
J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 535–559, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Constraint-Based Refactoring with Foresight

Friedrich Steimann and Jens von Pilgrim

Lehrgebiet Programmiersysteme
Fernuniversität in Hagen

D-58084 Hagen
steimann@acm.org, Jens.vonPilgrim@feu.de

Abstract. Constraint-based refactoring tools as currently implemented generate
their required constraint sets from the programs to be refactored, before any
changes are performed. Constraint generation is thus unable to see — and re-
gard — the changed structure of the refactored program, although this new
structure may give rise to new constraints that need to be satisfied for the pro-
gram to maintain its original behaviour. To address this problem, we present a
framework allowing the constraint-generation process to foresee all changes a
refactoring might perform, generating — at the outset of the refactoring — all
constraints necessary to constrain these changes. As we are able to demonstrate,
the computational overhead imposed by our framework, although threatening
viability in theory, can be reduced to tractable sizes.

1 Introduction

Refactoring is the discipline of changing a program in such a way that one or more of
its non-functional properties (readability, maintainability, etc.) are improved, while its
behaviour is maintained [4]. When applied to real programs written in real program-
ming languages, refactoring involves complex precondition checking and mechanics
that contain deeply nested case analyses, making refactoring without tool support
tedious and error-prone. A steadily growing number of fully automated refactoring
tools is therefore being devised; of these, a considerable part is constraint based (e.g.,
[1, 3, 5, 9, 10, 16– 20]).

Current approaches to constraint-based refactoring use so-called constraint rules to
generate sets of constraints from the programs to be refactored. The generated con-
straints rule over how the program may be changed without affecting its well-formed-
ness or behaviour. Constraints are said to be generated in a syntax-directed manner [1,
 5, 10, 20], i.e., based on the program’s abstract syntax tree (AST), which represents
the program as is before the refactoring.

One problem of this approach is that constraint rule application is unable to see the
structural changes of the AST imposed by a refactoring. For instance, if a refactoring
moves a program element to another location (corresponding to another node in the
AST), the constraints imposed on the element by this new location have not been
generated, since at the time of rule application, the element was still in its old loca-
tion. Note that taking the refactoring intent (here to move the element to a known
location) into account does not generally suffice to fix the problem, since the intended

536 F. Steimann and J. von Pilgrim

refactoring may require other elements to change as well (here: to move to the same
location), which precisely only being known after having solved the constraints de-
scribing the refactoring problem. Thus, constraint-based refactorings need some kind
of recognition of how a program is going to change.

In this paper, we present a solution to a class of problems that, following our first
mention of it in [17], we have dubbed the foresight problem of constraint-based refac-
toring. Our solution relies on constraint rule rewriting and quantified constraints ex-
tending the scope and expressiveness of constraint rules so that they can cover all
possible changes of a program’s structure that might infringe its well-formedness or
affect its behaviour. To address the computational complexity introduced by this, we
present an algorithm for cancelling constraints not needed for a concrete refactoring.
That our approach is indeed viable is demonstrated by applying it to five different
variants of the PULL UP FIELD refactoring.

The remainder of this paper is organized as follows. In Section 2, we motivate our
work by presenting various examples of the foresight problem, and reflect on the
related literature. In Section 3 we provide a quick introduction to constraint-based
refactoring, mostly for readers not acquainted with this refactoring technique. Sec-
tions 4 and 5 introduce our notions of quantified constraints and constraint rule rewrit-
ing that will be exploited in Section 6 for addressing the foresight problem (including
the complexity imposed by our solution). After a brief sketch of the implementation
in Section 7, our evaluation in Section 8 shows that the added complexity can be
reduced significantly for many practical cases.

2 Motivation

To give the reader an impression of how constraint-based refactoring works, we first
take a look at the following simple

EXAMPLE 1: Consider the Java program

class A {}
class B extends A {

 int i = 1;
 int j = this.i;
}

and the intended refactoring “pull up field j from class B to class A”. A quick analysis
shows that this is not possible if the pulling up of j is the only change the refactoring is
allowed to make; if it may perform additional changes, it may be made to work by pulling
up field i as well, or by separating the declaration of j from its initialization. An indeed,
Eclipse (whose implementation of the PULL UP FIELD refactoring is constraint-based [19])
warns the user of the fact that field i will be undefined in the new location of j. ♦

In constraint-based refactoring, what a refactoring tool must do in order to perform
the refactoring correctly is described as a constraint satisfaction problem (CSP) gen-
erated from the program as is, and the refactoring intent. The two constraints
sufficiently describing the refactoring problem of the above example are that

1. the declaring type of j, the location (i.e., the hosting type) of this, and the location
of the reference to i must be equal (since they are part of the same statement); and

 Constraint-Based Refactoring with Foresight 537

2. the location of this must be a (non-strict) subtype of the declaring type of i (so that
i is defined, either directly or via inheritance, for the object represented by this).

Note that both constraints are satisfied by the program as is:

1. the declaring type of j, the location of this, and the location of the reference to i are all
B and

2. the location of this, B, is a (non-strict) subtype of the declaring type of i, also B.

However, the constraints are not satisfied after the declaration of j has been pulled up
to A, since then the declaring type of j becomes A which, by satisfaction of Constraint
1, implies that the location of this is also A, which violates Constraint 2, since A is not
a subtype of the declaring type of i, B. Both constraints can be satisfied, however, by
changing the declaring type of i to A also, which is equivalent to pulling up i as well.

In current implementations of constraint-based refactoring, constraints like the
above are generated from a program to be refactored by application of so-called con-
straint rules, whose precedents are matched against the AST representation of the
program as is before the refactoring. As the following examples will demonstrate, this
approach (which worked fine for Example 1) is challenged by refactorings that
change the structure of the AST, by changing the locations of program elements.

2.1 Examples of the Foresight Problem

We begin our exploration of the foresight problem with the following simple

EXAMPLE 2: In the sample program
package p;

public class A {}
package q;
class B extends p.A { protected int i; }

class C extends B { void m(B b) { i = b.i; } }

pulling up i from B to A seems possible at first glance (since generally, protected ac-
cessibility suffices for inheritance across different packages), but will cause a compile
error on b.i in C.m(B), since a rule of the Java language specification (JLS; [6], §6.6.2)
mandates that

if a member (here: A.i) of an object (b) is accessed (b.i) from outside (q) the
package in which it is declared (p) by code (C.m(B)) that is not responsible
for the implementation of that object,

then accessibility must be public.

However, without special measures this rule (which corresponds to the rule Acc-2 of
[17]) fails to generate the constraint required for adjusting i’s accessibility to public. ♦

The problem exposed by Example 2 is that with the program as is, one conjunct of
the rule precedent, that the access occurs from outside the package, is not fulfilled
(since the declaration of i and its access in C.m are in the same package when the rule
is applied), so that no constraint requiring public accessibility will be generated by
applying this rule to the program. That public accessibility is required for i is known
only after the fact, namely after it has been pulled up. Generation of the correspond-
ing constraint thus requires foresight of the move.

538 F. Steimann and J. von Pilgrim

Of course, one could argue that required accessibility always depends on the loca-
tion of the accessor and the accessed, and that any constraint constraining accessibil-
ity should take the variability of the locations of the two into account. This is some-
what different for the following
EXAMPLE 3: In the sample program

class A {}
class B extends A { static int i = 0; }

interface I { int i = 1; }
class C extends A implements I {
 static int j = i;

}

pulling up the field i from class B to class A makes the access of i from class C am-
biguous, since it is unclear whether I.i or A.i is referenced. However, Eclipse’s con-
straint-based implementation does not foresee the problem and performs the refactor-
ing without warning. ♦

One possible remedy for the problem of Example 3 is to add a constraint requiring
an accessibility of A.i that makes it inaccessible from C, but then, this constraint
makes no sense for the program before the refactoring — there is no A.i and why
should accessibility of B.i be lowered? Again, a solution to this problem requires
foresight of the situation after the refactoring.

Example 3 differs from Example 2 in that for the program as is, the field B.i is com-
pletely unrelated to the rest of the program, so that there seems to be no reason at all to
generate a constraint for it (in fact, B.i could even be deleted without changing the mean-
ing of the program). This was different for Example 2, in which B.i was already consid-
ered in the constraint generation process, only not in a manner that was still sufficient
after the refactoring. However, both examples have in common that with the refactoring
intent known to the constraint generator, it could be tweaked to insert the necessary
constraints. This will be different for
EXAMPLE 4: Extending Example 1 to

class Z { int i = 0; }
class A extends Z { { assert this.i == 0; } }
class B extends A {

 int i = 1;
 int j = this.i;
}

the pulling up of B.j to A should be rejected since the necessary accompanying pulling
up of B.i to A changes the binding of references to i on instances of type A, unless all
receivers of references to Z.i of (static) type A (here: this in the assert statement) are
cast to Z, or one of Z.i and B.i is renamed. Again, the current constraint-based
implementation of PULL UP FIELD in Eclipse fails to see this. ♦

The problem highlighted by this example is that, given that the refactoring intent is to
pull up B.j, it is difficult to foresee, for a constraint generator applied to the original pro-
gram and refactoring intent, that access to Z.i should involve a cast, or a field should be
renamed, since it is unknown, before the generated CSP has been solved, that B.i must be
pulled up as well. Without foresight of that such a change might happen, no constraints
protecting bindings to Z.i will be generated. Generally, refactorings can have far-reaching
ripple effects that are difficult to foresee, and a correct implementation must account for
them all. This is a non-trivial problem.

 Constraint-Based Refactoring with Foresight 539

2.2 Related Work

In his doctoral dissertation, Griswold used bidirectional mappings between Scheme
programs and program dependence graphs that allowed him to perform restructurings
on the latter (and thus on a representation in which behaviour preservation is rela-
tively easy to assert) [8]. This approach is somewhat analogous to that taken by con-
straint-based refactoring, which transforms a program to a CSP, in which refactoring
amounts to constraint solving (see Section 3 for details).

Constraint-based type refactorings as pioneered by Tip et al. [19, 20] make a num-
ber of simplifying assumptions avoiding most problems that we are addressing here.
In particular, they assume that program elements whose moving may accidentally
change behaviour-critical dependencies (such as binding or overriding relationships)
are adequately renamed before the move [20]. However, even if programs are pre-
pared in such manner, the constraint rules provided in [20] still fail to address some of
the foresight problems we are solving: for instance, rule 12 (for hiding) makes sure
that existing hiding relationships are preserved (preventing a renaming), but cannot
avoid a change of binding due to the pulling up of a field, as in our Example 4.

The work of Schäfer et al. [13– 15] avoids accidental changes of behaviour-critical
program dependencies by recording them prior to refactoring and by introducing a
correction phase that restores the original dependencies, if possible, after the intended
refactoring has been performed (solving the problem with hindsight, so to say). How-
ever, the changes necessary to perform the correction may themselves affect well-
formedness and meaning of a program, which is why Schäfer’s approach of locked
dependencies has recently been combined with constraints [16]. As we will show, our
work presented here is more general not only in that it is capable of addressing the
primary refactoring and all corrections required using a single formalism (avoiding
the looping between dependency locking/unlocking and constraint solving), but also
in that it can choose between different measures for maintaining the original depend-
encies: for instance, it may rename problematic program elements, or make them
inaccessible, or move them to locations in which they do not interfere.

Dynamically changing systems gave rise to the investigation of so-called dynamic
constraint satisfaction problems [11], in which the activeness of certain constraints
depends on the satisfaction of others. More specifically, the introduction of condi-
tional constraints allows the constraint solver to explore dynamic reconfigurations of
(usually hardware) systems certain components of which may or may not be present
(i.e., switched on or off). This situation is not unlike the foresight problem of refactor-
ing, which must also let dynamically changing configurations (that is, changes to the
program structure) be explored by the constraint solver. However, restructuring soft-
ware must deal with the more general problem of moving program elements around,
and placing a switch at every possible location would be absurdly expensive (espe-
cially since, as has been shown in [7], the computational burden of conditional
constraints is heavy).

In object-oriented programming, conditional constraints have been used for type in-
ference [12] and also for certain constraint-based refactorings [1, 3]. In particular, [3]
has used conditional constraints (there called guarded constraints) to handle the inter-
play of parameterized and raw types when converting Java programs to use generic
libraries: whereas parameterized types require additional constraints on variables

540 F. Steimann and J. von Pilgrim

representing the type parameters, raw types do not give rise to such variables which,
consequently, cannot be constrained. Constraints generated from assignments must
therefore be made sensitive to the “parameterizedness” of the participants and, since the
parameterizedness may be changed by the refactoring, this sensitivity must be dynamic.
Similarly, [1] has used conditional constraints (there called implication constraints) to
let generated type constraints depend on a binary switch indicating whether an occur-
rence of a constructor or method call of a legacy type has been replaced (by the con-
straint solver) with an equivalent call of a migration type. However, both problems are
analogous to the hardware problem of switching on or off components, whereas we
have to deal with moving program elements to new locations.

In earlier work of ours on constraining accessibility under refactoring, we intro-
duced so-called foresight application of constraint rules which, knowing to which
location a program element was to be moved by a refactoring (the refactoring intent),
computed the required accessibilities for that location [17]. However, since this com-
putation occurred outside the constraint solving process, we had to know in advance
which program elements were to be moved where, which, as argued above, is an
unrealistic assumption in the general case.

3 A Brief Recap of Constraint-Based Refactoring

In constraint-based refactoring, a program is sufficiently represented by

• a set of variables, called constraint variables, representing selected properties of
the program and

• a set of relationships, called constraints, constraining the properties, representing
syntactic and semantic rules of the programming language as applied to the
program.

Together, the constraint variables and the constraints define a CSP whose solution
space represents programs that are refactorings of each other. For instance, the CSP
corresponding to the refactoring problem of Example 1 consists of the constraint set

 {v1 = v2 = v3, v2 ≤ v4} (1)

where v1 represents the declaring type of j, v2 represents the location of this, v3 repre-
sent the location of the reference to i, and v4 represents the declaring type of i (all
having the initial value B; note that (1) is solved with these values). Pulling up j trans-
lates to assigning v1 the new value A, which (via the equality constraint v1 = v2 = v3) is
propagated to v2, which in turn (via the inequality constraint v2 ≤ v4) requires v4 to
change to A as well, translating to pulling up i along with j.

Generally, the CSP representing a refactoring problem is solved with the initial
values of the constraint variables assigned. A refactoring intent (such as pulling up
field j from B to A) translates to changing one or more variable values, which may
require other variable values to change as well for the CSP to remain solved, which
ones precisely being computed by a constraint solver. Each solution of the CSP then
corresponds to a refactored program that is obtained by writing back the values of the
changed variables to the original program.

 Constraint-Based Refactoring with Foresight 541

3.1 Constraint Rules

A CSP such as (1) that represents a program to be refactored is generated from this
program by application of so-called constraint rules, which are generally of the form

program queries

constraints

Here, program queries is a set of predicates (implicitly conjoined) that are interpreted
as queries over a program, and constraints represents the set of constraints to be gen-
erated (added to the CSP) for program elements selected by the queries. Both the
program queries and constraints contain variables which are bound to program ele-
ments (declared entities and references to declared entities of a program; the nodes of
its AST) by the queries; the constraint rule is implicitly universally quantified over
these variables (note that these variables are not the constraint variables).

EXAMPLE. Application of the constraint rule

overrides(M2, M1)
accessible(M2, M1)

to a program searches the program for occurrences of pairs of methods (M2, M1) such
that M2 overrides M1, and generates for each found pair a constraint requiring that M1
is accessible from M2 ([6], §8.4.8.1). ♦

Constraints such as the above accessible(M2, M1) generated by the application of
constraint rules do not constrain program elements directly — rather, they constrain
properties of the program elements (which are therefore the constraint variables of the
CSP). The properties of program elements and their domains depend on the elements’
kinds (i.e., whether an element is a declared entity or a reference, whether a declared
entity is a method, a field, etc.): for instance, the declaration of a field has at least the
properties location (where the field is declared; the hosting type), type (the declared
type of the field), and accessibility (the access modifier used in the declaration, in
Java one of private, package, protected, or public). We use Greek letters to denote

Table 1. Properties of program elements used in more than one occasion throughout this paper

PROPERTY MEANING
e.α the declared accessibility of e (corresponding to 〈e〉 in [17])
e.λ the location of e, the type in whose body e occurs (corresp. to λ(e) in [17] and,

for declared entities, to Decl(e), the declaring type of e, in [19])
e.λT the top level type hosting e; same as e.λ for elements directly occurring in the

bodies of top level types
e.ι the identifier of e
e.π the package hosting e
e.τ the type of e (declared or inferred; corresponding to [e] in [19])

542 F. Steimann and J. von Pilgrim

properties: e.τ for the type of element e, e.λ for the location of e, e.α for the declared
accessibility, etc.; Table 1 summarizes the properties that we will be using repeatedly
throughout this paper.

EXAMPLE. A spelled out and extended variant of the previous constraint rule is

overrides(M2, M1)
M2.λ ≤τ M1.λ M1.α ≥α α(M2, M1)

in which ≤τ represents the subtype relationship defined by the program, >α represents the
(total) ordering of access modifiers in Java (with ≥α being defined as usual), and α is a
helper function computing the minimum required accessibility for the declared entity of
the second argument when accessed from the location of the first ([17]; see Figure 2 for
how α is defined in terms of constraints). Taken alone, these constraints allow it that M1
or M2 are moved up or down the class hierarchy as long as M2.λ remains a subtype of
M1.λ, and that the declared accessibility M1.α may be increased or lowered, as long as it
remains above what is required by the locations of M1 and M2 relative to each other. ♦

The constraint rules governing the PULL UP FIELD refactoring of Example 1 are

same-statement(e1, …, en)
e1.λ = … = en.λ

where the variable argument query same-statement(e1, …, en) finds all tuples of
program elements occurring in the same statement, and

binds(f, F) receiver(f, r)
r.τ ≤τ F.λ

where binds finds all pairs of field accesses f and field declarations F such that f binds to
F, and receiver finds all pairs of field accesses f and references r such that r is the receiver
of f.1 Applied to the program of Example 1, these two rules generate the constraint set

{ jB.λ = thisB.λ = iB.λ, thisB.τ ≤τ iB.λ }

(with jB representing B.j, thisB representing the reference to this in B, etc.).
It is instructive to note that to a certain extent, program queries and constraints can

be exchanged for each other. For instance, the expression e1.λ = e2.λ can be inter-
preted as a query, in which case it means “select all pairs of program elements (e1, e2)
such that e1 and e2 are located in the same type”, or interpreted as a constraint, mean-
ing “whatever the location of e1 or e2, it must be the same as the other”. The main
differences are operational: whereas the query finds all instances of e1 and e2 in the
program that satisfy the stated condition, the constraint makes sure that the properties
of the found instances (representing the constraint variables) always remain aligned.
Also, while program queries are evaluated at rule application (i.e., constraint genera-
tion) time, when all properties have their initial values, constraints are evaluated at
constraint solution time, during which the values of the properties may be changed.
This latter difference will play an important role below.

1 Following the convention of [19], we use upper case letters for variables representing declared

entities, and lower case letters for variables representing references.

 Constraint-Based Refactoring with Foresight 543

3.2 Conditional Constraints

A conditional constraint [7, 11] of the form P → C is a constraint over two (reified)
constraints, the premise constraint, P, and the consequent constraint, C. Satisfaction
of P → C requires satisfaction of C only if P is satisfied; if not, C can be ignored. P
can therefore be considered a guard switching C on or off. Conditional constraints are
readily handled by contemporary constraint solvers (e.g., [2]).

Conditional constraints have many uses in constraint-based refactoring. For in-
stance, the JLS mandates that if two fields are declared in the same statement, their
declared type, τ, must be the same ([6], §8.3). Expressed as a constraint rule:

 same-declaration(F1, F2) (2)
F1.τ = F2.τ

If, for some reason, a refactoring required that the declared type of one, but not both,
of f1 and f2 is changed, the refactoring would have to be refused. However, this rejec-
tion may be overly strict, namely if the declaration can be split as part of the
refactoring (in which case the constraint need no longer hold). The constraint rule

 same-declaration(F1, F2) (3)
F1.σ = F2.σ → F1.τ = F2.τ

in which the property σ represents the statement in which a field is declared, gener-
ates a conditional constraint that solves this problem: only if F1 and F2 are declared in
the same statement need the types of F1 and F2 be the same. If the constraint solver
can assign F1.σ or F2.σ a new value so that F1.σ ≠ F2.σ, the declared types of F1 and
F2 may differ. Thus, the constraint solver can compute that splitting the declaration
solves the refactoring problem.

3.3 Specification of Refactorings

Constraint rules are generally independent of refactorings. However, not all con-
straint rules are applicable or relevant for all refactorings. This is so because not
all properties may be changed by all refactorings: for instance, if the intended
refactoring is to pull up a field, renaming that field or others that stand in the way
of the pulling up may not be compatible with the refactoring intent, so that identi-
fiers are fixed for this refactoring. Thus, the full specification of an intended
refactoring (a refactoring problem) involves

• the program to be refactored,
• the set of constraint rules constraining the properties whose changes are associated

with the refactoring,
• the concrete refactoring to be performed, as expressed by a selection of properties

(usually one) and their new, mandatory values, and
• a specification of the other properties the constraint solver is allowed to change in

order to perform the refactoring. [18]

544 F. Steimann and J. von Pilgrim

The last item divides the properties extracted from a program into two kinds, those
whose values are fixed and those whose values are non-fixed. This distinction will
also play an important role in our treatment of the foresight problem.

4 Constraint Rule Rewriting

Ignoring the operational differences (noted at the end of Section 3.1) between the
query same-declaration(F1, F2) and the constraint F1.σ = F2.σ, the two appear to ex-
press the same thing in different terms. In fact, considering that both a constraint rule
and a conditional constraint are implications of some kind, (3) contains a tautology:
either the query of the constraint rule or the premise of the conditional constraint
could be dropped without affecting the contribution of the constraint rule to a
refactoring. The only caveat is that the choice which one to drop is not free.

To see why this is the case, we have to look at the variability of program properties
and the different evaluation times of queries and constraints. If all properties involved
in the premise of a conditional constraint are known to be always fixed (i.e., their only
allowed values are their initial values), satisfaction of the premise can be computed at
rule application time (when the constraints are generated), after the variables in the
queries have been instantiated with program elements. Thus, the premise can be
pulled up (“promoted”) to the rule precedent, transforming (3) to

same-declaration(F1, F2) F1.σ = F2.σ

F1.τ = F2.τ

Since F1.σ = F2.σ as a query has the same meaning as same-declaration(F1, F2), the
former can be dropped, giving us the simplified rule (2). This kind of rule rewriting is
worthwhile since it saves the generation of conditional constraints.

If however the properties involved in the premise of a conditional constraint are
non-fixed (so that their values may be changed by the solver), satisfaction of the
premise cannot be computed at rule application time. In fact, in this case it is even
questionable whether an equivalent query should be evaluated at this time, since this
restricts the generation of the conditional constraint to program elements fulfilling the
premise for the program as is. For instance, the query of (3) requires that F1 and F2
are declared in the same statement, so that no (conditional) constraint will be
generated for pairs of fields that are not, preventing the solver from merging two field
declarations separate at the time of constraint generation into one should their types
(become) equal. In that case, the query should be pushed down (“demoted”) to the
premise of a conditional constraint, transforming (3) to

F1 F2

same-declaration(F1, F2) → F1.σ = F2.σ → F1.τ = F2.τ

or, since F1.σ = F2.σ and same-declaration(F1, F2) as constraints are equivalent, to

F1 F2

F1.σ = F2.σ → F1.τ = F2.τ

 Constraint-Based Refactoring with Foresight 545

Generally, if the precedent of a constraint rule contains queries that relate to proper-
ties of the program that may change during the refactoring, those queries (rephrased
as constraints) should be pushed down from the rule precedent to the premise of a
conditional constraint in the consequent of the rule. This demotion of queries to prem-
ises of conditional constraints serves the generalization of constraint rules (so that
more constraints that cover more refactoring problems are generated). Conversely, if
the premise of a conditional constraint in a rule consequent can always be evaluated at
rule application time (since for every application it constrains only fixed properties),
the premise can be pulled up to the rule precedent. This promotion of premises of
conditional constraints to queries of constraint rules serves the tuning of constraint-
based refactoring, by making constraint generation more specific (so that, if the pro-
moted queries are not redundant to existing queries, fewer constraints are generated),
and by simplifying the constraints that must be solved. Both promotion and demotion
will be made use of in our solution of the foresight problem as presented in Section 6.

5 Quantified Constraints

As pointed out in Section 3.1, constraint rules are implicitly universally quantified
over the elements of a program. However, every single application of a constraint rule
generates only one instance of the constraints in its consequent. There are situations in
which this is insufficient, as demonstrated by the following

EXAMPLE: Beginning with Java 5, a method may be annotated with the @Override
annotation, in which case the compiler checks that the method overrides a method
defined by a superclass. This is captured by the constraint rule

overrides(M)
∃ M′ ≠ M : M.λ <τ M′.λ ∧ M′.α ≥α α(M, M′) ∧ override-equivalent(M′, M)

which requires that there is at least one method defined in a superclass that is accessi-
ble from M and has an override-equivalent signature ([6], §8.4.2). ♦

Unlike conditional constraints, quantified constraints are not readily handled by
available constraint solvers. However, since the domains that are being quantified
over, namely sets of program elements, are always finite, a quantified constraint can
be unrolled to a finite disjunction or conjunction of constraints. For instance, if a pro-
gram has three methods, M1, M2, and M3, of which M1 is annotated with @Override,
application of the above constraint rule unrolls to

 M1.λ ≤τ M2.λ ∧ M2.α ≥α α(M1, M2) ∧ override-equivalent(M2, M1)
∨ M1.λ ≤τ M3.λ ∧ M3.α ≥α α(M1, M3) ∧ override-equivalent(M3, M1)

Contrasting this simple one, below we will encounter examples of quantified con-
straints whose unrolling is exceedingly expensive.

Quantified constraints also offer opportunities for rule rewriting. Because constraint
rules are implicitly universally quantified over their variables, a universally quantified
constraint occurring in a rule consequent can be stripped of the quantifier, by moving the
quantified variable (representing program elements) to the rule precedent. Effectively,
this makes unrolling a universally quantified constraint an immanent part of constraint
generation (rule application). This “promotion” of universal quantification will be
exploited by our capture of foresight, as detailed in Section 6.

546 F. Steimann and J. von Pilgrim

EXAMPLE. The JLS mandates that of all top-level classes contained in a compilation
unit, only one may be declared public. This translates to the constraint rule

top-level-class(C) C.α = public

∀C′ ≠ C, top-level-class(C′): C′.υ = C.υ → C′.α <α public

(in which C.υ represents the compilation unit of C), which is equivalent to

top-level-class(C) C.α = public C′ ≠ C top-level-class(C′)
C′.υ = C.υ → C′.α <α public

in which the explicit universal quantification in the consequent has been replaced by
the introduction of C′ as a variable in the rule precedent whose quantification (and
unrolling) is implicit in rule application. If the intended refactoring does not allow
moving classes between compilation units, the rule can be further rewritten to

top-level-class(C) C.α = public C′ ≠ C top-level-class(C′) C′.υ = C.υ

C′.α <α public

(by promoting the premise of the conditional constraint to the rule precedent), saving
the generation of conditionals for classes of the same compilation unit, and the gen-
eration of constraints for classes from different compilation units altogether. ♦

6 A Constraint-Based Solution of the Foresight Problem

The foresight problem exposed by Examples 2–4 of Section 2.1 is that the constraints
generated from the constraint rules as applied to the program as is are insufficient:
certain constraints are missing. With constraint rule rewriting and quantified con-
straints at hand, we are sufficiently equipped to systematically generate them.

6.1 Foresight with Constraint Rule Rewriting

Example 2 of Section 2.1 suggests that a constraint should have been generated that
constrains the declared accessibility of field i to public after its pulling up to a class of
another package, a constraint that would however have constrained the program as is
incorrectly. Generation of a conditional constraint escapes this dilemma, by guarding
the constraint with the condition that the access occurs from another package via a
reference whose (static) type is not a (non-strict) supertype of the declaring type of i.
This is obtained by rewriting the constraint rule of Example 2, here formalized as

 binds(m, M) receiver(m, r) m.π ≠ M.π ¬ r.τ ≤τ r.λ
M.α = public

to

 binds(m, M) receiver(m, r)
(4)

m.π ≠ M.π ∧ ¬ r.τ ≤τ r.λ → M.α = public

 Constraint-Based Refactoring with Foresight 547

in which the queries m.π ≠ M.π and ¬ r.τ ≤τ r.λ have been demoted to the guard of a
conditional constraint. Applied to the program of Example 2, this rule generates a
consequent constraint (M.α = public) that is inactive (switched off) for the program as
is; if however the program is changed in such a way that the guard holds, the conse-
quent is activated, and contributes to the refactoring. Thus, the rewritten rule codes
foresight of the possible change.

As can be seen the use of constraint rules with demoted queries is expensive in that
it leads to the generation of more constraints, and conditional ones at that. Therefore,
if rule (4) is used in a specific refactoring, say GENERALIZE TYPE [19], fixed con-
straints should be promoted to queries, in the case of GENERALIZE TYPE leading to

binds(m, M) receiver(m, r) m.π ≠ M.π M.α ≠ public

r.τ ≤τ r.λ

if only the declared types of program elements may be changed by the refactoring.

6.2 Foresight with Quantified Constraints

As detailed in Section 2.1, the problem highlighted by Example 3 is of a different
nature than that of Example 2 in that a declared entity must be constrained that, for
the program as is, is unrelated to the program elements to be refactored. This lack of
relatedness suggests that such program elements escape ordinary constraint rules.

This is where quantified constraints step in. For the case of Example 3, that no
field must exist to which a reference could bind alternatively (so that the reference
would be ambiguous) is conveniently expressed using a non-existence constraint in
the consequent of a constraint rule, as in

 binds(f, F) receiver(f, r)
(5)

¬∃ F′ ≠ F : F′.ι = f.ι ∧ F′.α ≥α α(f, F′) ∧ r.τ ≤τ F′.λ ∧ ¬ F.λ <τ F′.λ

which reads “there must not exist a field F′ distinct from F that has the same name
(identifier) as f (the reference that must not be ambiguous), that is accessible for f, that
is declared in a supertype of the type of receiver r, and that is not declared in a super-
type of the declaring type of F ”. Similarly, the problem exposed by Example 4,
namely that no field must exist that hides the field a reference currently binds to, is
countered by generating the constraint

¬∃ F′ ≠ F : F′.ι = f.ι ∧ r.τ ≤τ F′.λ ∧ F′.λ <τ F.λ

Note that in both cases, all conjuncts of the quantified constraint but the last equally
apply as conditions required for f to bind to F — to avoid ambiguity or rebinding,
conditions sufficient for f binding to F must not hold for other fields F′ as well.

Unlike in the example of Section 5, unrolling quantified constraints such as the
above can be very expensive. In the worst case, if a refactoring may change the name
of a field and its location freely, a constraint must be generated for every other field in
the program, and with it for every reference to a field (which may have to be renamed
as well). However, most refactorings are not granted this freedom, so that constraint
rules such as the above (which directly mirror the rules of the programming language)
can be rewritten to suit specific refactorings.

548 F. Steimann and J. von Pilgrim

Generally, constraint rules expressing that no program element must exist with
properties that would infringe the program’s well-formedness or change its behaviour
have the form

 query(e, …)
(6)

C(e, …) ¬∃ e′ ≠ e : C′(e′, …)

in which C(e, …) and C′(e′, …) represent arbitrary constraints expressing the relation-
ships between the properties of e and others that must hold, and relationships between
the properties of e′ and others that must not hold. In a first rewriting step, we split the
constraint rule (6) into two

query(e, …) query(e, …)

C(e, …) ¬∃ e′ ≠ e : C′(e′, …)

and leave aside the first, since it is standard. Next, we split the quantified constraint
C′(e′, …) into two conjuncts F(e′, …) and N(e′, …), the former containing only con-
straints whose constrained properties (constraint variables) are fixed for the refactor-
ing, the latter containing the constraints of which at least one constrained property is
non-fixed (note that either conjunct may be empty). This lets us rewrite the rule to

query(e, …)
¬∃ e′ ≠ e : F(e′, …) ∧ N(e′, …)

which is equivalent to

query(e, …)
∀ e′ ≠ e : ¬(F(e′, …) ∧ N(e′, …))

which is in turn equivalent to

query(e, …)
∀ e′ ≠ e : F(e′, …) → ¬N(e′, …)

Since the rule consequent is now a universally quantified conditional constraint whose
premise depends on fixed properties only, we can rewrite the rule to

query(e, …) F(e′, …)
¬N(e′, …)

whose additional query F(e′, …) acts as a filter leading to the generation of fewer
constraints than would have been introduced by the unrolling of ¬∃ e′ ≠ e: C′(e′, …).
For instance, for a refactoring that is not allowed to change identifiers or declared
accessibilities, rule (5) can be rewritten to

 binds(f, F) receiver(f, r) F′ ≠ F F′.ι ≠ f.ι
(7)

F′.α ≥α α(f, F′) ∧ r.τ ≤τ F′.λ ∧ ¬ F.λ < F′.λ

Note that the conjunct constraining accessibility cannot be promoted to a query, since
it depends on location (cf. the definition of α in Figure 2), which may be changed by
the refactoring (but see below for further savings possible).

 Constraint-Based Refactoring with Foresight 549

Generally, what seems like a rather discouraging threat to the tractability of
constraint-based refactoring with foresight may be tamed by rule rewriting, allowing
the evaluation of constraints — as queries — at rule application time. How effective
this is in practice will be explored in the evaluation of Section 8.

6.3 Further Savings

The above introduced possible rewritings of constraint rules depend on the (lack of)
variability of constrained properties in the rule consequent, more specifically on
whether the satisfaction of a constraint can be decided — for every possible applica-
tion of the rule — at rule application time: if it can, the constraint can be promoted to
a query where it acts as a filter causing fewer generated constraints. This lets us tailor
general (i.e., refactoring-independent) constraint rules to a specific refactoring charac-
terized by which properties are non-fixed and which are fixed (cf. Section 3.3). This
tailoring can be carried out before the refactoring is actually applied, as it holds across
all possible applications. Practically, this means that it can be performed for the
tuning of a set of constraint rules to a specific refactoring tool.

However, further savings are possible when a (specifically tailored) refactoring is
actually performed. When a constraint rule is applied, i.e., when all variables of the
rule have been instantiated with concrete program elements, it may be the case that
individual constraints to be generated can already be evaluated. For instance, continu-
ing the example of rewriting rule (5) from the previous subsection to rule (7), for all
fields F′ whose declared accessibility is public, the constraint F′.α ≥α α(f, F′) in the
consequent of (7) need not be generated, since it is always satisfied (recall that the
refactoring was not allowed to change accessibility). Furthermore, reified constraints
(cf. Section 3.2) that can be evaluated at rule application time may lead to shortcut
evaluations of the Boolean constraints (including conditional constraints) constraining
them, which may lead to further savings (including immediate abortion of a refactor-
ing if a top-level constraint is unsatisfiable). These optimizations do not correspond to
rewritings of constraint rules, since they are performed individually, for single
applications of rules. We will evaluate their impact in Section 8.

6.4 Basic Algorithm of Constraint-Based Refactoring with Foresight

An algorithm for constraint-based refactoring with foresight that performs the possi-
ble tailoring described in Sections 6.1 and 6.2 and the additional optimizations of
Section 6.3 is shown in Figure 1. It takes as input the parameters necessary to specify
a constraint-based refactoring (as detailed in Section 3.3) and produces a refactored
program, if the refactoring can be performed.

The algorithm is split into four stages: the rewriting (tailoring) of the constraint
rules to the specific refactoring, the application of the rules to the program to be refac-
tored, the performing of the individual optimizations, and the generation and solution
of a CSP (including writing back the solution of the CSP to the original program).
Some explanations follow:

550 F. Steimann and J. von Pilgrim

Step 2: Conversion to DNF is performed after replacing ¬∃ x: ϕ(x) with ∀ x: ¬ϕ(x)
and dropping the explicit universal quantification as shown in Section 4.

Step 3: A disjunct is filtered as invariant if none of its constrained properties may be
changed (meaning that its satisfiability depends only on its instantiation dur-
ing rule application in Step 9). Note that since, at this stage, all properties are
properties of unbound variables (the rules have not yet been applied to actual
program elements), the filtering condition must hold for all program elements
that can be substituted for the variables. More specifically, only filters of the
kind “all access modifiers may be changed” can be evaluated at this stage.

Step 4: A set of invariant disjuncts A1, …, An with (variant) remainder B (which may
itself be a disjunction) is interpreted as the precedent A := ¬(A1 ∨ … ∨ An) of

Algorithm RefactoringWithForesight(P, R, I, F)
Input:

P, the program to be refactored
R, a set of constraint rules
I, the refactoring intent (a set of properties and their target values)
F(p), a filter selecting the non-fixed properties p

Output:
C, a CSP
P, the refactored program

Steps:
rule rewriting
1. for each constraint rule r in R
2. convert the rule consequent of r to disjunctive normal form (DNF)
3. extract the disjuncts of the DNF that are filtered as invariant
4. promote the extracted disjuncts to negated conjuncts of the rule precedent
5. if the remainder (variable disjuncts) is not empty, make it the new consequent
6. else drop the rule for this refactoring

rule application (constraint generation)
7. for each constraint rule r transformed as above
8. apply r to P, by evaluating the program queries and promoted constraints
9. for each match, instantiate the constraints of r’s consequent

early evaluation
10. for each instantiated constraint c
11. if any of its disjuncts evaluates to true, drop the entire constraint
12. else if all disjuncts evaluate to false, fail
13. else delete the disjuncts evaluating to false from the constraint and add it to C

initializing and solving the CSP, and writing back
14. for each property p in P constrained by a constraint in C
15. initialize p with its value from P
16. if p ∈ I, replace its initial value with that in I
17. if F(p) ∧ p ∉ I, set p’s domain according to the type of p
18. else make p constant
19. if C is solvable
20. solve C
21. for each changed property p in P write back its new value to P to reflect the change
22. else fail

Fig. 1. Basic algorithm of refactoring with foresight

 Constraint-Based Refactoring with Foresight 551

a conditional constraint A → B, which, as explained in Section 4, can be
promoted to the rule precedent (a conjunction of queries), where it is added
as ¬A1 ∧ … ∧ ¬An.

Step 6: If none of the constrained properties are changeable, the constraint adds noth-
ing to the solution (recall that all constraints are always satisfied initially).

Step 8: Evaluation of the program queries and promoted constraints substitutes the
variables of the rules with the program elements matching the queries.

Step 11: Since the constraints c are in DNF, one disjunct evaluating to true renders all
others irrelevant. For a disjunct to evaluate to true at this stage (i.e., before
the actual constraint solving), the values of the constrained properties must be
invariant; their value is then the initial value (obtained as in Step 15).

Step 12: Since all constraints of a CSP are implicitly conjoined, there is no chance of a
solution if a single constraint always (under all assignments) fails.

Step 13: There is a third case since not all disjuncts can always be evaluated at this
stage: those whose constrained properties are at least partly variable (as
decided by F) depend on values assigned by the solver (Step 20).

The effectiveness of the savings introduced by algorithm RefactoringWithForesight
depends on the number of disjuncts in the rule consequents (as introduced by the con-
ditional constraints expressing foresight) and on the selectivity of the filter F (Step 3).
In particular, if the filter F selects many properties as non-fixed (meaning that many
different kinds of changes are allowed), opportunities for rule rewriting are rare.
However, in these cases early evaluation may still be effective, especially if only
some properties of a specific kind (such as locations of fields) are non-fixed (as is
typically the case for filters such as “allow only locations of fields of the same class to
change”, a filter used by the PULL UP FIELD refactoring). Our evaluation in Section 8
will shed light on the effectiveness of rule rewriting and early evaluation.

7 Implementation

We have implemented refactoring with foresight as described here as an extension to
our refactoring constraint language REFACOLA [18]. REFACOLA allows the developer
of a refactoring tool to define different kinds of program elements (beyond the de-
clared entity and reference distinction made in this paper, e.g., Field, Method, Variable,
etc.), and to associate with each kind a fixed set of properties (such as the ones listed
in Table 1). Each property comes with a domain, which may be predefined (such as
Identifier), enumerated (such as Accessibility), or program-dependent (such as Loca-
tion). The REFACOLA language is complemented by a REFACOLA framework which
provides a predefined set of program queries, a generic algorithm for applying the
constraint rules to a program, an interface to constraint solvers such as Choco [2], and
routines for writing back the solved constraints to the program source. The REFACOLA
compiler and framework have been implemented as plugins to Eclipse, with adapters
for C# and Eiffel compilers. Refactoring specifications in REFACOLA are completely
declarative: refactoring tools can be generated from these specifications at the push of
a button. The generated tool used for the evaluation in Section 8 (enhanced with a
basic user interface) can be downloaded from www.feu.de/ps/prjs/refacola.

552 F. Steimann and J. von Pilgrim

One of the main contributions of the REFACOLA framework is its GenerateCon-
straints algorithm [18], which keeps constraint-based refactoring tractable by generat-
ing only the constraints constraining (properties of) program elements that are, di-
rectly or indirectly, related to the code change intended by the refactoring (so that the
change can propagate to them). In our current work, the savings achieved by this al-
gorithm appear to be traded for addressing the foresight problem, since quantified
constraints providently involve all program elements of a given kind, including ones
seemingly unrelated to the refactoring intent (cf. Example 3). However, as we will
show next, the promotion of constraints to queries and the early evaluation of
constraints allow us to retain much of the original savings in many cases.

8 Evaluation

To be able to judge the impact our solution to the foresight problem has on the viabil-
ity of constraint-based refactoring in practice, including the effectiveness of the rule
rewritings and early evaluation suggested, we have performed a systematic evaluation
on the basis of several variants of the PULL UP FIELD refactoring [4] used as an exam-
ple throughout this paper. We chose PULL UP FIELD because it strikes a good balance
between simplicity of the refactoring (so that our focus is not diffused by other prob-
lems of refactoring) and occurrence of foresight problems (as suggested by the moti-
vating examples). To be able to assess the impact rule rewriting and early evaluation
have on constraint generation, and also the dependence on the permissiveness of the
filter F (cf. Figure 1), we evaluated several variants of PULL UP FIELD that differ in
the degrees of freedom granted to the refactoring, i.e., whether it is allowed to pull up
other fields as well, rename fields, or change their accessibility.

8.1 Specification of PULL UP FIELD with Foresight

The constraint rules immediately relevant for PULL UP FIELD with foresight are shown
in Figure 2. The program queries are given expressive names that serve to name the
rules also (note how FIELDACCESS(r, f, F) combines binds(f, F) and receiver(r, f));
their implementation is of no interest here. We have omitted some general rules for
enforcing well-formedness of locations (every nested type residing in a top-level type
resides in the package the top-level type resides in; every program element residing in
a type resides in the top-level type and package the type resides in; etc.), for restrict-
ing the accessibility of top-level types (only package and public are allowed) and
members of interfaces (all public), etc.

The rules of Figure 2 are explained as follows: FIELDDECLARATION(F) requires
that no two fields exist in the same class that have the same name (note that both iden-
tifier and location are considered non-fixed by this rule, and all others for that matter).
INITIALIZINGFIELDDECLARATION(F,r) adds to it that each field F and the reference r
that is assigned to it reside in the same location (co-location) and that the (inferred)
type of the reference is a non-strict subtype of the declared type of the field (typing).
THISACCESS(t) is the standard type inference rule for this, expressing that the type of
this (as a reference) is the type it is located in.

 Constraint-Based Refactoring with Foresight 553

The rule FIELDACCESS(r, f, F) requires that: each field F and all references f to it
have the same name (name equality); that the inferred type of f is the declared type of
F (typing); that the type of the receiver r is a subtype of the declaring type of F (so
that r has f as a member; member); that F is accessible from the location of f (accessi-
ble member); that the receiver type is accessible for f (implicit type access); that an
inherited member cannot have private accessibility (inherited member access 1) and
must have public accessibility if any intervening class on the inheritance path resides
in a different package than F; and includes rule (4) of Section 6.1 (protected
accessibility), as well as the rules from Section 6.2 (no ambiguity and no hiding).

Finally, Figure 2 shows how the function α is expressed as a nested conditional
constraint, specifying how required accessibility of e2 adapts to changes of location of
e1 and e2 relative to each other.

As can be seen from Figure 2, the constraint rules FIELDDECLARATION and
FIELDACCESS introduce three negated existential quantifications which, given that
they are applied to each field declaration and field access of a program and that each
one needs to be unrolled to all fields declared in the program, must be expected to
lead to substantial numbers of additional constraints. This is countered by the

FIELDDECLARATION(F)

 ¬∃ F' ≠ F : F'.ι = F.ι ∧ F'.λ = F.λ (no name collision)

INITIALIZINGFIELDDECLARATION(F, r) THISACCESS(t)

F.λ = r .λ (co-location) t.τ = t .λ (typing)
r.τ ≤τ F.τ (typing)

FIELDACCESS(r, f, F)

f.ι = F.ι (name equality)
f.τ = F.τ (typing)
r.λ = f.λ (co-location)

r.τ ≤τ F.λ (member)
F.α ≥α α(f, F) (accessible member)

f.π ≠ r.τ.π→ r.τ.α = public (implicit type access)
r.τ < F.λ → F.α > private (inherited member access 1)

∀ T : r.τ <τ T ≤τ F.λ → (F.α <α protected → T.π = F.π) (inherited member access 2)
f.π ≠ F.π ∧ ¬ r.τ ≤τ r.λ → F.α = public (protected accessibility)

¬∃ F′ ≠ F: F′.ι = F.ι ∧ F′.α ≥α α(f, F′) ∧ r.τ ≤τ F′.λ ∧ ¬ F.λ <τ F′.λ (no ambiguity)
¬∃ F′ ≠ F : F'.ι = F.ι ∧ r.τ ≤τ F'.λ ∧ F'.λ <τ F.λ (no hiding)

e2.α ≥α α(e1, e2) ≡
if e1.λT = e2.λT then e2.α ≥α private
else if e1.π = e2.π then e2.α ≥α package
else if e1.λ ≤τ e2.λ then e2.α ≥α protected
else e2.α ≥α public

Fig. 2. Constraint rules for the PULL UP FIELD refactoring (excerpt)

554 F. Steimann and J. von Pilgrim

RefactoringWithForesight algorithm of Figure 1, whose rewriting stage, applied for
instance with the filter “allow only locations of fields of class C to change” (the filter
CL of Table 2), transforms the two constraint rules to

FIELDDECLARATION(F) F' ≠ F F'.ι = F.ι

F'.λ ≠ F.λ (no name collision)

FIELDACCESS(r, f, F) F' ≠ F F'.ι = F.ι

…
F′.α ≥α α(f, F′) ∧ r.τ ≤τ F′.λ ∧ ¬ F.λ <τ F′.λ (no ambiguity)

¬ r.τ ≤τ F'.λ ∨ ¬ F'.λ <τ F .λ (no hiding)

Note that, had the filter been different (for instance, “allow only changes of identifi-
ers”), the transformation would have been different. Also note that, although it is clear
from the filter that not all properties λ of a program may be changed by the refactor-
ing (only those of the same class), no further constraints from the rule consequents
can be promoted to the precedent, since the rule applies to all properties of all ele-
ments of a program. This is different for the early evaluation stage of the algorithm
which, when applied to the program of Example 4, generates the constraint set

{ iZ.λ ≠τ iB.λ, iB.λ ≠τ iZ.λ, thisB.τ ≤τ iB.λ, ¬ iZ.λ <τ iB.λ, ¬ thisA.τ ≤τ iB.λ ∨ ¬ iB.λ <τ iZ.λ }

in which thisA and thisB refer to the references to this in classes A and B, respectively,
and iZ and iB to the different declarations of i. As can be seen, these constraints (cor-
rectly) prevent the pulling up of i from B to A, since this would make the first disjunct
of the last constraint (¬ thisA.τ ≤τ iB.λ) false without making the second disjunct
(which is false with the program as is) true.

8.2 Variants of PULL UP FIELD

For our evaluation, we defined the PULL UP FIELD refactoring with five different
degrees of freedom, based on the definition of the filters described in Table 2:

• Filter NOC (for no other changes) specifies the basic variant of PULL UP FIELD: it
excludes the automatic pulling up of other fields (as required by Examples 1 and
4) and the automatic adaptation of accessibilities (required by Examples 2 and 3).

• Filter CL (for change location) enables the automatic pulling up of all other fields
of the same class to the same target class.

Table 2. Filters used for specifying the different variants of the PULL UP FIELD refactoring used
in the evaluation

FILTER DEFINITION (SPECIFYING NON-FIXED PROPERTIES)
NOC FI.λ, FI.λT, and FI.π, where FI is the field to be pulled up
CL F.λ, F.λT, and F.π, where F is all fields of the class of the field to be pulled up
CA FI.λ, FI.λT, FI.π, F.α, and T.α, where F is any field and T is a (its) type
CI FI.λ, FI.λT, FI.π, F.ι, and f.ι, where F is any field and f is any reference to a field
CLAI CL ∪ CA ∪ CI

 Constraint-Based Refactoring with Foresight 555

• CA (for change accessibility) adjusts the accessibility of the pulled up field and of

its type, if necessary. Any access modifier can be used.
• CI (change identifier) allows the refactoring to rename the pulled up field, or the

field with the same name, to a fresh one in case of name collision, ambiguity, or
hiding.

• CLAI (change location, accessibility, or identifier) allows all additional changes.

Note that all of the above variants of PULL UP FIELD are completely defined by specify-
ing the corresponding filter F that is supplied to the RefactoringWithForesight algorithm
of Figure 1, and by supplying the domains of the properties selected by F (cf. [18]). Of
the filters, NOC is the least permissive (allowing the fewest applications of the refactor-
ing, because no other changes can be computed that would make the refactoring
possible), and CLAI is the most permissive filter (allowing the most refactorings).

8.3 Experimental Setup and Results

To systematically evaluate our approach, we have applied our implementation of the
algorithm of Figure 1 using the ruleset of Figure 2 to the sample programs of Table 3,
using the following procedure:

let R be the constraint rules of Figure 2
for each sample program P of Table 3
 for each field f and class C of P such that f.λ<τC (ie, f is defined in a subclass of C)
 let I = { f.λ = C } (ie, pull up f to C)
 for each filter F of Table 2
 for each mode m of Table 4

 measure performance of RefactoringWithForesight(P, R, I, F) in mode m

The results of this procedure are shown in Table 5. Note that solvability and number
of solutions are the same for modes f +, f ++, and f +++: this is so because rule rewriting
and early evaluation are optimizations that have no effect on the solution space.

Table 3. Sample projects used as the basis of the evaluation

PROJECT NO. OF CLASSES NO. OF FIELDS PULL-UP OPPORTUNITIES
†

ANTLR V3.2 71 118 221
Apac. commons.codec V1.3 19 56 210
Apache commons.io V1.4 74 47 80
Apache math V2.1 178 532 1164
Cream V1.06 32 63 71
Fit V1.1 95 122 237
HTML Parser V1.6 148 275 636
Jaxen V1.1.1 167 142 359
Jester V1.2.2 30 39 41
Junit V3.8.1 105 104 234
PicoContainer V1.3 73 116 348
total 992 1614 3601

† one per field and non-library superclass of the class declaring that field

556 F. Steimann and J. von Pilgrim

Ignoring foresight problems (mode f −), PULL UP FIELD is almost always applicable
(meaning that the corresponding CSP is solvable), even with no other changes al-
lowed (filter NOC). Its applicability can only slightly be increased by allowing the
refactoring to pull up other fields as well (filters CL and CLAI). The picture is en-
tirely different when the constraints covering foresight problems are added (modes f +,
f ++, f +++): with no other changes allowed (NOC), applicability is reduced by more
than one half (64%). However, this reduced applicability (which prevents the refactor-
ing from producing ill-formed or behaviourally changed programs) can be fully com-
pensated by allowing PULL UP FIELD to make additional changes: with filter CLAI, all
foresight problems can be solved by adapting locations, accessibilities, or identifiers,
resulting in the exact same applicability (97.3%).

Of the additional changes permitted by CLAI, changing accessibility (filter CA)
makes the biggest single contribution: taken alone, it improves applicability by 55.5
percent points. Note that by comparison, changing only identifiers (CI, which is
equivalent in effect to Schäfer’s name unlocking via insertion of qualifiers [13]) en-
ables only a small fraction of refactorings affected by foresight problems. That allow-
ing PULL UP FIELD to change locations of other fields (CL) increases its applicability
in the foresight modes more than it does in f − is due to the fact that in the former,
pulling up a private field that is used to initialize another field requires pulling up the
other field as well, if accessibility cannot be changed. This is ignored in
mode f −.

With respect to the cost introduced by addressing the foresight problem, Table 5
shows that without further measures (mode f +), the rise in the number of constraints
generated is dramatic: it 1200-folds on average. As was to be feared, the added con-
straints linking seemingly unrelated program elements to the refactoring intent reduce
the effectiveness of the GenerateConstraints algorithm presented in [18] (cf. Section
 6.4). However, as can also be seen from Table 5, tailoring constraint rules to a spe-
cific refactoring (here: to a specific variant of PULL UP FIELD as represented by a
corresponding filter) via rule rewriting and applying early evaluation can reduce the
number of constraints substantially: for NOC, CL, and CA it cuts the rise to less than
10-fold. For CI, rule rewriting is not as effective, however: this is so because for the
expensive quantified constraints no name collision, no hiding, and no ambiguity,
(cf. Figure 2) the constraint F′.ι = F.ι cannot be promoted to a query (cf. Section 6.2),
as which it would by highly selective (i.e., preclude the generation of many con-
straints; the number of fields with the same name in a program is usually small when

Table 4. Modes of application

MODE FUNCTION
f − all foresight problem related constraints disabled
f + all foresight constraints, but no rewriting or constant evaluation, enabled
f ++ rule rewriting enabled
f +++ early evaluation of constraints enabled

 Constraint-Based Refactoring with Foresight 557

compared to the total number of fields). The additional constraints are approximately
halved by early evaluation, which can exploit the fixedness of most other properties.
However (and as was to be feared), average numbers suggest that both measures re-
main ineffective for the most permissive filter, CLAI: in this case, almost no rule
rewritings and early evaluations seem to be possible.

On average, the number of solutions for all investigated variants of PULL UP FIELD
remains within a range that would allow the user of the refactoring to inspect all alterna-
tives and pick the one that is closest to his intent. Somewhat surprisingly, this is also the
case for the foresight modes: one might have expected that covering more program
elements’ properties would lead to considerably more solutions. However, almost all
constraints generated for filters NOC, CL, and CI are equality constraints (equality of
locations or names) or disequality constraints with binary domains (old and new location
or name), and the number of choices for the inequality constraints introduced by CA is
limited to four (the number of different access modifiers; cf. Section 8.2).

In terms of the times required for generating (gen) and solving (solv) the CSPs rep-
resenting the refactoring problems, Table 5 shows that across all filters and modes,
gen (which includes querying a database representation of the program), is much lar-
ger than solv. In fact, while solv is negligible on average, gen can take up to 5 sec-
onds, which is however still quite fast (but see below). This result reflects the fact that
much of the effort previously burdened on the constraint solver has been shifted to the
constraint generation phase, where it takes its toll.

Secondly, the time required for generating the constraints with the filters allowing a
change of location (CL and CLAI) is significantly larger than for the rest. This is due to
the fact that almost every constraint generated contains λ, λT, or π; if these are non-fixed,

Table 5. Results of application to the pullable fields of Table 3 (all numbers averaged)

METRIC MODE FILTER
 NOC CL CA CI CLAI

Solvable
f − 97.0% 97.3% 97.0% 97.0% 97.3%

f +, f ++, f +++ 35.3% 36.6% 92.1% 38.7% 97.3%

No. of Constraints

f − 10 36 10 10 36

f + 16694 16884 16740 17201 17456

f ++ 52 75 75 14227 17452

f +++ 28 69 73 8816 17452

No. of Solutions
f − 1 1.19 1 1 1.19

f +, f ++, f +++ 1 1.19 2.33 1.09 3.22

Times Required [ms]†

f −
gen 3 330 6 10 339
solv 1 38 1 2 37

f +
gen 1251 2572 1807 1325 3191
solv 69 98 70 94 160

f ++
gen 907 1522 1587 5080 3085
solv 1 26 4 75 164

f +++
gen 343 1429 1542 2912 3058
solv 0 24 3 0 75

† all times obtained on contemporary laptops with 2 GHz clock speed running the Windows XP
operating system with JVM heap space set to 1 GB, using the Choco [2] constraint solver

558 F. Steimann and J. von Pilgrim

Refacola’s GenerateConstraints algorithm [18] will also look at all other properties
contained in the constraint and, if variable, how they are constrained further.

The overall favourable times are relativized by three facts:

• The time for constraint generation does not include the time needed for filling the
database against which the program queries are evaluated. We have excluded it since
it depends largely on the infrastructure provided by the IDE in which Refactoring-
WithForesight is integrated (Eclipse in our case). The brute force approach that we
used and that always analyses the whole program, regardless of the intended refactor-
ing, can take up to 2 minutes for the larger projects of Table 3; although this can
surely be optimized, one should bear in mind that many refactorings require a whole-
program analysis.

• In all four modes, we did not submit generated constraints to the solver whose
constrained properties all had fixed values: if such a constraint is satisfied, it does
not contribute to the solution; if not, the whole CSP is not solvable. Note that
“fixed values” here includes the properties of the refactoring intent, whose forced
change to a new value must not be revised by the solver (even though in order to
propagate the change, the properties count as non-fixed for RefactoringWithFore-
sight; cf. the filter definitions in Table 2). This could of course have been handled
by the constraint solver, but since all solvers we have experimented with had prob-
lems with large numbers of constraints, we added this optimization (whose inte-
gration in the algorithm of Figure 1 would have complicated its presentation).

• Times for generating constraints peaked at almost 2 minutes (for modes f++ and f+++
and filter CI) and for solving at slightly more than 30 seconds (for modes f+, f++, and
f+++ and filter CLAI). This suggests that the threat to viability of constraint-based
refactoring introduced by the foresight problem is very real; however, as evidenced by
the relatively short average times that we observed, it can be counteracted in most
cases.

9 Conclusion

Refactorings that change the structure of a program are subject to many restrictions, in-
cluding ones that become apparent only after the structure has been changed. This is
particularly a problem if not all structural changes are known in advance of the refactor-
ing, for instance because some changes are dependent on others, or may or may not be
needed to make a refactoring possible. To address this problem, we have identified two
measures that complement each other. One turns parts of the precedents of constraint-
generating rules to premises of conditional constraints, making the generated constraints
more flexible in that they can adapt — during the constraint solution process — to struc-
tural changes of the program. The other is the introduction of quantified constraints rep-
resenting an unlimited number of ordinary (non-quantified) constraints, constraining all
conceivable changes that could be performed by a refactoring, including those that will
actually be performed (which, therefore, need not be known in advance). Both measures
have in common that they may generate significantly more constraints than actually
needed for a specific refactoring; we have therefore devised an algorithm that keeps the
number of additional constraints low. Experiments that we have conducted suggest that
our algorithm can be highly effective, and that refactoring with foresight as proposed in
this paper can indeed be feasible.

 Constraint-Based Refactoring with Foresight 559

Acknowledgments. This work has been supported by the Deutsche Forschungs-
gemeinschaft (DFG) under grant STE 906/4-1. The authors thank Andreas Thies for
his contributions to the evaluation.

References

1. Balaban, I., Tip, F., Fuhrer, R.: Refactoring support for class library migration. In: Proc. of
OOPSLA, pp. 265–279 (2005)

2. CHOCO Team choco: an Open Source Java Constraint Programming Library, Research
Report 10-02-INFO, Ecole des Mines de Nantes (2010)

3. Donovan, A., Kiezun, A., Tschantz, M.S., Ernst, M.D.: Converting Java programs to use
generic libraries. In: Proc. of OOPSLA, pp. 15–34 (2004)

4. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley (1999)
5. Fuhrer, R., Tip, F., Kieżun, A., Dolby, J., Keller, M.: Efficiently Refactoring Java Applica-

tions to Use Generic Libraries. In: Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp.
71–96. Springer, Heidelberg (2005)

6. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification,
http://java.sun.com/docs/books/jls/

7. Gottlob, G., Greco, G., Mancini, T.: Conditional constraint satisfaction: logical founda-
tions and complexity. In: Proc. of IJCAI, pp. 88–93 (2007)

8. Griswold, W.G.: Program Restructuring as an Aid to Software Maintenance. PhD Disserta-
tion, University of Washington (1992)

9. Kegel, H., Steimann, F.: Systematically refactoring inheritance to delegation in Java. In:
Proc. of ICSE, pp. 431–440 (2008)

10. Kiezun, A., Ernst, M.D., Tip, F., Fuhrer, R.M.: Refactoring for parameterizing Java
classes. In: Proc. of ICSE, pp. 437–446 (2007)

11. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction problems. In: Proc. of AAAI,
pp. 25–32 (1990)

12. Palsberg, J., Schwartzbach, M.I.: Object-Oriented Type Systems. Wiley (1994)
13. Schäfer, M., Ekman, T., de Moor, O.: Sound and extensible renaming for Java. In: Proc. of

OOPSLA, pp. 277–294 (2008)
14. Schäfer, M., Dolby, J., Sridharan, M., Torlak, E., Tip, F.: Correct Refactoring of Concur-

rent Java Code. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 225–249.
Springer, Heidelberg (2010)

15. Schäfer, M., de Moor, O.: Specifying and implementing refactorings. In: Proc. of
OOPSLA, pp. 286–301 (2010)

16. Schäfer, M., Thies, A., Steimann, F., Tip, F.: A comprehensive approach to naming and
accessibility in refactoring Java programs. IEEE Trans. Soft. Eng. (2012)

17. Steimann, F., Thies, A.: From Public to Private to Absent: Refactoring JAVA Programs un-
der Constrained Accessibility. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653,
pp. 419–443. Springer, Heidelberg (2009)

18. Steimann, F., Kollee, C., von Pilgrim, J.: A Refactoring Constraint Language and Its Ap-
plication to Eiffel. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 255–280.
Springer, Heidelberg (2011)

19. Tip, F., Kiezun, A., Bäumer, D.: Refactoring for generalization using type constraints. In:
Proc. of OOPSLA, pp. 13–26 (2003)

20. Tip, F., Fuhrer, R.M., Kiezun, A., Ernst, M.D., Balaban, I., De Sutter, B.: Refactoring us-
ing type constraints. ACM Trans. Program. Lang. Syst. 33(3), 9 (2011)

