
Program Sliding

Ran Ettinger

IBM Research - Haifa
rane@il.ibm.com

Abstract. As program slicing is a technique for computing a subpro-
gram that preserves a subset of the original program’s functionality, pro-
gram sliding is a new technique for computing two such subprograms,
a slice and its complement, the co-slice. A composition of the slice and
co-slice in a sequence is expected to preserve the full functionality of the
original code.

The co-slice generated by sliding is designed to reuse the slice’s results,
correctly, in order to avoid re-computation causing excessive code dupli-
cation. By isolating coherent slices of code, making them extractable and
reusable, sliding is shown to be an effective step in performing advanced
code refactorings.

A practical sliding algorithm, based on the program dependence graph
representation, is presented and evaluated through a manual sliding-
based refactoring experiment on real Java code.

Keywords: Program slicing, sliding, co-slicing, reuse, refactoring.

1 Introduction

Program slicing, the study of meaningful subprograms that capture a subset of
an existing program’s behavior, can assist in building automatic tools for refac-
toring [4]. Slice extraction is the art of collecting a slice’s set of not-necessarily
contiguous program statements into a single code fragment, and reusing that
fragment in the original code. With the goal of assisting programmers in main-
taining high quality code, a solution to the problem of slice extraction along
with its contribution to refactoring research are explored.

An advanced technique for the automation of slice extraction is introduced,
through a family of code motion transformations called sliding. A sliding algo-
rithm generates two subprograms, a slice and its complement, the co-slice, whose
composition in a sequence preserves the original program’s functionality. When
preservation of functionality cannot be guaranteed, a sliding tool would warn
the user and offer corrective measures, known in the literature as compensation,
or compensatory code.

Deviating from earlier practices of code extraction, where the input to the
transformation includes some selection of statements to be made contiguous,
sliding takes a set of variable names V as input, expecting to turn the slice
of code for computing the final value of V into a contiguous fragment; and

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 713–737, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

714 R. Ettinger

while different sets of variables V 1 and V 2 may have the exact same slice,
the co-slice computed by sliding to each set may differ. For example, in the
putInCacheIfAbsentmethod shown on Fig. 1, taken from the Java compiler in
Eclipse, the set of statements {1,2,6,8,9,11,13-19,21,22} (see top part of Fig. 2)
forms the slice of V = {index}, in the scope of that method, as well as the
slice of V + = {index,k2V,entry,cAC,cAC.*,k2V.*}, or the slice of any set
being both a subset of V + and a superset of V . (Note the use of acronym of
camel-case variable names, for brevity. This set V + will be used throughout the
paper.) After sliding for V , Fig. 3 shows the result of index from the slice is used
in the co-slice on line 23. The co-slice generated by sliding of the larger set V +,
shown in the bottom part of Fig. 2, reuses more results of the slice, such as cAC
on line 20 and entry, defined on line 14 of the slice and used on line 15 of the
co-slice. This reuse of local variables is enabled by moving their declaration to
an outer scope. One benefit of this reuse is the reduced level of code duplication:
statements 8,14,17-19,21-22 were duplicated by the sliding of V but not by that
of V +. Another advantage of the further reuse and reduced duplication is the
potential reduction in need for compensation. One disadvantage, on the other
hand, of this extra reuse, is the need to move local declarations, potentially re-
quiring the renaming of those whose original name is used for other variables in
the extended scope. A more significant disadvantage of the reuse of local results
is its impact on the ability to reuse the slice in other parts of the program. For
this to work, we need to extract that slice as a reusable method. Since Java
allows only one local value to be returned from a method, some alternative com-
pensation would be needed, making the resulting code less attractive for some
applications. Sliding provides the flexibility to choose between high levels of local
reuse of multiple slice results and a more straightforward global reuse of a single
slice result.

A sliding algorithm, along with the details of how to compute the co-slice,
is presented in Sect. 3. To demonstrate the value of this new approach to the
extraction of slices, Sect. 4 describes the application of sliding to previously
documented refactorings: Split Loop, Replace Temp with Query (RTwQ), and
Separate Query from Modifier (SQfM). Sliding is also expected to facilitate the
extraction of non-contiguous code in a general flavor of the well-known Extract
Method refactoring. Such automation is crucial for enabling iterative and in-
cremental software development [4]. It is also expected to impact on potential
automation of bigger refactorings, as ambitious as Fowler and Beck’s Separate
Domain from Presentation or Convert Procedural Design to Objects [7].

The initial work on sliding was a theoretical pursuit. The original transfor-
mation rules have been proved correct for a simple imperative programming
language restricted to assignments to primitive variables of cloneable types,
sequential composition of statements, conditionals, and loops [4]. The current
work presents a first practical sliding algorithm based on the program depen-
dence graph (PDG) [6,9]. The results of a preliminary evaluation are reported
in Sect. 5, and the relation to previous work is discussed in Sect. 6.

Program Sliding 715

/**
* @param key1 the given declaring class name
* @param key2 the given field name or method selector
* @param key3 the given signature
* @param value the new index
* @return the given index
*/
private int putInCacheIfAbsent(final char[] key1, final char[] key2,

final char[] key3, int value) {
int index;

1: HashtableOfObject key1Value = (HashtableOfObject)this.methodsAndFieldsCache.get(key1);
2: if (key1Value == null) {
3: key1Value = new HashtableOfObject();
4: this.methodsAndFieldsCache.put(key1, key1Value);
5: CachedIndexEntry cachedIndexEntry = new CachedIndexEntry(key3, value);
6: index = -value;
7: key1Value.put(key2, cachedIndexEntry);

} else {
8: Object key2Value = key1Value.get(key2);
9: if (key2Value == null) {

10: CachedIndexEntry cachedIndexEntry = new CachedIndexEntry(key3, value);
11: index = -value;
12: key1Value.put(key2, cachedIndexEntry);
13: } else if (key2Value instanceof CachedIndexEntry) {

// adding a second entry
14: CachedIndexEntry entry = (CachedIndexEntry) key2Value;
15: if (CharOperation.equals(key3, entry.signature)) {
16: index = entry.index;

} else {
17: CharArrayCache charArrayCache = new CharArrayCache();
18: charArrayCache.putIfAbsent(entry.signature, entry.index);
19: index = charArrayCache.putIfAbsent(key3, value);
20: key1Value.put(key2, charArrayCache);

}
} else {

21: CharArrayCache charArrayCache = (CharArrayCache) key2Value;
22: index = charArrayCache.putIfAbsent(key3, value);

}
}

23: return index;
}

Fig. 1. Example code, ahead of sliding, taken from the Eclipse Java compiler’s
org.eclipse.jdt.internal.compiler.codegen.ConstantPool class

The main contributions of this paper are as follows:

– Practical co-slicing and sliding algorithms suitable for the real case of (se-
quential) Java, building on traditional (backward, static, syntax preserving)
slicing and the underlying program dependence graph representation, hence
deferring the responsibility for correctness, scalability, and applicability for
more languages to the slicer and the dependence graph construction mech-
anism.

– First evidence for the applicability of sliding for solving known refactoring
techniques, including a detailed account of how developers can use sliding as
a building block for performing such refactorings.

– A preliminary evaluation, having transformed a well-tested massively-used
real-life Java code with no detected regression.

716 R. Ettinger

int index;
1: HashtableOfObject key1Value = (HashtableOfObject)this.methodsAndFieldsCache.get(key1);
2: if (key1Value == null) {
6: index = -value;

} else {
8: Object key2Value = key1Value.get(key2);
9: if (key2Value == null) {

11: index = -value;
13: } else if (key2Value instanceof CachedIndexEntry) {

// adding a second entry
14: CachedIndexEntry entry = (CachedIndexEntry) key2Value;
15: if (CharOperation.equals(key3, entry.signature)) {
16: index = entry.index;

} else {
17: CharArrayCache charArrayCache = new CharArrayCache();
18: charArrayCache.putIfAbsent(entry.signature, entry.index);
19: index = charArrayCache.putIfAbsent(key3, value);

}
} else {

21: CharArrayCache charArrayCache = (CharArrayCache) key2Value;
22: index = charArrayCache.putIfAbsent(key3, value);

}
}

1: HashtableOfObject key1Value = (HashtableOfObject)this.methodsAndFieldsCache.get(key1);
2: if (key1Value == null) {
3: key1Value = new HashtableOfObject();
4: this.methodsAndFieldsCache.put(key1, key1Value);
5: CachedIndexEntry cachedIndexEntry = new CachedIndexEntry(key3, value);
7: key1Value.put(key2, cachedIndexEntry);

} else {
9: if (key2Value == null) {

10: CachedIndexEntry cachedIndexEntry = new CachedIndexEntry(key3, value);
12: key1Value.put(key2, cachedIndexEntry);
13: } else if (key2Value instanceof CachedIndexEntry) {

// adding a second entry
15: if (CharOperation.equals(key3, entry.signature)) {

} else {
20: key1Value.put(key2, charArrayCache);

}
}

23: return index;

Fig. 2. A sliding example: the slice of V +={index, k2V, entry, cAC, cAC.∗, k2V.∗}, fol-
lowed by its complement, the co-slice

2 Preliminaries

The following background on program analysis and definitions regarding the
scope of the program designated for extraction and its relevant state, will be
needed for the precise description of a sliding algorithm.

2.1 Control Flow Graph

The control flow graph (CFG) of a code fragment is a labeled directed graph
representing the order of execution of the individual statements of the program.
The CFG of the code in Fig. 1 is shown on Fig. 4. It is common to make the
CFG compact by grouping nodes into basic blocks [2]. The granularity of indi-
vidual statement nodes, however, is convenient for construction of the program
dependence graph (PDG), as it is for slicing and sliding.

Program Sliding 717

1: HashtableOfObject key1Value = (HashtableOfObject)this.methodsAndFieldsCache.get(key1);
2: if (key1Value == null) {
3: key1Value = new HashtableOfObject();
4: this.methodsAndFieldsCache.put(key1, key1Value);
5: CachedIndexEntry cachedIndexEntry = new CachedIndexEntry(key3, value);
7: key1Value.put(key2, cachedIndexEntry);

} else {
8: Object key2Value = key1Value.get(key2);
9: if (key2Value == null) {

10: CachedIndexEntry cachedIndexEntry = new CachedIndexEntry(key3, value);
12: key1Value.put(key2, cachedIndexEntry);
13: } else if (key2Value instanceof CachedIndexEntry) {

// adding a second entry
14: CachedIndexEntry entry = (CachedIndexEntry) key2Value;
15: if (CharOperation.equals(key3, entry.signature)) {

} else {
17: CharArrayCache charArrayCache = new CharArrayCache();
18: charArrayCache.putIfAbsent(entry.signature, entry.index);
19: index = charArrayCache.putIfAbsent(key3, value);
20: key1Value.put(key2, charArrayCache);

}
} else {

21: CharArrayCache charArrayCache = (CharArrayCache) key2Value;
22: index = charArrayCache.putIfAbsent(key3, value);

}
}

23: return index;

Fig. 3. An alternative co-slice for the same slice from Fig. 2. With less reuse of local
variables, it duplicates more statements (8,14,17-19,21,22). Yet it is more appropri-
ate for some applications, as the slice can be extracted into a new method, avoiding
rejection due to “ambiguous results”.

A CFG has nodes N , typically with a single node n ∈ N for representing each
program statement and with two additional nodes, one for the entry the other
for the exit; it has directed edges E where each edge (m,n) ∈ E represents the
direct flow of control from its source m to its target n; each node is the source
of at most two edges (with switch statements represented as nested ifs): the
exit node has no successors, normal nodes have one successor with no label on
the connecting edge, and a predicate node corresponding to a conditional or a
loop statement’s condition has two successors, and each of the edges is labeled
T or F ; however, those labels are irrelevant for slicing and will be insignificant
in sliding too.

2.2 Program Scope and State

Slice extraction, in this paper, is defined to work in the scope of a given fragment
of code, say S, within the body of a program’s method, say M . A solution to
this slice-extraction problem will compute the slice of some given set of variables,
say V , with respect to S. A transformed M , resulting from the replacement of
S with the sequence of the slice of S on V and its complement, should preserve
the functionality of M .

718 R. Ettinger

entry

1

2

23

3

4

5

6

7

8

9

10

11

12

13

16

17

18

19

20

14

15

21

22

exit

Fig. 4. A control flow graph (CFG) representation of the example code from Fig. 1.
True or False labels on edges leaving predicate nodes are omitted as they are irrelevant
for slicing and sliding. The entry is made into a pseudo predicate with the exit node
as its other successor for convenience, making it the root of the control-dependence
subgraph of the PDG.

For this transformation to be possible, the subgraph of the CFG of M cor-
responding to S is expected to have a single entry node and a single exit node
[12,18]. This way, we can consider S as represented by its own CFG, and forget
about the enclosing code in M . For such a single-entry-single-exit (SESE) region
of the CFG to be extractable, a further requirement is that there is no edge from
the exit node back to any node of the region.

Considering syntax, or program structure, as slicing typically generates a sub-
program of the original program by deleting irrelevant statements, let’s refer by
the term sub-fragment to the result of deleting some internal statements from a
given code fragment.

The set of variables each CFG node n may modify is denoted by Def(n),
and the set of variables it refers to is Use(n). The returned value of a non-void
method is given a name too, <retval>, and will be included in the set of defined
variables whenever a return statement is in scope.

Program Sliding 719

2.3 Background on Program Dependence

Definition 1 (Postdominance). A node n postdominates a node m in a pro-
gram’s CFG iff every path from m to the exit includes n.

In the example, node 20 postdominates nodes 17-20 but not node 15, due to
the CFG path < 15, 16, 23, exit >. Node 23 postdominates all nodes except the
entry.

Definition 2 (Control Dependence). A CFG node n is control dependent on
a CFG node m iff n postdominates a successor of m, but n does not postdominate
m itself.

Back in the example, node 20 is control dependent on node 15 because 20 is
a postdominator of 17 but not of 15 itself. Note that node 20 is not control
dependent on node 13, as 20 does not postdominate either successor of 13. Note
also that each node that postdominates the normal successor of the entry is
control dependent on the entry node, due to the special construction of the
CFG’s entry as a pseudo-predicate with the exit node as its other successor.

In terms of value transfer through program variables and objects, a variety of
data dependence definitions exist in the literature [16,6]. Two of those, known
as flow and anti dependences, will be relevant for sliding.

Definition 3 (Flow Dependence). A CFG node n is flow dependent on a
CFG node m iff m defines a non-empty set of variables V that are used in n,
i.e. V ⊆ Def(m)∩Use(n), and for any v ∈ V there exists a path from m to n in
the CFG with no further definition of v.

Definition 4 (Anti Dependence). A CFG node n is anti dependent on a
CFG node m iff m uses a non-empty set of variables V that are defined in n
(i.e. V ⊆ Use(m) ∩ Def(n), and for any v ∈ V there exists a path from m to n
in the CFG with no other definition of v.

We will further stress that n is flow or anti dependent on m due to variables
V . This will help us decide, later on, whether to consider a dependence when
computing a co-slice.

Definition 5 (PDG). The program dependence graph (PDG) corresponding
to a given program’s CFG is a labeled directed graph with the same nodes,
N,nentry, nexit, as in the CFG, and with an edge (m,n, tag) directed from node
m to node n iff n is control or data dependent on m. The value of Kind(tag) is
one of control,flow, or anti. The set V ars(tag) denotes the variables contribut-
ing to a (flow or anti) data dependence.

A subset of the PDG of the example program, including all flow- and control-
dependence edges, is depicted on Fig. 5. PDG-based slicing, when started with
a set of nodes C, finds all nodes from which there is a directed path of flow- or
control-dependence edges to any c ∈ C [6]. A PDG-based slice starting from the

720 R. Ettinger

second definition of index at node 11, consists of the nodes {entry, 1, 2, 8, 9, 11}.
One path causing the inclusion of node 1 goes through nodes 2 and 9, using a
flow-dependence edge followed by two control-dependence edges.

Note that anti-dependence edges and the sets of variables causing data de-
pendences are not used by slicing. Also, flow-dependence edges from the entry
node are not significant, as the entry will be added to any non-empty slice due
to control dependences. The anti-dependence edges, the labels on edges, and the
flow-dependence edges from the entry node and to the exit are useful for the
correct computation of a co-slice and for correctness checking. Figure 6 shows
that portion of the PDG of the example code.

A traditional PDG does not include the exit node, as this node is not control
dependent on any other node and does not use or define any variable. For sliding,
however, it is helpful to assume Use(exit) lists all variables that may be live on
exit. This way, we get flow-dependence edges to the exit node from all final
definition nodes of all results of the fragment represented by this PDG. A node
n may define the final value of variable v if v is in Def(n) and there exists a
CFG path from n to the exit with no other definition of v. Since sliding extracts
the slice of final values of a set of variables V , it will be convenient to start
the slice from the exit node, after removing all edges to that node caused by
other variables. (Similarly, a co-slice will be computed by slicing from the exit
node after removing other edges.) For this to work, we must include all extracted
variables V in Use(exit), as well as all side effects on fields of objects that may be
used outside. In Fig. 6, the local variables and object references in the example
extracted sets V and V + are listed on the labels of flow-dependence edges to
the exit node as optional, in square brackets, as they would not occur on the
original PDG if it were not for the extraction.

A flow-dependence edge from the entry to the exit node lists all live-on-exit
and extracted variables that may be modified but may also keep their initial
value due to a CFG path from entry to exit with no definition of that variable.
In the example, it is interesting to see that index is excluded from that edge, as
its 5 definition nodes cover each potential path.

Definition 6 (Final-Use Node). Given a code fragment S and a variable v,
a node n on the CFG of S is a final-use node for v in S iff v is used in n and
each path in the CFG from n to the exit is free of definitions of v.

Equivalently, note that in terms of a PDG with nodes N and edges E, including
anti-dependence edges, a node n is a final-use node of v if and only if v ∈ Use(n)
and there exists no anti-dependence edge (n, n′, tag) ∈ E due to v, i.e. with
Kind(tag) = anti and v ∈ V ars(tag).

3 PDG-Based Sliding

3.1 Source Code Considerations

Given a code fragment S and a set of variables V , a sliding transformation
replaces S with a sequence of two sub-fragments, SV and SCoV , corresponding

Program Sliding 721

entry

1

2

23

3

4

5

6

7

8

9

10

11

12

13

16

17

18

19

20

14

15

21

22

Fig. 5. A program dependence graph (PDG) representation of the example code from
Fig. 1, with control- and data-dependence edges shown above and below the nodes,
respectively

to the slice and co-slice of S on V , respectively. Suppose the fragment S is
represented by a PDG, (N,E, nentry, nexit), as defined above. The algorithm in
Fig. 7 accepts that PDG as input, along with the set of variables for extraction,
V . It computes and returns a subset of nodes NV ⊆ N representing the slice,
and another subset NCoV ⊆ N for the co-slice.

Sub-fragments SV and SCoV of S can be generated by removing all state-
ments whose corresponding nodes are not present in NV or NCoV , respectively.
We consider the removal of statements from blocks of code, even if nested in
conditionals or loops. A more advanced sliding tool, supporting the decomposi-
tion of single statements too, would need to consider syntactic difficulties, and
is left for future work. (For example, if the two side effects on parameters in
f(y++,z++); are in the slice but the method call not, an extra semicolon would
need to be added.) Two other syntactic considerations in the construction of SV

and SCoV are related to local variable declarations and labeled blocks of state-
ments. Those two constructs are not represented in the PDG by nodes. For the
former, all declarations of vaiables not occuring in each side should be removed,

722 R. Ettinger

entry

1

2

23

3

4

5

6

7

8

9

10

11

12

13

16

17

18

19

20

14

15

21

22

exit

{this.mAFC.*}

{this.mAFC.*}

{<k1V,1>.*}

{<cAC,21>.*}

{<k1V,1>.*}

{<k1V,1>.*}

{this.mAFC.*,<k1V,1>.*,<k2V,8>.*,<cAC,21>.*}[+{mAFC,cAC,k2V,entry}]

{<retval>}
{<k2V,8>.*,<cAC,21>.*} [+{index}]

{<k1V,1>.*}

{<k1V,3>.*}

{this.mAFC.*}

{<k1V,1>.*}

[{index}]

[{index}]

[{index}]

{this.mAFC.*}

[{k2V}]

[{entry}]

[{cAC}]

[{cAC}]

{this.mAFC.*}

{<k1V,3>.*}

{<k1V,1>.*}

{<k1V,1>.*}

{<k1V,1>.*}

{k1V}

{<k1V,1>.*}

{<k1V,1>.*}

{<k2V,8>.*,<cAC,21>.*}

{<cAC,17>.*}

{<cAC,17>.*}
[+{index}]

{<cAC,17>.*}

{<cIE,5>.*}

{<cIE,10>.*}

Fig. 6. A subset of the program dependence graph (PDG) representation of the exam-
ple code from Fig. 1, showing flow-dependence edges from the entry node, to the exit
node, as well as anti-dependence (curved) edges

and if a non-nested declaration occurs on both sides, its declaration should be
removed from the co-slice, to avoid a compilation error. (An example of such
declaration removal is shown on line 1 of Fig. 3). For the latter, if a non-nested
block gets duplicated, its label should be renamed at least in one side.

When the functionality of the sequence of slice and its complement, in terms
of the relation between input and output values for all live-on-exit variables, is
guaranteed to be equivalent to that of the original code fragment, the successful
sliding is considered a compensation free transformation. Otherwise, a variety of
compensatory measures can be taken, e.g. in the form of variable localization and
renaming. For this purpose, the PDG-based sliding algorithm of Fig. 7 computes
and returns three further results, for the sets of potentially problematic variable
instances Pen1, Pen2 and Pen3. Those instances may require compensation due

Program Sliding 723

ProgramSlidingOnThePDG(N,E, nentry , nexit, V)
1 initialize the set of edges F lowToExitNonV to the empty set
2 forall (m,nexit, tag) ∈ E do
3 if V ars(tag)∩ V = ∅
4 add the edge (m,nexit, tag) to F lowToExitNonV

5 NV := ComputeSlice(N,E \ F lowToExitNonV , nexit)
6 initialize NonFinalUsesAtNode to map each n ∈ N to the empty set (of variables)
7 forall (m,n, tag) ∈ E do
8 if Kind(tag) is anti
9 add all variables in V ars(tag) to NonFinalUsesAtNode(m)
10 initialize the set of edges F lowToF inalUseV to the empty set
11 forall (m,n, tag) ∈ E do
12 if Kind(tag) is flow and V ars(tag) ⊆ (V \NonFinalUsesAtNode(n))
13 add (m,n, tag) to the set of final-use edges F lowToF inalUseV
14 NCoV := ComputeSlice(N,E \ F lowToF inalUseV , nexit)
15 (Pen1, P en2, P en3) := CollectV ariablesRequiringCompensation(N,E,V,
16 nentry , NV , NCoV , NonF inalUsesAtNode)
17 return (NV , NCoV , P en1, P en2, P en3)

Fig. 7. A PDG-based sliding algorithm, collecting all nodes in the selected fragment’s
PDG, (N,E, nentry , nexit), belonging to the slice and the co-slice of the selected set
of variables V . Three sets of variable instances potentially requiring compensation to
avoid unintended data flow are computed too.

to definition of variables from V in the co-slice, non-final use of such variables
in the co-slice, or definition in the slice of other (non-V) variables whose initial
value may be needed in the co-slice. Some approaches to overcome the potential
change in functionality are discussed in Sect. 3.4.

3.2 Computing the Slice

The proposed sliding algorithm works in three steps, for computing the slice, its
complement, and finally checking correctness. The first step, on lines 1-5 of Fig. 7,
computes the slice of final value of variables V , by starting from the exit node
after having removed all flow-dependence edges (in the set FlowToExitNonV)
coming into the exit node due to variables not in V . In the example of V =
{index}, the only remaining edges to the exit are the edges from the five defi-
nitions of index, on nodes {6,11,16,19,22}. Line 5 invokes the slicing algorithm
of Fig. 8 on the exit node and the remaining edges, such that the first element
n on line 4 of that algorithm will be the exit node, and all its remaining prede-
cessors {6,11,16,19,22} will be added to Slice on the loop of lines 5-7, causing
later addition of all nodes contributing to the final value of index. This way, the
computation of SV can be considered as having two substeps: first adding all
predecessors of the exit node due to any member of V , then repeatedly adding
all other nodes with a PDG path to those. In the example, the former substep
operates on the PDG subgraph shown on Fig. 6, whereas the latter substep
continues using the portion of the PDG shown on Fig. 5.

724 R. Ettinger

ComputeSlice(N,E, c)
1 initialize the result set of nodes Slice to the singleton set {c}
2 similarly initialize Worklist to {c}
3 while Worklist is not empty do
4 take the first element n out of the Worklist
5 forall m ∈ N such that (m,n, tag) ∈ E do
6 if Kind(tag) is flow or control and m /∈ Slice
7 add the PDG predecessor node m of n to Slice and to Worklist
8 return Slice

Fig. 8. A traditional PDG-based slicing algorithm to collect all statement nodes from
which there exists a directed path of dependence edges (flow or control, not anti) in
the PDG, (N,E), ending in a node of interest c, known as the slicing criterion

To verify that the computed slices in the first two sliding examples are iden-
tical as expected, note that when sliding for the larger set V +, compared with
the sliding for V , further edges – such as (8, exit) due to entry – survive the
removal of FlowToExitNonV . Still, since the source nodes of all those further
edges are in the slice of index, these extra edges do not make the slice of V +

larger or different. Indeed, in sliding for index, the edge (8, exit) is removed
from the PDG available for the slicing algorithm, but node 8 finds another way
into that slice too. Since the edge (11, exit) is not removed there, node 8 will
be added to that slice due to, for instance, the dependence path < 8, 9, 11 >
(see Fig.5).

3.3 Computing the Co-slice

The next step, on lines 6-14 of Fig.7, is co-slicing. It involves slicing from the exit
node again (line 14), but for variables outside the set V this time. To maximize
reuse, the removal of redundant flow-dependence edges (lines 10-13) is not re-
stricted to edges leading to the exit node. A flow-dependence edge (l,m, tag) ∈ E
can be removed if the variables causing it, V ars(tag), form a subset of V , and the
node it ends in,m is a final-use node for all those variables. Node m is guaranteed
to be a final-use node of variable v if v does not contribute to any anti-dependence
edge from m, i.e. for any (m,n, tag′) ∈ E, we get v /∈ V ars(tag′).

Since the sets of final-use variables at each node will be needed later in check-
ing for correctness (lines 15-16 and the called algorithm of Fig. 9), a separate
stage (lines 6-9) computes and stores this information for all nodes. For conve-
nience (and efficiency), it maps each node to the set of non-final uses; it first
assumes no variable is a non-final use at all nodes (line 6) and then whenever
evidence is found for a non-final use, through an anti-dependence edge from a
node m, it adds to the set of non-final uses of m (on line 9) all the variables this
edge is due to. Notably, the use of variables on the exit node is certainly a use
of their final value; this is confirmed by the lack of anti-dependence edges from
the exit.

Program Sliding 725

In the example, when preparing to compute the co-slice of V , all edges from the
definition nodes of index, being from {6, 11, 16, 19, 22} to the return statement’s
node, 23, are added to FlowToFinalUseV (on line 13) and hence removed from
the co-slice calculation. This is so because none of those definition nodes can be
reached (in terms of control flow) from the return node. Accordingly, there exists
no anti-dependence edge leaving node 23 (see Fig. 6), so we never get to line 9
of the algorithm with m being 23, hence the set NonFinalUsesAtNode(23) re-
mains empty (as initialized on line 6). More tricky are the edges from those final-
definitions of index, nodes {6, 11, 16, 19, 22}, to the exit node. The edges from
the last two, (19, exit) and (22, exit) are due to the sets {<cAC,17>.*,index}
and {<k2V,8>.*,<cAC,21>.*,index}, respectively (Fig. 6). Since those are not
subsets of the set V (i.e. the singleton {index}), line 13 of the algorithm is
not reached, and those two edges are not removed. Indeed the co-slice of V , on
Fig. 3, includes statements 19 and 22 due to their side effects on the state of the
objects on which the method putIfAbsent() is invoked. When sliding for V +,
the object fields {<cAC,17>.*,<k2V,8>.*,<cAC,21>.*} are included in the set
of extracted variables, and hence the edges (19, exit) and (22, exit) are added to
FlowToFinalUseV (on line 13) such that nodes 19 and 22 are not added to the
co-slice (see bottom part of Fig. 2).

Note that had node 19 been added to the co-slice of V +, node 18 would
have been added too. The flow-dependence edge from node 18 to 19 (due to
<cAC,17>.*which is in V +) is not added to FlowToFinalUseV (on line 13), be-
cause of the anti-dependence edge (19, 19), which is due to <cAC,17>.* (Fig. 6).
In contrast to the redundancy of self dependence edges in the context of slicing,
this example shows how self anti-dependence edges are relevant for co-slicing.
They reflect the fact that a variable is both used and defined in a single state-
ment, such that its value on exit from the statement may differ from its value
on entry.

3.4 Correctness Checking and Compensation

The final step of the proposed PDG-based sliding algorithm involves checking for
correctness of the transformation, in terms of preserving functionality. In Fig. 7,
the checking procedure is invoked on lines 15-16. This procedure, detailed on
Fig. 9, involves the collection of three sets of potentially problematic variable
instances. When all three sets are empty, the replacement of the original code
fragment with the computed slice followed by the co-slice, is guaranteed to pre-
serve the original functionality, such that for a given input state on which the
original fragment terminates, the transformed fragment would terminate too,
leaving the program in the same state as the original in all variables.

Let’s examine the variables for extraction V first. The responsibility for com-
puting the correct value for those variables lies on the slicing algorithm and the
input PDG it is computed on. Assuming the slice computes the expected value
for each v ∈ V , we need to make sure this correct value is maintained by the
co-slice. The simplest way to ensure this is to check that v is not in the set of
defined variables of any node of the co-slice, n ∈ NCoV . The set Pen1 collects

726 R. Ettinger

those problematic variable instances (lines 3-4). In the example of Fig. 2 this
set is empty. In the example of Fig. 3, in turn, we get two instances of index in
this set, for its definitions in nodes 19 and 22. These nodes are included in the
co-slice not due to modifying index, but rather due to relevant side effects on
live-on-exit object fields.

In terms of compensation in the co-slice, our choice on Fig. 3 was to remove
the impact on the offending member of V , index, by removing the assignments
to it. This was simple to do in this case but may be more challenging in others.
For example, if the undesired definition takes place in a called method, changing
its code may require the duplication of that method, in case its original version
is still called from elsewhere. The flavor of sliding proposed in this paper is
restricted to a local transformation of the selected fragment. Instead, if the value
of that variable is accessible at the beginning of the transformed code fragment,
it can be backed up in a local variable, ahead of the slice, and restored ahead of
the co-slice. (Accessibility may be problematic, for example, when the variable
is a private field of a different class.)

When the unwanted definition is performed in the selected fragment and is
tricky to eliminate, say due to syntactic difficulties (as mentioned earlier), a
preferred alternative would be to localize the effect by adding a new variable and
updating the problematic instances to refer to the new variable. To enable this
corrective measure, pairs of node and variable name are collected and returned
by the checking procedure, instead of just variable names.

Moving on to examine all the other variables relevant (i.e. live) on exit from
the original fragment, note that, by construction, the live-on-exit variables are
Use(nexit). We therefore need to consider variables in the set CoV :=
Use(nexit) \ V .

The co-slice is computed as a slice of final values of variables CoV , using final
values of V where it is guaranteed to be correct to do so. On entry to the co-slice,
we can assume to have the expected final value of each variable v ∈ V available.
For correct operation of that co-slice, we first need to ensure no other (i.e non-
final) value of a variable in V is used in any node n ∈ NCoV . Such instances
are collected in the set Pen2 (lines 5-6). In both earlier examples, all uses of
variables V and V + are final. Sliding for the local object reference key1Value,
whose slice consists of nodes 1,2, and 3, would yield a co-slice with a non-final
use of that variable on node 2 – evidenced by the anti-dependence edge (2, 3) on
Fig. 6.

In terms of compensation, the non-final use of a variable v requires the addi-
tion of a new variable, v′, and renaming of those instances of the non-final use,
in the co-slice. When the initial value of v is needed in the co-slice, it should
be backed up ahead of the slice, if possible. Again, the preparation of such a
backup might not be possible if the variable is not local and not accessible at
the head of the transformed fragment. Also, renaming might not be possible if v
is not local and used in a called method. (Note that the set of variable instances
Pen2 will specify a node n where the non-final use took place, but this may be
a node involving a method call, and v may be an object field referred to inside

Program Sliding 727

this method, when the object reference is passed explicitly as a parameter, not
the field v itself.)

In the example of sliding for key1Value, were node 2 of the co-slice would
include a non-final use of that variable, localization would work well, with no
neeed for backup of the initial value, due to the initialization of key1Value on
the statement of node 1 (see Fig. 1).

Finally, for all other initial values demanded by the co-slice, outside of the
set V , we must ensure they hold their initial value on entry to the co-slice.
We first collect all non-V variables that may require an initial value at the
co-slice, in the set InputT oCoSliceNonV (lines 7-11). Those are the non-V
variables contributing to a flow-dependence edge from the entry to any node
n ∈ NCoV . Then, the simplest way to ensure those variables hold the initial
value on entry to the co-slice is by checking that they are not defined in the slice
nodes NV . Definitions of all members of InputT oCoSliceNonV in any slice node
are recorded in the set Pen3 (lines 12-14). In the example of Fig. 3, for sliding
index, we get the input to the duplicated node 22 in the co-slice, <cAC,21>.*,
also defined in the slice on that same node (see labels on flow-dependence edges
(entry, 22) and (22, exit) on Fig. 6).

A preferred form of compensation, again, would be to localize the unwanted
effects in the slice, if possible. When the initial value is not needed there, and
the definition is explicit (i.e. not performed inside a called method), this would
be a simple addition of a local variable in the slice.

In the mentioned example, the effects on fields of the object referred to by the
local variable cAC (i.e. charArrayCache in Fig. 3), are due to implicit definitions
on node 22. The actual definitions take place in the method putIfAbsent() of
the class CharArrayCache, so simple renaming better be avoided as it would
require duplication of that method. Now, in this case the initial value of those
fields is needed for correct operation of the slice, as can be witnessed by the
edge (entry, 22) on Fig. 6. And as it turns out, it is possible to back up those
fields, since they are not private and the classes are in the same package. Still, it
is not clear that this would be an acceptable practice. Alternatively, one could
consider making a backup of the entire object referred to by charArrayCache.
This would require the object to be cloneable, and it is arguable that this kind
of compensation would be acceptable too. Note that such a backup would not be
trivial to prepare ahead of the slice, as the local object reference charArrayCache
is computed in the slice itself.

The measures of compensation taken in the experiment of Sect. 5 below involve
variable localization and local backups, but no cloning of objects.

4 Sliding-Based Refactoring

When applied to source code, sliding can be considered a refactoring by itself,
as it may improve the structure of existing code, making it more readable and
easier to maintain. Naturally, a sliding transformation can be followed up by
steps of method extraction, as the slice and its complement are made contiguous
and hence ready for extraction by the Extract Method refactoring [7].

728 R. Ettinger

CollectV ariablesRequiringCompensation(N,E, V,
nentry, NV , NCoV , NonF inalUsesAtNode)

1 initialize Pen1,Pen2, and Pen3 to empty sets
2 forall n ∈ NCoV do
3 forall v ∈ Def(n) ∩ V do
4 add the pair (n, v) to Pen1
5 forall v ∈ Use(n) ∩ V ∩NonFinalUsesAtNode(n) do
6 add the pair (n, v) to Pen2
7 initialize InputToCoSliceNonV to the empty set
8 forall n ∈ NCoV do
9 forall (nentry, n, tag) ∈ E do
10 if Kind(tag) is flow
11 add all variables in V ars(tag) \ V to InputToCoSliceNonV
12 forall n ∈ NV do
13 forall v ∈ Def(n) ∩ InputToCoSliceNonV do
14 add the pair (n, v) to Pen3
15 return (Pen1, P en2, P en3)

Fig. 9. Analysis of the slice and co-slice to identify potential unintended flow of data
if the sequence of slice and co-slice were to replace the original code

This section revisits three refactoring techniques from existing catalogs [7,1]:
Split Loop, Replace Temp with Query, and Separate Query from Modifier. A
revision of the mechanical description of how to perform the refactoring trans-
formation is proposed, with sliding being a key step in all three cases. The revised
mechanics, being more concrete and constructive than the original descriptions,
contribute to the applicability of the refactorings, making them more amenable
for future automation.

A direct application of sliding is the Split Loop refactoring [1]. Fig. 10 shows
its proposed mechanics. The user can simply follow the sliding algorithm, or use
a tool, and select the variables of interest for extraction. If the initialization of the
loop index is not in the selected code fragment, a tool based on the compensation-
free flavor of sliding, expecting empty sets in the resulting Pen1,Pen2, and Pen3
sets (see Fig. 9), would correctly reject the transformation, as the loop in the
co-slice would be skipped.

One of the more advanced versions described above would add a backup vari-
able for the initial value of that loop index. Another advanced sliding implemen-
tation would avoid some code duplication by identifying all final values of the
loop whose computation is fully included in the extracted slice. The addition of
those variables to the set of variables for extraction, V , would cause the addi-
tion of further edges to the set FlowToFinalUseV (see lines 10-13 in the sliding
algorithm of Fig. 7). Those added flow-dependence edges, directed from final-
value definition nodes to the exit, are then removed from consideration when
computing the co-slice, potentially making the co-slice (i.e. second instance of
the loop) smaller. The value of a smaller co-slice is not only in the reduced levels

Program Sliding 729

Mechanics for Split Loop
– Perform sliding on the loop fragment choosing a subset V of the loop’s results.

• Avoid unnecessary code duplication by adding to V all loop results whose ad-
dition will not increase the size of the first resulting loop.

• If sliding fails update the code to avoid the failure and repeat this step, or
choose a different loop to split.

– Compile and test.

Fig. 10. Sliding-based mechanics for Split Loop

of code duplication, but also in the potential need for less compensation, as can
be witnessed by the collection of Pen1 and Pen2 on lines 2-6 of Fig. 9.

New mechanics for the Replace Temp with Query (RTwQ) refactoring [7] are
presented on Fig. 11. This refactoring involves the extraction of the computation
of a single variable, a temporary one, into a method of its own. That method
should have no side effects and it will be invoked from all places in the original
code where the final value of the temp was used. Applying RTwQ twice, on the
variables def and pot of Fig. 12, would replace their final use in line 2009 with
calls to the new methods, on line 1995 of the resulting code, on Fig. 13. There,
the two new methods, def() and pot(), can be seen starting on lines 2001 and
2016, respectively.

Note that the loop has been eliminated from the original code, in this example.
Interestingly, one more loop in the same original method included the same
computation of def and pot. In that other loop (not shown here), the two
computations were entangled with a computation of one other value (nullS,
whose final use can be seen on line 1983 on Fig. 13. Subsequent applications
of RTwQ on that other loop, for def and pot again, would replace their final
use with calls to the previously extracted methods. Those two invocations can
be seen on line 1981 of the resulting code on Fig. 13. This is an example where
the initial RTwQ caused duplication of the loop, yet it has enabled further
refactoring steps to reduce duplication through the elimination of non-trivial
code clones.

A third refactoring that can benefit from sliding is Separate Query from Modi-
fier (SQfM) [7]. This refactoring involves the splitting of a non-void method with
side effects to two methods. Like in RTwQ, the extracted slice is of a single value,
the one returned from the original method. Note that this value will not nec-
essarily reside in a single variable since the result of some expression could be
returned, and since multiple return statements may refer to different variables.
Accordingly, an optional first step, in preparation for sliding, is dedicated to
the introduction of a local variable to hold the returned result. When the code
includes more than one return statement, each return is replaced by an assign-
ment to the added variable and a jump to the end, where a single return of that
variable is inserted. In Java, the jump can be implemented through a break from

730 R. Ettinger

Mechanics for Replace Temp with Query
– Identify the relevant fragment of code, from the temp’s declaration to the end of

its enclosing block.
– Perform sliding on that code fragment for the selected temp.

• If the sliding fails you may want to choose a different temp to replace with a
query.

• Successful sliding will bring together the code for computing the final value of
the temp, making it a contiguous fragment ready to be extracted into a method
of its own.

– Compile and test.
– Perform Extract Method on the extracted slice, giving it an appropriate name.

• If the extracted method appears to have side effects consider extracting a dif-
ferent temp, or modify the code to prevent the side effects.

• If all those side effects occur in invoked methods, consider applying Separate
Query from Modifier on those methods before re-applying this refactoring. That
way, the extracted modifiers could possibly be excluded from the query, and
cause no side effects.

– Compile and test.
– Perform Inline Temp on the selected temp at its declaration.

• This step involves the replacement of all references to the temp with the call to
the extracted method (i.e. the query), and the removal of the temp’s declaration.

• If the value of any of the query’s parameters may be different at any point of
reference, consider adding backup variables at the temp’s point of declaration,
or abandon the refactoring.

• A potential cause of failure is the need of backup for a non-cloneable parameter
object; making such backup might otherwise not be desirable due to space (i.e.
large object to clone) or other considerations.

– Compile and test.

Fig. 11. Sliding-based mechanics for Replace Temp with Query

Fig. 12. Example RTwQ, original code

a labeled block. This preparatory step should be undone before the end of the
refactoring, when the labeled block and result variable are located in designated
methods for the query and modifier, and can be replaced with return statements.

Program Sliding 731

Fig. 13. Example RTwQ, after replacement of two temporary variables with queries

After sliding the computation of this returned value away from the remaining
computations (i.e. the code with the side effects), we perform Extract Method
twice, on the slice and co-slice, followed by the optional undoing of the prepara-
tory step. In the final step, we perform Inline Method, to replace all calls to the
original method with the two invocations, of the query and modifier.

Beyond its immediate application as a refactoring, where the transformed code
is a candidate for further development and therefore might be committed at a
subsequent code change delivery, the SQfM transformation can be useful also for
temporarily updating the code in a testing, debugging, or verification scenario.
Such usage of SQfM might enable the application of tools and techniques that
assume no side effects exist in conditional expressions.

Proposed mechanics for SQfM are presented in Fig. 14. The sliding of index
on the code from Fig. 1, yielding the slice shown on the top of Fig. 2 and the

732 R. Ettinger

Mechanics for Separate Query from Modifier
– Prepare the method for sliding by ensuring it has a single return statement.

• Enclose all statements in the method body in a labeled block.
• Insert a declaration above the added block for a new temporary variable to store

the method’s result, and a statement to return its final value below that block.
• Modify all return statements in the labeled block to store the returned value

and to break to the added label (i.e. out of the method’s body through the added
return statement).

• This preparatory step may be skipped when the original method is already con-
structed with a single retrun of a single variable.

– Compile and test.
– Perform sliding on the labeled block for the temp designated in the first step above.

• If sliding fails choose a different method to separate.
– Compile and test.
– To construct the query, perform Extract Method on the slice, giving it an appro-

priate name.
• If the slice appears to have side effects consider the separation of a different

method, or modify the code to prevent the side effects.
• If all those side effects occur in invoked methods consider applying this refac-

toring on those methods before re-applying it on the present method. That way,
the extracted modifiers could possibly be excluded from the query, and cause no
side effects.

– Compile and test.
– Perform Inline Temp on the designated temp if you prefer to have the query called

after the modifier, possibly also inside the modifier if its result is used there.
– To construct the modifier, perform Extract Method on the updated co-slice, giving

it an appropriate name.
– In the query and modifier methods, undo the preparatory step by re-introducing

the original return statements, removing the added temp, break statements, and
labeled block.
• Take care when re-introducing return statements in the (now void) modifier

method, to avoid re-introducing the returned value.
– Compile and test.
– Perform Inline Method on the refactored version of the selected method

• This will replace all calls to the original method with calls to the query and
modifier. Note, however, that at each call site the query or modifier might be
redundant, if the respective results are never used.

• If the method is part of some inheritance relation (i.e. overriding a method in
a superclass, being overriden in a subclass, or implementing a method declared
in an interface), consider performing this refactoring throughout the hierarchy.
Alternatively, consider skipping this step in such cases, leaving the calls to the
extracted query and modifier in the original method.

– Compile and test.

Fig. 14. Sliding-based mechanics for Separate Query from Modifier

Program Sliding 733

co-slice shown on Fig. 3, is an example step toward SQfM. Successful completion
of SQfM, in this case, would require a preliminary SQfM step to split the method
putIfAbsent(), called on lines 19 and 22. This way, the slice would include a
call to the query, contributing to the computation of index, whereas the co-slice
would call the modifier, for effecting the fields of charArrayCache as needed.

5 Evaluation

To evaluate the potential of sliding for supporting refactorings, as presented
above, in terms of the number of successful cases, the ability to compensate
when the need arises, and the levels of code duplication, a preliminary experi-
mentation to examine 55 cases has been performed, manually, on real Java code.
The subject project has been the Java compiler in Eclipse. The comprehensive
test suite of this compiler, featuring nearly 70,000 automated tests, with over
40,000 regression test cases, may provide us with some confidence regarding the
correctness of the transformation steps.

As candidate sliding criteria, two kinds of slices were considered for extraction:
slices with at least one partial loop, and slices of the value returned from a
non-pure function. Isolation of the former exercises loop untangling through
the Replace Temp with Query refactoring, while the extraction of the latter
provides separation of commands from queries, exercising the Separate Query
from Modifier refactoring.

The candidate criteria were identified as follows. For RTwQ, the Extract
Method refactoring tool in Eclipse was employed on each loop, looking for re-
jected cases due to “ambiguous result”. Such an error message is issued by the
tool whenever more than one local variable is updated in the selected fragment
(i.e. in the loop) and is live on exit from that fragment. A selection of 8 loops was
examined. Those loops were found in 7 different methods of 6 different classes,
with 2 local results in 4 cases and 3 results in the other 4 cases. The sliding
and subsequent steps of RTwQ were performed on each local result, in sequence,
with the fragment S being the full scope of the variable’s declaration. When
performing the extraction in a different order presented an important difference
in the results, the alternative order was investigated too. In total, 23 cases of
sliding for RTwQ were recorded this way.

For SQfM, any non-void method with side effects is a potential candidate,
and 32 such cases, found in a package named
org.eclipse.jdt.internal.compiler.codegenwere examined.1 All examples
in this paper were taken from this experiment.

The resulting code, after the sliding step and the complete refactoring, in the
successful cases, was tested and passed all tests. For sanity checking, deliberate
mistakes were added to see that the code is indeed tested. Only one of the 38
succssfully refactored methods was not exercised by any test.

1 Thanks to Alex Libov for automating the identification of both RTwQ and SQfM
candidates, using Eclipse’s JDT, its refactoring API, and the side effect analysis
called ModRef in WALA.

734 R. Ettinger

In a preliminary step, the source code of many of the subject methods needed
to be updated, to remove side effects from expressions, such as assignments
within the predicates of if statements. The manual step would isolate the as-
signment into its own statement. This was not done exhaustively, but rather on
demand, when the slice involved only the result of the expression or only the
side effect. A future sliding algorithm and tool should better treat such cases
correctly, without the need for manual update. Another type of manual change
was to replace an early return statement with a break statement from a labeled
block, as explained in Sect. 4 above. The change was later undone, after extrac-
tion of the slice and co-slice into new methods. One other type of manual change
was to employ the SQfM refactoring on a called method in cases where the slice
required only the result or only the side effect. And one final type of change was
to move the declaration of a local variable, or to break two declarations in one
statement into two separate declarations. In total, for 54 cases of sliding, a total
of 77 manual changes were performed. (The total is 54, not 55 cases, due to the
success in only 31 of the 32 SQfM cases, as will be explained below, added to
the 23 RTwQ cases.)

The size of the code fragments ranged from 6 to 97 (in a method
numberOfDifferentLocals() of class StackMapFrame), with an average of 23.5
statements per case. The slice size ranged from 1 statement (a return statement,
returning a constant) to 85 (in the 97-statement method), averaging 10.4 state-
ments. The co-slice size ranged from 1 to 82 (again in the same largest method)
with an average of 20 statements, leading to an average of 6.9 duplicated state-
ments per sliding.

In terms of the need for compensation, over 44% (7 RTwQ cases and 17 cases
of SQfM) required no compensation at all. For all the remaining cases, variable
localization and the introduction of backup variables (as discussed in Sect. 3.4
above) of at most 3 locals or fields per sliding case proved sufficient.

In terms of reuse, 132 out of the 239 total uses of an extracted variable were
uses of a final value, averaging some 2.4 final uses and 1.99 non-final uses per
case. After sliding, 46 non-final uses were left in the co-slices, leaving us with
some 0.85 non-final uses per case.

The single most problematic case for SQfM, in class ConstantPool, involves
the following code:

public byte[] dumpBytes() {
System.arraycopy(this.poolContent, 0, (this.poolContent =

new byte[this.currentOffset]), 0, this.currentOffset);

return this.poolContent;

}

Sliding of the result without reuse of the allocated field array would fail, in this
case, returning a reference to a different object than the field (with equal value).
Another problem is that localization of the field array would require copying its
initial value. A different type of separation is required here, possibly to compute
the new field first, and only then return the result stored in that field.

Program Sliding 735

6 Related Work

Earlier research on extracting slices from existing systems, in the context of
software reverse engineering and reengineering, has focused mainly on how to
discover reasonable slicing criteria [3,13]. In the context of refactoring tools, it
is common to leave the choice of what to extract to the programmer.

The earliest mention of an interactive process for behavior-preserving method
extraction [15,8] considered the extraction of contiguous code only.

Maruyama [14] proposed a scenario for the extraction of the slice of a single
variable from a selected fragment, or block of statements, into a new method; a
call to that method is placed ahead of the code for the remaining computation.
The reuse of the extracted result was not of the final value only, but of any value
defined by that variable. This way, the co-slice may make a reference intended
for a non-final value, but get to use, instead, the final extracted value, making
the transformation incorrect. This incorrectness was reported by Tsantalis et
al. [17]; their more recent work constructs the complementary code in the same
way, but defines PDG-based rules to identify these problematic cases and reject
the transformation.

A number of provably correct algorithms for the extraction of a set of not-
necessarily contiguous statements have been proposed in the literature [12,11,10].

Of those, tucking [12] is most generally applicable for isolating the slice of a
code fragment. Tucking starts by adding to the statements designated for ex-
traction all other statements in their slice, limited to a fragment that encloses
those statements. If we apply this algorithm by selecting such a slice in the first
place, no other statement would be added to the extracted code. This is unfortu-
nately not the case in the algorithm of Komondoor and Horwitz [10], where each
statement that the algorithm is unable to move away from the slice, correctly, is
added to the extracted code. In the worst case, this approach extracts the whole
fragment, essentially leaving it unchanged. In particular, no assignment can be
duplicated and loop statements can either be extracted fully, or not extracted at
all. Therefore, splitting loops as in our example of def and pot, is not possible by
that algorithm. Komondoor and Horwitz had an earlier algorithm [11] in which
all permutations of the selected statements were considered, in looking for an
arrangement of statements in which all selected statements are contiguous and
where all control and data dependences are preserved. This algorithm does not
permit any duplication, not even of conditionals, and may therefore be applica-
ble for slice extraction only in cases where each predicate in the slice appears
in it along with all the statements it controls. So tucking is the only previous
solution to slice extraction that can untangle a loop that computes more than
one result, as in the RTwQ example of def and pot [5]. In tucking, however, the
complementary code is computed as the slice from all non-extracted statements,
so no reuse of the extracted results is possible. In our example of extracting the
slice of index (see Fig. 1) from the full fragment of 1-23, that complement would
include the whole fragment, as statement 23 would be included in the co-slice
and then cause all the slice to be duplicated.

736 R. Ettinger

The idea of allowing data to flow from the extracted code to the complement,
in sliding, is based on the two Komondoor and Horwitz algorithms [11,10].

7 Conclusion

To paraphrase Weiser’s seminal work [19], sliding is a new way of recomposing
programs automatically. Limited to code already written, it may prove useful
during the refactoring, testing, and maintenance portions of the software life
cycle. This paper concentrated on the basic methods for sliding programs and
their embodiment in automatic tools for refactoring. Future work on sliding-
based programming aids is necessary before the implications of this kind of
recomposition are fully known.

Acknowledgements. I wish to thank Aharon Abadi, Yishai Feldman, Michiaki
Tatsubori, and Shmuel Tyszberowicz for intriguing discussion and comments,
and the anonymous reviewers for their helpful suggestions, all directing me at
improvements to the paper.

My special thanks go to Cindy Eisner, Steve Fink, and Maayan Goldstein for
the encouragement and crucial advice at key decision points.

References

1. An online refactoring catalog, http://www.refactoring.com/catalog/
2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools.

Addison-Wesley (1988)
3. Cimitile, A., Lucia, A.D., Munro, M.: Identifying reusable functions using specifi-

cation driven program slicing: a case study. In: ICSM, pp. 124–133 (1995)
4. Ettinger, R.: Refactoring via Program Slicing and Sliding. Ph.D. thesis, University

of Oxford, Oxford, United Kingdom (2006)
5. Ettinger, R., Verbaere, M.: Untangling: a slice extraction refactoring. In: AOSD

2004: Proceedings of the 3rd International Conference on Aspect-Oriented Software
Development, pp. 93–101. ACM Press, New York (2004)

6. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987),
http://doi.acm.org/10.1145/24039.24041

7. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison Wesley
(2000)

8. Griswold, W., Notkin, D.: Automated assistance for program restructuring. ACM
Transactions on Software Engineering 2(3), 228–269 (1993)

9. Horwitz, S., Reps, T.W., Binkley, D.: Interprocedural slicing using dependence
graphs. ACM Trans. Program. Lang. Syst. 12(1), 26–60 (1990)

10. Komondoor, R., Horwitz, S.: Effective automatic procedure extraction. In:
Proceedings of the 11th IEEE International Workshop on Program Comprehen-
sion (2003)

11. Komondoor, R., Horwitz, S.: Semantics-preserving procedure extraction. In: POPL
2000: Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 155–169. ACM Press, New York (2000)

Program Sliding 737

12. Lakhotia, A., Deprez, J.C.: Restructuring programs by tucking statements into
functions. Information and Software Technology 40(11-12), 677–690 (1998),
citeseer.nj.nec.com/lakhotia99restructuring.html

13. Lanubile, F., Visaggio, G.: Extracting reusable functions by flow graph-based pro-
gram slicing. IEEE Trans. Software Eng. 23(4), 246–259 (1997)

14. Maruyama, K.: Automated method-extraction refactoring by using block-based
slicing, pp. 31–40. ACM Press (2001)

15. Opdyke, W.F.: Refactoring Object-Oriented Frameworks. Ph.D. thesis, University
of Illinois at Urbana-Champaign, IL, USA (1992),
citeseer.nj.nec.com/opdyke92refactoring.html

16. Ottenstein, K., Ottenstein, L.: The program dependence graph in a software devel-
opment environment. In: Proc. of the ACM SIGSOFT/SIGPLAN Software Engi-
neering Symposium on Practical Software Development Environments, pp. 177–184
(1984)

17. Tsantalis, N., Chatzigeorgiou, A.: Identification of extract method refactoring op-
portunities. In: CSMR 2009: Proceedings of the 2009 European Conference on
Software Maintenance and Reengineering, pp. 119–128. IEEE Computer Society,
Washington, DC (2009)

18. Verbaere, M., Ettinger, R., de Moor, O.: JunGL: a scripting language for refactor-
ing. In: ICSE, pp. 172–181 (2006)

19. Weiser, M.: Program slicing. In: ICSE, pp. 439–449 (1981)

