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Abstract. As a culture, object-orientation encourages programmers to create
objects, both short- and long-lived, without concern for cost. Excessive object
creation and initialization can cause severe runtime bloat, which degrades signif-
icantly application performance and scalability. A frequently-occurring coding
pattern that may lead to large volumes of (temporary) objects is the creation of
objects that, while allocated per loop iteration, contain values independent of spe-
cific iterations. Finding these objects and moving them out of loops requires so-
phisticated interprocedural analysis, a task that is difficult for traditional dataflow
analyses such as loop-invariant code motion to accomplish.

Our work targets data structures that are loop-invariant, and presents a static
type and effect system to detect loop-invariant data structures. For each loop, our
analysis inspects each logical data structure in order to find those that have dis-
joint instances per loop iteration and contain loop-invariant data. Instead of auto-
matically hoisting them to improve performance (which is over-conservative), we
report hoistability measurements for each disjoint loop data structure detected by
our analysis. Eventually these data structures are ranked based on these measure-
ments and are presented to the user to help manual tuning. We have performed a
variety of studies on a set of 19 moderate/large-sized Java benchmarks. With the
help of hoistability measurements, we found optimization opportunities in most
of the programs that we inspected and achieved significant performance improve-
ments in some of them (e.g., 82.1% running time reduction).

1 Introduction

As a culture of object-orientation, Java programmers are taught to freely create objects
for whatever tasks they want to achieve, without concern for cost. They often take for
granted that the runtime system can optimize away all execution inefficiencies: the Just-
In-Time (JIT) compiler can remove whatever redundancy exists in the code, and the
Garbage Collector (GC) can quickly reclaim redundant objects created for simple tasks.
However, creating an object in Java with a new operator, in most cases, is far beyond
allocating memory space, and can be much more expensive than a programmer realizes.

For example, object creation may need to execute large volumes of code to construct
and initialize a data structure, and this process may even involve many slow I/O oper-
ations. One especially important case is when these expensive objects have data that is
invariant. Frequently constructing data structures with unchanged data may have signif-
icant effect on application running time and scalability. Large improvements can often
be seen when these data structures are reused rather than recreated.

Loops are places where such data structures can cause significant harm and thus spe-
cial attention needs to be paid to find and optimize them. We propose static analyses
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for(int i = 0; i < N; i++){
SimpleDateFormat sdf = new SimpleDateFormat();
try{

Date d = sdf.parse(date[i]);
...

}catch(...) {...}
}

(a)

Templates _template = factory.newTemplates(stylesheet);
while(...){

XMLFile file = getNewInputFile();
XMLTransformer transformer = _template.newTransformer();
transformer.transform(file);
...

}
(b)

Fig. 1. Real-world examples of heavy-weight creation of loop-independent data structures. (a) A
SimpleDateFormat object is created inside the loop to parse the given Date objects; (b) An
XMLTransformer object is created within the loop to transform the input XML files.

that can find data structures that are created in a loop but are independent of specific
iterations. This work is motivated by bloat patterns that are regularly seen in large-
scale applications. Figure 1 shows two examples extracted from the real-world pro-
grams that we have studied. The code pattern in part (a) has appeared a great number
of times in applications that were written by IBM’s customers and tuned by a group
from IBM Research [1]. The programmer may have never realized that creating one
SimpleDateFormat object requires to load many resource bundles to get the current
date, compile the default date pattern string, and load the time zone to create a calen-
dar. The process involves many expensive operations such as object clones, hash table
lookups, etc. Part (b) illustrates a problem detected by our tool in DaCapo/xalan. An
XMLTransformer object is created in a loop to transform the input XML file. While
the input file is updated per loop iteration, the transformer object is loop-invariant. A
great amount of effort is needed to create a transformer and significant performance
improvement can be achieved after hoisting the creation of this transformer. Details of
this example can be found in Section 5.

Technical Challenges. While loop optimizations have been extensively studied and
used in modern optimizing compilers [2], they are mostly intraprocedural and deal only
with instructions that operate on scalar variables and simple data structures (e.g., ar-
rays and linked lists). They are far from reaching our goal of finding large optimization
opportunities in programs that make extensive use of object-oriented data structures.
Techniques such as loop-invariant code motion target instructions whose input vari-
ables are not defined in the loop. Such techniques are usually ineffective at handling
instructions involving objects: for an object created in the loop, even though one of its
fields used in an instruction is not defined, it is not safe to move this instruction out
of the loop, as other fields of the object may be modified elsewhere in the loop. In an
object-oriented program, data abstractions are much more complex and data in different
locations are tightly coupled based on logical object models.

Focusing on Logical Data Structures. In this work, we focus on the data side of the
hoisting problem, that is, to find logical data structures that are loop-invariant, regardless
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of whether or not it is possible to hoist the actual code statements that access these data
structures. If a logical data structure is loop-invariant, the programmer should modify
its creating and accessing code statements in order to move it out of the loop. There
are two important aspects in determining whether a logical data structure is hoistable.
First, it is critical to understand how this data structure is built up. For example, all
objects in a hoistable data structure have to be allocated together in one iteration of
the loop. In addition, any object in a hoistable data structure must be owned only by
this data structure, and it cannot escape to other data structures. These properties can
be verified by checking points-to relationships among objects. Second, it is important
to understand where this data structure gets its values from. For example, all values
contained in (heap locations of) a hoistable data structure must not be computed from
any loop-iteration-specific value. This aspect of the problem is naturally related to the
data dependence problem, and thus, such (value origin) properties can be verified by
checking data-dependence relationships.

These two kinds of relationships are formalized as two (points-to and dependence)
effects by a type and effect system presented in Section 3. As the identification of loop-
invariant data structures requires to reason about whether objects connected by these
relationships are always created in the same iteration of a loop, our analysis computes,
for each loop object, a loop iteration count abstraction that indicates whether or not
an instance of the object created in one iteration of the loop can be carried over to the
next iteration. A more detailed description of this abstraction can be found in Section 2.
Section 3 presents a formalism that computes such abstractions.

Manual Tuning with the Help of Hoistability Measurement. Given logical loop-
invariant data structures identified by our analysis, the second challenge lies in how
to perform the actual hoisting. While it is attractive to design a transformation tech-
nique that automatically pulls out invariant data structures, we found that there is little
hope that a completely automated approach can effectively hoist these data structures in
practice. This is first because of the over-conservative nature of any transformation tech-
nique, which may prevent the technique from hoisting many real-world loop-invariant
data structures due to their complex usage in large-scale applications. The chance of
developing an effective transformation technique becomes even smaller in the presence
of the many Java dynamic features such as dynamic class loading and reflection. Sec-
ond, effectively optimizing real-world data structures requires developer insight. For
example, a data structure with 100 fields cannot be transformed if it has even a sin-
gle non-loop-invariant field. In fact, by manually inspecting and perhaps modifying the
data model, it is highly likely that the data structure can be made hoistable (i.e., by
introducing a separate object to store that loop-dependent field).

Our work advocates a semi-automated approach that is intended to identify larger
optimization opportunities by bringing developer insight into the optimization process.
Instead of eagerly looking only for completely-hoistable logical data structures, we also
identify partially-hoistable logical data structures, by computing a hoistability measure-
ment for each logical data structure, and rank all such data structures based on these
measurements to help manual tuning. The higher measurement a data structure has, the
more likely it is that this data structure can be manually hoisted.
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One additional advantage of manual tuning using hoistability measurements is that
these metrics can be easily modified to incorporate dynamic information obtained from
a profile. Section 4 presents one such modification that includes loop frequencies in the
metrics so that the “loop hotness” factor is taken into account when the rank of a data
structure is computed. To optimize a non-hoistable data structure, the programmer can
either split the data model (e.g., to separate the loop-invariant fields and non-invariant
fields) and/or restructure the statements that access it (e.g., to eliminate dependences
between hoistable and non-hoistable statements). In addition, highly-ranked data struc-
tures can often be indicators of other loop-related inefficiencies, such as inappropriate
implementation choices. These problems may also be revealed during the inspection of
the reported data structures.

Evaluation. We evaluated our technique using a set of 19 Java programs. With the
help of hoistability measurements, we found optimization opportunities in most of these
programs. We discuss the performance gains we have achieved for five representative
programs: ps, xalan, bloat, soot-c, and sablecc-j. For example, we found
a performance problem in DaCapo/xalan; removing it can improve the benchmark
performance by 10.1%. As another example, we found a bottleneck in the core compo-
nents of ps. After the optimization, the running time was reduced by 82.1%. Detailed
description of the empirical evaluation can be found in Section 5. These results indi-
cate that the proposed technique can be useful both in the coding phase (for finding
small performance issues before they pile up) and in the tuning phase (for identifying
performance bottlenecks).

2 Overview

Figure 2 shows a simple running example. This example contains 10 allocation sites
(including string literals), and all of them are located in loops (i.e., either directly in
a loop or in a method invoked in a loop). Our analysis inspects each object1 located
in a loop and discovers its structure (i.e., including objects that are calling-context-
sensitively reachable from it) using context-free language (CFL)- reachability. Using
new CFL-reachability algorithms, we develop novel techniques that inspect individual
objects in a loop, identify their structures while taking into account the calling contexts
of methods, and compute their hoistability, all without requiring a pre-computed whole-
program points-to solution.

Points-to Relationships. Figure 3(a) illustrates three data structures (a.1), (a.2), and
(a.3) that are rooted at objects in the two loops shown in Figure 2. Each object is given a
name oi, where i is the number of the line in the code where the object is created. Each
edge in a data structure represents a points-to relationship, and is annotated with a field
name and a pair of integers (i, j). Field elm is a special field used to represent array el-
ements. Integers in this pair are the loop iteration count abstractions (ICAs) for the two
objects connected by this edge, and they can be used to determine whether these objects
are created in the same iteration of the loop. Following the iteration abstraction [3] and
the recency abstraction [4], an ICA can be one of three (abstract) values: 0, 1, or�. Note

1 “Object” will be used in the rest of the paper to denote a static abstraction (i.e., an allocation
site), while “instance” denotes a run-time object.
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1 class List{
2 Object[] arr; int index = 0;
3 List() { arr = new Object[1000];}
4 void add(Object o){ if(index < 1000) arr[index++] = o;}
5 Object get(i){ return arr[i]; }
6 }
7 class Pair{
8 Object f; Object g;
9 Pair(Object o1, Object o2){ this.f = o1; this.g = o2;}
10}
11
12 class Client{
13 static void main(String[] args){
14 for(int i = 0; i < 500; i++){
15 List l = new List();
16 Pair p = new Pair("hello", "world");
17 l.add(p);
18 }
19 Integer b = null;
20 for(int j = 0; j < 400; j++){
21 Integer a = new Integer(j);
22 if(j == 20) b = new Integer(10);
23 Pair q = new Pair(a, b);
24 Pair r = new Pair("good", a);
25 ... //use q and r
26 }
27 }

Fig. 2. Running example

that the use of ICA is not a contribution of this paper. The three major contributions are
(1) a novel calling-context-sensitive algorithm for computing points-to and dependence
relationships that are annotated with ICA information, (2) a new technique for detecting
loop-invariant data structures with the help of such points-to/dependence information,
and (3) the development of quantitative measurements that use these relationships to
help programmers identify hoistable data structures.

For a particular loop l, an object whose ICA is 0 with respect to l must be created
outside l. The ICA for an object being either 1 or� (with respect to l) means the object
must be created inside l. In particular, let us consider a run-time iteration p of l and a run-
time instance r created by allocation site or such that r is live during the execution of p.
If the ICA for or is 1, r is guaranteed to be created during iteration p. In other words, the
ICA for an object being 1 indicates that its instances must be ”fresh“ across iterations,
that is, in any iteration where an instance of it is live, this instance must be created in that
iteration (i.e., it must not be carried over from a previous iteration). An object that has a
� in its ICA is created in a (previous) unknown iteration. For example, the ICA for o23
is 1, as it creates a fresh object in each iteration of the loop at line 20. The ICA for o22
is �, as the instance it creates in one iteration can be carried over to the next iteration.

Hence, for a points-to edge annotated with (i, j), i = j = 1 guarantees that the two
objects connected by the edge must be created in the same iteration of the loop, while
either i or j being � indicates that the two objects may be created in different itera-
tions. A data structure is obviously not hoistable if it contains objects that are created
in different iterations.

Dependence Relationships. Figure 3(b) illustrates the dependence (def-use) chains
that start at memory locations in each data structure shown in Figure 3(a). An edge
o1.f ← o2.g indicates that a run-time value contained in a heap location abstracted by
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Fig. 3. Data structures identified for the running example and their effect annotations. (a) Points-
to effects among objects; (b) Dependence effects among memory locations.

o2.g is required in computing a value written into (a heap location abstracted by) o1.f .
Note that o21.value is a field of class Integer that stores the int value embedded
in an Integer object. A stack location is also considered in a dependence chain,
if this location (variable) has a primitive type and is in the method that contains the
loop of interest (e.g., variable j in method main). Such a variable needs to be taken
into account as it may contain iteration-specific values. Variables that are not in the
loop-containing method are abstracted away from dependence chains, as they can get
iteration-specific values only from heap locations or variables in the loop-containing
method (e.g., variable o at line 4). Reference-typed variables (e.g., a and b) do not need
to be considered as well (even though they are in the loop-containing method), because
they can get loop-specific values only from heap locations, and thus, it is necessary to
track only heap locations.

Note that each dependence edge o1.f ← o2.g is also annotated with a pair of ICAs
(for o1 and o2), which is used to determine whether o1 and o2 are always created in the
same loop iteration. If a node in a dependence edge is a stack variable, such as j, its
ICA is determined by whether or not it is declared in the loop. For example, j’s ICA
is 0, because it is declared before the loop starts. Its ICA would have been 1 if it were
declared in the loop. The ICA for a stack variable can never be �, as each variable
declared in a loop must be initialized (i.e., get a new value) per iteration.

Hoistable Logical Data Structures. As discussed earlier in Section 1, the analysis
identifies (completely or partially) hoistable logical data structures from a purely data
perspective, regardless of the actual code and control flow. This can be done by reason-
ing about these two kinds of annotated relationships. A hoistable data structure has the
following important properties.

(1) (Disjoint). Its run-time instances, created by different iterations of the loop, have
to be disjoint. No object is allowed to appear in multiple instances of one single logical
data structure. This property can be verified by checking whether all points-to edges in a
data structure are annotated with (1, 1). A data structure is not hoistable if any of its nodes
has a non-1 ICA. This guarantees that any instance of a hoistable data structure does not
have objects created outside the loop or in different iterations. For example, (a.2) is not
hoistable, as edge o23

g−→ o22 may connect objects created in different iterations.
(2) (Loop-invariant). Fields of objects in a hoistable data structure have to be loop-

invariant. No data in any run-time instance of the data structure can be dependent on
specific loop iterations. We check this property by formulating it as a data-dependence
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problem. A sufficient condition for the statement “object o is loop-invariant” is that, for
each field of o, (2.1) no edge on a dependence chain (e.g., shown in Figure 3(b)) that
starts from the field can have � in its annotated ICA pair, and (2.2) for each memory
location node o.f (i.e., heap location) or j (i.e., stack location) on the chain, if the ICA
for o or j is 0, this node must not be involved in a dependence cycle.

(2.1) enforces that all (stack and heap) locations from which a hoistable data structure
instance (allocated in one iteration) gets its data are either created in this same iteration,
or exist before the loop starts. No data in this instance can be obtained from an object
created in a different iteration. In addition, as stated in (2.2), if one such location already
exists before the loop starts (e.g., variable j), this node must not be in a dependence
cycle. Otherwise, its value may be updated by each iteration and any data structure
that is dependent on this value is not hoistable. For example, in Figure 3(b), o21.value
depends on variable j, whose ICA is 0. Because j is in a dependence cycle, o21.value
may have iteration-specific values, and thus, any data structure that contains o21 is not
hoistable (e.g., structures (a.2) and (a.3) in Figure 3(a)). Note that field o3.elm is loop-
invariant: while it depends on field o15.index, which is involved in a cycle, o15’s ICA is
1. Hence, it is impossible for an iteration-specific value to propagate to this field.

Note that these two properties are sufficient (but not necessary) conditions for
hoistable logical data structures. For example, the first condition (i.e., disjointness) is
an over-conservative approximation of the shape of a hoistable data structure—it is
perfectly possible for a hoistable data structure to contain objects that are created out-
side the loop (i.e., their ICAs are 0) but not mutated in the loop. We choose not to
consider such objects in our hoistable data structure definition primarily for scalability
purposes—these objects (created outside the loop) may have long dependence chains
(as objects that they reference can come from arbitrary places). On the contrary, depen-
dence chains for objects that are created in the loop and do not escape the loop (i.e.,
all their ICAs are 1) are generally much shorter. Therefore, the dependence analysis is
much more scalable when considering only these chains.

Computing Hoistability Measurements. After inspecting these two conditions, it
is clear that only data structure (a.1) is a completely hoistable logical data structure.
However, there might still exist optimization opportunities with the other two (partially
hoistable) data structures. For example, if we can move object o22 out of data structure
(a.2), it may still be possible to hoist (a.2). In order to help programmers discover such
hidden optimization opportunities, hoistability measurements are proposed to quantify
the likelihood of manually hoisting data structures out of loops.

For example, for each data structures shown in Figure 3, we compute two sepa-
rate hoistability measurements based on the two orthogonal (points-to and dependence)
effects mentioned above: structure-based hoistability (SH) that considers how many
objects in the data structure must be allocated in the same loop iteration (i.e., that
comply with condition 1), and dependence-based hoistability (DH) that considers how
many fields in the data structure must contain loop-invariant data (i.e., that comply
with condition 2). Eventually, these three data structures are ranked based on the two
measurements and are then presented to the user for further inspection. Detailed de-
scription of hoistability measurements can be found in Section 4.
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Variables a, b ∈ V
Allocation sites o ∈ O
Instance fields f ∈ F
Labels l ∈ L
Statements e ∈ E

e ::= a = b | a = new ref o | a = b.f | a.f = b | a = null |
e ; e | if (*) then e else e | whilel (*) do e

(a)

Iteration count i ::= 0 | 1 | 2 | . . . ∈ N
Iteration map ν ∈ L→ N
Loop status π ::= 〈l , i〉 l ∈ L ∪ {0}
Labeled object ô ::= oπ ∈ Φ
Heap σ ∈ Φ× F→ Φ ∪ {⊥}
Environment ρ ∈ V → Φ ∪ {⊥}
Data origin μ ∈ V → 2Φ×F

Heap points-to effect H ::= ∅ | H ∪ {ô1 �f ô2}
Heap data dep. effect Ω ::= ∅ | Ω ∪ {ô1.f ≺ ô2.g}

(b)

Fig. 4. A simple while language: (a) abstract syntax; (b) semantic domains

3 Loop-Invariant Logical Data Structures

This section formalizes the notion of loop-invariant logical data structure, and in this
context, formally defines our analysis that identifies hoistable data structures. The pre-
sentation proceeds in three steps. First, we define a simple imperative language and
present its abstract syntax and operational semantics, which we will use to formalize
our analysis algorithms. For the ease of presentation, function calls are not considered
in this language. Our implementation supports full context-sensitivity using a CFL-
reachability formulation.

Second, we present a type and effect system that abstracts concrete objects and ef-
fects. Finally, the analysis that detects hoistable data structures is described based on
the abstract heap effects generated by the type and effect system.

3.1 Language, Semantics, and Effect System

Language. The abstract syntax and the semantic domains for the simple while lan-
guage that we use are defined in Figure 4. A program in this language has a fixed set of
global variables with reference types. While primitive-typed variables are considered in
our analyses, they are excluded from this language for the simplicity of presentation.
Each allocation site is labeled with an ID o. Each loop is annotated with a natural num-
ber label l (l > 0), which will be used as the ID of the loop. * denotes a side-effect-free
boolean expression that contains only local variables and constants.

We develop a concrete operational semantics for the language in order to detect
hoistable data structures. A loop iteration count i records the number of iterations that
a loop has executed. A global loop iteration map ν maps each loop (label) to its cur-
rent iteration count. Each object instance is represented as its allocation site o annotated
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with a pair 〈l, i〉, where l is the label of the loop in which o is located (always > 0), and
i is the count of the iteration of l that creates this instance. If an object is not located
in any loop, the loop status π for its instances is always 〈0, 0〉. Our analysis does not
consider hoisting objects out of nested loops, and in the presentation we assume that all
loops in the abstract language are not nested. While nested loops can be handled easily
in our framework (e.g., by creating and associating with each object an iteration count
map that records an iteration count for each loop in which the object is located), we
found that it is not useful in hoisting data structures for real-world Java programs: it is
extremely rare that a data structure can be hoisted out of multiple loops.

A heap σ records object reference relationships, and an environment ρ maps vari-
ables to objects in the heap. They are defined in standard ways. A data origin map μ
records, for each stack variable v, a set of heap locations such that values in these lo-
cations are required (i.e., either as a pointer for dereferencing, or being copied through
a sequence of intermediate stack locations) in order to obtain a value written to v. This
map tracks dependences between variables and their relevant heap locations, and will
be used to compute dependence effects as described shortly. For example, after the ex-
ecution of a sequence of statements c = d.f ; b = c; a = b, we have μ(a) = μ(b) =
μ(c) = {od.f} ∪μ(d), where od represents the object that d points to. μ(d) is included
here because d is required as a reference to an object from which the value is obtained.
Dependences via the intermediate stack locations (e.g., b and c) are abstracted away as
we are interested only in fields of objects that form data structures.

Note that μ records only one-hop heap location dependence—if the value in d.f is
obtained from another heap location, μ(a), μ(b) and μ(c) remain the same. Multi-hop
heap location dependences can be obtained by computing the transitive closure of μ.

As discussed earlier in Section 2, we use points-to and dependence relationships to
reason about (1) how data structures are built up and (2) where they get values from,
respectively. These relationships are modeled by the following two kinds of effects in
our system. A heap points-to effect ô1 �f ô2 ∈ H is generated if, at a certain point, ob-
ject ô2 becomes reachable from ô1 through field f . A data dependence effect tracks the
flow of data. One such effect ô1.f ≺ ô2.g ∈ Ω indicates that ô2.g is required in order
to compute a value written into ô1.f . This effect captures a transitive data dependence
relationship between two heap locations, abstracting away a possible sequence of de-
pendences via intermediate stack variables. Data dependence effects can be computed
efficiently by using the data origin map μ.

Note that in this language, it is safe for a dependence chain to not include any stack
variable (like j in Figure 3 (b)). This is because the language supports only reference-
typed variables, which can never form a dependence cycle themselves (without a heap
location involved). While we choose not to include primitive types in this language (for
the simplicity of presentation), our implementation handles both primitive and reference
types. It is also important to note that the effects shown in Figure 4 are concrete effects.
We will present an approach to project them into abstract effects, which are essentially
the annotated edges shown in Figure 1.

Concrete Instrumented Semantics. Figure 5 presents a big-step operational semantics
for our language. A judgment of the form

e, ν, σ, ρ, μ ⇓ ν′, σ′, ρ′, μ′, H , Ω
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a = null, ν, σ, ρ, μ ⇓ ν, σ, ρ[a �→ ⊥], μ[a �→ ∅], ∅, ∅ (ASSIGN-NULL)

ρ
′
= ρ[a �→ ô] σ

′
= σ[∀f.(ô.f �→ ⊥)] ô.o = alloc ô.π = 〈l , ν(l)〉

a = new refalloc , ν, σ, ρ, μ ⇓ ν, σ′, ρ′, μ[a �→ ∅], ∅, ∅
(NEW)

a = b, ν, σ, ρ, μ ⇓ ν, σ, ρ[a �→ ρ(b)], μ[a �→ μ(b)], ∅, ∅ (ASSIGN)

ρ(b) = ô μ′ = μ[a �→ μ(b) ∪ {ô.f}]
a = b.f, ν, σ, ρ, μ ⇓ ν, σ, ρ[a �→ σ(ô.f)], μ

′
, ∅, ∅ (LOAD)

ρ(a) = ô1 ρ(b) = ô2
H = (ô2 = null ? ∅ : {ô1 �f ô2}) Ω =

⋃
{ô1.f ≺ ôi.gi | ôi.gi ∈ μ(a) ∪ μ(b)}

a.f = b, ν, σ, ρ, μ ⇓ ν, σ[ô1.f �→ ô2], ρ, μ,H,Ω
(STORE)

e1, ν, σ, ρ, μ ⇓ ν′, σ′, ρ′, μ′, H1,Ω1 e2, ν
′, σ′, ρ′, μ′ ⇓ ν′′, σ′′, ρ′′, μ′′, H2,Ω2

e1; e2, ν, σ, ρ, μ ⇓ ν′′, σ′′, ρ′′, μ′′, H1 ∪ H2,Ω1 ∪ Ω2

(COMP)

e1, ν, σ, ρ, μ ⇓ ν′, σ′, ρ′, μ′, H,Ω

if (∗) then e1 else e2, ν, σ, ρ, μ ⇓ ν
′
, σ

′
, ρ

′
, μ

′
, H,Ω

(IF-ELSE-1)

e2, ν, σ, ρ, μ ⇓ ν′, σ′, ρ′, μ′, H,Ω

if (∗) then e1 else e2, ν, σ, ρ, μ ⇓ ν′, σ′, ρ′, μ′, H,Ω
(IF-ELSE-2)

e, ν[j �→ ν(j) + 1], σ, ρ, μ ⇓ ν′, σ′, ρ′, μ′, H1,Ω1

whilej (∗) do e, ν
′
, σ

′
, ρ

′
, μ

′ ⇓ ν
′′
, σ

′′
, ρ

′′
, μ

′′
, H2,Ω2

whilej (∗) do e, ν, σ, ρ, μ ⇓ ν′′, σ′′, ρ′′, μ′′, H1 ∪ H2,Ω1 ∪ Ω2

(W)

Fig. 5. Concrete instrumented semantics

starts with a statement e, which is followed by loop iteration map ν, heap σ, environ-
ment ρ, and value origin map μ. The execution of e terminates with a final iteration map
ν′, heap σ′, environment ρ′, origin map μ′, heap points-to effect set H , and heap data
dependence effect set Ω .

Rules COMP, IF-ELSE1, IF-ELSE2, and W are defined in expected ways. In rule
ASSIGN-NULL and NEW, the data origin for a (in μ) is assigned ∅, as the value is
freshly generated and does not depend on any heap value. In rule NEW, for a labeled
object ô, ô.o and ô.π denote the allocation site and the loop status pair for ô, respectively.
In ô.π, the loop l where the allocation site o is located is determined statically, and is
associated with each instance created by o. The iteration count for l is retrieved from
the global iteration count map ν. Rule ASSIGN propagates both the object reference and
the data origin of this reference value from b to a. In rule LOAD, the data origin map μ
for variable a is updated in a way so that both ô.f and the origin of the value in b are
recorded as a’s origin. Hence, dependences via both the value copy (from b.f to a) and
the pointer dereference (i.e., dereferencing b) are captured.

To handle a store a.f = b where b’s value is written to the heap, a points-to effect
ô1 �f ô2 is first generated. The rule next generates a set of heap dependence effects
{ô1.f ≺ ôi.gi | ôi.gi ∈ μ(b) ∪ μ(a)}, by consulting the data origin map μ. Each
dependence effect states that a value read from field gi of object ôi has been used to
produce a value written to ô1.f during the execution.

 Example For illustration, consider the following example:

a = new refo1 ; e = new refo2 ; a.f = e; j = a.f ;
while1 (j) do{ b = a.f ; d = b; c = new refo3; c.g = d;}
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Iteration count abstr. ĩ ::= 0 | 1 | � ∈ N

Loop status abstr. π̃ ::= 〈l, ĩ〉 l∈ L ∪ {0}
Type τ̃ ::= oπ̃ | � ∈ T

Type environment Γ ∈ V → T ∪ {⊥}
Data origin abstr. μ̃ ∈ V → 2T×F

P.T. effect abstr. H̃ ::= ∅ | H̃ ∪ {τ̃1 
 τ̃2}
Dep. effect abstr. Ω̃ ::= ∅ | Ω̃ ∪ {τ̃1.f % τ̃2.g }

Fig. 6. Syntax of types and abstract effects

At the end of the first iteration of the loop, the semantic domains contain the following
values:

ν = [1 �→ 1],
σ = [ô1.f �→ ô2, ô3.g �→ ô2],
ρ = [a �→ ô1, b �→ ô2, c �→ ô3, d �→ ô2, e �→ ô2, j �→ ô2],
μ = [a �→ ∅, b �→ {ô1.f}, c �→ ∅, d �→ {ô1.f}, e �→ ∅, j �→ {ô1.f}],
H = {ô1 �f ô2, ô3 �g ô2},
Ω = {ô3.g ≺ ô1.f}. �

Abstract Semantics. The concrete semantics uses an unbounded number of objects
and unbounded loop iteration counts. We next develop a type and effect system that
describes an abstract semantics, which conservatively approximates the concrete se-
mantics with a bounded set of objects and bounded loop iteration counts. The syntax of
types and abstract effects are illustrated in Figure 6. The abstraction of each concrete
domain (e.g., π) shown in Figure 4 is represented by its corresponding tilded symbol
(e.g, π̃). Environment ρ is abstracted by the type environment, denoted by Γ . A type τ̃
abstracts a labeled object instance ô by projecting its concrete iteration count ô.π.i to an
iteration count abstraction (ICA) τ̃ .π̃.̃i, which can have three abstract values: 0, 1, and
�. The meaning of these values was explained in Section 2. Using this type and effect
system, we can identify data structures whose objects are guaranteed to be created in
the same iteration by reasoning about object ICAs. Note that each abstract effect in H̃
and in Ω̃ corresponds to an edge in Figure 3 (a) and in Figure 3 (b), respectively.

Figure 7 shows the type rules, which are parallel with the operational semantics in
Figure 5. Auxiliary operations used in the type rules are shown in Figure 8. Some abstract
semantic domains in Figure 6 are extended with � and/or ⊥ elements, as necessary.

Since the type and effect system abstracts the concrete semantics in Figure 5, most of
the rules in Figure 7 are similar to their corresponding operational semantics rules. Here
we explain only a few of them that differ significantly from their concrete counterparts.
In rule TNEW, the ICA for a newly created object is always 1, and this value will be
changed later (by rule TW) if this object is carried over to the next iteration. (For objects
created outside of loops, the ICA is 0; for brevity, this variation of TNEW is not shown
in Figure 7.) Rule TLOAD types variable a with an unknown type �. This handling is
over-conservative for the purpose of soundness. Our implementation improves this by
consulting a points-to graph that is computed on demand.

Type environment join ($) needs to be performed in order to handle different control
flow paths of an if-else statement (in Rule TIF-ELSE). Joining two environments
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Γ, μ̃ � a = null : Γ ′
[a �→ ⊥], μ̃[a �→ ∅], ∅, ∅ (TASSIGN-NULL)

Γ ′ = Γ [a �→ τ̃ ] τ̃ .o = alloc τ̃ .π̃ = 〈l , 1〉
Γ, μ̃ � a = new refalloc : Γ

′
, μ̃[a �→ ∅], ∅, ∅

(TNEW)

Γ, μ̃ � a = b : Γ [a �→ Γ (b)], μ̃[a �→ μ̃(b)], ∅, ∅ (TASSIGN)

τ̃ = Γ (b) μ̃′ = μ̃[a �→ μ̃(b) ∪ {τ̃ .f}]
Γ, μ̃ � a = b.f : Γ [a �→ �], μ̃′, ∅, ∅ (TLOAD)

τ̃1 = Γ (a) Ω̃ =
⋃

{τ̃1.f � τ̃i.gi | τ̃i.gi ∈ μ̃(b) ∪ μ̃(a)}
τ̃2 = Γ (b) H̃ = {τ̃1 �f τ̃2} if τ̃1 �= ⊥ and τ̃2 �= ⊥, ∅ otherwise

Γ, μ̃ � a.f = b : Γ, μ̃, H̃, Ω̃
(TSTORE)

Γ, μ̃ � e1 : Γ ′, μ̃′, H̃1, Ω̃1 Γ ′, μ̃′ � e2 : Γ ′′, μ̃′′, H̃2, Ω̃2

Γ, μ̃ � e1; e2 : Γ ′′, μ̃′′, H̃1 ∪ H̃2, Ω̃1 ∪ Ω̃2

(TCOMP)

Γ, μ̃ � e1 : Γ
′
, μ̃

′
, H̃1, Ω̃1 Γ, μ̃ � e2 : Γ

′′
, μ̃

′′
, H̃2, Ω̃2

Γ, μ̃ � if (∗) then e1 else e2 : Γ ′ � Γ ′′, μ̃[∀v.(v �→ μ̃′(v) ∪ μ̃′′(v))], H̃1 ∪ H̃2, Ω̃1 ∪ Ω̃2

(TIF-ELSE)

Γ [∀v.(v �→ (Γ (v).o)(Γ (v).π̃j⊕1))], μ̃ � e : Γ, μ̃, H̃ , Ω̃

Γ, μ̃ � whilej (∗) do e : Γ, μ̃, H̃ , Ω̃
(TW)

Fig. 7. Typing

(rules 1-4 in Figure 8) needs to consider both allocation sites and abstract loop iteration
counts contained in types. If two types τ̃1 and τ̃2 do not have the same allocation sites
o (rule 2), performing join on them yields �. Otherwise, their loop status abstractions
τ̃1.π̃ and τ̃2.π̃ are forced to join (rule 3). Loop labels (π̃.l) in the two status pairs have
to be the same because they are associated with the same allocation site. Joining ICAs
ĩ1 and ĩ2 is shown in rule 4: if ĩ1 
= ĩ2, the result is �, meaning that nothing is known
about the iteration where the object is created. A finite-height type lattice can be defined
based on the operations in Figure 8, with� and⊥ as the maximum and minimum types
in the lattice. Types with different allocation sites are not comparable.

In the beginning of each loop iteration (shown in rule TW), the ICA of each type
(whose allocation site is under loop j) in the type environment is incremented by using
operator ⊕, which is defined in Figure 8 (rule 5). The goal of this is to “clear the loop
status” of the objects that are carried over from the last iteration, so that these (old)
objects and the fresh objects created in the current iteration can be distinguished. Note
that a fixed point is computed for the handling of loops: while each iteration of the loop
may yield a different solution, the fixed-point solution must not be smaller than this
solution.

Next, we explain how to detect data structures whose objects are guaranteed to be
allocated in the same loop iteration, using the type and effect system.

Lemma 1. (Connected objects created in the same iteration). For each heap points-to
effect τ̃1�f τ̃2 ∈ H̃ , if τ̃1.π̃.̃i = τ̃2.π̃.̃i = 1 for a particular loop j (i.e., τ̃1.π̃.l = τ̃2.π̃.l =
j), in each iteration of j where an instance of τ̃1.o and an instance of τ̃2.o are connected
by a store operation, these instances must be allocated in this same iteration.
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[Join of Γ ]

(1) Γ1 � Γ2 = Γ3, where ∀a ∈ DOM(Γ3), Γ3(a) =

⎧
⎨

⎩

Γ1(a) if a ∈ DOM(Γ1 ) and a /∈ DOM(Γ2 )
Γ2(a) if a ∈ DOM(Γ2 ) and a /∈ DOM(Γ1 )
Γ1(a) � Γ2(a) if a ∈ DOM(Γ1 ) ∩ DOM(Γ2 )

(2) τ̃1 � τ̃2 =

⎧
⎪⎪⎨

⎪⎪⎩

τ̃1 if τ̃2 = ⊥
τ̃2 if τ̃1 = ⊥
(τ̃1.o)

τ̃1.π̃
τ̃2.π̃ if τ̃1.o = τ̃2.o
� otherwise

(3) π̃1 � π̃2 = 〈π̃1.l , π̃1 .̃i � π̃2 .̃i〉

(4) ĩ1 � ĩ2 =

{
ĩ1 if ĩ1 = ĩ2
� otherwise

[Operator ⊕]

(5.1) π̃j ⊕ 1 =

{
〈π̃.l , π̃.̃i ⊕ 1〉 if π̃.l = j
π̃ otherwise

(5.2) ĩ⊕ 1 =

{
1 if ĩ = 0
� otherwise

Fig. 8. Auxiliary operations

Proof sketch. Consider a specific iteration k of j. If both objects are allocated in this
iteration, their corresponding abstract iteration counts π̃1 .̃i and π̃2 .̃i are both updated to
1 upon their creation (rule TNEW). In the very beginning of the next iteration k + 1,
τ̃1.π̃.̃i and τ̃2.π̃.̃i will be incremented to � (rule TW) because these objects are carried
over from the last iteration. If in this iteration, both of their allocation sites are executed
again, the two ICAs (for the two new instances) are set back to 1 (rule TNEW). This
process (of setting the ICAs to� and then 1) is repeated if these allocations are executed
during every iteration of j until j terminates. However, if one of the allocation sites (say
o1) is not executed in iteration k + 1, its corresponding ICA τ̃1.π̃.̃i will keep the value
�. Hence, at the end of iteration k + 1, τ̃1.π̃.̃i = � and τ̃2.π̃.̃i = 1. Because the final
solution Γ is a fixed point and � is greater than any other abstract value, � will be
recorded in Γ for τ̃1.π̃.̃i even though o1 may allocate instances again later in the loop.

Note that τ̃1.π̃.̃i = τ̃2.π̃.̃i = 1 does not necessarily indicate that τ̃1.o and τ̃2.o are ex-
ecuted in every iteration of loop j. Their ICAs are 1 as long as their instances cannot
escape from the iteration where they are created to the next iteration of the loop. This fea-
ture allows the analysis to report potentially-hoistable data structures even though their
construction code (i.e., stores that connect objects in them) is guarded by conditionals.

Similarly, given a dependence effect τ̃1.f - τ̃2.g, if τ̃1.π̃.̃i = τ̃2.π̃.̃i = 1 for a loop j,
we can safely conclude that this whole dependence (i.e., computation) chain from τ̃1.f
to τ̃2.g occurs in the same iteration of j, because there are only stack variables between
the two end heap locations of the chain.

3.2 Hoistable Logical Data Structures

In this subsection, we introduce the notion of hoistable logical data structures based
on the points-to and dependence effect abstractions computed by the type and effect
system. As discussed earlier, here we address the question “what data is hoistable in
the best scenario”—that is, to find hoistable logical data structures that meet the two
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criteria discussed in Section 2. Whether and how they can actually be hoisted will be
decided by the user upon inspection. This subsection presents mathematical properties
of hoistable data structures.

Definition 1. (Constrained closures of H̃ and Ω̃ ) Constrained closures of H̃ and Ω̃ are
represented by relations �∗

j,ĩ1,ĩ2
and -∗

j,ĩ1,ĩ2
, where parameters j, ĩ1, and ĩ2 denote

a loop label, a lower bound, and an upper bound of ICAs, used to compute transitive
relationships. We define order ≤ on the ICA domain ĩ as 0 ≤ 1 ≤ �.

(1) Closure �∗
j,ĩ1,ĩ2

(on H̃) selects a set of data structures (whose nodes are types),

in which each edge has the form oπ̃1
1 � oπ̃2

2 ∈ H̃ , s.t. π̃1.l = π̃2.l = j, ĩ1 ≤ π̃1 .̃i ≤ ĩ2,
ĩ1 ≤ π̃2 .̃i ≤ ĩ2.

(2) Similarly, closure -∗
j,ĩ1,ĩ2

(on Ω̃ ) selects a set of computation chains, in which

each edge has the form oπ̃1
1 - oπ̃2

2 ∈ Ω̃ , s.t. π̃1.l = π̃2.l = j, ĩ1 ≤ π̃1 .̃i ≤ ĩ2, ĩ1 ≤
π̃2 .̃i ≤ ĩ2.

Note that constraint ĩ1 ≤ π̃.̃i ≤ ĩ2 is used to compute these closures: τ̃1 �f τ̃2 (or
τ̃1.f - τ̃2.g) is added into the closure �∗

j,ĩ1,ĩ2
(or -∗

j,ĩ1,ĩ2
) only when the ICAs τ̃1.π̃.̃i

and τ̃2.π̃.̃i are “between” the specified parameters ĩ1 and ĩ2. For example, the general
closures�∗ and-∗ are special cases of their constrained closures when ĩ1 = 0, ĩ2 = �,
and j is an arbitrary loop label. It is also easy to see that �∗

j,0,0 selects data structures
whose objects are all created outside loops. Similarly, a data structure selected by�∗

j,0,1

is such that its objects can be created both inside and outside loop j, and the set of inside
objects in any run-time instance of the data structure are always allocated in the same
iteration. Using constrained closures, we give the following definitions.

Definition 2. (Disjoint Data Structure (DDS)) For an allocation site p located in loop
j, a data structure (denoted as δjp) rooted at p with respect to loop j is a graph whose

edge set is a subset of H̃ . Its run-time instances are guaranteed to be disjoint if, for any
edge τ̃1 �f τ̃2 of the data structure, there exists a type τ̃ for p, s.t.

τ̃ .o = p ∧ τ̃ .π̃.̃i = 1 ∧ τ̃ �∗
j,1,1 τ̃1 ∧ τ̃ �∗

j,1,1 τ̃2

A DDS contains objects that are reachable from root p and that are created in the loop.
Each run-time instance of a DDS is guaranteed not to contain any object instance
created (1) outside the loop and (2) inside the loop but in different iterations. This is
achieved by using constraint (j, 1, 1) for the closure computation.

Lemma 2. (Disjointness of DDS instances) Given two run-time instances of a DDS δlp
created by two iterations of a loop, no run-time object exists in both instances.

Proof sketch. The lemma can be proved by contradiction. Suppose there is a run-time
object that exists in both instances of the data structure. At the point it is added into the
second data structure instance (created by a later iteration), the abstract loop iteration
count for j contained in its type must be �, which is recorded in the abstract points-to
effect that represents this addition. This contradicts the fact that δlp is constructed using
closure�∗

j,1,1, which limits the abstract iteration count for each type to be 1. �
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Definition 3. (Iteration-Dependent Field) A field of the form τ̃ .f is loop-iteration-
dependent (LID) with respect to loop j if

(a) ∃τ̃ ′.g : τ̃ .f -∗
j,0,� τ̃ ′.g ∧ (τ̃ ′ = � ∨ τ̃ ′.π̃.̃i = �)

∨ (b) ∃τ̃ ′.g : τ̃ ′.π̃.̃i = 0 ∧ τ̃ .f -∗
j,0,1 τ̃

′.g ∧ τ̃ ′.g -∗
j,0,1 τ̃

′.g

Determining whether the value of an object field depends on a specific loop iteration
requires to inspect abstract dependence effects. As discussed in (condition 2 of) Sec-
tion 2, a field can be iteration-dependent if (1) it depends on a value read from a field
of an unknown object or an object created in an unknown (different) iteration, or (2)
it depends on a field of an object created outside the loop (e.g., τ̃ ′.g), and this field is
involved in a dependence cycle (i.e., it can transitively depend on itself).

Lemma 3. (Loop-Invariant Data Structure) A data structure is loop-invariant if for
each type τ in the data structure, ∀τ̃ .f ∈ DOM(Ω̃) : τ̃ .f is not an LID field.

Proof sketch. Let us negate the two conditions in Definition 3, that is, a loop-invariant
field o.f can depend only on (1) fields of objects guaranteed to be created in the same
iteration with o, or (2) fields of objects created outside the loop and not involved in
dependence cycles. For (1), the proof can be done by induction on the chain of depen-
dence edges leading to o.f . In the base case, fields without any incoming dependence
edge must be assigned newly created objects or null, and thus must be loop-invariant.
For the inductive step, consider the n-th edge along the chain. If the source field of the
edge is loop-invariant, the target field of the edge must also be loop-invariant.

For (2), let us first consider a simplified situation where there is only one outside
object field p.q (i.e., p is created outside the loop) involved in the dependence chain.
Here are two subcases. First, field o.f (o is an object created inside the loop) depends
on p.q and p.q is never written in the loop. It is straightforward to see that p.q does not
carry any iteration-specific values and thus o.f is loop-independent.

Second, suppose field p.q is written in iteration i with a value v produced in iteration
i′. Here i must equal i′, because otherwise o.f could depend on a value computed in a
different iteration, which contradicts the statement in (1). Since value v cannot depend
on p.q (otherwise p.q would depend on itself), it must come only from objects freshly
created in this iteration. Based on the proof of case (1), we know that v must be loop-
invariant. If p.q is read later in iteration k > i to produce another value v′, v′ must
also be the same across iterations because p.q is invariant. This reasoning can be easily
generalized to handle the more complex situation where multiple outside object fields
exist in the dependence chain. �

Definition 4. (Hoistable Logical Data Structure (HDS)) If a data structure δjp is a
hoistable logical data structure if it is (1) disjoint and (2) loop-invariant.

A HDS can exhibit exactly the same behavior at run time when it is located inside the
loop and outside the loop, under the assumption that the code statements that access
this data structure can be safely hoisted. In fact, instead of reporting only completely-
hoistable data structures, our analysis identifies, for each logical data structure, its
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hoistable part (that is both disjoint and loop-invariant). The analysis eventually ranks
all loop data structures based on their hoistability measurements, in order to quantify
the likelihood of successful manual hoisting.

3.3 Analysis Algorithm

This subsection briefly discusses our analysis algorithm, which, for the first time, uses a
context-free-language (CFL)-reachability formulation to compute the context-sensitive
dependence and ICA information. The CFL-reachability formulation enables a demand-
driven analysis that can work on each individual object in the loop and explore the
points-to and the dependence relationships only for the fields of this object without
performing a whole-program analysis. The analysis has three logical components. The
first component is a data structure analysis. In order to discover the data structure rooted
at an object, this analysis employs a variation of the CFL-reachability formulation of
points-to analysis [5], which models both context sensitivity via method entries and
exits and heap accesses via object fields read and writes. For each loop in an actual
Java program, data structure root objects are first located. To find such root objects, we
first consider objects that are created directly in the loop body. Objects that are created
in a method (e.g., used as a factory) invoked by a call site in the loop and that can be
returned to the loop-containing method are also considered.

Next, for each root object o, our analysis identifies the set of reachable objects and
their points-to relationships. In particular, the analysis looks for chains of stores of the
form a0.f0 = new X ; a1.f1 = b0; a2.f2 = b1; . . . ; an.fn = bn−1; bn = o, such that
(1) the two variables in each pair (ai, bi) for 0 ≤ i ≤ n are aliases and (2) the CFL
path for this chain contains balanced method entries and exits. If such a chain can be
found, the object represented by new X is in the data structure rooted at o, because it
could potentially be reached from o at runtime through a sequence of field dereferences
fn.fn−1 . . . f1.f0. Using this formulation, our hoisting analysis can be performed on
demand: it can work directly on each loop object, and performs only the work necessary
to detect its data structure and to check its hoistability.

The second component of the analysis is a form of data flow analysis that analyzes
each loop to perform type inference. An abstract heap (points-to and data dependence)
effect is actually the join of data flow facts on all valid paths from the loop entry to the
assignment that connects the two entities in the effect. Aliasing relationships are de-
termined by querying the CFL-reachability-based points-to analysis. The third part is a
form of data dependence analysis that detects loop-invariant object fields. This analysis
traverses backward the def-use chains from each store that writes to a field of an object
in a loop data structure, and checks whether the two conditions in Definition 3 hold for
the field. A key challenge in computing precise data dependences lies in the handling of
data flow via heap locations. Our analysis initially works on top of a context-insensitive
points-to analysis: for each load a = b.f , we find the set of all assignments c.f = d such
that c and b can alias context-insensitively. We next perform refinement on this candi-
date set using the CFL-reachability formulation of pointer-aliasing to find whether b
and c can indeed alias, and if they can, the calling context for c.f = d under which
the value flow occurs. This calling context is used to guide the future graph traversal to
follow the appropriate entry/exit edges.
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4 Computing Hoistability Measurements

In practice, we have observed that only a small number of data structures and statements
in a large program can meet both criteria described in Section 3. This is primarily due to
their complex usage and the conservative nature of any static analysis algorithm, which
must model this complex usage soundly. While fully-automated transformations are
desirable and sometimes possible, the usefulness of the static analyses can be increased
even further by generalizing them to provide valuable support for programmer-driven
manual code transformations.

Previous studies such as [6,7] have demonstrated that, in many cases, manual tun-
ing with developers’ insight can be much more effective than fully-automated compiler
optimizations. For instance, a programmer may quickly identify that it is problematic
to create a 100-field data structure in a loop with only 1 field iteration-dependent, while
the sound transformation would give up and terminate silently. To enlist human effort,
we must present to them highly-relevant information that can quickly direct them to a
problematic area. In this section, we present two metrics that we use to measure hoista-
bility of data structures. These measurements are computed based on the two orthogonal
relationships (i.e., points-to and dependence) that are described earlier in the paper.

Dependence-Based Hoistability. (DH) The first metric we consider measures the
amount of data in a data structure that is constant during the execution of a loop (i.e.,
the part that complies with rule 2 in Section 2). This dependence hoistability metric is
simply defined as an exponential function DH = sn/s, which considers two factors:
the total number of fields s in a data structure and the number of its loop-invariant (i.e.,
non-LID, discussed in Def. 3) fields n. The larger s is, the more performance improve-
ment could potentially be achieved by hoisting it. The larger n/s is, the easier it is for
a programmer to hoist this data structure. If s is 1, the data structure contains a single
field. Even though this field is invariant (i.e., n/s is 1), hoisting it may not have a large
impact on performance. If n/s is a small number (i.e., most of its fields are not invari-
ant), the result of sn/s can be very small (i.e., close to 1) regardless of how large s is,
which also indicates it is not worth spending time as the data structure may be too dif-
ficult to hoist. In addition, we choose an exponential function instead of a polynomial
function as the metric because the exponential function “penalizes” cases where n is
small, while a polynomial function would be “fair” for all cases of n. For example, if
n=s/2 (half the fields are invariant), our exponential function will give the square root
of s, while a polynomial function may give a much larger number.

Structure-Based Hoistability. (SH) Similarly to the first metric, the second metric con-
siders, for each data structure, how many objects in it are guaranteed to be allocated
in the same iteration (i.e., the part that complies with condition 1 in Section 2). This
structural hoistability metric is defined as SH = tm/t, where t is the total number of
objects in the data structure and m is the number of such objects whose ICA is 1. The
value of t is computed by counting the number of objects that are context-sensitively
reachable from the root object of a data structure. It is clear to see that SH considers
both the size of the data structure and the size of its disjoint part. Note that when m/t
is 1, this data structure is a DDS (as discussed in Def. 2), as it is guaranteed to have
disjoint instances in all loop iterations.
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During our studies, we found that DH is much more useful than SH in distinguishing
data structures that are easy to hoist manually from those that are not. First of all, s is
a more accurate measurement of the size of a data structure than t, as the data structure
can still be large if it contains fewer objects but each object has more fields. Second, we
found that for a large number of data structures in our benchmarks, their m/t is 1, which
means they are all DDS. It would be quite labor-intensive to inspect all of them and
check if they are hoistable. To help the programmer quickly identify truly optimizable
data structures, we focus on DDS (whose m/t is 1) and compute dependence-based
hoistability (DH) only for these data structures. Finally, only DDS are ranked (based on
their DH measurements) and presented to the user for inspection.

Incorporating Dynamic Information. For performance tuning, dynamic (frequency)
information is necessary to help programmers focus on “hot” entities (e.g., calling con-
texts, data structures, etc.). For example, it could be more beneficial to hoist a small,
but frequently-allocated data structure than a big, occasionally-occurring data structure.
Frequency information can be easily incorporated into the two hoistability metrics. For
example, for DH , its definition can be simply extended to DDH = (f ∗ s)n/s, where
f represents the allocation frequency of the root object of the data structure.

While these metrics are simple, we show that they are effective in locating data struc-
tures that are mostly hoistable and easy to optimize. In this work, we focus on demon-
strating that the static analyses are useful—even with these simple metrics, the reports
can quickly guide us to data structures that are truly optimizable.

5 Evaluation

We implemented the analysis on the Soot analysis framework [8] and evaluated it on
the 19 Java programs shown in Table 1. All experiments were conducted on a quad-
core machine with an Intel Xeon X3363 2.83GHZ processor, running Linux 2.6.18. The
setup for static analysis (similarly to [9]) used the library classes from Sun JDK 1.5.0 06
and 4GB of max heap space. Programs in the table were from theSPECjvm98,Ashes,
and DaCapo (its 2006 release and a pre-release) benchmark suites. We did not choose
the recent release of DaCapo, because it contains applications making heavy use of
class-loading/reflection, which can prevent any static analysis from producing precise
information. For SPECjvm98, we included only large programs that have loop objects.

5.1 Static Analysis and Hoisting

Table 1 reports statistics of the benchmarks, the analysis, and the dependence-based
hoistability measurements. For a GUI application muffin, we could not find an ap-
propriate test case to perform profiling, and thus, “-” is used to fill out columns that
report dynamic-information-based measurements. We could not perform profiling for
eclipse either, as different plugins use their own class loaders, making it difficult
for them to access our profiling library without modifying their customized class load-
ers. The cost of the analysis is generally proportional to the number of loop objects
processed because of its demand-driven nature. The analysis running time can also
be influenced by the size of the code base, as the analysis is context-sensitive and the
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Table 1. Shown in the first seven columns of the table are the general statistics of the benchmarks
and the analysis: the benchmark names, the numbers of methods (in thousands) in Soot’s Spark
context-insensitive call graph (M), the numbers of loops inspected (Loops), the numbers of loop
objects considered (Obj), the running times of the analysis (Time), the total numbers of disjoint
data structures (DDS), and the total numbers of hoistable logical data structures (HDS). Columns
SF and SIF in section DH (i.e., dependence-based hoistability) show the total numbers of fields
(SF) and the numbers of loop-invariant fields (SIF), averaged among the top 10 DDS that we
chose to inspect. These data structures are ranked based on the dependence-based hoistability
measurement (DH). Columns DF and DIF report the same measurements as SF and SIF, except
that the inspected data structures are ranked using DDH that incorporates dynamic frequency
information.

Benchmark (a) Analysis statistics (b) DH
#M(K) #Loops #Obj Time (s) #DDS #HDS #SF #SIF #DF #DIF

jack 12.5 88 13 1224 5 3 797 62 797 62
javac 13.4 270 89 1745 33 8 45 31 42 28
soot-c 10.4 475 17 3043 7 3 56 36 56 36
sablecc-j 21.4 202 228 7910 82 53 429 194 221 61
jess 12.8 119 32 304 7 1 1135 51 1135 51
muffin 21.4 318 96 10766 47 8 1503 198 - -
jflex 20.2 209 17 2325 9 0 55 17 55 17
jlex 8.2 108 9 5549 4 0 36 6 36 6
java-cup 8.4 99 19 474 4 0 107 57 107 57
antlr 12.9 154 3 77 2 1 3 0 3 0
bloat 10.8 562 141 3476 36 10 1536 136 674 46
chart 17.4 482 102 12746 6 0 84 19 84 19
xalan 12.8 17 8 63 6 0 78 24 78 24
hsqldb 12.5 33 10 178 5 0 75 19 75 19
luindex 10.7 14 5 163 5 0 65 15 65 15
ps 13.5 117 21 1784 21 11 36 20 34 20
pmd 15.3 594 30 168 15 2 127 68 127 68
jython 27.5 614 48 423 24 3 77 25 190 26
eclipse 41.0 3322 93 21557 80 52 1182 180 - -

number of contexts often grows significantly when the size of the program increases.
It is clear that the analysis can scale to large applications, including the eclipse
framework, which has millions lines of code in its implementation.

Across all applications we observe large numbers of disjoint data structures (DDS)
and hoistable logical data structures (HDS). This is a strong indication of the exis-
tence of optimization opportunities that can be exploited by human experts, which mo-
tivates our proposal of computing hoistability measurements to help manual tuning.
To compare the effectiveness of DH (i.e., dependence-based hoistability measurement
proposed in Section 4) and DDH (i.e., the profile-based version of it) in finding opti-
mization opportunities, we inspected the top 10 data structures (or the total number of
data structures if it is smaller than 10) that appear in both reports. The total numbers of
fields / the numbers of loop-invariant fields for these inspected data structures are shown
in columns SF/SIF and DF/DIF, for these two kinds of reports. Profiling is implemented
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by Soot-based bytecode instrumentation that records the execution frequency for each
loop. The goal of this comparison is to understand how much impact the dynamic in-
formation can have on the interpretation of reports. Specifically, can DDH (i.e., the
incorporation of the run-time frequency f ) lower the ranks of data structures that are
highly-likely to be optimized (i.e., have larger n/s but smaller f )?

The ratio between SIF (or DIF) and SF (or DF) indicates, to a large degree, the
difficulty of hoisting data structures manually by inspecting the analysis reports. The
larger it is, the easier it may be for a performance expert to modify the data models to
hoist them. It is clear that the ratios of DIF/DF are generally close to those of SIF/SF. In
many cases, the former are even greater than the latter (e.g., bloat). This observation
indicates that DDH can expose not only hot spots (i.e., frequently-allocated objects),
but also optimizable data structures.

5.2 Case Studies

We have carefully inspected the generated analysis reports (with dynamic information
incorporated) for these 19 benchmarks and found optimizable data structures in almost
every one of them. This subsection presents five representative case studies, in which ei-
ther large performance improvement was seen, or interesting bloat patterns were found.
These applications are ps, xalan, bloat, soot-c, and sablecc-j, all with large
code base and a great number of loop objects. The performance problems we show in
this paper are new and have never been reported by any previous work. Performance
improvements are measured on Sun Hotspot 64-bit Server VM build 1.6.0 11.

Through these studies, we found that the analysis is quite useful in helping program-
mers find mostly-loop-invariant data structures and the execution inefficiencies due to
these data structures. It took us about three days to find and fix problems in these five
applications, among which we had studied only bloat before. Note that most of this
time was spent on developing fixes rather than finding data structures that can be easily
hoisted: for each benchmark, we looked at only the top 10 data structures in the reports
(due to the limited time we had), and found that most of them were indeed hoistable.
Even larger optimization opportunities could have been possible if we had inspected
more warnings generated by the tool.

It is important to note that it would not be possible to find such problems by using
any existing profiling tool: to detect loop-invariant data structures, a purely dynamic
analysis has to perform whole-program value profiling, a task that is prohibitively ex-
pensive for large-scale, long-running Java programs. This is the reason why we have
not compared our results with dynamic analysis reports.

ps. ps is a postscript interpreter. The top data structure in the list ranked by DDH
is rooted at a NameObject object created in a loop in method execute of class
makeDictOperatorDB. The loop is used to traverse a stack: for each stack element
(i.e., a NameObject object containing a key and a value), the goal is to remove the ‘/’
character in the key of the element. The way the loop is implemented is that it creates
another (backup) stack, pops the original stack, creates a new NameObject object
with most values copied directly from the original object, and pushes this new object
onto the backup stack. Eventually all the new objects in the backup stack are pushed
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back onto the original stack. The creation of such NameObject objects directs us to
think about this implementation, and especially about the way the stack is operated. In
fact, this process can be done entirely in place so that these objects do not even need to
be created. A further inspection of code found an even more interesting problem. The
programmer seems to ignore the fact that class Stack is a subclass of List in JDK
and uses push and pop to implement everything related to stack. For example, this
same pop-push pattern is used even for element retrieval. For almost each occurrence
of this problematic stack usage pattern, there is a corresponding (mostly loop-invariant)
data structure in our report. We removed only two occurrences of such a pattern (in
makeDictOperatorDB.execute and DictStack.getValueOf), and this re-
sulted in a reduction of 82.1% in running time (from 28.3s to 5.3s) and 70.8% reduction
in the total number of objects created (from 10170142 to 2969354).

xalan. xalan is an XLST processor for XML documents. The problem we found is in
a test harness (XalanHarness) used by DaCapo to run the benchmark. This harness
class creates multiple threads to transform input XML files. In method run, there is a
while(true) loop that assigns jobs to different threads. Our report shows that a data
structure rooted at a Transformer object created in the loop is a HDS (shown in Fig-
ure 1(b)). The same Transformer object is created every time the loop iterates, and then
used by different threads for transforming the input files. It is highly unlikely to auto-
matically hoist this data structure because this object is created by using a transformer
factory object, which is obtained from a reflective call. After hoisting this allocation
site, we observed a 10% reduction in running time and 1% reduction in the number of
objects created. This problem has also been confirmed by the DaCapo maintainers [10]
and will be handled in the next release of the DaCapo benchmark set.

bloat. bloat is a program analysis tool designed for Java bytecode-level optimiza-
tions. Many loop data structures reported by our analysis are objects of inner classes
that are declared exactly at the point where their objects are needed. In bloat, most of
these objects are created to implement visitor patterns. Hence, the objects are used only
for method dispatch and do not contain any data related to the program context under
which they are created. These objects commonly exist in loops, and in many cases we
found them even located in loops with many layers of nesting. This problem exempli-
fies a typical object-oriented philosophy: the programmer should focus on patterns and
abstractions when coding, and leave the mess to the run-time system. By simply hoist-
ing the reported objects (and the declarations of their classes) out of the loops, we saw
11.1% running time reduction and 18.2% reduction in the number of created objects.

soot-c. soot-c is a part of the Soot analysis framework [8] benchmarked in the Ashes
benchmarks [11]. One top data structure reported by our analysis is rooted at a
StmtValueBoxPairobject created in a loop (in a constructor ofjimple.Simple-
LocalUse) that builds def-use relationships as follows:

while(defIt.hasNext()){
List useList = (List) stmtToUses.get(defIt.next());
useList.add(new StmtValueBoxPair(s, useBox));

}
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For each statement s that uses a variable, the program finds a set of statements that
define the variable, creates a StmtValueBoxPair object, and adds it to the list.
These StmtValueBoxPair objects, while containing the same values, are created
for safety purposes: if one such pair is changed later, other pairs should not be affected.
After inspecting the code, we found that the use list associated with each statement
is never changed after the jimple statement chain is constructed for a program. Even
if a client analysis could change it by inserting statements, Soot always creates a new
object to represent this (newly-established) def-use relationship rather than change the
original object. This problem shows a typical example of an over-protective imple-
mentation, where several different mechanisms are used simultaneously to enforce the
same property while one (or a few) of them may be sufficient to do so. By sharing
one StmtValueBoxPair object among multiple def statements, we achieved 2.5%
running time reduction and 3.5% reduction in the number of created objects. In this
example, we can see once again the advantage of tool-assisted manual tuning: this data
structure can never be eligible for hoisting from the perspective of any fully-automated
analysis. However, the human insight did make hoisting happen as it is unnecessary to
have these instances simultaneously.

sablecc-j. sablecc-j is a version of the Sable Compiler Compiler that produces the
sablecc files (parser, lexer, etc.) for a preliminary version of the jimple grammar. Sim-
ilarly to the problems found for bloat, a large number of HDS reported are related
to inner classes: two such classes are declared in sablecc.GenParser to perform
depth-first traversal of syntax trees, and one such class is declared in sablecc.DFA
to represent an interval in a char set. Creating multiple objects for each such class is
completely unnecessary. Hoisting these class declarations and their objects resulted in
6.7% running time reduction and 2.5% reduction in the number of objects created.

Evaluation Summary. While all loop-invariant data should be hoisted out of loops, the
tight data coupling in an object-oriented program makes it impossible for us to do so (ei-
ther automatically or manually). To help programmers focus on data structures that are
(1) easy to hoist and (2) worth hoisting, we propose to compute hoistability measure-
ments. Through these case studies, we demonstrate that our measurements are effective
in pinpointing such data structures. In fact, by inspecting reported data structures, we
found many performance problems and achieved significant performance improvement.
Some invariant data structures that we have managed to hoist are due to (deeper) design
issues such as inefficient implementations of design patterns (e.g., visitors in bloat)
or over-protective implementation strategies (e.g., soot-c). Our measurements were
also helpful in revealing these issues by exposing their symptoms (i.e., mostly-invariant
data structures).

6 Related Work

The related work can be broadly classified into three categories: loop optimizations,
runtime bloat detection techniques, and related static analyses.

Loop Optimizations. In the literature on compiler optimization [2], loop optimizations
are important techniques that, for example, improve locality and make effective use
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of parallel processing capabilities. There is a large body of work on making the exe-
cution of loops faster. This set of techniques includes, for example, loop interchange,
loop splitting, loop unrolling, loop fusion, loop-invariant code motion, etc. In high-
performance computing, loop optimizations play a key role in automated parallelization
for exploiting the parallelism capabilities of the hardware. Broader overview and more
detailed descriptions of these techniques is available from a number of sources (e.g.,
[12,13,14]).

Bloat Detection. Mitchell and Sevitsky [15] introduce a way to find data structures that
consume excessive amounts of memory. Work by Dufour et al. [16] uses a blended es-
cape analysis to characterize the excessive use of temporary objects, which can also be
used to help diagnose performance problems. JOLT [17] is a tool that makes aggres-
sive method inlining decisions based on the identification of regions where a large vol-
umes of temporary objects are observed. The approach from [18] dynamically identifies
inappropriately-used Java collections to detect bloat. Recent work proposes dynamic
analyses [6,7] that detect memory bloat by profiling copy chains and finding low-utility
data structures, and static analysis [9] that finds inefficiently-used data structures. A
detailed overview of the causes of runtime bloat can be found in [19,20].

Different from these existing techniques, our work focuses on loop-invariant data
structures, and aims to help programmers identify them using a series of sophisticated
static analyses. As discussed earlier, it may not be feasible to find such optimizable data
structures using a dynamic analysis, which requires to profile all values generated dur-
ing an execution, a task prohibitively expensive for real-world programs. Bhattacharya
et al. propose an escape-analysis-based static technique [21] that can find reusable col-
lections in a loop. Our analysis is more powerful: we can find general data structures
that have disjoint instances as well as the same shapes and data content.

Related Static Analyses. The loop iteration abstraction is first proposed in [3] for com-
puting their conditional must-not-alias properties. Our abstraction extends this approach
for the purpose of detecting hoistable data structures, by computing ICA-annotated
points-to and dependence relationships. Object inlining [22,23] is a static technique
that finds sets of objects that can be efficiently fused into larger objects, and fuses them.
While both object inlining and our analysis aim to achieve better performance and need
to find objects created in the same control flow region, our analysis targets a different
class of performance problems. In addition, our analysis can assist a programmer to do
manual tuning, a task that is difficult for object inlining to perform. Gheorghioiu et al.
propose a static analysis [24] to identify unitary allocation sites whose instances are
disjoint so that these instances can be preallocated and reused. While this is similar to
the detection of disjoint data structures in our work, we can find more opportunities
such as data structures with loop-invariant data content and shapes.

Work from [4] presents recency abstraction, a technique that distinguishes most-
recently-allocated-object (MRAO) and non-MRAO for each allocation site in order to
enable strong updates for a points-to analysis. While this is similar to our iteration
abstraction that distinguishes objects created in the current iteration and previous itera-
tions, our analysis uses such an abstraction for identifying loop-invariant data structures,
instead of improving the precision of a points-to analysis.
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There exists a body of reachability analyses that can discover shapes of data struc-
tures. Such algorithms range from flow-sensitive approximations of heap shape (e.g.,
[25,26,27]) to decision procedures (e.g., [28,29]). While our approach can be less pre-
cise than these algorithms (especially in handling recursive data structures), its precision
may be sufficient to find hoistable data structures. In addition, our demand-driven anal-
ysis is more scalable and has been shown to run successfully on large-scale applications
including eclipse.

Ownership types [30,31,32,33,34,35] provide a way of specifying object encapsu-
lation and enabling local reasoning about program correctness in object-oriented pro-
grams. While ownership types may be sufficient to select loop data structures and check
whether they are confined, these types cannot detect loop-invariant values, which are
dependence-related properties.

7 Conclusions

This paper presents the first static technique that detects loop-invariant data structures.
We focus on data models and look for logical data structures that can be hoisted. Instead
of transforming the program and hoisting data structures automatically, we propose to
measure the hoistability of a data structure: the dependence-based hoistability metric
measures the amount of loop-invariant data in a data structure. We have implemented
the analyses and presented an evaluation on a set of 19 Java benchmarks. Our exper-
imental results demonstrate that the analysis can scale to large applications and the
measurements can be useful in finding significant optimization opportunities.
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