
Marco: Safe, Expressive Macros

for Any Language�

Byeongcheol Lee1, Robert Grimm2,
Martin Hirzel3, and Kathryn S. McKinley4,5

1 Gwangju Institute of Science and Technology
2 New York University

3 IBM Watson Research Center
4 Microsoft Research

5 The University of Texas at Austin

Abstract. Macros improve expressiveness, concision, abstraction, and
language interoperability without changing the programming language
itself. They are indispensable for building increasingly prevalent
multilingual applications. Unfortunately, existing macro systems are well-
encapsulated but unsafe (e.g., the C preprocessor) or are safe but tightly-
integrated with the language implementation (e.g., Scheme macros). This
paper introduces Marco, the first macro system that seeks both encap-
sulation and safety. Marco is based on the observation that the macro
system need not know all the syntactic and semantic rules of the tar-
get language but must only directly enforce some rules, such as variable
name binding. Using this observation, Marco off-loads most rule checking
to unmodified target-language compilers and interpreters and thus be-
comes language-scalable. We describe the Marco language, its language-
independent safety analysis, and how it uses two example target-language
analysis plug-ins, one for C++ and one for SQL. This approach opens
the door to safe and expressive macros for any language.

1 Introduction

Macros enhance programming languages without changing them. Programmers
use macros to add missing language features, to improve concision and abstrac-
tion, and to interoperate between different languages and with systems. With
macros, programmers use concrete syntax instead of tediously futzing with ab-
stract syntax trees or, worse, creating untyped and unchecked strings. For in-
stance, Scheme relies heavily on macros to provide a fully featured language
while keeping its core simple and elegant. Programmers use the C preprocessor
to derive variations from the same code base (e.g., with conditional compila-
tion) and abstract over the local execution environment (e.g., defining types and
variables in system-wide header files). Web programmers use macros in PHP
and similar languages to generate HTML code. Programmers also use macros

� This research was supported by the Samsung Foundation of Culture, and NSF grants
CCF-1018271, CCF-1017849, and SHF-0910818.

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 589–613, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

590 B. Lee et al.

to generate strings containing SQL queries that interoperate with databases. As
illustrated by they last two examples, macros do not only improve individual
languages, but are also indispensable for building increasingly prevalent multi-
lingual applications.

Programmers typically write macros in a macro language and the macro sys-
tem generates code in a target language. Programmers embed macros in a host
language. The host and target languages may differ. Macros are resolved be-
fore the target-language code is compiled or interpreted. Macro systems fall into
two main categories. (1) Some macro systems are well encapsulated from the
compiler or interpreter but are unsafe, e.g., the C preprocessor executes before
the target-language compiler, but may generate erroneous code. (2) Some macro
systems are safe but are tightly integrated with the target languages, e.g., the
Scheme interpreter hygienically implements the core language together with its
macro system [13,5].

Neither option is particularly attractive. Well encapsulated but unsafe macro
systems lead to buggy target code. Notably, the C preprocessor operates on to-
kens, is not guaranteed to produce correct code, and C programs with macros
consequently contain numerous errors [6]. Safe but tightly-integrated macro sys-
tems are limited to a prescribed combination of host and target languages and
cannot be shared across languages. Developers must learn macro programming
for every host and target language combination. Likewise, language designers
need to design and implement macros for every combination. For example, while
JSE [2] adapts Dylan’s macros [20] to Java, it requires design changes and a
fresh implementation. This burden increases the temptation to omit macros or
use an encapsulated but unsafe macro system, such as GNU M4 [15]. Given the
utility of macros and the diversity of current and future languages, expressive
safe macros that scale across host and target languages are clearly desirable.

This paper introduces the Marco macro system, which delivers encapsula-
tion and safety, making macros language scalable. Our key insight is that the
macro system does not need to implement every target-language rule for target-
language safety, but rather, it can reuse off-the-shelf target-language compilers
or interpreters to do the job. Specifically, prior work on syntactically safe macros
required the macro system to have a target-language grammar; this paper shows
how to enforce syntax safety without that. Similarly, prior work on macros with
safe naming discipline required the macro system to implement target-language
scoping rules; this paper shows how to enforce naming discipline without reim-
plementing those either. Consequently, Marco composes a language-independent
macro translator with unmodified target-language compilers and interpreters
that check for most rule violations. The only requirement on the target-language
processors is that they produce descriptive error messages that identify locations
and causes of errors.

We designed Marco to meet three criteria: expressiveness, safety, and language
scalability. For expressiveness, the Marco language has static types, condition-
als, loops, and functions, making it Turing-complete. Marco supports target-
language fragments as first-class values. As indicated by the name, fragments

Marco: Safe, Expressive Macros for Any Language 591

need not be complete target-language programs. Rather, they contain portions
of a target-language program along with blanks that other fragments fill in.
For safety, Marco uses macro-language types to check target-language syntax,
and uses dataflow analysis to check target-language naming discipline. For lan-
guage scalability, Marco relies on error messages from target-language proces-
sors, making it the first safe macro system that is independent of the target
language. We demonstrate Marco for two target languages. For depth, we chose
C++, which is relatively complex due to its rich syntax, types, and many other
features. For breadth, we chose SQL, which differs substantially from C-like
languages and is of critical importance to many web applications. Marco cur-
rently checks for syntactic well-formedness and naming discipline; we leave type
checking target-language code for future work. Furthermore,Marco programs are
currently stand-alone; we leave host-language integration for future work, e.g.,
by using compositional techniques from Jeannie for C and Java [10].

In summary, this paper’s contributions are: (1) The design of a safe and
expressive macro language that is scalable over target languages. (2) A macro
safety verification mechanism that uses unmodified target-language compilers
and interpreters. (3) An open-source implementation1 of the target-language
independent macro processor and plug-ins for C++ and SQL.

2 Marco Overview

M
a

rc
o

 s
y
s
te

m

External Inputs

Error Report Target Program

Static Checker Dynamic Interpreter

Oracles

Unmodified Target

Language Processors

Information
Fragment

Information
Fragment

Compilation
unit

Error
messages

Marco Program

Fig. 1. The Marco architecture

Fig. 1 illustrates the Marco ar-
chitecture. It shows the Marco
static checker taking a Marco
program as input and verifying
that target-language fragments
are correct at macro definition
time. Because Marco supports
code generation based on external
inputs, including additional
target-language fragments, some
syntax and/or name errors may
survive static checking unde-
tected. Consequently, the Marco
dynamic interpreter verifies frag-
ments again at macro instantia-
tion time, after Marco fills in all
blanks. This double checking is
critical for developing macro libraries, where one group of programmers writes
the macros and another group instantiates them with application-specific inputs.
Both the static checker and dynamic interpreter rely on common oracles to verify
target-language code syntax and naming discipline and detect any errors. The or-
acles abstract over the different target languages. They query a target-language

1 Available at http://cs.nyu.edu/xtc/

592 B. Lee et al.

processor (currently, gcc for C++ macros and SQLite for SQL macros) by
submitting specially crafted small compilation units.

Marco achieves language scalability by composing off-the-shelf target-language
compilers and interpreters with a common translation engine. To add a new
target language, developers implement a simple lexical analysis module that
recognizes target-language identifiers and the end of target-language fragments.
They also implement a plug-in with three oracles that (1) check for syntactic
well-formedness, (2) determine a fragment’s free names, and (3) test whether a
fragment captures a given name. Everything else is target-language independent.
In particular, Marco includes a reusable dataflow analysis, which propagates free
and captured identifiers and reports accidental name capture.

3 The Marco Language

This section describes the Marco language, using examples, grammar rules, and
type rules. The Marco language is a statically typed, procedural language. It
supports macros using three constructs: code types, fragments, and blanks.

1 code<cpp,stmt> # code type
2 synch(code<cpp,id> mux,
3 code<cpp,stmt> body) {
4 return
5 ‘cpp(stmt)[{ # C++ fragment
6 acquireLock($mux);
7 $body # blank
8 releaseLock($mux);
9 }];

10 }

Fig. 2. Marco code to generate C++

The example synch C++
macro in Fig. 2 ensures
that lock acquire and re-
lease operations are properly
paired (modulo exceptions),
which C++ does not ensure.
Lines 1–3 contain the signa-
ture of the Marco function
synch, which takes two pa-
rameters, a C++ identifier
and a C++ statement, and re-
turns a C++ statement. The code type is parameterized by the target language
and a nonterminal. Line 5 uses the back-tick operator (‘) to begin a fragment,
which is a quoted piece of target-language code. Line 6 uses the dollar opera-
tor ($) to begin a blank, which is an escaped piece of Marco code embedded in
a fragment. The evaluation rule for a fragment first evaluates embedded blanks,
then splices their results into the fragment’s target-language code:

∀i ∈ 1 . . . n : Env � ei −→ βi

Env � ‘lang(nonT)[α0$e1α1 . . .$enαn] −→ ‘lang(nonT)[α0β1α1 . . . βnαn]
(E-Fragment)

Each αi is a sequence of target-language tokens, each $ei is a blank, and each βi

is the result of evaluating a blank to a sequence of target-language tokens. The
result is the concatenation of all αi and βi.

Fig. 3 presents the Marco grammar. The interesting grammar rules are frag-
ment and its helpers. A fragment, such as ‘cpp(stmt)[. . .$x. . .$y. . .], consists
of a head and a sequence of fragment elements. The head specifies the target
language, a nonterminal, and an optional list of captured identifiers. We use this
list when checking the target code’s naming discipline (see Section 7).

Marco: Safe, Expressive Macros for Any Language 593

program ::= functionDef +

functionDef ::= type ID ‘(’ (formal (, formal)*)? ‘)’ ‘{’ stmt* ‘}’
formal ::= type ID
stmt ::= ‘{’ stmt* ‘}’ # block

| type ID ‘=’ expr ‘;’ # variable declaration

| ‘if’ ‘(’ expr ‘)’ stmt (‘else’ stmt)? # conditional
| ‘for’ ‘(’ ID ‘in’ expr ‘)’ stmt # loop
| ‘return’ expr ‘;’ # function return
| expr ‘;’ # expression statement

expr ::= fragment # fragment
| ‘(’ expr ‘)’ # parentheses
| ID # variable use
| expr INFIX OP expr # infix operation

| ID ‘(’ (expr (, expr)*)? ‘)’ # function call
| expr ‘.’ ID # record attribute
| expr ‘[’ expr ‘]’ # list subscript

| ‘[’ (expr (, expr)*)? ‘]’ # list literal
| ‘{’ ID ‘=’ expr (, ID ‘=’ expr)* ‘}’ # record literal
| ‘true’ | ‘false’ | INT | STRING # primitive literal

type ::= ‘code’ ‘<’ language ‘,’ nonTerm ‘>’ # fragment type
| ‘list’ ‘<’ type ‘>’ # list type
| ‘record’ ‘<’ formal (, formal)* ‘>’ # record type
| ‘boolean’ | ‘int’ | ‘string’ # primitive type

fragment ::= fragmentHead ‘[’ fragmentElem* ‘]’
fragmentHead ::= ‘‘’ language ‘(’ nonTerm (‘,’ capture)? ‘)’
language ::= ID
nonTerm ::= ID
capture ::= ‘capture’ ‘=’ ‘[’ ID (, ID)* ‘]’
fragmentElem ::= TARGET TOKEN | blank
blank ::= ‘$’ baseExpr

Fig. 3. Marco grammar

There are two kinds of fragment elements in Marco: target-language to-
kens and blanks. Since Marco identifies fragment elements with square brack-
ets, the Marco parser must count matching square brackets in the fragment
itself to find the end, e.g., in ‘cpp(expr)[arr[idx]]. It should, however, ig-
nore square brackets that appear in target-language strings or comments, e.g., in
‘cpp(expr)[printf("[")]. To enforce the naming discipline, the Marco parser
must find the fragment’s identifiers. It should not treat a target language’s key-
words or numerical suffixes as identifiers, e.g., in 3.1e4 or 1llu. Since different
languages have different keywords, literals, and comments, Marco must be con-
figured with target-language specific lexers. To select lexers based on the syntac-
tic target-language context identified by the fragment’s head, we use the Rats! [8]
scannerless andmodular parser generator.The corresponding target-language lex-
ers are very simple and recognize only the target-language tokens listed above.

The static type system includes the primitive types boolean, int, and string;
list parameterized by element type; record parameterized by attribute names
and types; and code parameterized by target language and nonterminal.

594 B. Lee et al.

1 code<sql,query>
2 genTitleQueryInSQL(code<sql,expr> pred){
3 return ‘sql(query)[select title
4 from moz_bookmarks where $pred
5];
6 }

Fig. 4. Marco code to generate SQL

The latter is key to
target language scalabil-
ity. For example, Fig. 4
shows a Marco macro
generating SQL. Com-
pared to Fig. 2, the
Marco syntax and se-
mantics remain the same,
but the target language and therefore the code type parameters differ. TheMarco
engine uses code types to invoke the appropriate target-language oracles, which
determine syntactic well-formedness as well as free and captured identifiers. It
tracks code types to check syntax when filling in blanks in fragments. And it
tracks names during its dataflow analysis, which ensures that identifiers from
multiple macros generate consistent bindings. In other words, the strongly typed
quote and unquote mechanism lets us maximize Marco’s target-language inde-
pendent functionality while delegating checking to the target-language specific
oracles.

The type rule for a Marco fragment first checks the types for each of the em-
bedded blanks, which must result in code belonging to the same target language
(lang). It then uses the language lang, the nonterminal nonT of the fragment,
the nonterminals nonT i of each of the blanks, and the contents of the fragment
as inputs to a syntax oracle. As far as the Marco type system is concerned, the
syntax oracle is a black-box that either succeeds or fails. If the oracle succeeds,
the type of the fragment is code<lang,nonT>.

∀i ∈ 1 . . . n : Γ � ei : code<lang,nonTi>
syntaxOracle(lang)(nonT, [nonT1, . . . ,nonTn], α0$1α1 . . .$nαn)

Γ � ‘lang(nonT)[α0$e1α1 . . .$enαn] : code<lang,nonT>
(T-Fragment)

4 The Marco Analysis Framework

At its core, theMarco system provides a static checker and a dynamic interpreter.
The static checker verifies correctness at macro development time. The dynamic
interpreter generates target-language code and verifies correctness at macro in-
stantiation time. The two components share target-specific oracles, which check
syntactic well-formedness and naming discipline in target-language fragments.

Each oracle mediates between the target-language independent Marco engine
and an off-the-shelf target-language processor, i.e., compiler or interpreter. The
oracle converts fragments into compilation units, passes the compilation units to
the target-language processor, and then parses any error messages in the output.
The only target-language specific parts newly developed for Marco are the target-
specific lexers (see Section 3) and oracles, which reuse existing target-language
processors. A key advantage of Marco over other safe macro systems is that it
does not require new or even modified target-language processors.

In more detail, each target-language plug-in provides three oracles: syntax,
free-names, and captured-name. Marco itself is implemented in Java, and each

Marco: Safe, Expressive Macros for Any Language 595

target-language plug-in implements the same three Java interfaces. Since Java
already integrates database access through JDBC, the SQL plug-in uses this
API. In contrast, the C++ plug-in interacts with gcc through the file sys-
tem. Either way, all target-language interactions share two characteristics. First,
target-language processors receive programs as sequences of characters: strings
for JDBC and files for gcc. In other words, we lower the tokenized fragments
into character strings. Second, the processor outputs are strings that indicate
syntactic or semantic errors, which are then parsed by the plug-in. At the same
time, the concrete error reporting mechanism depends on the target language,
e.g., Java exceptions for JDBC and standard error output for gcc.

To check target-language syntax, the system first parses a Marco program
and tokenizes the target-language fragments. It then ensures that the target-
language fragments are consistent with their declared code type parameters.
For example, consider ‘cpp(expr)[x = 1;]. The Marco type checker applies
rule T-Fragment from Section 3, which triggers a call to the C++ syntax or-
acle: syntaxOracle(cpp)(expr, [], ‘x = 1;’). The C++ syntax oracle then gen-
erates the following compilation unit for the unmodified C++ compiler, i.e.,
gcc: int check_expr(){return (x = 1;);} For this input, gcc reports an er-
ror complaining about the spurious semicolon after x = 1. Based on this error
message, the oracle deduces that the fragment was syntactically ill-formed for
nonterminal expr. Since the oracle fails, Marco type-checking fails, and the sys-
tem reports an error. This example ignores idiosyncrasies of blanks and C++,
which Sections 5 and 6 explore.

For naming disciplines, consider a fragment f1 that fills a blank in frag-
ment f2. Fragment f1 is ‘sql(expr)[birthYear >= 1991], and fragment f2
is ‘sql(query)[select name from Patrons where $pred]. Using the SQL
free-names oracle,Marco discovers that f1 contains the free identifier birthYear.
It uses dataflow analysis to discover that f1 flows into the blank in f2. Finally,
Marco uses the SQL captured-name oracle to check if identifier birthYear is
captured by blank $pred. Programmers use annotations to tell Marco when
a capture is intentional; otherwise, Marco reports an accidental-capture error.
Subsequent sections describe how the oracles turn errors from target-language
processors into information for Marco’s static checker and dynamic interpreter.

5 Checking Syntactic Well-Formedness

This section describes how Marco checks target-language syntax. The syntax
oracle is the interface between the target-language agnostic Marco system and
the black-box target-language processors. The signature of the syntax oracle, as
embodied in type rule T-Fragment from Section 3, is:

syntaxOracle : lang→ (nonT,list<nonT>, α0$1α1 . . .$nαn)→ list<error>

For example, consider the following invocation of the syntax oracle:

syntaxOracle (sql) (query, [expr], ‘select a from B where $1’)

596 B. Lee et al.

Table 1. Helper fragments for syntax oracles. Place-holder fragments fill in blanks.
Completion fragments turn a fragment into a self-contained compilation unit.Marco fills
in $fresh blanks with fresh identifiers, and $orig blanks with the original fragment.

Marco type Place-holder fragment Completion fragment
code<sql,expr> 0 select $fresh1 from $fresh2 where ($orig)

code<sql,query> select * $orig

code<sql,qlist> /*empty*/ $orig

code<cpp,expr> 0 int $fresh() { return ($orig); }

code<cpp,stmt> ; void $fresh() { if(1) $orig else; }

code<cpp,id> $fresh int $fresh() { return ($orig); }

code<cpp,type_sp> int $orig $fresh;

code<cpp,type_id> int int $fresh() { return sizeof($orig); }

code<cpp,fdef> void $fresh(){} $orig

code<cpp,mdecl> int $fresh; class $fresh { $orig };

code<cpp,decl> int $fresh; $orig

code<cpp,cunit> /*empty*/ $orig

In this example, the target language is SQL, the nonterminal of the fragment is
query, and there is one blank, whose nonterminal is expr. The fragment contents
have the form α0$1α1, where α0 is the token sequence before the blank, $1 marks
the location of the blank, and α1 is the token sequence after the blank. In the
example, α0 is ‘select a from B where’ and α1 is empty. The remainder
of this section describes the syntax oracle algorithm for producing compilation
units, interpreting the results, and iterating when necessary.

5.1 Syntax Oracle Algorithm

The syntax oracle algorithm has four steps. The key challenge is to fill in each
blank in the target-language fragment.

Step 1: Fill in blanks. The syntax oracle starts by filling in each blank with
a place-holder fragment. The middle column of Table 1 shows the place-holder
fragments for each code type in Marco’s SQL and C++ plug-ins. Each such
place-holder fragment is syntactically valid for a given nonterminal. In the ex-
ample above, the nonterminal for blank 1 is expr, so the syntax oracle fills
in blank 1 with the place-holder fragment for SQL expressions, which is 0.
The result is the fragment select a from B where 0. Intuitively, filling in
blanks with fixed fragments works because target languages have (more or less)
context-free grammars, and the syntax oracle can check syntactic validity even
when there are semantic errors. In the example, the place-holder fragment is of
type integer and the blank expects type boolean, but this semantic mismatch is
irrelevant to syntactic well-formedness.

Step 2: Complete the fragment. The syntax oracle completes fragments to
obtain self-contained compilation units. In the example, the fragment is already
a full query. The right column of Table 1 shows the completion fragments for each
of the code types in Marco’s SQL and C++ plug-ins. In addition to turning a
fragment into a compilation unit, Step 2 generates boiler-plate syntax. For SQL,

Marco: Safe, Expressive Macros for Any Language 597

it adds code to begin and then abort a transaction, which prevents side-effects
from sending the SQL query to a live database during analysis.

Step 3: Run the target-language processor. The syntax oracle next sends the
completed fragment to the target-language processor and collects any error mes-
sages. For SQL, Marcomakes a JDBC call and catches any exceptions. For C++,
Marco generates a file with the fragment, compiles it with gcc, and reads any
error messages from stderr.

Step 4: Determine oracle results. Finally, the syntax oracle translates errors
from the target-language processor into oracle results. It must distinguish syntax
errors from other errors, as a fragment only fails the syntactic well-formedness
test if there are syntax errors. In C++, other errors may mask syntax errors, so
the oracle may iterate to determine if the fragment also has a syntax error, as
explained in Section 6. If the syntax oracle fails, the oracle maps error message
line-numbers back to the original Marco code, and reports the error.

5.2 Syntax Oracle Example

Consider the example fragment ‘sql(expr)[type =], which is missing its
right operand. Type rule T-Fragment invokes the syntax oracle as follows:
syntaxOracle(sql)(expr, [], ‘type =’). The oracle goes through its four steps:

1. Fill in blanks. This step is a no-op, since there are no blanks.
2. Complete the fragment. The oracle consults Table 1 to find the completion

fragment for code<sql,expr>, yielding select x from T where (type =).
3. Run the target-language processor. The oracle uses JDBC to send the com-

pleted fragment to SQLite, and then catches the resulting SQLException,
which contains the error message “Syntax error near ‘=’.”.

4. Determine result. Since the error from the target-language processor was a
syntax error, the oracle reports this error back to the user.

Assume the user fixes the fragment, writing ‘sql(expr)[type = 1], and then
runs Marco again.

1. Fill in blanks. This step is still a no-op, since there are no blanks.
2. Complete the fragment yields select x from T where (type = 1).
3. Run the target-language processor. If there is no table T with an attribute

type in the database, the error message is “No attribute ‘type’ in table ‘T’.”.
4. Determine result. Since the error is not a syntax error, the oracle succeeds

and indicates that the fragment is syntactically well-formed.

5.3 Discussion

Good completion fragments (see Table 1) satisfy three properties: they are com-
plete, conservative, and accurate. A complete fragment yields a complete com-
pilation unit in the target language. A conservative fragment has a blank that
accepts all fragments conforming to the original nonterminal. An accurate frag-
ment rejects fragments that do not conform to the original nonterminal. Of
these three properties, the first two help avoid spurious error messages, i.e., false
positives, while the third helps avoid missed syntax errors, i.e., false negatives.

598 B. Lee et al.

Consider the completion fragment for a C++ expression. One complete and
conservative solution would be int $fresh(){ return $orig; }. This com-
pletion fragment is not accurate, since it accepts 0;, which is a C++ statement
and not a C++ expression. To increase accuracy,Marco adds parentheses around
the blank, as in int $fresh(){ return ($orig); }. As another example,
consider the completion fragment for a C++ statement. One complete and con-
servative solution is void $fresh(){ $orig }. However, this completion is not
accurate, since it accepts x=1;y=2;, a sequence of two statements instead of a
single C++ statement. Marco resolves this problem by inserting a conditional
statement around the blank: void $fresh(){ if(1) $orig else; }. In our
experience, enclosing fragments and blanks in delimiters or embedding them in
other target-language constructs makes completion fragments more accurate.

6 Context-Sensitive Syntax

Most programming languages, including SQL, Java, ML, and Scheme, have
context-free syntax. In this case, the syntax oracle from Section 5 works di-
rectly as described. It checks the syntactic well-formedness of a fragment in
isolation based on the declared language and nonterminal. However, our goal is
to handle any language, including languages with context-sensitive syntax such
as C++. Prior work on safe macro systems does not address this issue. This
section extends our syntax oracle to correctly deal with context sensitivity.

6.1 Context-Sensitive Syntax Examples

As a first example, consider the following C++ fragment:

‘cpp(mdecl)[void* method(typeless o) { return 0; }]

The nonterminal mdecl stands for a member declaration. The fragment is syn-
tactically well-formed for this nonterminal, since a method is a special case of a
member. However, after using the completion fragment for mdecl from Table 1,
gcc reports the following errors:

error: expected ’;’ at end of member declaration
error: expected ’)’ before ’o’

These are syntax errors, even though the root cause is a semantic problem:
identifier typeless has not been declared as a type. When gcc cannot parse
typeless as a declaration specifier, it speculates that method is a variable name.
But the downstream tokens make no sense for a variable declaration. This case
shows how a semantic problem, the missing declaration context for typeless,
induces a syntax error.

To resolve such cases, our C++ syntax oracle enumerates all identifiers in
the input fragment, and speculates one by one that they are type names (i.e.,
the opposite of gcc’s speculation). In the example, the syntax oracle finds three
identifiers: method, typeless, and o. At first, the syntax oracle speculates that

Marco: Safe, Expressive Macros for Any Language 599

method is a type, but declaring it as such does not advance the location of the
first error message. Then, the oracle speculates that typeless is a type and
issues the following query to gcc:

class typeless { }; // speculative context
class id1 { // completion fragment
void* method(typeless o) { return 0; } // input fragment

};

Since gcc reports no syntax errors for this query, the syntax oracle correctly
concludes that the input fragment is syntactically well-formed and succeeds. In
theory, a fragment with n ambiguous identifiers may require up to 2n specu-
lative queries for determining syntactic well-formedness. However, in practice,
our simple heuristic of always advancing the location of the first reported error
avoids this exponential explosion.

As a second example, consider another C++ fragment (based on [19]):

‘cpp(stmt)[A(*x)[4] = y;]

The C++ compiler can parse this in two ways: either as a variable declaration
or as an expression statement. If A is a type, then the code declares variable x as
a pointer to an array of 4 elements of type A, and initializes it to y. On the other
hand, if A is a function name, then the code calls the function with parameter *x,
accesses element [4] of the result, and assigns it y. The ambiguity between dec-
larations and statements is so prevalent in C++ that the language specification
has a disambiguation rule of preferring declarations over expression statements
[23, p. 802]. Though, C++, unlike C, does treat declarations as statements for
its syntax.

��������	�

����� ��������	
���� ����������

�������� �������

Fig. 5. Error reporting and recovery

If part of a program is not well-formed, language processors report the error
and try to recover, so that they can report more than one error per invocation.
Fig. 5 depicts how language processors scan through lexical tokens, detect a syn-
tactic or semantic problem, generate an error message, skip several tokens, and
continue analysis. For instance, ANTLR-generated parsers report syntax errors
and then recover by either inserting a token or skipping several downstream to-
kens. The hand-written parsers in gcc report both syntax and semantic errors,
and may skip all or some downstream tokens.

If the skipped tokens contain a syntax error, then the error recovery for the
first error shadows the syntax error. Therefore, the absence of syntax errors does
not imply syntactic well-formedness. The example fragment A(*x)[4] = y;
triggers the following error messages:

600 B. Lee et al.

error: ’x’ was not declared in this scope
error: ’A’ was not declared in this scope
error: ’y’ was not declared in this scope

These semantic errors may shadow downstream syntax errors, so our oracle
speculates that an identifier in a semantic error may be either a type or variable
name. In the example, making A a type name and x and y variable names
eliminates the missing declaration errors, as shown in the following oracle query:

class A {}; class {} x; class {} y; // speculative context
void query() { // completion fragment
A(*x)[4] = y; // input fragment

}

This fragment still yields a semantic error (“ cannot convert ‘<anonymous
class>’ to ‘A (*)[4]’ ”), but the error cannot shadow syntax errors. Hence,
the oracle concludes that the fragment is syntactically well-formed.

6.2 Error Classification

The syntax oracle is concerned with syntax errors, and, in an ideal world, it
would not have to deal with semantic errors. However, as demonstrated by the
above examples, semantic problems affect syntax errors in two cases: a semantic
problem can induce a syntax error, or a semantic problem can shadow a syntax
error. In the induced-error case, it appears as if the fragment is syntactically
ill-formed, but it is actually well-formed. In the shadowed-error case, it appears
as if the fragment is syntactically well-formed, but it is actually ill-formed.

We need not handle syntax errors that induce or shadow another error; the
first error suffices to conclude that the fragment is syntactically ill-formed. Nei-
ther do we need to handle the case of a semantic problem inducing or shadowing
a semantic error; as long as that error in turn does not induce or shadow a syntax
error, it does not affect the syntax oracle. Consequently, the syntax oracle must
recognize two classes of errors: (1) syntax errors and (2) semantic errors that may
shadow syntax errors. We systematically investigated all C++ errors generated
by gcc to validate that our syntax oracle handles these cases correctly. Our in-
vestigation found that there are two kinds of syntax errors: parsing errors, which
are generated while parsing, and post-parsing errors, which are generated after
parsing but still capture violations of syntactic constraints such as case labels
always appearing inside switch statements. Parsing errors are easy to recognize
(they all begin with the word “expected” and include a token or nonterminal
symbol), and there are only a few post-parsing errors.

To collect all shadowing error messages, we identified the seven error recovery
routines in gcc that update the parser state to skip tokens until a synchronization
token. For example, one such routine is skip_until_sync_token(). Next, we
enumerated all call-sites for the recovery routines. We found that code leading
up to these call-sites commonly looks as follows:

Marco: Safe, Expressive Macros for Any Language 601

bool ok = perform_semantic_check();
if (ok)

error("A");
else

error("B");
if (!ok) {

error("C");
skip_until_sync_token();

}

If ok is false, the compiler invokes skip_until_sync_token() and thus skips
tokens, which may contain syntax errors. Consequently, errors "B" and "C" may
shadow syntax errors but error "A"may not. In most cases, we only had to look at
a single routine to understand error shadowing, though in a few cases multiple
routines were involved. We found that shadowing errors are most commonly
lookup errors, which indicate that an identifier has not been declared; though a
few non-lookup errors shadow other errors.

6.3 Iterative Syntax Oracles in Marco

In summary, context sensitivity prevents a Marco oracle from concluding syntac-
tic well-formedness based solely on the absence of syntax errors. In particular for
C++, a semantic problem can either induce or shadow a syntax error. There-
fore, Marco’s syntax oracle for C++ speculatively resolves syntax errors and
shadowing semantic errors by issuing repeated queries to gcc, each with a dif-
ferent speculative context. In other words, the oracle speculates declarations for
identifiers as variables or types. If Step 4 from Section 5.1 detects semantic er-
rors, the algorithm iterates back to Step 2 and resolves them by enumerating
the possible declarations for identifiers.

7 Checking Naming Discipline

This section describes how Marco uses dataflow analysis to ensure that macro
expansion does not cause accidental name capture in the target language. Some
macro systems, notably Scheme, prevent capture by automatically renaming
variables, but that requires deep target-language specific knowledge and is there-
fore not an option for Marco, which is target-language agnostic. Accidental name
capture is a typical bug when using the C preprocessor, as illustrated in Fig. 6.

1 #define swap(v,w) {int temp=v; v=w; w=temp;}
2 int temp = thermometer();
3 if (temp<lo_temp) swap(temp, lo_temp)

Fig. 6. Example for accidental name capture bug with C preprocessor [5,6]

Line 1 declares a macro swap, which uses a local variable temp standing for
“temporary.” Line 2 declares a different variable temp standing for “tempera-
ture” that is outside the scope of the macro. Line 3 passes the name temp as an

602 B. Lee et al.

actual parameter to the formal v of swap. This use of swap captures the name
temp. Since the code outside the macro uses temp for “temperature” and not
“temporary,” the name capture is called accidental.

More generally, accidental name capture happens when a first fragment f1
contains a free name x; a second fragment f2 unintentionally captures name x
at blank b; and f1 flows into b. Marco detects capture as follows. The freeNames-
Oracle discovers all free names in fragment f1. Marco’s forward dataflow analysis
propagates free names to blanks. The capturedNameOracle discovers whether f2
captures name x at blank b. In dataflow terminology, the analysis state is a map
from meta-language variables to free target-language names. The Gen-set of a
fragment is the set of free names in the fragment. The Kill-set of a fragment at
a blank is the set of names that it captures at that blank.

Marco uses static dataflow analysis at macro definition time and dynamic
dataflow analysis in the interpreter at macro instantiation time. The oracles are
target-language specific and use the off-the-shelf target-language processor as
a black-box to generate error messages that reveal information about free and
captured names. The dataflow analysis itself is target-language independent.

7.1 Free-Names Oracle

The signature of the free-names oracle is:

freeNamesOracle : lang → (nonT,list<nonT>,α0$1α1 . . .$nαn) → list<ID>

For example, given fragment ‘cpp(expr)[100 * (1.0 / (foo))], Marco
invokes the free-names oracle as follows:

freeNamesOracle(cpp)(expr, [], ‘100 * (1.0 / (foo))’)

A target-language name is free if it is not bound inside the fragment. In the
example, foo is free, and the oracle should return the list [foo]. To obtain this
result, the free-names oracle first consults Table 1 to instantiate a completion
fragment that will be sent to gcc:

int query_expr() { return (100 * (1.0 / (foo))); }

For this query, gcc returns the error message “name ‘foo’ was not declared in this
scope.” The free-names oracle looks exactly for this kind of error message, which
indicates that a name is undefined. In the example, the oracle speculates that
foo is free. To validate this hypothesis, it executes one more query. It prepends
a declaration of the name foo to the compilation unit and sends it to gcc again.
In the example, the test becomes:

int foo;
int query_expr() { return (100 * (1.0 / (foo))); }

This modification resolves the declaration error and confirms the hypothesis as
correct. Hence, the oracle adds the name foo to the list of free names. It repeats
this process until it does not observe any more declaration errors. In summary,
Marco exploits the fact that a name in a fragment is free, as long as it can be
bound by a declaration in the enclosing scope.

Marco: Safe, Expressive Macros for Any Language 603

7.2 Captured-Name Oracle

The captured-name oracle checks if a target-language name is captured by a
blank in a fragment and thus if it is safe to fill in the blank with a fragment in
which the name is free. The signature of the captured-name oracle is:

capturedNameOracle : lang
→ (nonT,list<nonT>,

α0$1α1 . . .$nαn,int, ID)
→ boolean

We check the blank number int and the free name ID for capture. Consider
swapping two integers: ‘cpp(stmt)[{int temp=$v; $v=$w; $w=temp;}]. The
following oracle call checks whether blank 1 captures name temp:

capturedNameOracle (cpp)
(stmt, [expr, expr, expr, expr],
‘{int temp=$1; $2=$3; $4=temp;}’, 1, temp)

Since blank 1 in the fragment does in fact capture the target-language name
temp, the oracle returns true as expected. SQL’s scoping rules differ from C++
and implement semantics similar to a with-statement. For example, consider
the fragment ‘sql(query)[select name from Patrons where $pred]. The
blank in this fragment captures any names referring to column names in the
Patrons table in the database. Our capturedNameOracle algorithm handles both
target languages and their scoping rules with the same approach.

Consider invoking the capturedNameOracle to check if free name x is captured
at blank number i. Similar to the other oracles, the captured-name oracle fills in
all blanks j with i = j using the nonterminal-specific place-holders from Table 1.
However, for blank i, our analysis hypothesizes that x is captured at the blank.
To find counter-evidence, it places x in the blank, wrapping it in boiler-plate
code as necessary for syntactic well-formedness. If the target-language processor
reports an “x is unknown” error message, then the oracle concludes that x is
not captured at blank i, and returns false. Otherwise, it returns true.

7.3 Intentional Capture

The dataflow analysis propagates free target-language names through variables
referencing target-language fragments to blanks. It reports an error if a blank ac-
cidentally captures a free name. To determine whether a capture is accidental or
intentional, the analysis uses the optional capture annotation in the fragment-
Head clause of the Marco grammar (see Fig. 3). If a name is listed in the capture
annotation, the capture is intentional, otherwise the capture is accidental and
Marco reports an error.

For an example of intentional capture, consider the Marco function boundIf
in Fig. 7. The function implements an if-statement that binds the value of the
condition to it, with the express purpose of exposing it to the body, i.e., blank 2.

604 B. Lee et al.

1 code<cpp,stmt> boundIf(code<cpp,expr> cond, code<cpp,stmt> body) {
2 return ‘cpp(stmt, capture=[it])[{
3 int it = $cond; #blank 1
4 if (it) { $body } #blank 2
5 }];
6 }

Fig. 7. Example for intentional name capture when using Marco to generate C++ code

The annotation capture=[it] in line 2 indicates that any such capture is in-
tentional. This convention makes it possible to fill blank 2 with a fragment, such
as printf("%d", it);, that contains a free identifier it and have the body’s
it refer to the macro’s it, as declared on line 3. Marco’s captured-names oracle
still detects the capture of the identifier it, but the capture annotation sup-
presses the corresponding error message. As a special case, if a blank captures an
identifier provided by a previous blank in a binding position, e.g., int $index;,
Marco assums that the capture is intentional. No annotation is necessary.

7.4 Dataflow Analysis

The interesting statements for the dataflow analysis are Marco statements with
fragments and blanks. Fig. 8 shows the transfer-function for such statements.
Given a Marco statement and an input analysis state inState, the transfer func-
tion computes an output analysis state outState. The analysis state only changes
for the Marco location w assigned by the statement. The captured-name oracle
from Section 7.2 checks whether free names from inState(v1) through inState(vn)
are captured by the fragment. If they are captured and the capture is not in-
tentional (the set difference Captured − Intentional is non-empty), the analysis

w=`lang(nonT,capture=capt)[�0$v1�1…$vn�n];

Captured-

Name Oracle

Free-Names

Oracle

U �

Error Report

Captured Not captured

Intentional

Accidental Free in w
Free in
u � w

Free

Free in v1…vn

Marco Statement Input State

Output State

Fig. 8. Transfer functions for the naming-discipline analysis

Marco: Safe, Expressive Macros for Any Language 605

reports an error. If they are not captured, then they are still free in w. In addi-
tion, the free-names oracle checks for free names in the constant portions α0 thru
αn of the fragment. Those free names are also free in w. The resulting output
state outState(w) uses the free names for w as discovered by the oracles. For all
other locations u = w, the transfer function forwards the free names from the
input state outState(u) = inState(u).

One pragmatic issue is how to report high-quality error messages in the case of
accidental name captures. The analysis remembers which errors it has reported
so far and avoids duplicates. Furthermore, the analysis tracks the originating
fragment for each free name to more accurately report the source of accidental
name captures. When the analysis detects an accidental capture, it reports both
the line number of the origin and the line number of the capture.

Marco’s static checker uses static dataflow analysis to enforce the naming
discipline at macro definition time. It reports accidental name capture errors
to macro authors. However, a Marco program may receive fragments as exter-
nal inputs, and these fragments may contain free names. Consequently, Marco’s
interpreter uses dynamic dataflow analysis to enforce naming discipline again
at macro instantiation time, now reporting accidental name capture errors to
macro users. The dynamic dataflow analysis uses the same transfer function as
the static analysis and it performs the same oracle queries.

8 Experimental Evaluation

This section experimentally validates the key characteristics of Marco: expres-
siveness, safety, and language scalability. To evaluate expressiveness, we imple-
mented microbenchmarks from prior work and a code-generation template for
a high-performance stream processing module. To evaluate safety, we execute
Marco on each microbenchmark and on the stream processing code generator.
To evaluate language scalability, we report statistics on the implementation effort
for supporting different target languages.

8.1 Methodology

Tools and Environments. We use Marco r278 running on the Sun HotSpot Client
JVM 1.6.0 21-ea. For the unmodified target-language processors, we downloaded
and built gcc 4.6.1 as well as SQLiteJDBC v056 based on SQLite 3.4.14.2. We
conducted all experiments on a Core 2 Duo 1.40 GHz with 4 GB main memory.
The machine runs Ubuntu 11.10 on the Linux 3.0.0-12 kernel.

Marco Programs. We wrote 8 Marco microbenchmark programs with 22 macro
functions derived from related work [5,26] and the Aggregate code genera-
tor derived from IBM InfoSphere Streams [16]. The Aggregate code generator
produces C++ declarations, statements, and expressions that exercise classes,
namespaces, and templates. Table 2 presents the microbenchmarks. The first four
programs implement C++ macros from the MS2 paper by Weise and Crew [26].
These macros add new abstractions such as resource management (paint), dy-
namic binding (dynamic_bind), rich exception handling (exceptions), and

606 B. Lee et al.

Table 2. Oracle analysis results for the micro-benchmarks fragments

Marco Program Fragment Code Type Size Backtr. Queries Decls

paint Painting1 code<cpp,stmt> 17 5 17 7

dynamic_bind dynamic_bind1 code<cpp,stmt> 13 3 14 8

exceptions

throw1 code<cpp,stmt> 23 2 12 7
throw2 code<cpp,stmt> 28 2 16 7
catch1 code<cpp,expr> 1 1 3 3
catch2 code<cpp,stmt> 51 1 8 4
unwind_protect1 code<cpp,expr> 1 1 3 3
unwind_protect2 code<cpp,stmt> 44 2 12 6

myenum

myenum1 code<cpp,decl> 5 0 1 1
myenum2 code<cpp,stmt> 9 1 5 4
myenum3 code<cpp,decl> 15 0 1 1
myenum4 code<cpp,stmt> 14 2 8 6
myenum5 code<cpp,decl> 18 0 2 2

discriminant discriminant1 code<cpp,expr> 9 0 1 1

complain
complain1 code<cpp,stmt> 4 0 2 2
main1 code<cpp,expr> 1 1 3 3
main2 code<cpp,stmt> 13 0 2 2

swap
swap1 code<cpp,id> 1 1 3 3
swap2 code<cpp,id> 1 1 3 3
swap3 code<cpp,stmt> 28 5 31 12

SQLSyntax
good1 code<sql,expr> 3 0 1 0
good2 code<sql,stmt> 6 0 1 0

multiple declarations (myenum). The next three programs implement C++ ver-
sions of the examples from “Macros That Work” by Clinger and Rees [5]. These
macros illustrate naming issues during macro expansions. The final program gen-
erates SQL queries for extracting bookmark titles from a web browser’s database.

Data collection methodology. To collect statistical results for fragment analy-
sis, we turned on Marco’s -pstat command-line option. To count source lines, we
ran the sloccount utility. For the number of error handling rules, we manually
examined source files in the Marco system.

8.2 Expressiveness and Safety

In Table 2, Column “Fragment” names the macros using logical function names.
Column “Code Type” shows the types of the macros, which indicate the target
language and nonterminal. Column “Size” counts the number of target-language
tokens and blanks. The remaining columns present the results from running the
oracle analysis. The oracle analysis synthesizes query programs to determine
whether a fragment is syntactically correct. Column “Backtr.” counts how often
the syntax oracle needed to backtrack before finishing. Column “Queries” counts
the number of compilation units sent to the target-language processor. Column

Marco: Safe, Expressive Macros for Any Language 607

Table 3. Oracle analysis averages for the fragments in the Aggregate operator

Code type Count Size Backtracks Queries Decls

code<cpp,id> 5 1.00 0.80 3.00 3.00
code<cpp,type_spec> 8 6.88 0.00 3.75 2.75
code<cpp,type_id> 1 1.00 0.00 2.00 2.00
code<cpp,expr> 12 4.50 0.08 2.67 2.58
code<cpp,stmt> 40 13.20 1.58 10.13 6.63
code<cpp,fdef> 11 31.00 4.09 21.73 9.36
code<cpp,mdecl> 22 12.36 0.05 3.23 3.00
code<cpp,decl> 13 11.38 0.00 4.08 3.00
code<cpp,cunit> 3 7.00 0.00 2.00 2.00

“Decls” shows the number of declarations synthesized by the oracle to provide
evidence for syntactic well-formedness.

For the microbenchmark fragments, which contain 1–51 tokens or blanks, our
oracle analyzer concludes syntactic well-formedness after evaluating 1–31 queries.
The number of queries is proportional to the number of synthesized declarations
rather than the size of input fragments. This result is not surprising, because the
number of C++ parsing errors for syntactically well-formed fragments should be
proportional to the number of undefined identifiers. About 20% of queries result
in the oracle backtracking speculations.

This research was originally motivated by language interoperability and conci-
sion for IBM’s InfoSphere Streams, a stream processing system [16]. A streaming
application consists of data streams and operators. Each operator continuously
consumes data from one or more input streams, performs its computation, and
outputs one or more streams. An Aggregate operator uses sum, average, max-
imum, etc. over a sliding window and must be customized for the particular
aggregate and data types. To implement these operator variants, InfoSphere
Streams uses “code generation templates,” i.e., macros that generate custom
code for a specific operator variant. We re-implemented the code generation
template for the Aggregate operator from InfoSphere Streams in Marco.

Table 3 presents average statistics for the 115 fragments in Aggregate. The
first column classifies fragments by their code type and the second lists the
number of fragments for each type. The remaining columns average the number
of tokens and blanks (“Size”), the number of backtracks during oracle query
analysis (“Backtracks”), the number of generated C++ compilation units for
queries (“Queries”), and the number of helper declarations to disambiguate the
C++ syntax (“Decls”).

The Aggregate operator exercises more C++ specific code types than the
micro-benchmarks. For instance, the 22 fragments of type code<cpp,mdecl>,
where mdecl is the member-declaration nonterminal, generate C++ fields, meth-
ods, and constructors. No other macro system generates members of a C++ class
and checks syntactic correctness of the generated code. Due to the ambiguity
of C++ syntax, our oracle analyzer backtracked speculations 72 times over the

608 B. Lee et al.

114 fragments. Most backtracking arises form C++ fragments that contain un-
known identifiers or expressions statements. Even when an identifier is declared
in C++, the gcc parser uses backtracking, so it comes as no surprise that our
oracle also backtracks.

8.3 Language Scalability

To add target languages in a traditional safe macro system, the developer must
modify the target-language processor, which is usually large and complex. To
make matters worse, the modified target-language processor is effectively a
branch version, and keeping it up-to-date with the main branch requires ad-
ditional engineering effort. Adding a target language to Marco requires that the
developer write a small plug-in consisting of a simple lexer and three oracles.
The oracles wrap unmodified target-language processors. If these processors add
or change their error messages, Marco must adapt. We argue that the effort is
considerably lesser in the Marco approach.

C++ Plug-in. Like all target-language specific Marco plug-ins, our C++ plug-
in consists of a lexical analyzer and three oracles. For the lexical analyzer,
we define the TARGET TOKEN terminal in Fig. 3 with a few lines of regular
expressions for identifier (1), literal (5), keyword (74), and preprocessing-op-
or-punc (72) [23]. Most regular expressions are trivial and only identifier and
literal (6) require regular expression operators. Our three oracles consist of 1K+
non-blank source lines of Java. About half of the source lines implement oracle
declaration queries, and the other half handle error messages. The error handlers
contain 52 regular expressions to classify gcc error messages. In contrast, the
gcc source files for the C++ front-end (cc1plus) contain 100K+ non-blank C
source lines. The hand-written parser in parser.c has 14K+ non-blank source
lines, and it relies on the semantic analysis in 96K+ non-blank source lines to
disambiguate parsing decisions. Our C++ plug-in is much smaller and reuses,
unmodified, the sophisticated code base that has been maintained for decades.

Fig. 9 presents an abstracted, static call graph for gcc’s 1,400+ error messages.
The cc1plusmodule consists of 53 C source files, 5,400+ procedures, and 67,000+
call sites. Out of 5,400+ procedures, 2,500+ procedures are reachable from the
parser (c parse file). We use these 2,500+ procedures to over-approximate the
syntactic and semantic error messages. We exclude the preprocessing library
(libcpp) and backend library (libbackend) by treating them as terminal functions
in the call graph. Our analysis assumes that all error messages must go through
the three final error reporting functions: error, error n, and error at. We exclude
the permerror function because it reports “permissive” errors that never shadow
any downstream error messages. We label each node with a particular func-
tion name in a box or a group of functions in an oval. PARSING represents the
functions for recognizing C++ nonterminals in the top-down parser. OTHERS
represents the remaining functions. We label several edges with capital letters
from A to P because their call sites tentatively characterize the kinds of error
messages.

Marco: Safe, Expressive Macros for Any Language 609

PARSING: parser.c

OTHERS

cp_parser_
parse_and_diagnose_
invalid_type_name

G

cp_parser_
diagnose_

invalid_type_name

check_for_
invalid_

template_id

J

unqualified_
name_lookup_

error

F

cp_parser_
check_

template_
parameters

I

cp_parser_
name_lookup_

error

E

cp_parser_
require_
keyword

A

cp_parser_
require

B

cp_parser_
error

C

error_at

O

error

DK

qualified_
name_lookup_

error

L

N

P

error_n

M

cp_parser_
required_

error

c_parse_error

c_parse_file

Fig. 9. Abstract Call Graph for error reporting routines

Table 4 maps the labeled call edges to our classifications of error messages.
A and B are parsing syntax errors because they expect specific tokens including
keywords, punctuation, and operators in C++. C contains 90 syntax errors and 2
semantic errors. E-L are semantic lookups identifying undeclared or unsatisfiable
identifiers. D and M-P are mostly semantic errors. Overall, we identified 104
semantic errors that may shadow downstream error messages.

Our oracles recognize 384 critical error messages: 280 parsing error messages,
28 lookup error messages, and 76 other shadowing semantic error messages. A
large fraction of these error messages are recognized by a few dozen regular
expressions. For instance, all parsing error messages begin with expected and
end with either a terminal or nonterminal symbol. The lookup error messages
begin with undeclared.

SQL Plug-in. Our SQL plug-in consists of 40 lines for the lexical analyzer
and 400 lines for the three SQL oracles. The lexical analyzer for SQL is simpler
than the one for C++. Likewise, SQLite’s parser is simpler than gcc’s parser: it
consists of about 1K source lines in parser.y written as an LALR specification.
By using SQLite as a black-box language processor, Marco’s SQL plug-in reuses
not just the parser but also other components for checking naming discipline, all
of which have been maintained and tested widely for over a decade.

610 B. Lee et al.

Table 4. Mapping from calling contexts to error classes

Error Call Syntax Semantics
Context Sites Parsing Post-Parsing Lookup Other Shadow Non-Shadow

A 27 27
B 176 176
C 92 73 17 1 1
D 22 3 2 17
E 5 5
F 2 2
G 4 4
H 2 2
I 3 3
J 4 4
K 3 3
L 5 5
M 2 2
N 71 71
O 125 1 7 117
P 1,012 51 961

9 Related Work

Unlike previous macro systems, Marco is safe, well-encapsulated, and target-
language agnostic at the same time. In the literature, safe macro systems are
deeply coupled with the particular target language and its implementation
(Section 9.1), whereas language-agnostic macro systems fail to provide safety
guarantees (Section 9.2). Furthermore, while there is previous work that relies
on error messages from unmodified language processors, this approach has not
previously been applied to macro systems (Section 9.3).

9.1 Language-Specific Safe Macro Systems

Some macro systems check the safety of generated code by deeply coupling the
macro language with the target language. Like Marco, these systems enforce
macro safety, but, unlike Marco, they are target-language specific.

Syntax. To enforce syntactic well-formedness, previous safe macro systems usu-
ally rely on a grammar for the target language. For instance, MS2 implements a
C grammar [26], metafront implements grammars for Java and HTML [3], and
Ur implements grammars for HTML and SQL [4]. These macro systems approach
the level of complexity of extensible compiler toolkits such as ASF+SDF [25],
Polyglot [18], or xtc [8,10]. While the approach of implementing a grammar
works well enough for targeted language extensions and small domain-specific
languages, it is problematic for large, existing languages. Besides the sizable
development effort, another issue is compatibility. For example, HTML syntax
is deceptively simple, but in practice, HTML processors have so many corner-
cases that checkers resort to random testing [1]. Marco side-steps this issue by
leveraging unmodified target-language processors for any language.

Scope. In the functional-languages community, a wide-spread technique for en-
suring that macros respect scoping rules is hygiene. Kohlbecker et al. introduce

Marco: Safe, Expressive Macros for Any Language 611

hygienic expansion [13]. Clinger and Rees present an improved algorithm for re-
naming identifiers to guarantee hygiene [5]. Kim et al. formally characterize ac-
cidental and intentional capture, but do not implement intentional capture [12].
All these systems depend on the syntax and scoping rules for the chosen target
language. In contrast, Marco programmers declare intentional name capture and
rely on the system to detect scoping violations with black-box target-language
processors. Marco does not automatically rename identifiers, but rather uses
dataflow analysis to detect and report errors on accidental name capture.

Semantics. Some macro systems check whether expanded fragments will pass
type checking in the target language. Multi-stage extensions generate safe code
in, for instance, ML [17], Haskell [21], and Java [27]. C++ concepts add contracts
to templates [7]. MorphJ statically verifies some contracts so that expanded
code will not have name-resolution conflicts [11]. Quail checks types between
SQL queries and the database system [24]. However, target-language agnostic
type checking is an open problem that has not been addressed by any of these
systems, and we do not yet address it in Marco either.

9.2 Language-Agnostic Unsafe Macro Systems

The idea of macro systems that work for any target language dates back at
least to GPM [22]. GPM is credited as an ancestor of M4, a general-purpose
preprocessor widely installed on GNU platforms today [15]. Both offer target-
language independence, but neither is safe. Perhaps the most used macro system
today is the C preprocessor. Ernst et al. present an empirical study that demon-
strates numerous violations of safety rules when using the C preprocessor [6].
Furthermore, code-generation based on concrete syntax is widely used in web
applications. The PHP language is primarily a code generator for HTML and
JavaScript. Programmers often generate SQL code by manipulating strings in
general-purpose languages such as Java.

Compared to these systems, Marco adds safety checks while remaining expres-
sive and language-agnostic. Marco relies on high-quality error messages from
target-language processors. We believe that our reliance on descriptive error
messages aligns well with compiler and interpreter writers who want to provide
precise explanations for compilation and execution failures. Fragment code types
constrain both the target-language and the nonterminal, enabling syntactic well-
formedness checks in isolation.Marco is the first language-agnostic macro system
to rely on a dataflow analysis for enforcing naming discipline.

9.3 Using Messages from Black-Box Compilers

A few previous systems rely on error messages from unmodified language
processors. Notably, Seminal analyzes error messages from the OCaml and gcc
compilers and suggests changes for ill-formed programs [14]. Autoconf compiles
specially crafted C/C++ programs, analyzes any error messages, and determines
if preprocessor symbols or header files are available in the build environment.
The HelpMeOut system mines IDE logs to discover common bug fixes, and then

612 B. Lee et al.

proposes them to programmers based on currently displayed error messages [9].
Similar to Marco, these systems execute unmodified language processors, and
inspect the error messages for clues. Unlike Marco, none of these systems is a
macro system. To our knowledge, Marco is the first system that mines error
messages from black-box compilers and interpreters for safe code generation.

10 Conclusion

Macros that are expressive, safe, and language scalable at the same time have
the potential to significantly improve programmer productivity, particularly for
increasingly prevalent multilingual applications. This paper has presented the
first such macro system called Marco. Our work is based on two key ideas. First,
a plug-in facility provides target-language specific oracles implemented with off-
the-shelf compilers and interpreters. In particular, we have identified three simple
oracles: syntax, free-names, and captured-name. They are sufficient for ensuring
syntactic correctness and naming discipline of macros. Oracles are discharged by
submitting specially crafted programs to the target-language processor and then
analyzing any resulting error messages. Second, a statically typed quote/unquote
facility maximally exploits the target-language independent translation engine.
Notably, the type of a fragment specifies its target language and its nontermi-
nal, which the engine uses to invoke the appropriate language-specific oracles.
Our evaluation of the Marco prototype supporting C++ and SQL demonstrates
the viability of this approach. Future work should explore additional target lan-
guages and safety guarantees. Overall, our work demonstrates that safe code
generation through macros is orthogonal to language implementation and can
be well-encapsulated and language-scalable at the same time.

References

1. Artzi, S., Kiezun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A., Ernst, M.D.: Finding
bugs in dynamic web applications. In: ACM International Symposium on Software
Testing and Analysis, ISSTA (2008)

2. Bachrach, J., Playford, K.: The Java syntactic extender (JSE). In: ACM Con-
ference on Object-Oriented Programming Systems, Languages, and Applications,
OOPSLA (2001)

3. Brabrand, C., Schwartzbach, M.I., Vanggaard, M.: The metafront system: Extensi-
ble parsing and transformation. Electronic Notes in Theoretical Computer Science
82(3) (December 2003)

4. Chlipala, A.: Ur: Statically-typed metaprogramming with type-level record com-
putation. In: ACM Conference on Programming Language Design and Implemen-
tation, PLDI (2010)

5. Clinger, W., Rees, J.: Macros that work. In: ACM Symposium on Principles of
Programming Languages, POPL (1991)

6. Ernst, M.D., Badros, G.J., Notkin, D.: An empirical analysis of C preprocessor
use. IEEE Transactions on Software Engineering (TSE) 28(12) (December 2002)

7. Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Reis, G.D., Lumsdaine, A.: Concepts:
Linguistic support for generic programming inC++. In:ACMConference onObject-
Oriented Programming Systems, Languages, and Applications, OOPSLA (2006)

Marco: Safe, Expressive Macros for Any Language 613

8. Grimm, R.: Better extensibility through modular syntax. In: ACM Conference on
Programming Language Design and Implementation, PLDI (2006)

9. Hartmann, B., MacDougall, D., Brandt, J., Klemmer, S.R.: What would other
programmers do? Suggesting solutions to error messages. In: ACM Conference on
Human Factors in Computing Systems, CHI (2010)

10. Hirzel, M., Grimm, R.: Jeannie: Granting Java native interface developers their
wishes. In: ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, OOPSLA (2007)

11. Huang, S.S., Smaragdakis, Y.: Expressive and safe static reflection with MorphJ.
In: ACMConference on Programming Language Design and Implementation, PLDI
(2008)

12. Kim, I.-S., Yi, K., Calcagno, C.: A polymorphic modal type system for LISP-
like multi-staged languages. In: ACM Symposium on Principles of Programming
Languages, POPL (2006)

13. Kohlbecker, E., Friedman, D.P., Felleisen, M., Duba, B.: Hygienic macro expansion.
In: ACM Conference on LISP and Functional Programming, LFP (1986)

14. Lerner, B.S., Flower, M., Grossman, D., Chambers, C.: Searching for type-error
messages. In: ACM Conference on Programming Language Design and Implemen-
tation, PLDI (2007)

15. GNU M4 macro processor,
http://www.gnu.org/software/m4/manual/m4.html

16. Mendell, M., Nasgaard, H., Bouillet, E., Hirzel, M., Gedik, B.: Extending a general-
purpose streaming system for XML. In: International Conference on Extending
Database Technology, EDBT (2012)

17. Moggi, E., Taha, W., Benaissa, Z.-E.-A., Sheard, T.: An Idealized MetaML:
Simpler, and More Expressive (Includes Proofs). In: Swierstra, S.D. (ed.) ESOP
1999. LNCS, vol. 1576, pp. 193–207. Springer, Heidelberg (1999)

18. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An Extensible Compiler
Framework for Java. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 138–152.
Springer, Heidelberg (2003)

19. Roskind, J.: Parsing C, the last word. The comp.compilers newgroup (January
1992), http://groups.google.com/group/comp.compilers/
msg/c0797b5b668605b4

20. Shalit, A.: The Dylan Reference Manual. Addison-Wesley (1996)
21. Sheard, T., Peyton Jones, S.: Template meta-programming for Haskell. ACM

SIGPLAN Notices 37(12) (December 2002)
22. Strachey, C.: A general purpose macrogenerator. The Computer Journal (1965)
23. Stroustrup, B.: The C++ Programming Language. Addison Wesley (2000)
24. Tatlock, Z., Tucker, C., Shuffelton, D., Jhala, R., Lerner, S.: Deep typechecking

and refactoring. In: ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, OOPSLA (2008)

25. van den Brand, M.G.J., Heering, J., Klint, P., Olivier, P.A.: Compiling language
definitions: The ASF+SDF compiler. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 24(4) (July 2002)

26. Weise, D., Crew, R.: Programmable syntax macros. In: ACM Conference on Pro-
gramming Language Design and Implementation, PLDI (1993)

27. Westbrook, E., Ricken, M., Inoue, J., Yao, Y., Abdelatif, T., Taha, W.: Mint:
Java multi-stage programming using weak separability. In: ACM Conference on
Programming Language Design and Implementation, PLDI (2010)

