow network. The body of a composite actor is the parallel compo-
sition of a collection of single-threaded actor bodies, where each body has the flowstate
specification given by the original atomic actor expression. The one change is that open
channels in the original flowstate constraint will have been replaced by an endpoint of
a shared channel, as a result of connecting that actor with another actor. By the time
a dataflow network runs, all channel names in flowstates will have been replaced by
shared channel endpoints. A configuration of the operational semantics is simply a par-
allel composition of threads paired with a global heap. This heap is actually partitioned
between the different dataflow nets that are running.

In order to reason about correctness, we define typing relations for heaps and pro-
cesses, using judgements of the form:

Γ �Σ H : HT Heap
Γ �Σ P : FS Process
Γ �Σ B : [T ]k Buffer
Γ �Σ A : AS Actor

This last judgement just checks for well-formedness of the channel flow constraints in
an actor. The channels named in the constraints should be bound in the type environment
(obtained from the open channels in the case of an actor signature, and from the open
and shared channels in the case of an actor expression). The type rules are provided in
Fig. 11. In the ACTOR rule for typing actor bodies, the closure operation C (K) forms
the transitive closure of a set of causality constraints.

For evaluating expressions, mutable base type variables are bound to locations l,
and these must be dereferenced. This dereferencing is performed by the operation of
applying the heap to a value, H(v), defined by:

H(l) = n if l �→ n ∈H

H(a) = A if a �→ A ∈ H

H(c) = B if c �→ B ∈H

H(v) = v otherwise

For built-in functions, we assume a family of total functions {eval f } f for the functions
defined in the signature Σ .
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�Σ Γ ok

Γ �Σ stop : {} PROC STOP

Γ ,{} �Σ s : FS

Γ �Σ s : FS
PROC STMT

Γ �Σ P1 : FS1 Γ �Σ P2 : FS2

Γ �Σ (P1 | P2) : FS1 ‖ FS2
PROC PAR

K′ ⊇ K ∩ fn(FS) Γ �Σ P : {FS | K}
Γ �Σ P : {FS | K} PROC CAUSE

�Σ Γ ok

Γ �Σ εk : [T ]k
BUFF EMPTY

Γ �Σ v : T

Γ �Σ [v]k : [T ]k
BUFF CELL

Γ �Σ B1 : [T ]k Γ �Σ B2 : [T ]k
Γ �Σ B1@kB2 : [T ]k

BUFF JOIN

�Σ Γ ok

Γ �Σ ε : ε HEAP EMPTY

Γ �Σ n : float

Γ �Σ (l �→ n) : (l : float)
HEAP FLOAT

T = float Γ �Σ B : [T ]k
Γ �Σ (c �→ B) : (c : [T ]k)

HEAP BUFFER

Γ �Σ A : AS

Γ �Σ (a �→ A) : (a : AS)
HEAP ACTOR

Γ �Σ H1 : HT1 Γ �Σ H2 : HT2

Γ �Σ H1$H2 : HT1 $HT2
HEAP JOIN

Γ0 = {(c : T ) | ((c,c) : T ) ∈ O} Γ1 = {(c : T ) | (c : (k,n,T )) ∈ S}
dom(Γ0)∩dom(Γ1) = {} Γ0∪Γ1 �Σ P : FS FS0 = FS[[dom(Γ0)]]

Γ �Σ actor(O,S,P) : actsig(O,FS0)
ACTOR

Fig. 11. Type Rules for Heaps and Processes

(stop | P)≡ P (P1 | P2)≡ (P2 | P1) (P1 | (P2 | P3))≡ ((P1 | P2) | P3)

(skip;s)≡ s (s;skip)≡ s (s1;(s2;s3))≡ ((s1;s2);s3)

Fig. 12. Structural equivalence

The semantics is defined using a collection of reduction relations:

Reduction of expressions: (e1,H1)−→ (e2,H2) and (e1,H1)
a−−→ (e2,H2)

Reduction of statements: (s1,H1)−→ (s2,H2) and (s1,H1)
a−−→ (s2,H2)

Reduction of processes: (P1,H1)−→ (P2,H2) and (P1,H1)
a−−→ (P2,H2)

Reduction of types: K � FS1
a−−→ FS2
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v = eval f (H(v1), . . . ,H(vk))

( f (v1, . . . ,vk),H) −→ (v,H)
BUILTIN

n = H(v) H ′ = H[l �→ n]

(l = v,H) −→ (n,H ′)
ASSIGN

n = H(v) k = size(H(c)) | H(c) | < k H ′ = H[c �→ H(c)@k[n]k]

(c− ↑ v,H) c−−−→ (0,H ′)
SEND

H(c) = [n]k@kB H ′ = H[c �→ B]

(c+ ↓,H) c+−−→ (n,H ′)
RECEIVE

(e,H)
[a]−−→ (n,H ′) l /∈ dom(H) H ′ = H ∪{l �→ n}
((var x = e;s),H)

[a]−−→ ({l/x}s,H ′)
BIND

H(v) �= 0
((if (v) s1; else s2),H) −→ (s1,H)

IF TRUE
H(v) = 0

((if (v) s1; else s2),H) −→ (s2,H)
IF FALSE

(s,H) a−−→ (s′,H)

((fireK s),H) a−−→ ((fireK s′),H)
FIRE

H(v) �= 0
((while (v) s),H) −→ ((s;while (v) s),H)

WHILE TRUE

H(v) = 0
((while (v) s),H) −→ (skip,H)

WHILE FALSE

(s1,H)
[a]−−→ (s′1,H

′)

((s1;s2),H)
[a]−−→ ((s′1;s2),H ′)

SEQ
(P1,H)

[a]−−→ (P′
1,H

′)

((P1 | P2),H)
[a]−−→ ((P′

1 | P2),H ′)
PAR

H(v) = actor({},S,P) dom(H)∩{c | (c : (n,T,∈))S} = {}
H2 = H1 ∪{c �→ dbuf k(n) | (c : (n,T,∈))S}

((run v;s),H1) −→ ((s | P),H2)
RUN

Fig. 13. Operational Semantics

The first three pairs relations describe reductions between configurations of an ex-
pression, statement and process, respectively, coupled with a heap. The heap is both
input into, and output from, each reduction step. A reduction of expressions of the
form (e1,H1)−→ (e2,H2) denotes an internal reduction, while a reduction of the form
(e1,H1)

a−−→ (e2,H2) denotes a reduction that involves a communication event a. We

write (e1,H1)
[a]−−→ (e2,H2) to generically denote a reduction that may be either internal

or involve a communication event. Similar remarks hold for reduction of statements and
of processes.
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a /∈ dom(H) e = actor(O,s) H ′ = H ∪{a �→ actor(O,{},s)}
((var x = e;s),H)−→ ({a/x}s,H ′) ACTOR

H(ai) = actor(Oi,Si,Pi) ((ci,ci) : Ti) ∈ Oi O = (O1 ∪O2)\{c1,c2}
π1 = +,π2 = - j1 ·m = j2 ·n = lcm(m,n) = k dom(S1)∩dom(S2) = {}

c /∈ dom(S1)∪dom(S2) S = j1 ·S1 ∪ j2 ·S2 ∪{(c : (k,0,T ))}
P′1 = {c+/c1}P1 P′2 = {c−/c2}P2 A = actor(O,S,(P′1 | P′2))

((var x = connectm,n(a1.c1,a2.c2);s),H)−→ ({a/x}s,H ∪{a �→ A}) CONN

H(a) = actor(O,S,P) ((c1,c1) : T1),((c2,c2) : T2) ∈ O
dom(S1)∩dom(S2) = {} c /∈ dom(S1)∪dom(S2)

S′ = S∪{(c : (m,m,T))} π1 = +,π2 = - O′ = O\{c1,c2}
P′ = {c+/c1,c−/c2}P A = actor(O′,S′,P′)

((var x = connectSelfDelaym(a.c1,a.c2);s),H)−→ ({a/x}s,H ∪{a �→ A}) CONN DELAY

Fig. 14. Actor operational semantics

The reduction relation for flowstates is perhaps surprising, and reflects the use of
flowstate: Types themselves evolve during computation, since they are abstract process
descriptions for the underlying sequential program. This reduction relation is the basis
for a type equality for types, based on bisimulation:

Definition 1 (Flowstate Equality). Given a causality set K. Define K-bisimilarity to
be the largest symmetric binary relation R defined by: If (FS1,FS2) ∈ R, then if K �
FS1

a−−→ FS′1 for some FS′1, then K � FS2
a−−→ FS′2 for some FS′2 such that (FS′1,FS′2) ∈

R. If FS1 and FS2 are K-bisimilar, then we denote this by Γ ,K �Σ FS1
∼= FS2.

The RUN rule for launching a dataflow net initializes buffers using the function dbuf k(n),
defined by:

dbuf k(0) = εk

dbuf k(n+ 1) = 0 ::k dbuf k(n)

The operational semantics for agent expressions are provided in Fig. 14. The reduction
relation for flowstates is defined in Fig. 15.

The formal results for the type system are in two parts:

1. Type preservation verifies that the well-typedness (but not the types!) of actors are
preserved under evaluation.

2. Progress verifies that, given a flowstate that can perform a reduction step, a cor-
responding actor with that flowstate either diverges (loops infinitely) or eventually
(after internal reductions) can simulate that abstract reduction step.

Theorem 1 (Type Preservation). If Γ ,K �Σ (P1,H1) : FS1 and (P1,H1)
a−−→ (P2,H2)

then K � FS1
a−−→ FS2, and Γ ,K �Σ (P2,H2) : FS2.
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{}∗ ≡ {} FSω ≡ FS;FS∗ FS1 ‖ FS2 ≡ FS2 ‖ FS1

(FS1;FS2);FS3 ≡ FS1;(FS2;FS3) (FS1 ‖ FS2) ‖ FS3 ≡ FS1 ‖ (FS2 ‖ FS3)

FSω
1 ‖ FSω

2 ≡ (FS1 ‖ FS2)
ω

{FS1 | K} ‖ {FS1 | K} ≡ {(FS1 ‖ FS2) | K}
K � FS1

a−−→ FS′1
K � (FS1 ‖ FS2)

a−−→ (FS′1 ‖ FS2)

K0∪K � FS
a−−→ FS′

K0 � {FS | K} a−−→ {FS | K}
K � FS1

a−−→ FS′1
K � (FS1;FS2)

a−−→ (FS′1;FS2)

K � FS
a−−→ FS′

K � ({};FS)
a−−→ ({};FS)

m > 0  ∃a0 ∈ ES.Γ ,K �Σ a0 < a

K � {m ·a}$ES
a−−→ {(m−1) ·a}$ES

FS1 ≡ FS′1 K � FS′1
a−−→ FS′2 FS2 ≡ FS′2

K � FS1
a−−→ FS2

Fig. 15. Type reduction rules

Let (P,H) =⇒ (P′,H ′) denote the reflexive transitive closure of (P,H) −→ (P′,H ′):
in other words, (P,H) evolves to (P′,H ′) in zero or more internal reductions. Let
(P1,H1)

a
==⇒ (P2,H2) denote that (P1,H1) =⇒ (P′1,H

′
1) and (P′1,H

′
1)

a−−→ (P′2,H
′
2) and

(P′2,H
′
2) =⇒ (P2,H2). Let (P1,H1)

(a1,...,ak)
=====⇒ (Pk+1,Hk+1) denote that (Pi,Hi)

ai==⇒
(Pi+1,Hi+1) for i = 1, . . . ,k and some (P1,H1), . . . ,(Pk+1,Hk+1) and a1, . . . ,ak.

Denote that a configuration (P,H) diverges, in the sense that it loops indefinitely per-
forming only internal reductions, by (P,H) ⇑. Denote that a configuration eventually of-
fers output on channel endpoint c−, perhaps after performing some internal reductions,
by (P,H) ⇓c− . Similarly (P,H) ⇓c+ denotes that a configuration eventually attempts to
perform input on channel endpoint c+, perhaps after performing some internal reduc-
tions.

Theorem 2 (Progress). If Γ ,K �Σ (P,H) : FS1 and

{
K � FS1

c+−−→ FS2

K � FS1
c−−−→ FS2

}
then either

(P,H)⇑, or

⎧⎨
⎩ (P,H)

−→
a+
==⇒ (P′,H ′)

(P,H)
−→
a−
==⇒ (P′,H ′)

⎫⎬
⎭ for some (P′,H ′) and−→a such that

{
(P′,H ′) ⇓c+

(P′,H ′) ⇓c−

}
.



506 D. Duggan and J. Yao

6 Related Work

The area of synchronous dataflow has seen some application in signal processing appli-
cations [13], with various extensions, in particular cyclostatic dataflow for actors whose
firing behavior is able to evolve in a regular fashion [2]. Traditionally the analysis of
synchronous dataflow has been non-modular, requiring analysis of the entire dataflow
graph. More recent work has considered the modular composition of hierarchical SDF
graphs [17], allowing graphs to be analyzed before the entire dataflow graph is con-
structed, with a focus on modular code generation. The interface of a modular actor is
described as a deterministic SDF with shared FIFOs (DSSF) profile, allowing a collec-
tion of actors to share an input queue while retaining determinacy of the execution. As
with SDF, atomic actors are considered as “black boxes,” and only SDF is considered.
In particular cyclostatic dataflow is not considered in that work.

Sessional dataflow comes out of the realm of linear [11,18] and affine type systems
for statically checking the safe usage of limited resources. Two particularly significant
lines of study in the “linear types” field have been the approach of typestate and that of
session types. Typestate is a concept that originated in the Hermes language of Strom
and Yemini [15]. It corresponds to an enrichment of the normal notion of a type, to
include the concept of types as states in a finite state machine. Fähndrich and Deline
incorporated this idea into object oriented languages [7] in a very natural way: each
object has a typestate, and the interface offered by an object, in the sense of the meth-
ods that can currently be invoked on the object, are determined by its current typestate.
Since typestate is updated imperatively, it is important that aliasing of such objects be
carefully controlled. Aldrich et al [14] have demonstrated that a notion of permissions,
based on earlier work on type-based capabilities, can be used to check the use of types-
tate in existing non-toy software systems. We have explicitly avoided introducing these
issues into the current report, but they are clearly relevant to incorporating sessional
dataflow into real programming languages.

The approach of session types [9] is commonly motivated by its support for safe Web
services. In the simplest case, session types are used to mediate the exchanges between
two parties in a dyadic interaction. Each session offers a “shared channel” (different
from our use of the terminology), essentially an service endpoint URL that a client
connects to. On connection, a new server thread is forked and a private session channel
is established between the client and this thread. This channel has a behavioral type that
is essentially an abstract single-threaded process, that constrains the communications
between the parties. Since only the client and the server share their private channel, the
execution is in fact deterministic.

Although sessional dataflow might appear at first related to session types, the con-
nection is actually rather weak, because of the nature of the interactions in dataflow. The
closest our system comes to a session types system is in the behavioral constraint on
the behavior of an actor, in terms of matching the specified input and output data rates
on each firing specified on an actor interface. However this behaviorial specification
only constrains a single actor, and places no constraint on the behavior of its neigh-
boring actors (upstream or downstream). Furthermore a session type specifies, for each
participant in an interaction, a very precise single-threaded behavior, in terms of data
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exchanged on the private session channels at each point in the execution. In contrast,
the behavioral specification for an actor in sessional dataflow is declarative, specifying
expected communications subject to causality constraints. Deniélou and Yoshida [8]
describe a version of session types that allows a dynamic number of participants in a
session protocol. As with other approaches to session types, the approach is to provide
operational specifications of participant behaviors, using a top-down approach where
one reasons from the specified global protocol to the behavior of individual partici-
pants. In contrast, the sessional dataflow approach is bottom-up and declarative, spec-
ifying declarative causality constraints on individual actors independent of whatever
interactions they are integrated into.

Another related line of work is in synchronous languages for real-time and embedded
systems. Such languages assume a “clock” on all computations, with variables repre-
senting potentially infinite streams of values, indexed by clock ticks. Here the most rel-
evant example for sessional dataflow is that of Lustre [4], a language that is a dataflow
language in the tradition of Lucid, [1], and is a synchronous language in the sense of
the synchronous languages such as Esterel [3], but which we cannot call a synchronous
dataflow language for fear of confusing the reader. The constraints on the synchronous
languages preclude any need for buffering, since all actors operate in lock step on the
same clock. The theory of these “synchronous,” “dataflow” networks has been described
in terms of synchronous Kahn networks [5], which have the property that no buffering
is required at all between actors, since all execution is synchronous and governed by a
common clock. This is clearly a very strong restriction, albeit one that facilitates com-
pilation of programs to hardware circuits. The theory of N-synchronous Kahn networks
[6] relaxes this restriction, allowing different actors to have their own clock rates, and
allowing buffering between actors to match their clock rates. It is therefore very much
related to the approach of synchronous dataflow, with subtyping between clock rates
in multi-rate systems identifying where data must be buffered. However matching data
rates does not address the other aspect of sessional dataflow, causalities to ensure the
liveness of networks as they are composed.

7 Conclusions

This work builds on existing work in dataflow computation, particularly the work in
synchronous dataflow pursued in the signal processing community, as discussed in
Sect. 1. Our work considers how to relate the implementations of actors to the static
firing rates described in actor interfaces, where the latter are critical for static schedul-
ing of actors. We have also provided a compositional semantics for combining actors
together into dataflow nets, in such a way that we statically check the correctness of the
combination at each step of such a process.

There are extensions of synchronous dataflow that can be incorporated into sessional
dataflow, such as the extension to cyclostatic dataflow considered at the end of Sect. 4.
However our main interest is in using the framework of sessional dataflow to consider
the safety of operations such as reconfiguration and subnet replacement.
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