Scalable Flow-Sensitive Pointer Analysis
for Java with Strong Updates

Arnab De and Deepak D’Souza

Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India
{arnabde,deepakd}@csa.iisc.ernet.in

Abstract. The ability to perform strong updates is the main contrib-
utor to the precision of flow-sensitive pointer analysis algorithms. Tra-
ditional flow-sensitive pointer analyses cannot strongly update pointers
residing in the heap. This is a severe restriction for Java programs. In
this paper, we propose a new flow-sensitive pointer analysis algorithm
for Java that can perform strong updates on heap-based pointers effec-
tively. Instead of points-to graphs, we represent our points-to information
as maps from access paths to sets of abstract objects. We have imple-
mented our analysis and run it on several large Java benchmarks. The
results show considerable improvement in precision over the points-to
graph based flow-insensitive and flow-sensitive analyses, with reasonable
running time.

1 Introduction

Pointer analysis is used to determine if a pointer may point to an abstract mem-
ory location, typically represented by an allocation site in languages like Java.
A precise pointer analysis has the potential to increase the precision and scala-
bility of client program analyses [29,17]. The precision of pointer analysis can be
improved along two major dimensions: flow-sensitivity and context-sensitivity.
A flow-insensitive pointer analysis [1,31] computes a single points-to information
for the entire program that over-approximates the possible points-to relations at
all states that the program may reach at run-time. A flow-sensitive analysis on
the other hand takes the control flow structure of a program into account and
produces separate points-to information at every program statement. A context-
sensitive analysis aims to distinguish among invocations of the same function
based on the calling contexts.

Traditionally researchers have focused on improving the scalability and pre-
cision of flow-insensitive [14,2,26,10] and context-sensitive analyses [25,34,33].
Flow-sensitive analyses were found to be expensive and gave little additional pay-
off in client applications like memory access optimizations in compilers [16,15,17].
However in recent years, it has been observed that several client analyses like
typestate verification [8], security analysis [5], bug detection [9], and the analysis
of multi-threaded programs [28], can benefit from a precise flow-sensitive pointer

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 665-687, 2012.
© Springer-Verlag Berlin Heidelberg 2012

666 A. De and D. D’Souza

analysis. As a result there has been renewed interest in the area of flow-sensitive
pointer analysis and the scalability of such analyses, particularly for C programs,
has been greatly improved [12,22,38,21,11,18].

Most of these techniques however compute the points-to information as a
points-to graph (or some variant of it), which as we explain below, can be a
severe limitation to improvements in precision for Java programs. A node in
a points-to graph can be a variable or an abstract object representing a set
of dynamically allocated heap objects. Figure 1(b) shows an example points-to
graph. Typically, allocation sites are used as abstract objects to represent all
concrete objects allocated at that site. An edge from a variable to an abstract
object denotes that the variable may point to that object. Similarly an edge from
an abstract object ol to an abstract object 02, annotated with field £, denotes
that the £ field of object o1 may point to the object 02'. Precision improvements
of flow-sensitive pointer analyses come mostly from the ability to perform strong
updates [21]. If the analysis can determine that an assignment statement writes
to a single concrete memory location, it can kill the prior points-to edges of the
corresponding abstract memory location. It requires the lhs of the assignment to
represent a single abstract memory location and that abstract memory location
to represent a single concrete memory location. As abstract objects generally
represent multiple concrete objects, the analysis cannot perform a strong update
on such objects. This situation is common in Java programs, where all indirect
assignment statements (i.e. assignments whose lhs have at least one dereference)
write to the heap, and hence traditional flow-sensitive algorithms cannot perform
any strong updates for such assignments.

We illustrate this problem using the program fragment of Figure 1(a). The
points-to graph before statement L1 is shown in Figure 1(b), where variables p
and r point to the abstract heap location o1, q points to 03, and field f of object
ol points to the object 02. If the abstract object o1 represents multiple concrete
objects, traditional flow-sensitive algorithms cannot kill the points-to informa-
tion of field £ of ol after the assignment statement at L1 — it may unsoundly
kill the points-to information of r.f. Hence the analysis concludes that t1 may
point to either 02 or o3 at the end of the program fragment (Figure 1(c)), al-
though in any execution, t1 can actually point to only 03. In general, p could
have pointed to multiple abstract memory locations, which also would have made
strong updates impossible for traditional flow-sensitive analyses.

In this paper we propose a different approach for flow-sensitive pointer anal-
ysis for Java programs that enables us to perform strong updates at indirect
assignments effectively. Instead of a points-to graph, we compute a map from
access paths to sets of abstract objects at each program statement. An access
path is a local variable or a static field followed by zero or more field accesses.
In the program fragment of Figure 1(a), the points-to set of the access path p.f
can be strongly updated at L1 regardless of whether p points to a single con-
crete memory location or not. On the other hand, the points-to set of r.f must
be weakly updated at L1 as r.f may alias to p.f at that program statement

! All analyses considered in this paper are field-sensitive [27].

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 667

Ll:| p.f = q;

L2:| s = p;

L3: tl = s.f;

L4: t2 = r.f;

(@)
p {ol} p {ol}
q {03} q {03}
r {ol} r {ol}
s {} s {ol}
p.f {02} p.f {03}
r.f {02} r.f {02,033}
s.f {} s.f {03}
t1 {} tl {03}
t2 {} t2 {02,03}
(d) (e

Fig.1. (a) An example program fragment. (b) Points-to graph before the program
fragment. (c) Points-to graph after the program fragment. (d) Our points-to informa-
tion before the program fragment. (¢) Our points-to information after the program
fragment.

(two access paths may alias if they may refer to the same memory location).
Note that we would strongly update p.f at L1 even if p pointed to multiple
abstract objects. We have observed that it is quite common to have (possibly
interprocedural) program paths like Figure 1(a) which begin with an assignment
to an access path and then subsequently read the access path, either directly or
through an alias established by intervening pointer assignments. Our analysis
targets such patterns and propagates the points-to sets from the initial assign-
ment to the final read effectively through a series of strong updates.

While there has been earlier work on pointer analysis based on access paths
for C programs [20,6], our approach differs from them in several ways. The
key challenge to the scalability of such an analysis is the proliferation of access
paths. In the presence of recursive data-structures, the number of access paths
in a program can be infinite. As is standard, we bound the length of access paths
using a user defined parameter [. The number of access paths however still grows
exponentially with [, and it can be very expensive to maintain the full map of all
access paths to their points-to sets at every program statement. One key feature
of our algorithm is that we only need to store points-to sets of access paths
that are in scope at a program statement. We also do further optimizations to
reduce the size of the maps stored at each program statement as detailed in
Section 3.3.

We bootstrap our analysis using a fast flow and context insensitive points-to
analysis [1]. This base analysis is used in various stages of our analysis: to com-
pute the set of access paths, to supply points-to sets of access paths longer than

668 A. De and D. D’Souza

the user-defined bound and to reach the fixpoint quickly by approximately pre-
computing the set of access paths modified at each program statement through
aliasing.

We have implemented our analysis in the Chord framework [24]. The core
of the analysis is written declaratively in Datalog [32]. Chord implements all
Datalog relations using binary decision diagrams (BDD) [4] which helps in re-
ducing the space required to store the points-to information. We have imple-
mented our analysis both with and without context-sensitivity. Our analysis
was run on eight moderately large Java programs with different values of I (the
bound on the access path lengths) and we compared the precision of points-to
sets and call-graphs with the traditional points-to graph based flow-insensitive
[1] and flow-sensitive [16] analyses. On these benchmarks, for [= 3, our flow-
sensitive and context-sensitive analysis shows a significant average improvement
of 22% in precision over the flow-insensitive analysis with the same level of
context-sensitivity, while terminating within reasonable time, whereas tradi-
tional flow-sensitive analysis has only less than 2% precision improvement over
the flow-insensitive analysis and is much slower.

The rest of this paper is organized as follows. We give an overview of our tech-
nique with a couple of examples in Section 2. Section 3 describes our technique
formally. We discuss an implementation of our technique and present empirical
results in Section 4. Related works are discussed in Section 5. We discuss future
directions and conclude with Section 6.

2 Overview

In this section, we informally describe the core of our algorithm using the pro-
gram fragments of Figure 1(a) and Figure 2(a).

We first explain the intraprocedural part of our analysis using Figure 1. The
intraprocedural analysis is an iterative dataflow analysis over the control flow
graph (CFG). Our dataflow facts are maps from access paths to sets of abstract
objects. We first compute a flow-insensitive points-to set for each variable. Let us
assume that the points-to graph computed by the flow-insensitive analysis is as
shown in Figure 1(c). The object o1 has only one field, £ and the objects 02 and
03 do not have any field. We also assume that the length of access paths is bound
by the constant two. Hence the set of access paths in the program is {p, q, r, s,
p-f,r.f, s.f, t1, t2}. Let us assume that the points-to information computed
by our algorithm before L1 is as shown in Figure 1(b). Figure 1(d) shows this
information in our representation. The assignment at L1 strongly updates the
points-to set of p. £ to {03}. According to the flow-insensitive analysis, r.f may
alias with p.f — hence the points-to set of r.f is updated to {02,03}. Although
we could use our points-to information to detect the alias between p.f and r.f
at L1, using a precomputed flow-insensitive analysis helps in reaching the fix-
point quickly. Note that this approximation may result in more weak updates,
but does not affect strong updates. On the other hand, this approximation is

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 669

necessary for the scalability of our technique — without this approximation, six
out of eight benchmarks did not terminate within 30 mins. Also note that s.f
is not updated as it is not live at L1. The assignment at L2 strongly updates
the points-to sets of s and s.f with the points-to sets of p and p.f respectively.
As in Java, a local variable like s cannot alias with any other access path, this
assignment does not weakly update any access path. The assignments at L3 and
L4 assigns the points-to sets of s.f and r.f to t1 and t2 respectively. The final
points-to information is shown in Figure 1(e). The points-to set of t1 in our
analysis is more precise than the one computed by a traditional flow-sensitive
analysis (Figure 1(c)).

We demonstrate the interprocedural analysis using the program fragment of
Figure 2(a) (the statement at LD is commented out). In interprocedural analysis,
at each program statement, we only store the information about access paths that
are in scope at that statement. An access path is in scope at a statement if the
access path starts with a variable local to the function containing the statement
or with a static field. For the program fragment of Figure 2(a), the access paths
of the outer function and the initial map at LB is shown in Figure 2(b). We use a
mod/ref analysis based on the flow-insensitive points-to graph to determine that
the points-to sets of p.f and r.f may be modified by the call to the function
setF. On call to the function setF, this, a, and this.f are assigned the points-
to sets of p, q, and p.f respectively. The assignment at L8 strongly updates the
points-to set of this.f. The map at L9 is shown in Figure 2(c). On return to
the outer function, as p and this must point to the same concrete object in
all executions, the access path p.f can be strongly updated with the points-to
set of this.f. On the other hand, as r.f may also be modified by the call to
setF (because it is an alias of p.f) but r is not an actual parameter to the call,
it is conservatively assigned its flow-insensitive points-to set. The map at LC is
shown in Figure 2(d). The call to getF does not modify points-to sets of any
access paths belonging to the outer function, but assigns the return variable of
getF to t1. The final map is shown in Figure 2(e). Here also, the points-to set
of t1 is more precise than traditional flow-sensitive analyses which would not be
able to do the strong update at L8.

If we include the statement at LD, the context-insensitive analysis would merge
the points-to sets coming from p.f and r.f into the points-to set of this.f
in function getF. This would make the points-to sets of both t1 and t2 to
be {02,03}. Adding context-sensitivity would avoid this problem as two calls
of getF would be distinguished by a context-sensitive analysis. For example,
using a length 1 call-string as context would create two maps at L3, one tagged
with call-site LC and mapping this.f to {03} and another tagged with call-
site LD and mapping this.f to {02,03}. On return, only the first map is used
to assign points-to set of t1, making it {03}. As Java programs use method
calls extensively, we use call-string based context-sensitive analysis [30] to tag
dataflow facts with fixed-length call-strings to distinguish between the calling
contexts.

670 A. De and D. D’Souza

p {ol} this {ol}
Ll: class C { q {03} a {03}
ii DDgi'.cF() { r {ol} this.f {03}
: i p.£f {02}
L4: t = this.f; £ 2
L5: return t; L {o2y
L6: } i o
L7: void setF(D a) {
L8: this.f = a; (b) ©
L9: }
LA: } p {ol} p {ol}
q {03} q {03}
LB: p.setF(q); r {ol} r {ol}
LC: tl = p.getF();
: - . p-f {03} p.£f {03}
LD: // t2 = r.getF(); r.f {02,03}||r.f {02,03}
t1 {3 tl {03}
@ (d) (e)

Fig. 2. (a) An example program fragment. (b) - (e) Points-to information at program
statements LB, L9, LC and LD

3 Access Path-Based Flow-Sensitive Analysis

3.1 Background

Our input language is an intermediate code generated by the Chord framework
[24] from Java bytecode. The intermediate language has at most one derefer-
ence per statement and is converted into partial single static assignment (SSA)
form [11].

In SSA form, each variable is defined only once. If a variable is defined multiple
times in the original program, each of those definitions is converted to a new
version of that variable in SSA form. If multiple definitions of the same original
variable reach a join point in the control flow graph, a ¢ statement is introduced
at the join point. The ¢ statement merges the corresponding versions and creates
a new version of the variable. In partial SSA form of Java programs, only the
local variables are converted into SSA form. In a Java program, a local variable
cannot be pointed by any variable or object field — hence there are no indirect
assignments to these variables. Therefore, the definitions of such variables can
be identified syntactically and can be converted to SSA form easily, without any
prior pointer analysis.

Following are the different types of statements relevant to our pointer analysis
and their representative forms. The variables p, q, r and the field £ are of refer-
ence (pointer) type. C is the name of a class and foo is the name of a function.
Without loss of generality, we consider function calls with only one parameter
and ¢ statements merging two versions of a variable.

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 671

Allocation: p = new C;
Null assignment: p = null;
Copy: p = q;

Phi: p = ¢(q,r);

Getfield: p = q.£;
Putfield: p.f = q;
Function call: p = foo(q);
Return: return p;

We do not consider static fields in this section. As array elements cannot be
strongly updated in general, we treat array elements flow-insensitively. We as-
sume that there is a main function designated as the entry point of the program.
We also assume that all functions except the main function are virtual functions
— the exact target function of a function call is determined by the type of the
object pointed to by the first actual argument of the call. We also do not consider
exceptions in this section. Our technique can easily be extended to handle all
features of Java language and our implementation can take any Java program
as input.

Like most other pointer analyses, we use allocation sites as abstract objects
to represent all concrete objects allocated at that site. We represent the set of
abstract objects in a program by Objects. In the rest of the paper, the word
“object” means “abstract object”, unless otherwise specified.

We bootstrap out analysis with a fast flow- and context-insensitive analysis
[1]. This analysis computes the pointer information as a points-to graph G. We
assume that the points-to graph supports two types of queries: VarPts(G,v)
returns the points-to set of the variable v and ObjPts(G, o, f) returns the set of
objects pointed to by the field f of the object 0. Procedure 2 (FIPts) computes
the set of objects pointed to by an access path in the points-to graph. The
function FIAlias, defined below, detects if two different access paths may alias
according to a points to graph G.

FIAliasg = Aapy.Aapy. if apy # apy
and ap, = ap}.f and ap, = aph.f
and FIPts(G, apy) N FIPts(G, aph) # 0

then true else false.

3.2 Computing the Set of Access Paths

An access path is a local variable followed by zero or more field accesses?. More
formally, given a program P with set of variables V' and set of fields F', an
access path is a member of the set V(.F)*. The variable is called the root of
the access path. The length of an access path is one more than the number of

2 In general, an access path may start with a static field, we we do not consider static
fields in this section for sake of simplicity.

672 A. De and D. D’Souza

Algorithm 1. Algorithm for computing set of access paths in a program
Input: Set of variables V', Points-to graph G, Map from abstract objects to actual
types T', Bound on the lengths of access paths [.
Output: AP: Set of access paths in the function.
i=1
AP+ V
newaps <« V
while ¢ < k£ do
nextaps <
for all ap € newaps do
objset < FIPts(G, ap)
end for
for all obj € objset do
objtype < T'(obj)
for all field f of objtype do
add ap.f to AP
add ap.f to nextaps
end for
end for
i i+1
newaps <— nextaps
end while

field accesses. In the presence of recursive data-structures, the set of access paths
in a program can be infinite. We only consider access paths whose length is bound
by a user-defined parameter [.

In order to compute the set of access paths in a program, we need to know
that given an access path, which field accesses can be appended to it to generate
longer access paths. It might be tempting to use the declared types of variables
and fields to determine which field accesses are possible, but in the presence
of inheritance, this approach runs into the following problem. Suppose p is a
variable with declared type A and q is a variable with declared type B. Suppose
B is a subtype of A and the class B has a field £ which is not present in A.
Suppose further that there is an assignment p = g. As there is no access p.f,
we lose the points-to information of field £ of the object pointed to by p after
the assignment. Again, if there is downcast q = (B)p, we cannot determine the
points-to information of q.f after the assignment. To avoid this problem, we use
Algorithm 1 to compute the set of access paths in a program. This algorithm
uses a flow and context insensitive points-to analysis to compute a points-to
graph for the entire program. Given an access path, we traverse the points-to
graph to determine the objects pointed to by the access path (Procedure 2). We
extend the access path with all the fields of the actual types of these objects.

3.3 Intraprocedural Analysis

In this section, we assume that the input program has a single function with
no call statements in order to focus on the intraprocedural analysis. Given a

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 673

Procedure 2. FIPts
Input: Points-to graph G, Access path ap.
Output: objset: Set of objects pointed to by ap in G.
if ap is a variable then
objset < VarPts(G, ap)
else if ap is of the form ap’.f then
objset +— U ObjPts(G, o, f)
o€ FIPts(ap’)
end if
return objset

program function P, our intraprocedural analysis is an instance of iterative
dataflow analysis [19] over the CFG C' = (N, E) of P, where N is the set of
nodes of the CFG, representing the statements of the function and F is the set
of control flow edges. We denote the root node of the CFG by ny and predeces-
sor of a node n by pred(n). The dataflow analysis D = (£,F) of the function
consists of a lattice £ and a set of transfer functions F, defined below.

Dataflow Lattice: The dataflow lattice £ = (M, <) consists of a set of dataflow
facts M and an ordering relation <. The set M is the set of all maps from access
paths to sets of abstract objects. Given two maps myi,ms € M, m; =< mo iff
for all access paths ap in AP, mi(ap) € ma(ap). Naturally, the induced join
operation is the point-wise union of points-to sets of all access paths in AP.
Formally,

m1 Umg = Xap. (ma(ap) Uma(ap)).

Similarly, the greatest element of M is defined as T = Aap.Objects and the least
element as 1. = \ap.0. As the sets AP and Objects are both finite, the set M is
also finite.

Transfer Functions: The transfer function for a CFG node describes how
the statement at that node modifies a dataflow fact. Given a node n and an
input map mg,, the output map m,,; might map some access paths to different
points-to sets than m;,. Table 1 describes, for each type of statement mentioned
in Section 3.1 except for call and return statements, which access paths are
mapped differently in m,,; compared to m;,. For all other access paths ap,
Mout(ap) = min(ap). For all statements not listed in Table 1, Myt = my,. In
the table, a is an arbitrary non-empty field access sequence of the form F(.F)*
where F is the set of fields in the program.

If a variable p is assigned a new object o, the points-to set of p contains only
o and other access paths with p as root do not point to any object after the
assignment. If the lhs of an assignment is a variable (say p) and the rhs is an
access path (say ap), points-to sets of p and all access paths of the form p.a (a
is any non-empty field sequence) are strongly updated with the points-to sets
of ap and ap.a, respectively. For Getfield statements, as the length of access path

674 A. De and D. D’Souza

Table 1. Intraprocedural transfer functions. Column 1 lists types of statements. Col-
umn 2 lists the access path ap for which mout(ap) is different from ms,(ap). Column
3 defines the points-to sets of m,y: for such access paths. Here a is a non-empty field
access sequence of the form F(.F)*.

Statement ap Mout(ap)
//abstract object o
p = new C {o}
p.a 0
p = null P 0
p.a 0
P=4q P min(q)
p.a Min(q.a)
p = ¢(q,) P min(q) U min (T)
p-a Min(q.a) Umin(r.a)
p=gq.f P Min(q.£)
if g.f.a € AP then m,(q.f.a)
P.G else FIPts(G, q.f.a)
p.f =gq p.f min(q)
p-f.a Min(q.a)

if FIPts(G, ap") N FIPts(G,p) # 0
ap’.£ then min(q) Umin(ap’.£)

else my, (ap’ .£)

if FIPts(G, ap") N FIPts(G,p) # 0
ap’.f.a then min(q.a) Um,(ap’.f.a)

else my, (ap’.£.a)

on the lhs (say p) is shorter than the length of the access path on the rhs (say
q.f), there might exist some access path of the form p.a such that there is no
access path q.f.a, as its length might be more than the user-specified bound.
In such cases, we use the flow-insensitive analysis to supply the points-to set
for p.a. For all these statements, only access paths with p as root need to be
updated. On the other hand, for Putfield statements, the lhs and its extensions
are strongly updated, whereas the aliases of the lhs and their extensions are
weakly updated. Note that, instead of our own analysis, we use a precomputed
flow and context insensitive pointer analysis to detect these aliases. Using our
analysis to detect these aliases would cause our analysis to find new access path
assignments during the fixpoint computation. On the other hand, using a base
pointer analysis enables us to precompute the set of direct and indirect access
path assignments at all program statements. This approximation speeds up the
fixpoint computation significantly. Note that this approximation may cause our
analysis to perform more weak updates, but strong updates are not affected.

Multiple field accesses: Although the intermediate language described in Sec-
tion 3.1 has at most one field access per statement, the original Java program

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 675

may have multiple field accesses per statement. For example, the statement
p-f.g = q; is converted to the following sequence of statements: t1 = p.f;
tl.g = q;, where t1 is a temporary variable, defined only once. After the as-
signment to t1.g, according to the rules in Table 1, the access path p. f . g should
be weakly updated, although according to the original program, it could have
been strongly updated. As t1 is defined only once in the partial SSA form and it
is used immediately after the definition, we know that t1 must point to the same
object as p.f before the second assignment in the intermediate code. Hence we
strongly update t1.g as well as p.f.g at the second statement.

Dataflow Equations: The dataflow fact at ng is L and the transfer function
for node n is denoted by F,,. We compute a dataflow fact at each node of the
CFG. More specifically, we compute the least solution for X for the following
set of dataflow equations:

X[TL()]:J_
Vne (N —{n}): X[n]= || FEu(X[n) (1)

n’€pred(n)

Optimizations: Although the set AP is finite, it can be very large — grow-
ing exponentially with the length of the access paths. This large size of AP in
turn increases the space consumed by the elements of the set M as well as in-
creases the time to compute the transfer functions. In order to reduce the sizes
of dataflow facts, we perform two optimizations, described below.

In partial SSA form, each local variable is defined only once. Hence, in our
analysis, the points-to set of a local variable can be changed by only one state-
ment — the one defining it. Hence, instead of maintaining the map from local
variables to its points-to set at every program point, we maintain a single map
from local variables to their points-to sets in each function. The dataflow facts
at each program point are maps from access paths with length greater than one
to their points-to sets. This technique is adopted from [11].

We also observe that the points-to information of an access path is typically
useful only at the program statements where it is live. A variable is live at a
program statement if its definition reaches that statement and the variable is
used subsequently in the function. An access path is live at a program statement
if the root variable is live at that statement. At a program statement, we only
maintain the map from live access paths to their points-to sets. As there is a
global map for variables, the points-to information of variables are sound at all
program statements, irrespective of whether the variable is live at that statement
or not.

3.4 Interprocedural Analysis

The interprocedural analysis is an iterative dataflow analysis over the inter-
procedural control flow graph (ICFG), constructed by taking disjoint union of

676 A. De and D. D’Souza

individual control flow graphs of all functions and then adding call and return
edges. A call edge connects a call statement to the first statement of the called
function and a return edge connects a return statement to the statements follow-
ing the corresponding call statements. Call and return edges for virtual functions
are added on-the-fly; at a call site, if the receiver variable (the first actual pa-
rameter in our intermediate language) points to an abstract object o, the actual
function to be called is determined by the actual type of o. As new objects are
added to the points-to set of the receiver variable, new call and return edges are
added — fixpoint is reached when no new objects are added to any points-to set
and no new call/return edges are added to the ICFG. For the sake of simplicity,
in this section we assume that the call and return edges are added a priori.

Context-Insensitive Analysis: We first consider context-insensitive analysis
where dataflow facts are not distinguished by the calling contexts. The dataflow
facts are the same as the intraprocedural analysis — maps from access paths to
sets of abstract objects — but instead of maintaining the map for all access paths
at all program statements, we only maintain the map for access paths that are
in scope at that statement. An access path ap is in scope at a statement s if
the root of the access path is a variable local to the function containing s3. The
statement s may modify the points-to set of an access path ap’ not in scope
at s. As our analysis does not store the points-to information of ap’ at s, the
change in the points-to set of ap’ is not reflected immediately after s — it is
updated on return to the function where ap’ is in scope. The ability to discard
the points-to information of access paths at program statements where they are
not in scope but still soundly update them on return is the key to the scalability
of our analysis.

Call statements in the ICFG have multiple outgoing edges — one edge to
the next statement of the same function and (potentially multiple) call edges.
Similarly, the return statements may also have multiple outgoing edges — one
return edge for each calling method. The transfer functions for call and return
statements propagate different dataflow information along different edges. Note
that the first statement of a function acts as a join node in the ICFG, joining
the call edges from different call-sites. In an ICFG, the statement following a
call statement in the same function also joins the return edges from the called
functions with the CFG edge. The transfer functions for all statements described
in Section 3.3 remain unchanged, but to maintain uniformity with the call and
return statements, we add an outgoing edge as a second parameter to the transfer
function. For all statements n except for call and return, F,,(m,e) is same as
F,,(m) as defined in Section 3.3, where e is an outgoing edge of node n and m
is a dataflow fact.

Table 2 defines the transfer function for a call statement foo(q) along the
CFG edge and along a call edge to the function foo with formal parameter p (as
before, a denotes an arbitrary non-empty field sequence). Along the call edge,

3 An access path with a static field as root is in scope everywhere, but we do not
consider static fields in this section.

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 677

it initializes the points-to sets of access paths that have formal parameters of
the called function as roots. Along the CFG edge, it kills the points-to sets of
access paths that may be updated inside the called function. We use a mod/ref
analysis based on the flow-insensitive points-to graph to determine if an access
path may be modified by a called function. A function foo may modify a field £
of an abstract object o if one of the following is true:

1. There is a statement in foo writing to v.f such that o € FIPts(G,v) (G is
the flow-insensitive points-to graph).
2. foo calls a function which may modify the field £ of the object o.

An access path [.f may be modified by a call to foo if 0 € FIPts(G,1) and foo
may modify field £ of object o. If an access path ap may be modified by a call
to foo, we write MayMod (foo, ap). Note that the output map along CFG edge
only contains access paths local to the calling function, whereas the output map
along the call edge only has access paths local to the called function.

Table 2. Transfer function for call statement foo(q) along the call edge to function
foo with formal parameter p and along the CFG edge. Here a is an arbitrary non-empty
field sequence.

Edge ap Mout (ap)
Call edge P mMin(q)
p-a Min(Q.a)
other 0
CFG edge ap s.t. MayMod(foo,ap) 0
other Min (ap)

Table 3 describes the transfer function for the return statement return r
along the return edge corresponding to the call statement s = foo(q). The
formal parameter of the function foo containing the return statement is p. The
output map only contains access paths local to the calling function. The return
statement updates the points-to sets of the access paths rooted at s with the
points-to sets of the corresponding access paths rooted at r.

We use the transfer function of the return statement to soundly update the
points-to sets of access paths of the calling function that could have been mod-
ified during the execution of foo. As the input language is in partial SSA form,
the formal parameter of a function cannot be reassigned inside the function.
Hence, in every execution, the formal parameter p and the actual parameter q
must point to the same concrete object throughout the execution of foo. There-
fore, on return, the value of q. a would be same as the value of p. a at the return
statement. Hence, if q.a may be modified by foo, the transfer function of the
return statement assigns the points-to sets of access paths rooted at p to the
points-to sets of the corresponding access paths rooted at q. As the points-to
sets of access paths that may be modified by the called function are killed at the

678 A. De and D. D’Souza

call statement (Table 2), this results in strong updates of such access paths after
the join of the return edge with the CFG edge of the calling function. Any access
paths that can be modified by foo but not rooted at the actual parameter of
the call are assigned their flow-insensitive points-to set after the call statement.
Any access paths that cannot be modified by foo are assigned empty sets. As
the points-to sets of such access paths are not killed by the call statements, they
retain their points-to set prior to the call to foo after the join with the CFG
edge.

Table 3. Transfer function for return statement return r along return edge corre-
sponding to the call statement s = foo(q). The formal parameter of the function foo
containing the return statement is p. Here G is a points-to graph computed by the base
analysis and a is an arbitrary non-empty field sequence.

ap Mout (ap)
s Min (1)
s.a Min(T.0)

if MayMod(foo, ap)
q.a then mg,(p.a)

else)

if MayMod(£oo, ap)
other then FIPts(G, ap)

else)

The transfer function for return statement can be imprecise for many access
paths; but it can perform strong updates for access paths rooted at the actual
parameters. In Java programs, often such access paths are read later, either
directly or through an alias established though intervening pointer assignments.
Our technique can have the benefit of strong updates in such cases.

The interprocedural dataflow analysis computes the least solution of the fol-
lowing set of dataflow equations. Here ng is the root node of the ICFG, i.e. the
root node of the main function and (n’, n) denotes the ICFG edge between nodes
n' and n.

X[TL()] =1
Vne (N —{n}): X[n]= || Fu(X[n], (0, n)) (2)

n’€pred(n)

Context-Sensitive Analysis: For context-sensitivity, we use the standard call-
string approach [30] with finite sequence of call-sites as contexts.

We first describe the context-sensitive technique with unbounded call-strings.
Let D = (L, F) be the underlying dataflow analysis with £ = (M, =<). Let
C* = (N, FE) denote the ICFG of the program. We define a call-string v as a

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 679

(possibly empty) sequence of call statements. Let I" be the set of all such call-
strings. The empty call-string is denoted by e. The length of a call-string = is
denoted by |v|. The ith component of + is denoted by ~[i] and the substring
from ith to jth component (both inclusive) is denoted by 7[i..j]. The operator
“.” denotes the string append operation.

The call-string approach defines a new dataflow analysis framework D* =
(L*, F*), where £* = (M*, <*). The domain M* is the space of all maps from
I" into M. The ordering in £* is the point-wise ordering on L, i.e. for &,&; €
M* & 2 & it Vy € I (7) 2 &)

In order to define the flow functions, we first define a partial binary operator
o:I'x E— I in the following way:

ven if (n,n’) is a call edge

~[1..]y] = 1] if (n,n’) is a return edge and ~[||] is the
corresponding call statement

¥ otherwise

Yo (n,n) =

A flow function F} € F*, where n € N, is a function from M* x E to M?*,
defined below:

. [F.(&(),n) if there exists a unique 7 such that y =+ oe
Fi(&e)() = {J_ otherwise

The solution of the analysis is the least solution of the dataflow equations cor-
responding to the lattice and transfer functions defined above.

As the set of unbounded call-strings is infinite, we use a k length suffix of
the unbounded call-string as approximate call-string. Details of the call-string
approach can be found in [30].

4 Implementation and Experimental Results

We have implemented our analysis within the Chord framework [24]. Chord
encodes program structures such as CFG, assignment statements and type hi-
erarchies as relations and implements them using BDDs [4]. We use Chord’s
built-in flow and context insensitive pointer analysis as our base analysis. Our
frontend, written in Java, computes the set of access paths and other relevant
program information as relations implemented using BDDs. The core analysis
is written declaratively in Datalog [32] which takes the relations produced by
the frontend as input. Our implementation first converts each assignment of the
program into multiple assignments to access paths, capturing all possible strong
and weak updates of access paths by that assignment. We use the precomputed
base pointer analysis to perform the possible weak updates. The next phase
of the analysis computes the flow-sensitive points-to sets for access paths and
constructs the call-graph on-the-fly. Chord uses bddbddb [36] for fixpoint com-
putation of the Datalog analyses. We have implemented our analysis both with
and without context-sensitivity. The context-sensitive analysis is a call-string
analysis with call-string length 1.

680 A. De and D. D’Souza

Table 4. Characteristics of the benchmarks

Benchmarks Int. Code Stmts Classes Methods AP(I = 2) AP (I = 3) Contexts

polyglot 123789 1474 5933 14651 113354 24690
jlex 126661 1411 5708 21149 137578 10037
javacup 117804 1389 5498 22018 136773 11721
jtopas 120499 1432 5736 17308 137714 9068
jdom 119437 1443 5610 13704 107536 8473
jasmin 123490 1381 5174 39480 179780 11307
jjdoc 85256 1270 3701 31001 63540 9485
jjtree 93958 1376 4219 32343 58018 11155

We have run our analysis on eight moderately large Java benchmarks. We
have used a laptop with 2.3 GHz Core i5 processor with 3GB memory for our
experiments. We have used OpenJDK 1.6 as our JDK. Table 4 shows the sizes
of intermediate code, number of classes and methods, number of access paths
with bound 2 and 3 and the number of contexts for these benchmarks. As our
analysis includes the Java libraries as well, we report the number of lines in the
intermediate code within the scope of the analysis as constructed by Rapid Type
Analysis, instead of the size of source code of the application program only. Note
that the number of access paths grows rapidly with respect to [.

We compare the precision of our analysis with that of the points-to graph
based flow-insensitive [1] and flow-sensitive [16] analyses. As measurement of
precision, we use the sizes of the points-to sets of the local variables. Note that
due to the partial SSA form, our flow-sensitive analysis stores a single points-to
set for each local variable for the entire program (cf. Section 3.3). Hence, we can
directly compare the total size of the points-to sets of local variables obtained
by our analysis with that of the points-to graph based flow-insensitive and flow-
sensitive analyses. Note that the heap-based memory locations are represented
differently in our analysis than points-to graph based analyses; hence we do
not compare the sizes of such memory locations directly. Nevertheless, as our
intermediate code is single-dereference based, contents of any heap location must
be copied to a local variable before it can be dereferenced. Thus any change in
the sizes of the points-to sets of heap locations are reflected in the sizes of the
points-to sets of the local variables.

We also construct call-graphs of the input programs using the pointer infor-
mation. Nodes of a call-graph are methods of the input program. If a method
m calls a method n, the call-graph has an edge from m to n. For virtual calls,
the actual method to be called at run-time depends on the object pointed to by
the first actual parameter of the call site — hence a precise pointer analysis may
reduce the number of edges of the call-graph (henceforth we refer to the number
of edges of a call-graph as its size).

We observe that the precision improvement of our analysis over traditional
flow-insensitive analysis without context-sensitivity is very small — only 5% on
average for points-to sets of local variables and 6% on average for call-graphs.

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 681

This is expected for Java programs as they use method calls extensively to access
fields and without context-sensitivity, the points-to sets of access paths in those
methods are merged for all calls. Such a situation is shown in Section 2.

With a call-string length of 1, our flow- and context-sensitive analysis shows
significant precision improvement over the flow-insensitive analysis with the same
level of context-sensitivity. The flow-insensitive analysis also uses the partial SSA
form, hence it already has the benefit of flow-sensitivity for local variables [11]
— our analysis shows precision improvements on top of that. On the other hand,
the points-to graph based flow-sensitive analysis shows only less than 2% im-
provement over the flow-insensitive analysis. Hence, the precision improvement
of our analysis comes only from strong updates of heap-residing pointers. Fig-
ure 3 shows the precision improvements for points-to sets of local variables over
the flow-insensitive analysis on eight benchmarks for different bounds on the
lengths of the access paths. It also shows the result for the traditional points-to
graph based flow-sensitive analysis. On the average, our flow-sensitive analysis
reduces the sizes of points-to sets of local variables by 22% with [= 3 and by
16% with | = 2 over the flow-insensitive analysis with partial SSA form. All
analyses are context-sensitive with call-string length 1.

We also report the reduction in call-graph size over the flow-insensitive anal-
ysis in Figure 4. The average reduction in call-graph size is 30% for [= 3 and
26% for [= 2. Table 5 shows the time taken by the flow-insensitive analysis,
the points-to graph based flow-sensitive analysis and our flow-sensitive analysis
(for I = 2 and [= 3) on these benchmarks. On the other hand, the traditional
flow-sensitive analysis does not show any non-trivial reduction in the call-graph
sizes with respect to the flow-insensitive analysis — hence we omit the comparison
with such analysis in Figure 4 for the sake of clarity.

On the average, our analysis has a slowdown of 9.2X with [= 3 and of 5.8X
with [= 2 with respect to the flow-insensitive analysis, but it is much faster
than the points-to graph based flow-sensitive analysis.

Table 5. Time taken by flow-insensitive analysis (FI time), points-to graph based flow-
sensitive analysis and our our flow-sensitive analysis (with access path length 2 and 3).
All analyses are context-sensitive with call-string length 1.

Benchmarks FI time FS time (points-to graph) F'S time (I = 2) FS time (I = 3)

polyglot 52 756 201 411
jlex 51 858 220 421
javacup 61 838 477 808
jtopas 47 820 306 390
jdom 49 609 297 378
jasmin 58 824 388 552
jjdoc 36 589 166 286
jjtree 44 610 228 424

Average 49.8 738.0 292.9 458.8

682 A. De and D. D’Souza

35%

-~
IS
2
‘2
2
< N o)
S 30% [R Points—to graph |-|
) = = . 1=2
R 3 1=3
£ 25% R >/ A = I
Q
2
=l = = .
T =1
E 20% B EER e o = .
5 5
g 2
> = =
3 1% B B BB s
g = = =
g = = =
=2 =
5 = = =
5 1w0% By E =3 .
= = = e
9 2 == ==
£ 2 E-lNe=
= = =
HEELI NN B 1
=2 = 1=
g = e
z = ECElZ
z = = =
8 = s = = e = =
2
%}

=
polyglot jlex javacup jtopas jdom jasmin jjdoc jjtree average

Fig. 3. Reduction in sizes of points-to sets by points-to graph based flow-sensitive
analysis and our flow-sensitive analysis (with access path lengths 2 and 3) over flow-
insensitive analysis with partial SSA form. All analyses are context-sensitive with call-
string length 1.

These empirical results show that our analysis has significant precision im-
provement over the flow-insensitive analysis due to the strong updates of heap-
based pointers which can not be achieved by traditional flow-sensitive analysis.
The time taken by our analysis is also reasonable compared to the traditional
flow-sensitive analysis.

5 Related Work

Flow-Sensitive Pointer Analysis: Pointer analysis is a fundamental static anal-
ysis with a long history. Early flow-sensitive pointer analyses [20,6] explicitly
stored the pairs of access paths that might alias with each other. These works
do not focus on dynamically allocated data-structures. The experimental results
are preliminary. Emami et al. [7] presents a flow-sensitive and context-sensitive
pointer analysis that uses points-to information between abstract stack loca-
tions as dataflow facts. They mark each points-to relation as may or must to
perform strong updates on indirect assignments. Some analyses [37,35] use an
intraprocedural flow-sensitive analysis to build procedure summaries that are
instantiated at call-sites, but none of these analyses can perform strong updates
on pointers residing in the heap. Hasti and Horwitz [13] incrementally build
an SSA representation from the aliases already discovered — a flow-insensitive
analysis on the SSA form gives the same benefit as a flow-sensitive one for the
memory location already converted into SSA form. It remains an open ques-
tion whether the fixpoint of this technique matches the result of a flow-sensitive
analysis. Hind et al. [15] express the flow-sensitive pointer analysis as an iterative

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 683

S

Z 45% T T T T T
7

2

E 40% g

2

£ 35% -

7z =

]

£ 30% RS

1

Z

2 25% [R

5

2 20% R

g

S 15% [RE R

3

o 10% R

N

7

g s RE R

iy

= 0% - - ; - e ~
S polyglot jlex javacup jtopas jdom jasmin jjdoc jjtree average

Fig. 4. Reduction in call-graph sizes by our flow-sensitive analysis (with access path
lengths 2 and 3) over flow-insensitive analysis with partial SSA form. All analyses are
context-sensitive with call-string length 1.

dataflow analysis over the CFG. They use a compact representation, essentially
a form of points-to graph, as dataflow facts. In order to perform strong updates
at indirect assignments, they keep track of whether a pointer points to a single
concrete object.

More recently, researchers have focused on improving the scalability of flow-
sensitive pointer analysis for C programs. Hardekopf and Lin [11] proposed a
semi-sparse analysis which uses a partial SSA form for top-level variables and a
sparse evaluation graph to eliminate irrelevant nodes. This approach is further
extended in [12], where a flow-insensitive analysis is used to compute approx-
imate def-use pairs, which helps in speeding up the sparse analysis in a later
stage. The technique proposed by Yu et al. [38] first partitions the pointers
into different levels by a flow-insensitive analysis such that there is an unidirec-
tional flow of value from higher to lower level. Once the higher level variables
are analyzed, the result can be used to build SSA representation for the lower
level variables. Lhotak et al. [21] performs flow-sensitive analysis only on those
memory locations which can be strongly updated. Li et al. [22] reduce the flow-
sensitive pointer analysis problem to a graph reachability problem in a value flow
graph which represents dependence between pointer variables. All these analyses
do not perform strong updates for heap-residing pointers.

Zhu [39] uses BDDs to improve scalability of flow and context sensitive pointer
analysis. This technique cannot perform any strong updates as querying whether
a variable points to a single object is not efficiently supported by BDDs. As our
technique does not need such uniqueness queries to perform strong updates, we
can use BDDs efficiently.

Fink et al. [8] proposes a flow and context sensitive analysis for typestate
verification. They use access paths to determine if a concrete object is live, i.e.

684 A. De and D. D’Souza

accessible via some access paths. They use a uniqueness analysis to identify ab-
stract objects that represents a single live concrete object so that strong updates
can be applied to those objects. It is not known how many strong updates can
be done for general pointer analysis using their technique. Our analysis does not
rely on the uniqueness of an abstract object to perform strong updates.

Bootstrapping: Several pointer analysis techniques use a fast and imprecise anal-
ysis to bootstrap their own analysis. Kahlon [18] uses a fast and imprecise anal-
ysis to partition the code such that each part can be analyzed independently.
Similarly, Fink et al. [8] apply successively more precise techniques to smaller
parts of the code. As mentioned before, Yu et al. [38] uses a flow-insensitive
analysis to partition the pointers into different levels. Similarly, Hardekopf et
al. [12] uses an auxiliary flow and context insensitive analysis to compute the
approximate def-use chains.

Declarative Pointer Analysis: Whaley [33] developed bddbddb, a framework for
implementing program analyses declaratively in Datalog [32] and implemented a
context-sensitive pointer analysis using this framework. Later, Bravenboer and
Smaragdakis [3] implemented several context-sensitive analyses in Datalog. All
these algorithms are flow-insensitive.

6 Conclusion and Future Work

In this paper, we have presented a flow-sensitive pointer analysis algorithm for
Java that can perform strong updates on pointers residing in the heap. Our im-
plementation scales for moderately large benchmarks. Our flow and context sen-
sitive analysis shows significant precision improvement over the flow-insensitive
analysis with partial SSA form as well as traditional points-to graph based flow-
sensitive analysis, with same level of context-sensitivity, on those benchmarks.

In future, we would like to improve the scalability of our analysis further
by implementing it over sparse evaluation graphs [11]. We would also like to
incorporate different types of context-sensitivity in our analysis such as object-
sensitivity [23].

References

1. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen (1994)

2. Berndl, M., Lhotédk, O., Qian, F., Hendren, L., Umanee, N.: Points-to analysis
using bdds. In: PLDI 2003: Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation, pp. 103-114. ACM, New
York (2003)

3. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated
points-to analyses. In: Proceeding of the 24th ACM SIGPLAN Conference on Ob-
ject Oriented Programming Systems Languages and Applications, OOPSLA 2009,
pp. 243-262. ACM, New York (2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 685

Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 35, 677-691 (1986)

Chang, W., Streiff, B., Lin, C.: Efficient and extensible security enforcement us-
ing dynamic data flow analysis. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security, CCS 2008, pp. 39-50. ACM, New York
(2008)

Choi, J.-D., Burke, M., Carini, P.: Efficient flow-sensitive interprocedural compu-
tation of pointer-induced aliases and side effects. In: Proceedings of the 20th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
1993, pp. 232-245. ACM, New York (1993)

Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In: Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and Implementation, PLDI
1994, pp. 242-256. ACM, New York (1994)

Fink, S.J., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate
verification in the presence of aliasing. ACM Trans. Softw. Eng. Methodol. 17,
9:1-9:34 (2008)

Guyer, S.Z., Lin, C.: Error checking with client-driven pointer analysis. Sci. Com-
put. Program. 58, 83-114 (2005)

Hardekopf, B., Lin, C.: The ant and the grasshopper: fast and accurate pointer
analysis for millions of lines of code. SIGPLAN Not. 42(6), 290-299 (2007)
Hardekopf, B., Lin, C.: Semi-sparse flow-sensitive pointer analysis. In:
Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2009, pp. 226-238. ACM, New York
(2009)

Hardekopf, B., Lin, C.: Flow-sensitive pointer analysis for millions of lines of code.
In: 9th Annual IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pp. 289-298 (April 2011)

Hasti, R., Horwitz, S.: Using static single assignment form to improve flow-
insensitive pointer analysis. In: PLDI 1998: Proceedings of the ACM SIGPLAN
1998 Conference on Programming Language Design and Implementation, pp. 97—
105. ACM, New York (1998)

Heintze, N., Tardieu, O.: Ultra-fast aliasing analysis using cla: a million lines of ¢
code in a second. In: Proceedings of the ACM SIGPLAN 2001 Conference on Pro-
gramming Language Design and Implementation, PLDI 2001, pp. 254-263. ACM,
New York (2001)

Hind, M., Burke, M., Carini, P., Choi, J.-D.: Interprocedural pointer alias analysis.
ACM Trans. Program. Lang. Syst. 21, 848-894 (1999)

Hind, M., Pioli, A.: Assessing the Effects of Flow-Sensitivity on Pointer Alias Anal-
yses. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 57-81. Springer, Heidelberg
(1998)

Hind, M., Pioli, A.: Which pointer analysis should i use? In: ISSTA 2000:
Proceedings of the 2000 ACM SIGSOFT International Symposium on Software
Testing and Analysis, pp. 113-123. ACM, New York (2000)

Kahlon, V.: Bootstrapping: a technique for scalable flow and context-sensitive
pointer alias analysis. In: PLDI 2008: Proceedings of the 2008 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 249-259.
ACM, New York (2008)

686

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

A. De and D. D’Souza

Kildall, G.A.: A unified approach to global program optimization. In: POPL 1973:
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, pp. 194-206. ACM, New York (1973)

Landi, W., Ryder, B.G.: A safe approximate algorithm for interprocedural aliasing.
In: PLDI 1992: Proceedings of the ACM SIGPLAN 1992 Conference on Program-
ming Language Design and Implementation, pp. 235-248. ACM, New York (1992)
Lhotdk, O., Chung, K.-C.A.: Points-to analysis with efficient strong updates. In:
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2011, pp. 3-16. ACM, New York (2011)
Li, L., Cifuentes, C., Keynes, N.: Boosting the performance of flow-sensitive points-
to analysis using value flow. In: Proceedings of the 19th ACM SIGSOFT Sympo-
sium and the 13th European Conference on Foundations of Software Engineering,
SIGSOFT/FSE 2011, pp. 343-353. ACM, New York (2011)

Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for java. ACM Trans. Softw. Eng. Methodol. 14, 1-41 (2005)
Naik, M.: jchord: A static and dynamic program analysis platform for java,
http://code.google.com/p/jchord/

Nystrom, E.M., Kim, H.-S., Hwu, W.-m.W.: Bottom-Up and Top-Down Context-
Sensitive Summary-Based Pointer Analysis. In: Giacobazzi, R. (ed.) SAS 2004.
LNCS, vol. 3148, pp. 165-180. Springer, Heidelberg (2004)

Pearce, D.J.: Some directed graph algorithms and their application to pointer anal-
ysis. PhD thesis, University of London, Imperial College of Science, Technology and
Medicine, Department of Computing (2005)

Pearce, D.J., Kelly, P.H., Hankin, C.: Efficient field-sensitive pointer analysis of c.
ACM Trans. Program. Lang. Syst. 30(1) (November 2007)

Salcianu, A., Rinard, M.: Pointer and escape analysis for multithreaded programs.
In: PPoPP 2001: Proceedings of the Eighth ACM SIGPLAN Symposium on Prin-
ciples and Practices of Parallel Programming, pp. 12-23. ACM, New York (2001)
Shapiro 11, M., Horwitz, S.: The Effects of the Precision of Pointer Analysis. In: Van
Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 16-34. Springer, Heidelberg
(1997)

Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis, ch.7,
pp. 189-234. Prentice-Hall, Englewood Cliffs (1981)

Steensgaard, B.: Points-to analysis in almost linear time. In: POPL 1996: Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 32-41. ACM, New York (1996)

Ullman, J.D.: Principles of Database and Knowledge-Base Systems: Volume II:
The New Technologies. W. H. Freeman & Co., New York (1990)

Whaley, J.: Context-Sensitive Pointer Analysis using Binary Decision Diagrams.
PhD thesis, Stanford University (March 2007)

Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: Proceedings of the ACM SIGPLAN 2004 Conference
on Programming Language Design and Implementation, PLDI 2004, pp. 131-144.
ACM, New York (2004)

Whaley, J., Rinard, M.: Compositional pointer and escape analysis for java pro-
grams. In: OOPSLA 1999: Proceedings of the 14th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, pp. 187—
206. ACM, New York (1999)

Whaley, J., Unkel, C., Lam, M.S.: A bdd-based deductive database for program
analysis (2004), http://suif.stanford.edu/bddbddb

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 687

37. Wilson, R.P., Lam, M.S.: Efficient context-sensitive pointer analysis for ¢ programs.
In: Proceedings of the ACM SIGPLAN 1995 Conference on Programming Language
Design and Implementation, PLDI 1995, pp. 1-12. ACM, New York (1995)

38. Yu, H., Xue, J., Huo, W., Feng, X., Zhang, Z.: Level by level: making flow-
and context-sensitive pointer analysis scalable for millions of lines of code. In:
Proceedings of the 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO 2010, pp. 218-229. ACM, New York (2010)

39. Zhu, J.: Towards scalable flow and context sensitive pointer analysis. In:
Proceedings of the 42nd Annual Design Automation Conference, DAC 2005, pp.
831-836. ACM, New York (2005)

