
Java Wildcards Meet Definition-Site Variance

John Altidor1, Christoph Reichenbach1, and Yannis Smaragdakis1,2

1 University of Massachusetts, Amherst
2 University of Athens, Greece

Abstract. Variance is concerned with the interplay of parametric poly-
morphism (i.e., templates, generics) and subtyping. The study of vari-
ance gives answers to the question of when an instantiation of a generic
class can be a subtype of another. In this work, we combine the mech-
anisms of use-site variance (as in Java) and definition-site variance (as
in Scala and C#) in a single type system, based on Java. This allows
maximum flexibility in both the specification and use of generic types,
thus increasing the reusability of code. Our VarJ calculus achieves a
safe synergy of def-site and use-site variance, while supporting the full
complexities of the Java realization of variance, including F-bounded
polymorphism and wildcard capture. We show that the interaction of
these features with definition-site variance is non-trivial and offer a full
proof of soundness—the first in the literature for an approach combining
variance mechanisms.

1 Introduction

Consider a generic type C<X>. When is a type-instantiation C<Exp1> a subtype
of another type instantiation C<Exp2>? This is the question that variance mech-
anisms in modern programming languages try to answer. Variance (specifically,
subtype variance with respect to generic type parameters) is a key topic in lan-
guage design because it develops the exact rules governing the interplay of the
two major forms of polymorphism: parametric polymorphism (i.e., generics or
templates) and subtype (inclusion) polymorphism.

Languages like C# and Scala support a type system with definition-site vari-
ance: at the point of defining the generic type C<X> we state its subtyping policy
and the type system attempts to prove that our assertion is statically safe. For
instance, a C# definition class C<out X> ... means that C is covariant : C<S> is
a subtype of C<T> if S is a subtype of T. The type system’s obligation is to ensure
that type parameter X of C is used in the body of C in a way that guarantees
type safety under this subtyping policy. For instance, X cannot appear as the
argument type of a public method in C—a rule colloquially summarized as “the
argument type of a method is a contravariant position”.

By contrast, the type system of Java employs the concept of use-site variance
[11]: a class does not itself state its variance when it is defined. Uses of the
class, however, can choose to specify that they are referring to a covariant,
contravariant, or bivariant version of the class. For instance, a method void

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 509–534, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

510 J. Altidor, C. Reichenbach, and Y. Smaragdakis

meth(C<? extends T> cx) can accept arguments of type C<T> but also C<S> where
S is a subtype of T. An object with type C<? extends T> may not offer the full
functionality of a C<T> object: the type system ensures that the body of method
meth employs only such a subset of the functionality of C<T> that would be safe
to use on any C<S> object (again, with S a subtype of T). This can be viewed
informally as automatically projecting class C and deriving per-use versions.

Each flavor of variance has its own advantages. Use-site variance is arguably
a more advanced idea, yet it suffers from specific usability problems because
it places the burden on the user of a generic type. (Although one should keep
in mind that the users of one generic type are often the implementors of an-
other.) Definition-site variance may be less expressive, but leaves the burden of
specifying general interfaces with the implementor of a generic. A natural idea,
therefore, is to combine the two flavors in the same language design and allow
full freedom: For instance, when a type is naturally covariant, its definition site
can state this property and relieve the user from any further obligation. Con-
versely, when the definition site does not offer options for fully general treatment
of a generic, a sophisticated user can still provide fully general signatures.

This natural combination of the two kinds of variance is complicated especially
by the interaction of use-site and definition-site annotations: for example, when
does the declared variance of a type variable agree with occurrences of that
variable in use-site annotations? We recently proposed a unifying framework for
checking and inferring both definition and use-site variance [1]. That proposal
was not accompanied by a language operational semantics however—its proof
of soundness was expressed as a meta-theorem, i.e., under assumptions over
what an imaginary language’s type system should be able to prove about sets of
values. This meta-theorem was welcome as an intuition about why it makes sense
to combine variances in a certain way, but did not establish a firm connection
with any real programming language.

This paper investigates combining of definition- and use-site variance with all
relevant language constructs using a new formal model, VarJ. VarJ applies novel
ideas and integrates techniques from various formalisms: Java wildcards are a
form of use-site variance that was proven sound with the TameFJ [4] calculus.
VarJ directly extends TameFJ with definition-site variance. VarJ also employs
ideas from our VarLang calculus [1], which introduces a variance transform op-
erator. Finally, VarJ integrates definition-site subtyping rules from the work of
Kennedy et al. [13,8]. The result is a language with highly expressive genericity.
For instance, given an invariant class List, our type system allows defining a
(definition-site) covariant class ROStack that returns covariant (intuitively: read-
only) Lists of members:

class ROStack<+X> {

X pop() { ... }

List<? extends X> toList() { ... }

}

Note the simultaneous use of a definition-site variance annotation (+) on ROStack,
as well as a use-site variance annotation on its toList method. The former is not
safe without the latter.

Java Wildcards Meet Definition-Site Variance 511

Overall our work makes several contributions. At the high level:

• Compared to the type systems of Java, C#, or Scala, our combination of
definition-site and use-site variance allows the programmer to pick the best
tool for the job. Libraries can avoid offering different flavors of interfaces just
to capture the notion of, e.g., “the covariant part of a list” vs. “the contravariant
part of a list”. Conversely, users can often use purely-variant types more easily
and with less visual clutter if the implementor of that type had the foresight
to declare its variance.

• Our approach maintains other features of the Java type system, namely full
support for wildcards, which are a mechanism richer than plain use-site variance
(e.g., [10]) and allow uses directly inspired by existential types.

• We provide a framework for determining the variance of the various positions
in which a type can occur. (For example, why is the upper bound of the type
parameter of a polymorphic method a contravariant position?)

Also, at the technical level:

• We show how definition-site variance interacts in interesting ways with ad-
vanced typing features, such as existential types, F-bounded polymorphism,
and wildcard capture. A naive application of our earlier work [1] to Java
would result in unsoundness, as we show with concrete examples. (Our earlier
approach avoided unsoundness when applied to actual Java code by making
several over-conservative assumptions to completely eliminate any interaction
between, e.g., definition-site variance and F-bounded polymorphism.)

• We clarify and extend the TameFJ formalism with definition-site variance.
TameFJ is a thorough, highly-detailed formalism and extending it is far from a
trivial undertaking. The result is that we offer the first full formal modeling and
proof of soundness for a language combining definition- and use-site variance.

2 Background

We next offer a brief background on definition- and use-site variance as well as
their relative advantages.

2.1 Definition-Site Variance

Languages supporting definition-site variance [14,9] typically require each type
parameter to be declared with a variance annotation. For instance, Scala [14]
requires the annotation + for covariant type parameters, - for contravariant type
parameters, and invariance as default. A well-established set of rules can then
be used to verify that the use of the type parameter in the generic1 is consistent
with the annotation.

In intuitive terms, we can understand the restrictions on the use of type pa-
rameters as applying to “positions”. Each typing position in a generic’s signature

1 We refer to all generic types (e.g., classes, traits, interfaces) uniformly as “generics”.

512 J. Altidor, C. Reichenbach, and Y. Smaragdakis

+

*

–

o

(covariance)

(bivariance)

(contravariance)

(invariance)

⊔

�

Fig. 1. Standard variance lattice

has an associated variance. For instance, method return and exception types,
supertypes, and upper bounds of class type parameters are covariant positions;
method argument types and class type parameter lower bounds are contravari-
ant positions; field types are both co- and contravariant occurrences, inducing
invariance. Type checking the declared variance annotation of a type parameter
requires determining the variance of the positions the type parameter occurs in.
The variance of all such positions should be at least the declared variance of the
type parameter. Figure 1 presents the variance lattice. Consider the following
templates of Scala classes, where vX , vY , and vZ stand for variance annotations.

abstract class RList[vXX] { def get(i:Int):X }

abstract class WList[vY Y] { def set(i:Int, y:Y):Unit }

abstract class IList[vZZ] { def setAndGet(i:Int, z:Z):Z }

The variance vX is the declared definition-site variance for type variable X of the
Scala class RList. If vX = +, the RList class type checks because X does not occur
in a contravariant position. If vY = +, the WList class does not type check because
Y occurs in a contravariant position (second argument type in set method) but
vY = + implies Y should only occur in covariant position. IList type checks only
if vZ = o because Z occurs in both a covariant and a contravariant position.

Intuitively, RList is a read-only list: it only supports retrieving objects. The
return type of a method indicates this “retrieval” capability. Retrieving objects
of type T can be safely thought of as retrieving objects of any supertype of T.
Thus, a read-only list of Ts (RList[T]) can always be safely thought of as a
read-only list of some supertype of Ts (RList[S], where T<:S). This is the exact
definition of covariant subtyping and the reason why a return type is a covariant
position. Thus, RList is covariant in X. Similarly, WList is a write-only list, and is
intuitively contravariant. Its definition supports this intuition: Objects of type T

can be written to a write-only list of Ts (WList[S]) and written to a write-only
list of Ss (WList[S]), where T<:S, because objects of type T are also objects of
type S. Hence, a WList[S] can safely be thought of as a WList[T], if T<:S.

The variance of type variables is transformed by the variance of the context
the variables appear in. Covariant positions preserve the variance of types that
appear in them, whereas contravariant positions reverse the variance of the types
that appear in them. The “reverse” of covariance is contravariance, and vice
versa. The “reverse” of invariance is itself. Thus, we can consider the occurrence

Java Wildcards Meet Definition-Site Variance 513

of a type parameter to be initially covariant. For instance, consider again the
Scala classes above. In RList, X only appears as the return type of a method,
which preserves the initial covariance of X, so RList is covariant in X. In WList,
Y appears in a contravariant position, which reverses its initial covariance, to
contravariance. Thus, WList is contravariant.

When a type parameter is used to instantiate a generic, its variance is further
transformed by the declared definition-site variance of that generic. For example:

class SourceList[+Z] { def copyTo(to:WList[Z]):Unit }

Suppose the declared definition-site variance of WList (with respect to its single
parameter) is contravariance. In WList[Z], the initial covariance of Z is trans-
formed by the definition-site variance of WList (contravariance). It is then trans-
formed again by the contravariant method argument position. As a result, Z

appears covariantly in this context, and SourceList is covariant in Z, as de-
clared. Any variance transformed by invariance becomes invariance. Thus, if Z

had been used to parameterize an invariant generic, its appearance would have
been invariant.

We have so far neglected to discuss bivariance: C<X> is bivariant implies that
C<S><:C<T> for any types S and T. Declaring a bivariant type parameter is not
supported by the widely used definition-site variant languages, since designating
a type parameter as bivariant typically means it does not appear in the generic’s
type signature. Nevertheless, the concept is useful in our more general treatment.

2.2 Use-Site Variance

An alternative approach to variance is use-site variance [11,18,4]. Instead of
declaring the variance of X at its definition site, generics are assumed to be
invariant in their type parameters. However, a type-instantiation of C<X> can be
made co-, contra-, or bivariant using variance annotations.

For instance, using the Java wildcard syntax, C<? extends T> is a covariant
instantiation of C, representing a type “C-of-some-subtype-of-T”. C<? extends T>

is a supertype of all type-instantiations C<S>, or C<? extends S>, where S<:T. In
exchange for such liberal subtyping rules, type C<? extends T> can only access
fully those methods and fields of C in which X appears covariantly. (Other meth-
ods can be used only with type-neutral values, e.g., called with null instead of
values of type X.) In determining this, use-site variance applies the same set of
rules used in definition-site variance, with the additional condition that the up-
per bound of a wildcard is considered a covariant position, and the lower bound
of a wildcard a contravariant position.

For example, consider an invariant generic class List that uses its type
parameter in both covariant and contravariant positions:

class List<X> {

... // other members that don’t affect variance

void add(int i, X x) { ... } // requires a List<? super X>

X get(int i) { ... } // requires a List<? extends X>

int size() { ... } // requires a List<?>

}

514 J. Altidor, C. Reichenbach, and Y. Smaragdakis

List<? extends T>, only has access to method “X get(int i)”, but not method
“void add(int i, X x)”. (More precisely, method add can only be called with
null for its second argument.)

Similarly, C<? super T> is the contravariant version of C, and is a supertype
of any C<S> and C<? super S>, where T<:S. Of course, C<? super T> has access
only to methods and fields in which X appears contravariantly or not at all. (The
get method returns Object for a C<? super T>.)

Use-site variance also allows the representation of the bivariant version of
a generic. In Java, this is accomplished through the unbounded wildcard: C<?>.
Using this notation, C<S><:C<?>, for any S. The bivariant type, however, only has
full access to methods and fields in which the type parameter does not appear
at all. In definition-site variance, these methods and fields would have to be
factored out into a non-generic class.

2.3 A Comparison

Both approaches to variance have their merits and shortcomings. Definition-
site variance enjoys a certain degree of conceptual simplicity: the generic type
instantiation rules and subtyping relationships are clear. However, the class or
interface designer must pay for such simplicity by splitting the definitions of
data types into co-, contra, and bivariant versions. This can be an unnatural
exercise. For example, the data structures library for Scala contains immutable
(covariant) and mutable (invariant) versions of almost every data type—and
this is not even a complete factoring of the variants, since it does not include
contravariant (write-only) versions of the data types.

The situation gets even more complex when a generic has more than one
type parameter. In general, a generic with n type parameters needs 3n (or 4n if
bivariance is allowed as an explicit annotation) interfaces to represent a complete
variant factoring of its methods. Arguably, in practice, this is often not necessary.

Use-site variance, on the other hand, allows users of a generic to create co-,
contra-, and bivariant versions of the generic on the fly. This flexibility allows
class or interface designers to implement their data types in whatever way is
natural. The users of these generics must pay the price, by carefully considering
the correct use-site variance annotations, so that the type can be as general
as possible. This might not seem very difficult for a simple instantiation such
as List<? extends Number>. However, type signatures can very quickly become
complicated. For instance, the following method signature is part of the Apache
Commons-Collections Library:

Iterator<? extends Map.Entry<? extends K,V>>

createEntrySetIterator(Iterator<? extends Map.Entry<? extends K,V>>)

3 Combining Definition- and Use-Site Variance

Our formalism supports combining definition- and use-site variance in the con-
text of Java. We next see informally some of its main insights and complications.

Java Wildcards Meet Definition-Site Variance 515

3.1 Insights for Combining Variances

High-level elements of our approach are inherited from our earlier work [1], in
which we presented rules for combining definition- and use-site variance in a type
system. These rules are a significant generalization over what has been explored
in the past (mainly in Scala) in two ways:2

• The variance of an arbitrary type expression with respect to a type variable is
defined for all cases with the help of a “transform” operator, ⊗. The operator
determines how variances compose. Given two generic types A<X> and B<X> with
declared variances vA and vB for their parameters (i.e., declared as A<vA X>

and B<vB X>), we can compute the variance of type A<B<X>> as v = vA ⊗ vB .
Variances take values from the lattice of Figure 1.
Figure 2 summarizes the behavior of the transform operator: invariance and

bivariance override other variances, while covariance preserves and contravari-
ance reverses variance (with invariance and bivariance being their own reverses,
respectively). To sample why the definition of the transform operator makes
sense, we derive one case relating the inputs and output. (Remaining cases are
derived similarly.)

– Case +⊗− = − : This means that type expression C<E> is contravariant
with respect to type variable X when generic C is covariant in its type
parameter and type expression E is contravariant in X. This is true because,
for any two types T1 and T2:

T1 <: T2

=⇒ E[T2/X] <: E[T1/X] (by contravariance of E)

=⇒ C<E[T2/X]> <: C<E[T1/X]> (by covariance of C)

=⇒ C<E>[T2/X] <: C<E>[T1/X]

Hence, C<E> is contravariant with respect to X.

Definition of variance transformation: ⊗
+⊗+ = + −⊗+ = − ∗ ⊗+ = ∗ o⊗+ = o
+⊗− = − −⊗− = + ∗ ⊗ − = ∗ o⊗− = o
+⊗ ∗ = ∗ −⊗ ∗ = ∗ ∗ ⊗ ∗ = ∗ o⊗ ∗ = ∗
+⊗ o = o −⊗ o = o ∗ ⊗ o = ∗ o⊗ o = o

Fig. 2. Variance transform operator

• The interaction of use-site and definition-site variance is expressed as a join
operation on the same variance lattice of Figure 1. In the VarLang calculus [1],
types have the form C<vT>, where v are use-site annotations. Considering the
List generic from Section 2.2, for example, List<+T> passes type T to a covariant

2 There is also a third way: our earlier framework allowed reasoning about unknown
variances, represented as variables in recursive constraints, thus enabling variance
inference instead of checking. This capability is not relevant here, however.

516 J. Altidor, C. Reichenbach, and Y. Smaragdakis

version of the List, where the add method was “removed”3 because it contains
the type parameter in a contravariant position. If generic C<X> has definition-
site variance v1 with respect to X, then the type expression C<v2X> has variance
v1 * v2 with respect to X. Consider a covariant class RList. If we request a
contravariant instantiation, we end up with a bivariant type expression (+*− =
∗). That is, a method “void foo(RList<? super Animal> l) {...} can really
accept any RList: the method is guaranteed to never use its argument in a way
that reveals anything about the type of element in the list. (In practice, this
means that the method may only take the size of the list, or only treats its
elements as being of the general type Object, etc.)

In practice, the ability to combine definition- and use-site variance gives the
programmer maximum flexibility. The variance of a generic class does not need
to be anticipated at its definition site. Consider the usual invariant List class
(from Section 2.2). This List supports both reading and writing of data, hence
it includes both kinds of methods, instead of being split into two types (as, for
instance, is common in the Scala libraries). The methods that use List can still
be made fully general, however, as long as they specify use-site annotations.
Generally, allowing both kinds of variance in a single language ensures modular-
ity: parts of the code can be made fully general regardless of how other code is
defined.

At the same time, allowing definition-site variance eliminates much of the need
for extensive use-site variance annotations and the risk of too-restricted types:
purely variant types can be declared up-front without burdening the programmer
at the use point.

Of course, combining definition- and use-site variance means more than just
using each kind separately, when applicable. It also includes using one kind of
annotation when reasoning about the other. For instance, consider the example
of a read-only stack type that we briefly saw in the Introduction. The stack refers
to the invariant class List (defined earlier):

class ROStack<+X> {

X pop() { ... }

List<? extends X> toList() { ... }

}

Note the use of a definition-site variance annotation (+) on ROStack, as well as
a use-site variance annotation on its toList method. The example would not
have been safe if the return type of toList were merely List<X>. With such an
invariant use of type parameter X, we could use a (dynamic) List<Dog> as a
(static) List<Animal> and thus dynamically add a Cat (which is fine to add to a
List<Animal>) to a List<Dog>.

3.2 Realistic Complications

The main contribution of our present work consists of formalizing and proving
sound the combination of definition- and use-site variance in the context of Java.
3 Again, method add can only be called with null for its second argument.

Java Wildcards Meet Definition-Site Variance 517

In order to do so, we need to reason about the interaction of definition-site vari-
ance with many complex language features, such as F-bounded polymorphism,
polymorphic methods, bounds on type parameters, and existential-types (aris-
ing in the use of wildcards). This interaction is highly non-trivial, as we see in
examples next.

One complication is that Java wildcards are not merely use-site variance, but
also include mechanisms inspired by existential typing mechanisms. Wildcard
capture is the process of passing an unknown type, hidden by a wildcard, as a
type parameter in a method invocation. Consider the following method, which
swaps the order the two elements at the top of a stack.

<E> void swapLastTwo(Stack<E> stack)

{ E elem1 = stack.pop(); E elem2 = stack.pop();

stack.push(elem2); stack.push(elem1); }

Although a programmer may want to pass an object of type Stack<?> as a
value argument to the swapLastTwo method, the type parameter to pass for E

cannot be manually specified because the type hidden by ? cannot be named by
the programmer. However, passing a Stack<?> type checks because Java allows
the compiler to automatically generate a name for the unknown type (capture
conversion) and use this name in a method invocation. Our formalism has to
model wildcard capture and its interaction with definition-site variance. This
handling comprises some of the more significant changes of our formalism relative
to TameFJ [4].

Another major complication concerns F-bounded polymorphism. Consider the
following definition:

interface Trouble<P extends List<P>> extends Iterator<P> {}

The type Trouble<P> extends Iterator<P>, which is assumed in the example to
be covariant (exporting a method “P next()”, per the Java library convention
for iterators). It would stand to reason that Trouble is also covariant: an object
of type Trouble<P> does precisely what an Iterator<P> object does, since it
simply inherits methods. Consider, however, the type Trouble<? super A>. This
is a contravariant use of a covariant generic. According to our approach for
combining variances, this results in a bivariant type (due to the variance joining).
For example, we can derive the following subtype relationship even though the
types, MyList and YourList, are not subtype related.

Trouble<YourList> <: Trouble<Object> (by covariance assumption of Trouble)

<: Trouble<? super Object>

<: Trouble<? super MyList>

The problem, however, is that the bounds of type variables (List<P> in this
case) are preserved in the existential type representing a use of Trouble with
wildcards. This results in unsoundness because, in F-bounded polymorphism,
the bound includes the hidden type, allowing its recovery and use. We can cause

518 J. Altidor, C. Reichenbach, and Y. Smaragdakis

a problem with the following code (ArrayList is a standard implementation of
the usual Java List interface, both invariant types):4

class MyList extends ArrayList<MyList> {}

class YourList extends ArrayList<YourList> {

int i = 0;

public boolean add(YourList list)

{ System.out.println(list.i); return super.add(list); }

}

void foo(Trouble<? super MyList> itr) { itr.next().add(new MyList()); }

Trouble<YourList> preitr = ...;

foo(preitr);

Function foo type checks because itr.next() is guaranteed to return an unknown
supertype, X, of MyList but also (due to the F-bound on Trouble) a subtype of
List<X>. Thus, X has a method add (from List) which accepts X instances, and
thus also accepts MyList instances (since X is a supertype of MyList).

The problem arises in the last line. If Trouble<? super MyList> were truly bi-
variant (as a contravariant use of a covariant generic), then that line would type
check, allowing the unsound addition of a MyList object to a list of YourLists.
Thus, the joining of definition- and use-site variances needs to be carefully re-
stricted in the presence of F-bounded polymorphism. We revisit the above ex-
ample more formally in Section 5.

4 VarJ

We investigate extending Java with definition-site variance by developing the
VarJ calculus. VarJ’s syntax found in Figure 3 is a slight extension of the
TameFJ syntax. A program that type checks in TameFJ also type checks in
VarJ. Significant differences are highlighted using shading. To improve read-
ability, some syntactic categories are overloaded with multiple meta-variables.
Existential types range over T, U, V, and S. Type variables range over X, Y, and Z.
Bounds range over B and A. Variances range over v and w. The bottom type, ⊥,
is used only as a lower bound. We follow the syntactic conventions of TameFJ:
all source-level type expressions are written as existential types, with an empty
range for non-wildcard Java type uses and type variables written as ∃∅.X; substi-
tution is performed as usual except [T/X]∃∅.X = T; � is a syntactic marker des-
ignating that a method type parameter (i.e., for a polymorphic method) should
be inferred. Class type parameters (X) now have definition-site variance annota-
tions (v) and lower bounds (BL). Method type variables now have lower bounds
as well. The remainder of this section focuses on semantic differences between
VarJ and TameFJ and new concepts from adding definition-site variance. Sec-
tions 4.1 and 4.2 formally present notions of the variance of type expression and
the variance of a type position. Section 4.3 covers subtyping with definition-site
and use-site variance in VarJ. Section 4.4 discusses the updates made to allow
safe interaction between wildcard capture and variant types.

4 This example is originally due to Ross Tate.

Java Wildcards Meet Definition-Site Variance 519

Syntax:

e : : = x | e.f | e.<P>m(e) | new C<T>(e) expressions
s : : = new C<T>(s) values
v : : = + | − | ∗ | o variance

Q : : = class C< v X→ [BL -BU]> � N { T f; M } class declarations

M : : = <X→ [BL -BU]> T m(T x) { return e; } method declarations

N : : = C<T> non-variable types
R : : = N | X non-existential types
T : : = ∃Δ.N | ∃∅.X existential types
B : : = T | ⊥ type bounds
P : : = T | � method type parameter

Δ : : = X→ [BL-BU] type ranges
Γ : : = x : T var environments
X : : = . . . type vars
x : : = . . . expr vars
C : : = . . . class names

Lookup Functions:
Shared premise for lookup rules except F-Obj:

CT (C) = class C<vX→ [BL-BU]> � N { S f; M }
fields(Object) = ∅ (F-Obj)

fields(C) = g, f, if N = D<U> and fields(D) = g (F-Super)

ftype(f; C<T>) = ftype(f; [T/X]N), if f /∈ f (FT-Super)

ftype(fi; C<T>) = [T/X]Si, (FT-Class)

mtype(m; C<T>) = mtype(m; [T/X]N), if m /∈M (MT-Super)

mtype(m; C<T>) = [T/X](<Δ> U→ U),

if <Δ> U m(U x) { return e; } ∈M (MT-Class)

mbody(m; C<T>) = mbody(m; [T/X]N), if m /∈M (MB-Super)

mbody(m; C<T>) = 〈x.[T/X]e〉,
if <Δ> U m(U x) { return e; } ∈M (MB-Class)

Fig. 3. Syntax and Lookup Functions

520 J. Altidor, C. Reichenbach, and Y. Smaragdakis

4.1 Variance of a Type

Before we embark on the specifics of the VarJ formalism, we examine the essence
of variance reasoning, i.e., how variances are computed in type expressions. For
now, consider the subtyping relation of our formalism as a black box—it will be
defined in Section 4.3. When is a type instantiation C<Exp1> a subtype of another
instantiation C<Exp2>? We answer a more general question by defining a general
predicate var (X; T), where X is a type variable and T is a type expression. The goal
of var is to determine: Given a type variable X and a type expression T that can
contain X, what is the subtyping relationship between different “instantiations”
of T with respect to (wrt) X, where an instantiation of T wrt to X is a substitution
for X in T. For example, we want var (X; T) = + to imply [U/X]T <: [U′/X]T, if
U <: U′.

To define var, we use predicate v(T; T′) as a notational shorthand, denoting
the type of subtype relation between T and T′:

• +(T; T′) ≡ T <: T′ • –(T; T′) ≡ T′ <: T
• o(T; T′) ≡ +(T; T′) ∧ -(T; T′) • *(T; T′) ≡ true

Note that, by the variance lattice (in Figure 1), we have

v ≤ w =⇒
[
v(T; T′) =⇒ w(T; T′)

]
(1)

In general, we want for var the following property, which is a generalization of
the subtype lifting lemma of Emir et al.’s modeling of definition-site variance [8]:

var (X; T) = v =⇒
[
v(U; U′) =⇒ [U/X]T <: [U′/X]T

]
(2)

By (1), (2) entails a more general implication:

v ≤ var(X; T) =⇒
[
v(U; U′) =⇒ [U/X]T <: [U′/X]T

]
(3)

We assume there is a usual class table CT that maps class identifiers C to their
definition (i.e. CT (C) = class C<vX→ [BL-BU]> � N { . . . }). Similarly, we
define a variance table V T that maps class identifiers to their type parameters
with their def-site variances. For example, assuming the class table mapping
above, V T (C) = vX. V T is overloaded to take an extra index parameter i to the
ith def-site variance annotation; e.g, if V T (C) = vX, then V T (C, i) = vi.

The expression var(X; B) computes the variance of type variable X in type
expression B. Figure 4 contains var ’s definition. var ’s type input is overloaded
for non-existential types (R) and type ranges (Δ). (var (X;φ) is further overloaded
in the expected way for computing variances for sequences of type variables.)

The var relation is used in our type system to determine which variance is
appropriate for each type expression. Eventually our proof connects it to the sub-
type relation, in Lemma 1. (Proofs of all key lemmas can be found in a technical
report available at http://people.cs.umass.edu/~jaltidor/ecoop12tr.pdf.)

Java Wildcards Meet Definition-Site Variance 521

Variance of Types and Ranges: var(X;φ), where φ : : = B | R | Δ
var(X; X) = + (Var-XX)

var(X; Y) = ∗, if X �= Y (Var-XY)

var(X; C<T>) =
�n

i=1

(
vi ⊗ var(X; Ti)

)
, if V T (C) = vX (Var-N)

var(X;⊥) = ∗ (Var-B)

var(X;∃Δ.R) = var(X;Δ) var(X; R), if X /∈ dom(Δ) (Var-T)

var(X; Y→ [BL-BU]) =
�n

i=1

((−⊗ var(X; BLi)
) (

+⊗ var(X; BUi)
))

(Var-R)[
var(X;φ) = v

] ≡ [∀i, var(Xi;φ) = vi
]
, where φ : : = B | R | Δ (Var-Seq)

Fig. 4. Variance of types and ranges

Lemma 1 (Subtype Lifting Lemma). If (a) v ≤ var(X; B) and (b) Δ � v(T; U)
then [T/X]B <: [U/X]B.

We provide some intuition on the soundness of var ’s definition. One “base case”
of var ’s definition is the Var-XX rule. To see why it returns +, note that the
desired implication from the subtype lifting lemma holds for this case: if +(T; U),
which is equivalent to T <: U, then [T/X]X = T <: U = [U/X]X. The Var-N

rule computes the variance in a non-variable type using the ⊗ operator, which
determines how variances compose, as described in Section 3. Var-R computes
the variance of a type variable in a range. Computing the variance of ranges is
necessary for computing the variance of constraints from type bounds on type
parameters, which occur in existential types and method signatures. The do-
mains of ranges are ignored by Var-R. A range becomes more “specialized” as
the bounds get “squeezed”. Informally, a range [BL − BU] is a subrange of range
[AL − AU] if AL <: BL and BU <: AU . The variance of the lower bound is trans-
formed by contravariance to “reverse” the subtype relation, since we want the
lower bound in the subrange to be a supertype of the lower bound in the super-
range.5 The subtype lifting lemma can be used to entail subrange relationships:

var (X; Y → [BL-BU]) = v and v(T; U)

=⇒ [U/X]BL <: [T/X]BL and [T/X]BU <: [U/X]BU

The variance of an existential type variable is just the meet of the variances of
its range (Δ) and its body (R). The Var-T rule has the premise “X /∈ dom(Δ)”
to follow Barendregt’s variable convention [19], as in the TameFJ formalism.
(var is undefined when this premise is not satisfied.) The variable convention
substantially reduces the number of places requiring alpha-conversion to be ap-
plied and allows for more elegant proofs. The rules of the convention basically
are: (1) relations in the type system are equivariant (respect alpha-renaming),
and (2) no binder (declared variable) in a rule occurs free in the conclusion.
For example, condition (1) holds for var(X; T) because we can rename binders

5 Intuitively, the upper/lower bounds are in co-/contravariant positions, respectively.

522 J. Altidor, C. Reichenbach, and Y. Smaragdakis

to fresh names in existential types in T without changing the variance of X in T.
Without the premise of rule Var-T, this property would no longer hold. So that
the important premises are more apparent, in the remaining rules we skip such
“side-conditions” in the text and just mention that the premises for following
the variable convention are implicit.

4.2 Variance of a Position

To see how var is used in our type system, we need to consider the variance
of positions in a class definition. For example, return types are assumed to be
in covariant positions while argument types are assumed to be in contravariant
positions. These assumptions are used to type check class and method definitions
and their def-site variance annotations.

The expressions “v ≤ var(X; B)” and “−⊗ v” are used frequently in the VarJ
formalism. To connect our notation to previous work, we define the following:[

vX � B mono
]
≡

[
v ≤ var (X; B)

]
(4)

[
¬v

]
=

[
−⊗ v

]
(5)

A “monotonicity” judgment of the syntactic form “vX � T mono” appears origi-
nally in Emir et al.’s definition-site variance treatment [8] and later in Kennedy
and Pierce [13] as “vX � T ok”. The semantics of these judgments in the afore-
mentioned sources are similar to its definition here but differs in that they had
no function similar to var nor a variance lattice. The negation operator ¬ also
appears in [8] and [13] and is used to transform a variance by contravariance.
Using the implications in Section 4.1, it is easy to show the following properties,
which are important for type checking class definitions:

w = ¬v =⇒
[
v(B, B′) ⇐⇒ w(B′, B)

]
(6)

vX � B mono =⇒
[
v(T, U) =⇒ [T/X]B <: [U/X]B

]
(7)

¬vX � B mono =⇒
[
v(T, U) =⇒ [U/X]B <: [T/X]B

]
(8)

Figure 5 contains rules for checking class and method definitions and the defini-
tion of the override predicate. Premises related to type checking with definition-
site variance are highlighted. Auxiliarly lookup functions are used to compute
the types of members (fields and methods) in class definitions. Their definitions
are in Figure 3. These lookup functions take in non-variable types (N) instead of
existential types. In the expression typing rules (in Figure 7), existential types
are implicitly “unpacked” to non-variable types to type some expressions such
as a field access. The process for packing and unpacking types is similar to the
process performed in the TameFJ formalism. Section 4.4 has a brief overview of
this process and an example type derivation.

Java Wildcards Meet Definition-Site Variance 523

Class and Method Typing:

vX � N, T mono Δ = X→ [BL-BU]

∅ � Δ OK Δ � N, T OK �M OK in C

� class C<vX→ [BL-BU]> � N { T f; M } OK
(W-Cls)

CT (C) = class C<vX→ [BL-BU]> � N { . . . }
Δ = X→ [BL-BU] Δ � Δ′ OK Δ,Δ′ � T, T OK

override(m; N; <Δ′
> T→ T) ¬vX � T,Δ′ mono vX � T mono

Δ,Δ′; x : T, this : ∃∅.C<X> � e : T | ∅
� <Δ′

> T m(T x) { return e; } OK in C

(W-Meth)

mtype(m; N) = <Δ> T→ T

override(m; N; <Δ> T→ T)
(Over-Def)

mtype(m; N) is undefined

override(m; N; <Δ> T→ T)
(Over-Undef)

Wellformed Ranges: Δ � Δ OK

Δ � ∅ OK
(W-Rng-empty)

X /∈ dom(Δ) Δ, X→ [BL-BU], Δ
′ � BL, BU OK

Δ � uboundΔ(BL) �: uboundΔ(BU)
Δ � BL <: BU Δ, X→ [BL-BU] � Δ′ OK

Δ � X→ [BL-BU],Δ
′ OK

(W-Rng)

Non-Variable Upper Bound: uboundΔ(B)

uboundΔ(B) =

{
uboundΔ(BU), if B = ∃∅.X, where Δ(X) = [BL − BU]

B, if B = ∃Δ′.N

Wellformed Types: Δ � φ OK, where φ : : = B | P | R

Δ � Object<> OK
(W-Obj)

X ∈ dom(Δ)

Δ � X OK
(W-X)

Δ � ⊥ OK
(W-B)

Δ � � OK
(W-I)

class C<vX→ [BL-BU]> � N { . . . }
Δ � [T/X]BL <: T Δ � T <: [T/X]BU

Δ � T OK

Δ � C<T> OK
(W-N)

Δ � Δ′ OK Δ,Δ′ � R OK

Δ � ∃Δ′.R OK
(W-T)

Wellformed Expression Variable Environments Δ � Γ OK

Δ � ∅ OK
(W-Env-Empty)

x /∈ dom(Γ) Δ � T OK Δ � Γ OK

Δ � Γ, x : T OK
(W-Env)

Fig. 5. Wellformedness Judgments

524 J. Altidor, C. Reichenbach, and Y. Smaragdakis

The definition-site subtyping relation judgment Δ � N ≺: N′ is defined over
non-variable types and considers definition-site annotations when concluding
subtype relationships. For example, V T (C) = +X =⇒ Δ � C<∃∅.Dog> ≺:
C<∃∅.Animal>, assuming Δ � ∃∅.Dog <: ∃∅.Animal. This relation is defined in
Figure 6.

Definition-Site Subtyping: R ≺: R

class C<vX→ [BL-BU]> � N { . . . }
C �= D Δ � [T/X]N ≺: D<U>

Δ � C<T> ≺: D<U>
(SD-Super)

V T (C) = vX

Δ � v(T, U)

Δ � C<T> ≺: C<U>
(SD-Var)

Δ � X ≺: X
(SD-X)

Existential Subtyping: Δ � B �: B

Δ,Δ′ � N ≺: N′

Δ � ∃Δ′.N �: ∃Δ′.N′

(SE-SD)
Δ � B �: B
(SE-Refl)

Δ � B �: B′ Δ � B
′ �: B′′

Δ � B �: B′′
(SE-Tran)

Δ � ⊥ �: B
(SE-Bot)

dom(Δ′) ∩ fv(∃X→ [BL-BU].N) = ∅ fv(T) ⊆ dom(Δ,Δ′)

Δ,Δ′ � [T/X]BL <: T Δ,Δ′ � T <: [T/X]BU

Δ � ∃Δ′.[T/X]N �: ∃X→ [BL-BU].N
(SE-Pack)

Subtyping: Δ � B <: B

Δ � B �: B′

Δ � B <: B′

(ST-SE)

Δ � B <: B′ Δ � B
′ <: B′′

Δ � B <: B′′

(ST-Tran)

Δ(X) = [BL − BU]

Δ � BL <: ∃∅.X
(ST-Lbound)
Δ � ∃∅.X <: BU
(ST-Ubound)

Fig. 6. Subtyping Relations

The motivation for the assumed variances of positions is to ensure the sub-
sumption principle holds for the subtyping hierarchy. Informally, if T <: U, then
a value of type T may be provided whenever a value of type U is required. In the
case of VarJ, the subsumption principle is established by showing appropriate
subtype relationships between types of members from class definitions. Lemma 2
states a goal subsumption property, which is to have the type of field f of the
supertype N′ become a more specific type for the subtype N. Although inherited
fields syntactically have the same type as in the superclass definition, definition-
site subtyping allows fields to have more specific types in the subtype. Lemma 3
states the goal subsumption property for types in method signatures; the sixth
conclusion of this lemma holds because of the override predicate.

Java Wildcards Meet Definition-Site Variance 525

Lemma 2 (Subtyping Specializes Field Type).
If (a) � class C<vX → [. . .]> � N . . . OK and (b) Δ � C<T> ≺: N′ and (c)
ftype(f; N′) = T, then Δ � ftype(f; C<T>) <: T.6

Lemma 3 (Subtyping Specializes Method Type).
If (a) � class C<vX → [. . .]> � N . . . OK and (b) Δ � C<T> ≺: N′

and (c) mtype(m; N′) = <Y→ [BL-BU]> U → U, then: (1) mtype(m; C<T>) =
<Y→ [AL-AU]> V → V, (2) Δ � V <: U, (3) Δ � U <: V, (4) Δ � AL <: BL,
(5) Δ � BU <: AU , and (6) var (Y; U) = var (Y; V).

To satisfy the two lemmas above, we make assumptions about the variance of the
positions that types can occur in. To preserve the subtype relationship order of
a type in a member signature, we assume the type occurs in a covariant position
(i.e., the subtype needs to have a more specific type appear in such a position).
To reverse the subtype relationship order of a type in a member signature, we
assume the type occurs in a contravariant position. The assumptions about the
variance of the positions are reflected in the mono judgments in the W-Cls and
W-Meth rules for checking class and method definitions. By (7), not negating
the def-site variance annotations, v, in the judgment “vX � T mono” reflects that
T is assumed to be in a covariant position. Since covariance, +, is the identity
element for the ⊗ operator (+ ⊗ v = v), the variances v do not need to be
transformed by +. By (8), negating the def-site variance annotations in the
judgment “¬vX � T mono” reflects that T is assumed to be in a contravariant
position. We need to reverse the subtype relationship order for argument types
and ranges in method type signatures. Negating the variance annotations for the
argument types ensures the argument types are more general supertypes for the
subtype.7

Negating the range of a method type signature ensures the range is wider for
the subtype. For code examples motivating why ranges need to be widened for
the subtype, see Section 2.4 of [8]. More generally, if (1) e.<T>m() type checks
implying the type actual T is within the type bounds for m’s type argument and
(2) typeof(e′) <: typeof(e), then e′.<T>m() should type check as well even if m

is overridden in the subclass. Hence, the subtype’s version of m should accept a
superset/wider range of types than accepted by the supertype’s version of m.

4.3 Subtyping

Subtyping in VarJ is defined similarly to TameFJ. Figure 6 contains the subtyp-
ing rules. There are three levels of subtyping in VarJ, as in TameFJ. The first
level of subtyping in TameFJ, the subclass relation, has been replaced with the
definition-site subtyping relation ≺: defined on non-existential types. Def-site

6 If field assignments were allowed, then field types would be in both co- and con-
travariant positions, and both ftype(f; C<T>) and ftype(f; N′) would be subtypes of
each other.

7 Bounds on class type parameters may make unrestricted use of type parameters by
similar reasoning as in [8, p.7]. Once an object is created, they are forgotten.

526 J. Altidor, C. Reichenbach, and Y. Smaragdakis

subtyping is defined by the SD-* rules, which are similar to the subtyping rules
from [13]. Like the subtype relation from [13], ≺: is defined by syntax-directed
rules8 and shares the reflexive and transitive properties by similar reasoning as
in [13]. The ≺: judgment requires a typing context to check subtyping relation-
ships between pairs of type actuals as done in the SD-Var rule.

The existential subtyping relation �: is defined by the SE-* rules and is similar
to the “Extended subclasses” relation in TameFJ. The XS-Env rule from TameFJ
was renamed to SE-Pack; it is the only subtyping rule that can pack (and ac-
tually also unpack) types into existential type variables. The XS-Sub-Class rule
was not only renamed to SE-SD, but its premise was updated to use def-site
subtyping. SE-SD allows def-site subtyping to be applied to both type variables
in the type context Δ and existential type variables in Δ′. As a result, a type
packed to an existential type variable may not be in the range of the variable. For
example, if Iterator is covariant in its type parameter (V T (Iterator) = +X),
then the following subtype relationship is derivable: ∃∅.Iterator<PrettyDog> <:
∃∅.Iterator<Dog> <: ∃Y → [Dog-Animal].Iterator<Y>. Subtyping between two
types implies the subsumption principle between the types. Since Iterator<Dog>

can be packed to ∃X → [Dog-Animal].Iterator<X> and Iterator<PrettyDog> <:
Iterator<Dog>, it must be the case that Iterator<PrettyDog> can also be packed
to ∃X → [Dog-Animal].Iterator<X>. This intuition is formalized in Lemma 4,
which is similar to Lemma 35 from TameFJ, and establishes a relationship be-
tween existential subtyping and def-site subtyping.

Lemma 4 (Existential subtyping to def-site subtyping). If (a) Δ �
∃Δ′.R′ �: ∃X→ [BL-BU].R and (b) ∅ � Δ OK, then there exists T such that: (1)

Δ,Δ′ � R′ ≺: [T/X]R and (2) Δ,Δ′ � [T/X]BL <: T and (3) Δ,Δ′ � T <: [T/X]BU
and (4) fv(T) ⊆ dom(Δ,Δ′).

Existential subtyping does not conclude subtype relationships for type variables
except for the reflexive case using SE-Refl. The (all) subtyping relation <: al-
lows non-reflexive subtype relationships with type variables by considering their
bounds in the typing context. Since T or U may be type variables in a subtype
relationship T <: U, we want a stronger relationship between the non-variable up-
per bounds of T and U. Lemma 5 formalizes this notion and is similar to lemma 17
from TameFJ. The non-variable upper bound of a type T is uboundΔ(T), defined
in Figure 5.

Lemma 5 (Subtyping to existential subtyping). If (a) Δ � T <: T′ and (b)
∅ � Δ OK then Δ � uboundΔ(T) �: uboundΔ(T′).

4.4 Typing and Wildcard Capture

The expression typing rules in VarJ are mostly the same as in TameFJ and are
given in Figure 7. Unlike TameFJ, VarJ allows method signatures to have lower

8 The syntax-directed nature of these rules does not ensure that an algorithmic test of
≺: is straightforward, because the premise of rule SD-Var appeals to the definition
of the full <: relation (hidden inside the v shorthand).

Java Wildcards Meet Definition-Site Variance 527

bounds. The sift function is needed for safe wildcard capture and is applied in
the T-Invk rule for typing method invocations. The definition of sift required
updating because of interaction with variant types. First, we give a brief overview
of expression typing; see [4] for more thorough coverage.

Expression Typing. Consider the Java segment below. It type checks because
the expression box.elem is typed as String. The type of box.elem is the same as
the type actual passed to the Box type constructor. In this case, the type actual
is “? extends String”, which refers to some unknown subtype of String. To type
box.elem with some known/named type, the most specific named type that can
be assigned to box.elem is chosen, which is String.

class Box<E> { E elem; Box(E elem) { this.elem = elem; } }

Box<? extends String> box = ...

box.elem.charAt(0);

We explain this type derivation through the formal calculus. Types hid-
den by wildcards such as “? extends String” are “captured” as existential
type variables. The type Box<? extends String> is modeled in VarJ by ∃X →
[⊥-String].Box<X>. Expression typing judgments have the form Δ; Γ � e :
T | Δ′. The second type variable environment Δ′ is the guard of the judgment.
It is used to keep track of type variables that have been unpacked from exis-
tential types during type checking. Variables in dom(Δ′) may occur free in T

and model hidden types. To type an expression without exposed (free) hidden
types (existential type variables), the T-Subs rule is applied to find a suitable
type without free existential type variables. The example typing derivation below
illustrates this process on typing the “box.elem” expression from the previous
code segment, where we assume Γ = box : ∃X→ [⊥-String].Box<X>.

∅; Γ � box : ∃X→ [⊥-String].Box<X> | ∅
ftype(elem; Box<X>) = X

∅; Γ � box.elem : X | X→ [⊥-String]

(T-Field)

∅, X→ [⊥-String] � X <: String
∅ � X→ [⊥-String] OK

∅ � String OK

∅; Γ � box.elem : String | ∅
(T-Subs)

Matching for Wildcard Capture. The T-Invk rule type checks a method
invocation and uses match to perform wildcard capture. The definition of match
is updated to use the definition-site subtyping relation (≺:). Ignoring return
types, consider a polymorphic method declared with type <Y>m(U) and called
with types <P>m(∃Δ.R). The parameters of match(R; U; P; Y; T) and their expected
conditions are:

1. The bodies of the actual value argument types of a method invocation (R).
2. The formal argument value types of a method (U).
3. The specified type actuals of a method invocation (P).
4. The formal type arguments of a method (Y).
5. The inferred type actuals of a method invocation (T).

528 J. Altidor, C. Reichenbach, and Y. Smaragdakis

Expression Typing: Δ; Γ � e : T | Δ

Δ; Γ � x : Γ (x) | ∅
(T-Var)

Δ � C<T> OK fields(C) = f

ftype(f, C<T>) = U

Δ; Γ � e : U | ∅
Δ; Γ � new C<T>(e) : ∃∅.C<T> | ∅

(T-New)

Δ; Γ � e : ∃Δ′.N | ∅
ftype(f; N) = T

Δ; Γ � e.f : T | Δ′

(T-Field)

Δ; Γ � e : U | Δ′

Δ,Δ′ � U <: T
Δ � Δ′ OK Δ � T OK

Δ; Γ � e : T | ∅
(T-Subs)

Δ; Γ � e : ∃Δ′.N | ∅ mtype(m; N) = <Y→ [BL-BU]> U→ U

Δ � P OK Δ; Γ � e : ∃Δ.R | ∅
sift(R; U; Y) = (R′; U′) match(R′; U′; P; Y; T)

Δ′′ = Δ,Δ′,Δ Δ′′ � ∃∅.R <: [T/Y]U

Δ′′ � [T/Y]BL <: T Δ′′ � T <: [T/Y]BU

Δ; Γ � e.<P>m(e) : [T/Y]U | Δ′,Δ
(T-Invk)

Match:
∀j, Pj = � =⇒ Yj ∈ fv(R′) ∀i, Pi �= � =⇒ Ti = Pi

∅ � R ≺: [T/Y, T′/X]R′

dom(Δ) = X fv(T, T′) ∩ Y, X = ∅
match(R;∃Δ.R′; P; Y; T)

(Match)

Sift: sift(R; U; Y) = (R′; U′)

sift(∅; ∅; Y) = (∅; ∅)
(Sift-Empty)

Y ∩ fv(U) = X var(X; U) = o

sift(R; U; Y) = (R′; U′)

sift((R, R); (U, U); Y) = ((R, R′); (U, U′))
(Sift-Add)

Y ∩ fv(U) = X var(Xj ; U) �= o, for some Xj ∈ X

sift(R; U; Y) = (R′; U′)

sift((R, R); (U, U); Y) = (R′; U′)
(Sift-Skip)

Fig. 7. Expression Typing and Auxiliary Functions For Wildcard Capture

Java Wildcards Meet Definition-Site Variance 529

Figure 8 contains the reduction rules for performing runtime evaluation. The
R-Invk rule also uses match to compute inferred type actuals because some of
the specified type actuals (P) may be the type inference marker �. Since each
occurrence of the � marker may refer to different types, match is needed to
compute the concrete types to substitute for the formal type arguments’ (Y)
occurrences in the method body.

Computation Rules: e �→ e

fields(C) = f

new C<T>(v).fi �→ vi
(R-Field)

v = new N(v′) v = new N(v′′) mbody(m; N) = 〈x.e0〉
mtype(m; N) = <Y→ [BL-BU]> U→ U

sift(N; U; Y) = (N′; U′) match(N′; U′; P; Y; T)

v.<P>m(v) �→ [v/x, v/this, T/Y]e0
(R-Invk)

Congruence Rules: e �→ e

e �→ e
′

e.f �→ e
′.f

(RC-Field)

ei �→ e
′
i

new C<T>(..ei..) �→ new C<T>(..e′i..)
(RC-New-Arg)

e �→ e
′

e.<P>m(e) �→ e
′.<P>m(e)

(RC-Inv-Recv)

ei �→ e
′
i

e.<P>m(..ei..) �→ e.<P>m(..e′i..)
(RC-Inv-Arg)

Fig. 8. Reduction Rules

Sifting for Wildcard Capture. The sift function is used in VarJ and TameFJ
to filter inputs passed to match (in the T-Invk and R-Invk rules). The goal
of sift is to only allow inference from types that are in “fixed” or invariant
positions. Without applying sift, counter examples to the subject reduction (type
preservation) theorem can result. First, note that the following two judgments
are derivable.

1. match(Dog; ∃∅.Y; �; Y; Dog) (mainly) because Dog ≺: [Dog/Y]Y = Dog.
2. match(Dog; ∃∅.Y; �; Y; Animal) (mainly) because Dog ≺: [Animal/Y]Y = Animal.

Assume List is invariant and consider the following.
<X> List<X> createList(X arg) { return new List<X>(); }

createList<*>(new Dog()) : List<Animal>

�→ new List<Dog>() : List<Dog>

530 J. Altidor, C. Reichenbach, and Y. Smaragdakis

The expression createList<*>(new Dog()) can be typed with List<Animal> be-
cause new Dog() : Animal, and the inferred type actual used for typing the ex-
pression can be Animal. However, the inferred type used for typing the method
invocation is not required to be the same inferred type, computed in the R-

Invk rule, substituted into the method body. Without sift, the above evaluation
step is possible, which contradicts the subject reduction theorem, since, by the
invariance of List, new List<Dog>() cannot be typed with List<Animal>.

In TameFJ, sift filters out a pair of a type actual body R and a formal type
U, if U = ∃∅.X and X is one of the formal type arguments (Y). Due to sift, the two
match judgments above could never be derived in TameFJ. Moreover, TameFJ
allows an existential type variable to be passed as parameter for a formal type
variable argument only if the formal type variable is used as a type parameter.
Since every type constructor in TameFJ is assumed to be invariant, every type
variable used for inference is in an invariant position. This no longer holds in
VarJ with variant type constructors. If we assume Iterator is covariant, a counter
example similar to the previous one can be produced with the following method:

<X> List<X> createList2(Iterator<X> arg) { return new List<X>(); }

Hence, we update the definition of sift to use var to check if a method type pa-
rameter occurs at most invariantly. We find the restriction of not allowing wild-
card capture in variant positions not to be practically restrictive. A wildcard type
for a variant type typically has an equivalent non-wildcard type. Iterator<?> is
equivalent to Iterator<Object> by covariance of Iterator. BiGeneric<?> is equiv-
alent to BiGeneric<T>, for any T, if BiGeneric is bivariant. In such cases, the need
for wildcard capture is eliminated because the required type actuals to specify in
a method call can be named. The VarJ grammar does not allow the bottom type
⊥ to be specified as a type actual. However, we have not found any practical
need for wildcard capture with contravariant types.

4.5 Type Soundness

We prove type soundness for VarJ by proving the progress and subject reduction
theorems below. As in TameFJ, a non-empty guard is required in the statement
of the progress theorem when applying the inductive hypothesis in the proof for
the case when the T-Subs rule is applied.

Theorem 1 (Progress). For any Δ, e, T, if ∅; ∅ � e : T | Δ, then either e �→ e′

or there exists a v such that e = v.

Theorem 2 (Subject Reduction). For any e, e′, T, if ∅; ∅ � e : T | ∅ and
e �→ e′, then ∅; ∅ � e′ : T | ∅.
The key difficulty in proving these theorems can be captured by a small number
of key lemmas whose proofs are substantially affected by variance reasoning.
Lemma 6 is probably the main one, which relates subtyping and wildcard cap-
ture, and is similar to lemma 36 from [4]. It states that the method receiver’s
ability to perform wildcard capture is preserved in subtypes with respect to the

Java Wildcards Meet Definition-Site Variance 531

method receiver. (A similar lemma holds for method arguments.) It shows that
the subsumption principle holds even under interaction with wildcard capture.

Lemma 6 (Subtyping Preserves matching (receiver)). If (a) Δ �
∃Δ1.N1 �: ∃Δ2.N2 and (b) mtype(m; N2) = <Y2 → [B2L-B2U]> U2 → U2 and (c)
mtype(m; N1) = <Y1 → [B1L-B1U]> U1 → U1 and (d) sift(R; U2; Y2) = (R′; U′2) and
(e) match(R′; U′2; P; Y2; T) and (f) ∅ � Δ OK and (g) Δ,Δ′ � T OK then: (1)
sift(R; U1; Y1) = (R′; U′1) and (2) match(R′; U′1; P; Y1; T).

5 Discussion

Boundary Analysis. Definition-site variance can imply that the variance of a type
does not depend on all of the type bounds that occur in the type. Our earlier work
[1] presented a definition of var (X; U) that performed a simple boundary analysis
to compute such irrelevant bounds. As discussed in Section 3.1, if generic C<Y>

is covariant wrt to Y, then the lower bound of a use-site variant instantiation is
ignored, which is sound for the VarLang calculus [1]: var(X; C<-T>) = (+ * −)⊗
var(X; T) = ∗ ⊗ var (X; T) = ∗. Hence, var (X; C<-T>) = ∗, even if X occurred in the
lower bound, T.

The ability to ignore type bounds is present in a disciplined way in our VarJ
formalism, although there is no explicit variance joining mechanism in the def-
inition of var. For example, if Iterator is covariant in its type parameter, we
can infer the following (where the notation T ≡ U denotes T <: U ∧ U <: T):
∃X → [Dog-Animal].Iterator<X> ≡ ∃X → [⊥-Animal].Iterator<X>. Clearly,
∃X → [Dog-Animal].Iterator<X> <: ∃X → [⊥-Animal].Iterator<X> because the
range of the type variable is wider in the supertype. The inverse is derivable by
applying a combination of the SE-SD, SE-Pack, and ST-* rules:

∃X → [⊥-Animal].Iterator<X> <: ∃X→ [⊥-Animal].Iterator<Animal>

<: ∃∅.Iterator<Animal> <: ∃X→ [Dog-Animal].Iterator<X>

As we saw in Section 3.2, this reasoning is not sound in the presence of F-bounded
polymorphism. It is important to realize that the issue with recursive bounds
is not specific to the use of bounds in type definitions.9 The counterexample
of Section 3.2 used interface Trouble<P extends List<P>> extends Iterator<P>

{}. However, even if we restrict our attention to a plain Iterator (or, equivalently,
if the class type bound, extends List<P>, of Trouble is removed) it is still not
safe to assume the following subtype relation, by reasoning similar to that used
in Section 3.2:
∃X → [YourList-List<X>].Iterator<X> <: ∃X → [MyList-List<X>].Iterator<X>.
The above subtype relationship would violate the subsumption principle. The

9 In our earlier work [1], when we performed an application to Java it sufficed to be
overly conservative at this point: the mere appearance of a type variable in the upper
bound of a type definition caused us to consider the definition as invariant relative
to this type variable. For VarJ, which is richer in terms of where bounds can appear,
even this kind of conservatism is not sufficient.

532 J. Altidor, C. Reichenbach, and Y. Smaragdakis

latter type can return a ∃X → [MyList-List<X>].List<X> from its next method,
but the former type cannot because
∃X → [YourList-List<X>].List<X> <: ∃X → [MyList-List<X>].List<X>, by the
invariance of List. In contrast to the earlier, correct subtyping, VarJ does not
support the above erroneous subtyping because it cannot establish that the upper
bounds of the two instatiations of Iterator are related: we cannot derive that
∃X → [YourList-List<X>].List<X> is a subtype of some non-existential type,
∃∅.List<T>, which is, in turn, a subtype of ∃X → [MyList-List<X>].List<X>.

Contrasting the two examples shows that boundary analysis is complex and
can be unintuitive to the programmer. Note, however, that the VarJ calculus
merely tells us what is possible to infer correctly. A practical implementation
may choose not to perform all possible inferences. A specific scenario is that
of separating boundary analysis from type checking. Useless bounds can be “re-
moved” during a preprocessing step performed before type checking. This is anal-
ogous to general type inference algorithms relative to type checking algorithms:
type checking can be performed independently of the type inference performed
to compute type annotations skipped by programmers. Our variance-based type
checking can be performed independently of the “useless boundary analysis”.
For example, a boundary preprocessing step could transform input type ∃X →
[Dog-Animal].Iterator<X> to the equivalent type ∃X→ [⊥-Animal].Iterator<X>.
This opens the door to many practical instantiations—e.g., an optimistic but
possibly unsound bound inference inside an IDE (which interacts with the user,
offering immediate feedback and suggesting relaxations of expressions the user
types in) combined with a simple but sound checking inside the compiler.

Definition-Site Variance and Erasure. A practical issue with definition-site vari-
ance concerns its use with an erasure-based translation. Consider a covariant
class A<+X> {...} and an invariant subtype class B<oX> extends A<X> {...}.
We can then have:

A<Integer> a = new B<Integer>;

A<Object> a2 = a; // fine by covariance of A

B<Object> b = (B<Object>) a2;

In a language with an expansion-based translation, such as C#, the last line will
fail dynamically: an object with dynamic type B<Integer> cannot be cast to a
B<Object>. In an erasure-based translation, however, the cast cannot check the
type parameter (which has been erased) and will therefore succeed, causing errors
further down the road. (In this case, a runtime error could result from a non-cast
expression, thus violating type soundness.) This practical consideration affects
all type systems that combine variance, casts, and erasure. For instance, Scala
already handles such cases with a static type warning. Effectively, no cast to a
subtype with tighter variance is safe. The result is somewhat counter-intuitive in
that it defies common patterns for safe casting. For instance, the cast could have
been performed after an “a2 instanceof B<Object>” check to establish that a2

is indeed of type B<Object>. In this case the programmer would think that the
cast warning can be ignored, which is not the case. In practice, any deployment

Java Wildcards Meet Definition-Site Variance 533

of our type system in an erasure-based setting would have to follow the same
policy as Scala regarding cast warnings.

6 Related Work

Definition-site variance was first investigated in the late 80’s [7,2,3] when paramet-
ric types were incorporated into object-oriented languages. It has recently expe-
rienced a resurgence as newer languages such as Scala [14] and C# [9] chose it as
means to support variant subtyping. Perhaps surprisingly,with such a long history,
it has only recently been formalized and proven sound in a non-toy setting [8].

Use-site variance was introduced by Thorup and Torgersen [17] in response to
the rigidity in class definitions imposedbydefinition-site variance.The conceptwas
later generalized and formalized by Igarashi andViroli [10]. The elegance and flexi-
bility of the approach evokedagreatdeal of enthusiasm, andwasquickly introduced
into Java [18]. The same flexibility also proved challenging to both researchers and
practitioners.The soundness ofwildcards in Java has only recently been proven [4],
and the implementation of wildcards has been mired in issues [5,15,16].

The work of Viroli and Rimassa [20] attempts to clarify when variance is to be
used, introducing concepts of produce/consume, which are an improvement over
the write/read view. Our approach offers a generalization and a high-level way to
reason soundly about the variance of a type. Other recent work discusses the com-
plex relationship between type-erasure and wildcards [6], as well as the concept of
variance at the level of tuning access to a path type in tree-like class definitions [12].

7 Conclusion

This paper presented VarJ, the first formal model for Java with definition-site
variance, wildcards, and intricate features such as wildcard capture. VarJ gives
a framework for reasoning about the variance of various types (e.g., bounded
existential types). We presented theory underlying the assumed variances of
the positions that types can occur in (e.g., the upper bound of a method type
parameter is contravariant). Thus, our calculus resolves questions that are central
in the design of any language involving parametric polymorphism and subtyping.

Acknowledgments. We thank the anonymous ECOOP reviewers for their
feedback, Ross Tate for providing examples on the complications of wildcards,
Nicholas Cameron for discussions on TameFJ and on performing type infer-
ence at runtime, Andrew Kennedy for discussions about the C# formalism with
definition-site variance, and Christian Urban for clarifying Barendregt’s variable
convention. This work was funded by the National Science Foundation under
grants CCF-0917774 and CCF-0934631.

References

1. Altidor, J., Huang, S.S., Smaragdakis, Y.: Taming the wildcards: Combining
definition- and use-site variance. In: Programming Language Design and Imple-
mentation, PLDI (2011)

534 J. Altidor, C. Reichenbach, and Y. Smaragdakis

2. America, P., van der Linden, F.: A parallel object-oriented language with in-
heritance and subtyping. In: European Conf. on Object-Oriented Program-
ming and Object-Oriented Programming Systems, Languages, and Applications,
OOPSLA/ECOOP (1990)

3. Bracha, G., Griswold, D.: Strongtalk: typechecking smalltalk in a production en-
vironment. In: Object-Oriented Programming Systems, Languages, and Applica-
tions, OOPSLA (1993)

4. Cameron, N., Drossopoulou, S., Ernst, E.: A Model for Java with Wildcards. In:
Ryan, M. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 2–26. Springer, Heidelberg
(2008)

5. Chin, W.-N., Craciun, F., Khoo, S.-C., Popeea, C.: A flow-based approach for
variant parametric types. In: Object-Oriented Programming Systems, Languages,
and Applications, OOPSLA (2006)

6. Cimadamore, M., Viroli, M.: Reifying wildcards in Java using the EGO approach.
In: SAC 2007: Proceedings of the 2007 ACM Symposium on Applied Computing
(2007)

7. Cook, W.: A proposal for making Eiffel type-safe. In: European Conf. on Object-
Oriented Programming, ECOOP (1989)

8. Emir, B., Kennedy, A., Russo, C.V., Yu, D.: Variance and Generalized Constraints
for C# Generics. In: Hu, Q. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 279–303.
Springer, Heidelberg (2006)

9. Hejlsberg, A., Wiltamuth, S., Golde, P.: C# Language Specification. Addison-
Wesley Longman Publishing Co., Inc., Boston (2003)

10. Igarashi, A., Viroli, M.: On Variance-Based Subtyping for Parametric Types. In:
Deng, T. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 441–469. Springer, Heidelberg
(2002)

11. Igarashi, A., Viroli, M.: Variant parametric types: A flexible subtyping scheme for
generics. ACM Trans. Program. Lang. Syst. 28(5), 795–847 (2006)

12. Igarashi, A., Viroli, M.: Variant path types for scalable extensibility. In:
Object-Oriented Programming Systems, Languages, and Applications, OOPSLA
(2007)

13. Kennedy, A.J., Pierce, B.C.: On decidability of nominal subtyping with variance,
2006. In: FOOL-WOOD 2007 (2007)

14. Odersky, M.: The Scala Language Specification v 2.8 (2010)
15. Smith, D., Cartwright, R.: Java type inference is broken: can we fix it? In: Object-

Oriented Programming Systems, Languages, and Applications, OOPSLA (2008)
16. Tate, R., Leung, A., Lerner, S.: Taming wildcards in Java’s type system. In: Pro-

gramming Language Design and Implementation, PLDI (2011)
17. Thorup, K.K., Torgersen, M.: Unifying Genericity: Combining the Benefits of Vir-

tual Types and Parameterized Classes. In: Guerraoui, R. (ed.) ECOOP 1999.
LNCS, vol. 1628, pp. 186–204. Springer, Heidelberg (1999)

18. Torgersen, M., Hansen, C.P., Ernst, E., von der Ahe, P., Bracha, G., Gafter, N.:
Adding wildcards to the Java programming language. In: SAC 2004: Proc. of the
2004 Symposium on Applied Computing (2004)

19. Urban, C., Berghofer, S., Norrish, M.: Barendregt’s Variable Convention in Rule
Inductions. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 35–50.
Springer, Heidelberg (2007)

20. Viroli, M., Rimassa, G.: On access restriction with Java wildcards. Journal of
Object Technology 4(10), 117–139 (2005)

