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Abstract
We present a static analysis which identifies disjointness relations
between collections in Java. We have implemented our analysis
as a primarily intraprocedural dataflow analysis framework using
Soot. We handle method calls using developer-provided annota-
tions, with some inference support. We include experimental results
of the from our disjointness analysis on a pair of benchmarks.

1. Introduction
Almost all modern programming languages provide mutable set
data structure implementations, or containers, either in their stan-
dard libraries (as in Java, .NET, and C++), or within the language
itself (e.g. Python). Containers are widely used as they reduce pro-
gramming effort, and increase programming speed and quality, by
reusing known-good components which have well-understand be-
haviours. A container stores a set, or collection, of objects.

Two collections are disjoint if the intersection of their contents
is the empty set—in other words, two disjoint collections do not
contain objects pointing to the same heap location. Disjointness
relations enable lightweight specifications, which are helpful for
program understanding, verification, and parallelization. For exam-
ple, consider a program with two modules, A and B, which each
use collection objects to store data. Disjointness between the col-
lections used in A and B enables the developer to assume that
changes to objects stored in A’s collections will never affect the
objects stored in B’s collections. Note that aliasing relations be-
tween the collection objects themselves are not strong enough to
enable this assumption; reachability is required. Our disjointness
analysis approximates reachability with a coarse-grained approxi-
mation of the set of objects stored in each collection. Disjointness
analysis also enables parallelization—if we can find two collections
that are completely disjoint in all executions, we can safely execute
operations on the collection in parallel.

In this work, we present the design and implementation of an
intraprocedural static analysis which verifies disjointness relations
of collections in Java. The key insight behind our analysis is that it
is possible to rely on the documented semantics of the collections
classes in the Java library to dramatically simplify the analysis;
see [8, 9] for previous work on verifying collection-manipulating
methods. Section 3 presents our analysis in detail; the underlying
abstraction is inspired by connection matrices [6]. Note that, since
our analysis is primarily intraprocedural, we rely on developer-
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provided annotations to obtain method preconditions and postcon-
ditions. Disjointness analysis enables developers to compute or ver-
ify disjointness relations between any two collections at any pro-
gram point of the source code. Using these relations, developers
can provide light-weight specifications and better understand their
code, and compilers can better optimize parallel programs.

To investigate the effectiveness of our algorithm, we executed
it on two simple benchmark programs. Our analysis successfully
identified twelve collections from these programs as disjoint. Sec-
tion 4 presents our experimental results in more detail.

Section 2 continues with a motivating example, which explains
how our analysis works on a simple case.

2. Motivating Example
Consider the small Java program in Figure 1, which first instantiates
two objects and three lists, and then causes sharing by inserting the
same object into multiple lists. We next explain the operation of
our collection disjointness analysis by presenting the results of the
analysis1 on this code, which we include in the comments alongside
the code. The interpretation of these results follows.

First, note that the analysis returns the empty set after lines 3
through 8. Our analysis tracks sharedness (a.k.a non-disjointness)
across heap objects, and the empty set means that all objects and
collections are disjoint. This is clearly the state upon entry to the
program. (Our analysis also accepts annotations which summarize
the state of the heap upon entry to a method.) Instantiations do not
change the disjointness of the objects already in the heap, so the
analysis returns the empty set through the end of line 8.

The subsequent lines create relations between heap objects, and
our analysis tracks these relations. Our abstract state consists of a
set of pairs, each of which indicates a relationship between (ab-
stract) heap objects. We distinguish heap objects of container type
and follow the contents of such objects. Our abstraction tracks two
types of pairs—containment pairs, which indicate that a container
object may contain some heap object, and sharedness pairs, which
record derived information about relationships between contain-
ers. We describe the semantics of these pairs fully in Section 3.1.
Line 9 adds o1 to list `1, and our analysis records that fact with
the containment pair (`1, o1). The code continues by adding o2 to
`2, o1 to `3, and o2 to `3, and our analysis adds the containment
pairs {(`1, o1), (`2, o2), (`3, o1), (`3, o2)} and the sharedness pairs
{(`1, `3), (`2, `3)}.

Note that line 11 adds o1 to list `3, but that o1 is already in list
`1. Our analysis adds a sharedness pair between lists `1 and `3 to
record this fact. We can therefore query the analysis results at any
point following line 11 to find that `1 and `3 are not disjoint.

Figures 2 and 3 depict graphically the results from the above
example after line 10 and at the end of the main() method respec-

1 For now, we elide object identity information from our analysis results;
Section 3.1 describes our use of object representatives [1] to disambiguate
heap objects.

Proc. International Workshop on State Of the Art in Java Program analysis (SOAP ’12)—Beijing, China

45



1 c l a s s C {
2 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
3 / / { }
4 L i s t l 1 = new L i n k e d L i s t ( ) ; / / { }
5 L i s t l 2 = new L i n k e d L i s t ( ) ; / / { }
6 L i s t l 3 = new L i n k e d L i s t ( ) ; / / { }
7 O b j e c t o1 = new O b j e c t ( ) ; / / { }
8 O b j e c t o2 = new O b j e c t ( ) ; / / { }
9 l 1 . add ( o1 ) ; / / { ( l1 , o1 )}

10 l 2 . add ( o2 ) ; / / { ( l1 , o1 ) , ( l2 , o2 )}
11 l 3 . add ( o1 ) ; / / { ( l1 , o1 ) , ( l2 , o2 ) , ( l3 , o1 ) , ( l1 , l 3 }
12 l 3 . add ( o2 ) ; / / { ( l1 , o1 ) , ( l2 , o2 ) , ( l3 , o1 ) ,
13 / / ( l3 , o2 ) , ( l1 , l 3 ) , ( l2 , l 3 )}
14 }
15 }

Figure 1. Collection disjointness results on simple example.

`1: o1

`2: o2

Figure 2. Heap abstraction after line 10

`1: o1 : `3

o2`2:

Figure 3. Heap abstraction after line 13

tively. The Figures show the disjointness relations between `1, `2
and `3; boxes represent linked list cells, and lines indicate that cells
contain objects oi. Figure 2 indicates that `1 and `2 are disjoint,
while Figure 3 indicates that `2 and `3 share the common object
o2, while `1 and `3 share the common object o1.

3. Description of Analysis
We designed our collection disjointness analysis to determine
whether two given collections contain objects that may point to the
same heap location. The analysis maintains an abstraction based
on connection matrices [6]. In particular, the abstraction tracks re-
lationships between object representatives [1], which finitize the
heap and encapsulate must-aliasing and may-aliasing relationships
between objects. We track two types of relationships: containment
relationships, which connect collections and their contained ob-
jects, and sharedness relationships, which summarize relationships
between different container objects. Our analysis primarily updates
relationships when it encounters calls that mutate contents of col-
lection objects, such as add() or clear().

If two collections `1 and `2 contain no objects that may alias
nor collections that may share objects (on any execution), we say
`1 and `2 are not-may-shared, i.e. disjoint. Not-may-shared collec-
tions are unreachable from each other using heap reads. Conser-
vative approximations may result in spurious sharing relationships

between collections. However, if our analysis reports that two col-
lections are disjoint, we guarantee that there is indeed no sharing
between them on any execution.

Our disjointness analysis is a primarily-intraprocedural forward
dataflow analysis. We use annotations, along with the program’s
call graph, to enable interprocedural disjointness analysis; see Sec-
tion 3.3 for details.

3.1 Heap Abstraction
Our dataflow analysis tracks, for each statement in the intermediate
representation, two types of pairs of object representatives, where
the representatives are drawn from the set of representatives for the
method under analysis. Although we always present pairs from our
abstraction using local variable names, the analysis itself stores ob-
ject representatives. Soot computes a map from local variables to
object representatives and updates this map automatically; we sim-
ply assume that object representatives are available and accurate,
with one exception—our analysis manually updates the object rep-
resentatives map when it encounters a ParameterRef assignment
in a DefinitionStmt. Such statements, which are part of the Jim-
ple intermediate representation, provide explicit definition points
for method parameters.

Field Accesses. Collections which are read from fields are chal-
lenging to handle. Consider a field read ` = o.f , where ` is a col-
lection and o.f is a field of o. We must update containment relations
and sharedness relations for ` even when updates occur through o.f
and its aliases, which requires alias analysis. Fluid updates [3] are
probably the best solution for this problem. However, in this work,
we propose a conservative solution which trades off accuracy for
simplicity.

Our approach designates all collections originating from field
reads as external collections in our analysis abstraction. As with
other objects, we refer to external collections by their object repre-
sentatives. We assume that all external collections are may-shared
with all other collections in scope (except collections instantiated
after the read). Note that any object with compatible type may po-
tentially be a collection.

Contents of Heap Abstraction. Our abstraction stores two types
of pairs:

1. containment pairs: our analysis indicates that a collection `1
(may) contain an element o1 with the containment pair (`1, o1).
Such pairs are ordered. Collection operations like l1.add(o1)
give rise to containment pairs.
If the abstraction contains a containment pair (`1, o1), then
collection `1 may contain object o1. Otherwise, `1 definitely
does not contain o1.

2. sharedness pairs: our analysis indicates non-disjointness rela-
tions between collections `1 and `2 using the unordered shared-
ness pair (`1, `2). Such a pair means that `1 and `2 (may) con-
tain, respectively, objects o1 and o2, such that o1 and o2 may
alias. Alternatively, o1 and o2 may themselves be may-shared
collections. Sharedness pairs are generally created by our anal-
ysis based on the containment pairs (see Section 3.4); however,
note that it is possible to have a sharedness pair in the abstrac-
tion even when there is no witness to the sharing, and such a
pair may arise from the analysis of a collection operation like
l1.addAll(l2).
If the abstraction contains a sharedness pair (`1, `2), then there
may exist objects o1 ∈ `1 and o2 ∈ `2 such that o1 and o2
may-alias. In the absence of such a pair, our analysis guarantees
that `1 and `2 do not share any objects. Our analysis does not
currently specifically identify the case where `1 and `2 must
share an object.
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1 L i s t l 1 = new L i n k e d L i s t ( ) ;
2 L i s t l 2 = new L i n k e d L i s t ( ) ;
3 O b j e c t o1 = new O b j e c t ( ) ;
4 O b j e c t o2 = new O b j e c t ( ) ;
5 l 1 . add ( o1 ) ;
6 l 2 . add ( o2 ) ; / / { ( 0 ( l 1 ) , 2 ( o1 ) ) , ( 1 ( l 2 ) , 3 ( o2 ) )}
7 o2 = o1 ; / / { ( 0 ( l 1 ) , 2 ( o1 ) ) , ( 1 ( l 2 ) , 3 (∗ ) )}
8 l 2 = l 1 ; / / { ( 0 ( l 1 ) , 2 ( o1 ) ) , ( 1 (∗ ) , 3 (∗ ) )}

Figure 4. Assignment Example; note use of object representatives

A pair (`1, `2) consisting of two collections can be either a con-
tainment pair or a sharedness pair. Although we hide the distinction
between the types of pairs in our example, our abstraction actually
tracks whether each pair is a containment pair or a sharedness pair,
based on how it was initially created. Disjointness query results are
based on the sharedness pairs.

Merge operator. As we are designing a “may” analysis, we com-
bine sets using union at control-flow merges.

Initial value. We start with the empty set of pairs as an initial
approximation. When an external collection comes into scope, we
note that it is may-shared with all existing collections. We rely
on annotations to sharpen the results for collections occurring as
method parameters (rather than marking them as external collec-
tions, which would be a safe but coarse approximation).

3.2 Transfer Functions
We next describe the transfer functions at the core of our dataflow
analysis.

Object instantiation. As mentioned in Section 2, new expressions
do not add any pairs to our abstraction, since newly-created collec-
tions do not contain any objects, and newly-created objects do not
belong to any collections. Note that the effect of overwriting a local
variable is captured by updates to the object representatives map,
and need not be considered here.

Assignment. Assignments also never add pairs to, nor remove
pairs from, the abstraction. This is because an assignment never
affects the contents of any collection. Once again, object repre-
sentatives introduce a layer of indirection, such that changing the
contents of a local variable does not affect the underlying object
representatives for the old contents of that variable.

Examples in this paper use local variables rather than object
representatives; we believe that the use of local variables makes the
examples easier to follow overall. However, Figure 4 shows an ex-
ample of how our analysis deals with assignment statements. Here,
we have chosen to show both an object representative, represented
by an integer, and a local variable containing that representative.

Note that, after line 6, the abstraction connects `1 with o1 and `2
with o2, as one might expect. Now, after line 7, which assigns o2 the
reference contained in o1, the same abstraction remains valid; only
the mapping from object representative 3 to variable o2 changes,
but the contents of `2 remain the same. Similarly, the assignment at
line 8 does not change the contents of object representative 1, but
it does invalidate the mapping between local variable `2 and object
representative 1.

3.2.1 Collection operations
Our analysis does most of its work analyzing calls to collection op-
erations. Figure 5 illustrates the operation of our analysis on a num-
ber of common collection operations. We continue by discussing
how our analysis handles calls to the following classes of methods
from java.util.Collection: adds, removes, and other opera-
tions.

1 L i s t l 1 = new L i n k e d L i s t ( ) ;
2 L i s t l 2 = new L i n k e d L i s t ( ) ;
3 O b j e c t o1 = new O b j e c t ( ) ;
4 O b j e c t o2 = new O b j e c t ( ) ;
5 l 1 . add ( 0 , o1 ) ; / / {( l1 , o1 )}
6 l 2 . a d d F i r s t ( o2 ) ; / / {( l1 , o1 ) , ( l2 , o2 )}
7 l 2 . a d d L a s t ( o1 ) ; / / {( l1 , o1 ) , ( l2 , o2 ) , ( l2 , o1 ) , ( l1 , l 2 )}
8 l 1 . ad dA l l ( l 2 ) ; / / {( l1 , o1 ) , ( l2 , o2 ) , ( l2 , o1 ) , ( l1 , l 2 ) , ( l1 , o2 )}
9 l 1 . remove ( o1 ) ; / / {( l1 , o1 ) , ( l2 , o2 ) , ( l2 , o1 ) , ( l1 , l 2 ) , ( l1 , o2 )}

10 l 2 . removeAl l ( l 1 ) ; / / {( l1 , o1 ) , ( l1 , o2 )}
11 l 1 . c l e a r ( ) ; / / {}
12 l 2 . add ( o1 ) ; / / {( l2 , o1 )}
13 l 2 . s e t ( 0 , o2 ) ; / / {( l2 , o1 ) , ( l2 , o2 )}

Figure 5. Collection Operations Example

l1 :

o1 o2

l2 :

...

...

Both l1 and l2 contain o1 and o2.

Figure 6. Analysis state after Line 8 in Figure 5.

Add methods. For an “add” method (i.e. add(), addElement(),
addFirst(), addLast(), and addAll()), we add a containment
pair between the receiver object and the object parameter. For
instance, l.add(o) gives rise to a containment pair (`, o). Some
of these methods provide additional information which we are not
able to use; for instance, we discard the position information at a
call to add(int, Object).

The Java Collections API also provides an addAll() method,
which adds the contents of a collection to the receiver. At a call
to s: l1.addAll(l2), we add the containment pairs from `2,
replacing `2 by `1, plus a sharedness pair between `1 and `2:

OUT(s) = IN(s) ∪ {(`1, k) | (`2, k) ∈ IN(s)} ∪ {(`1, `2)}.
In general, two collections `1 and `2 may be aliased. Our use

of object representatives transparently handles potential problems
due to aliasing: if `1 and `2 are may-aliased, a query for objects
contained in `1 will also return objects in `2.

Lines 5–8 in Figure 5 illustrate our analysis on different types of
add methods. Observe, for instance, that after line 5, our abstrac-
tion contains a pair (`1, o1), as one might expect. Also note the
sharedness pair (`1, `2) added after line 7.

Figure 6 depicts graphically the results of the group of add()
methods for the example in Figure 5.

Remove methods. Our abstraction contains enough information
to remove pairs at calls to Set.remove(Object) and removeAll();
we must conservatively approximate the effects of the other remove
methods by leaving our abstraction unchanged.

At a call to Set.remove(Object), we can remove the pair
(`, o) (since a Set is guaranteed to contain an object at most
once). However, we cannot remove anything following a call to
Collection.remove(Object)—objects may belong to collec-
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...l1 :

o1 o2

l2 : ...

`2 contains o1 and o2; `1 and `2 are disjoint.

Figure 7. Analysis results after set(), Line 13 in Figure 5.

tions with multiplicities greater than 1. Certain other forms, such as
remove(int), removeFirst(), and removeLast(), all remove
objects at given indices from the collection. Since we do not know
which objects are at which indices, we cannot update the abstrac-
tion to remove any particular object.

We handle a call to l1.removeAll(l2) symmetrically to
addAll(), as follows:

OUT(s) = IN(s) \ {(`1, k) | (`2, k) ∈ IN(s)} \ {(`1, `2)}.
Note that removeAll() results in `1 and `2 being disjoint, as long
as `1 6= `2.

Other methods. As seen in Line 11 from Figure 5, we can han-
dle calls to l.clear() by removing all containment and shared-
ness pairs involving `. The removeAllElements() method from
Vector behaves identically.

The List.set() method is analogous to a remove() of an
unknown element followed by an add(). We treat it like an add(),
since we do not know the identity of the object being replaced.

Line 13 in Figure 5 shows the effect of set(); note that we
conservatively state that `2 contains both objects o1 and o2, even
though it is clear that o1 was replaced by o2 at the set() call.
Figure 7 depicts the state graphically.

3.3 Method Calls
As our analysis is intraprocedural, we primarily use method anno-
tations to capture the effects of method calls. We expect method
annotations to be provided by the developer and we trust (but
verify) these annotations. Our analysis can also synthesize post-
annotations based on pre-annotations. To permit the use of synthe-
sized post-annotations, we visit methods in topological order, start-
ing with the leaves of the call graph, and arbitrarily break cycles.
We next discuss the annotation language that our analysis accepts.

Figure 8 shows annotations for method foo(). It contains a pre-
annotation along with an empty post-annotation and a generated
post-annotation. The generatedPostAnnotation is blank, to be
filled in by the analysis. Note that our annotation language is cur-
rently more expressive than our abstraction: while our abstraction
can only express may-sharing between collections, the annotation
language supports must-sharing. Two collections are must-shared
if, on all executions, there is an object o which must belong to both
collections. It is sound to represent must-sharing using the may-
sharing sharedness pairs in our abstraction.

Our intraprocedural analysis handles method calls by request-
ing the set of possible callees for the callsite and integrating the
post-annotations for all of the callees into the caller’s analysis ab-

1 p u b l i c @ i n t e r f a c e D i s j o i n t n e s s A n n o t a t i o n {
2 S t r i n g p r e ( ) ;
3 S t r i n g p o s t ( ) ;
4 S t r i n g g e n e r a t e d P o s t A n n o t a t i o n s ( ) ;
5 }
6

7 @ D i s j o i n t n e s s A n n o t a t i o n ( p r e = ” NotMayShared ( l1 , l 2 ) ; ”
8 ” MustShared ( l2 , l 3 ) ” ,
9 p o s t = ” ” ,

10 g e n e r a t e d P o s t A n n o t a t i o n = ” ” )
11 /∗ a n a l y s i s g e n e r a t e s : ”MayShared ( l1 , l 2 ) ; ”
12 ”NotMayShared ( l2 , l 3 )” ∗ /
13 p u b l i c s t a t i c vo id foo ( L i s t l1 , L i s t l2 , L i s t l 3 ) {
14 l 1 = l 2 ;
15 l 3 . c l e a r ( ) ;
16 }

Figure 8. Annotations Example

straction. We apply a formal/actual parameter mapping to connect
names at the caller and callee sites.

If a callee post-annotation shows a may-shared or must-shared
relation between two local variables, we add the corresponding
sharedness pair. If the post-annotation shows a not-may-shared
relation between two locals, we remove pairs containing these two
locals from the abstraction.

Consider the example in Figure 8. If the analyzing method calls
foo(a,b,c), our analysis adds sharedness pair (m(a), n(b)) to the
connection and removes pair (n(b), p(c)) from the connection,
where m,n, p are object representatives for a, b, c respectively.

Verification and inference of post-annotations. If the developer
specifies post-annotations, our analysis will verify that they are cor-
rect. To ease the annotation burden, our analysis supports automatic
inference of post-annotations. We synthesize post-annotations as
follows. As always, we read the pre-annotation and create an initial
value based on it. We then analyze the method as usual, which gen-
erates sets of pairs at all tails of the method’s control-flow graph.
We combine all of these pairs to get a single set.

If the developer has manually specified a post-annotation, we
verify that the analysis result implies the post-annotation—that is,
all sharedness relations in the analysis result must also be in the
post-annotation. It is unsound to omit sharedness pairs, since such
an omission implies disjointness. Otherwise, we add the generated
post-annotations to the metadata for the callee method.

3.4 Sharedness Updates
Recall that a sharedness pair in our abstraction indicates that col-
lections `1 and `2 either contain objects o1 and o2 which may-alias,
or collections `′1 and `′2 which are not disjoint. While our transfer
function automatically creates some sharedness pairs (for instance
after a call to addAll()), it will miss pairs that arise as a result
of aliasing between objects. Therefore, after every statement, our
transfer function ensures that the set of sharedness pairs in the ab-
straction is complete, as follows.

• Given containment pairs (`1, o1) and (`2, o2), if o1 and o2 may-
alias (or must-alias), add sharedness pair (`1, `2).
• Given containment pairs (`1, `

′
1) and (`2, `

′
2), if the abstrac-

tion contains sharedness pair (`′1, `′2), then add sharedness pair
(`1, `2). (Note that this condition is always true for external col-
lections, as they are shared with all pre-existing collections.)

We repeat these steps until we reach a fixed point.

4. Experience
We next describe our experience using our implementation of our
collection disjointness analysis on two open source Java projects,
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SableCC JavaCC
Total analysis time (seconds) 213 278
Peak memory usage (Mb) 772 1754
Methods analyzed 1824 1066
Methods calling collection operations 549 134
Methods taking collection arguments 46 28
Methods taking 2+ collection arguments 1 6
Single-collection methods 267 45
Not-May-Shared Collections found 12 0

Figure 9. Experimental Results

1 p r i v a t e s t a t i c vo id l i s t S p l i t ( L i s t t o S p l i t , L i s t mask ,
2 L i s t pa r t InMask , L i s t r e s t ) {
3 OuterLoop :
4 f o r ( i n t i = 0 ; i < t o S p l i t . s i z e ( ) ; i ++) {
5 f o r ( i n t j = 0 ; j < mask . s i z e ( ) ; j ++) {
6 i f ( t o S p l i t . g e t ( i ) == mask . g e t ( j ) ) {
7 p a r t I n M a s k . add ( t o S p l i t . g e t ( i ) ) ;
8 c o n t i nu e OuterLoop ;
9 }

10 }
11 r e s t . add ( t o S p l i t . g e t ( i ) ) ;
12 }
13 / / {( r e s t , par t InMask ) , ( r e s t , temp$7 ) , ( par t InMask , temp$6 )}
14 }
15

16 p u b l i c s t a t i c L i s t g e n F o l l o w S e t ( L i s t p a r t i a l M a t c h e s ,
17 Expans ion exp ,
18 long g e n e r a t i o n ) {
19 L i s t v = . . . ;
20 L i s t v1 = new A r r a y L i s t ( ) ; L i s t v2 = new A r r a y L i s t ( ) ;
21 l i s t S p l i t ( v , p a r t i a l M a t c h e s , v1 , v2 ) ;
22 }

Figure 10. Unannotated JavaCC code snippets.

SableCC and JavaCC, and include interesting results that we found
on snippets of code from these projects. SableCC [5] is an open
source parser generator in Java designed by Etienne Gagnon; it
generates parsers for LALR languages. We analyzed SableCC ver-
sion 3.2. JavaCC [2] (Java Compiler Compiler) is a second Java
open source parser generator; it generates top-down parsers. We
analyzed JavaCC version 4.2. Note that we analyze the parser gen-
erators themselves rather than any generated parsers.

Figure 9 presents benchmark characteristics, statistics about the
running times of our analysis on these benchmarks, and counts of
the results that we found. We did not find any disjoint pairs of
collections in JavaCC, while we found 12 disjoint pairs of collec-
tions in SableCC. We ran the analysis on a desktop computer with
a 3.20 GHz Intel Pentium D with 3.5GB of memory. The anal-
ysis times (hundreds of seconds) and peak memory usage (772–
1754Mb) are large but tractable. Note that 30% (SableCC) or 10%
(JavaCC) of methods call at least one collection operation. Note
also that many methods work with only a single collection; dis-
jointness between collections is not relevant to such methods.

Disjointness Annotations. Figure 9 also shows that 46 methods
in SableCC and 28 methods in JavaCC take collections as argu-
ments. We manually added pre-annotations to all methods that
take at least two collections as arguments—1 in SableCC and 6 in
JavaCC. We also added selected post-annotations to mitigate coarse
approximations from the static analysis. Figures 10–11 illustrate
how pre-annotations and developer-provided post-annotations con-
tribute to our analysis results, in the context of two methods from
the LookaheadWalk class in JavaCC. Note that genFollowSet()
calls listSplit(), which splits a given list into two parts relative
to a mask. The two parts are stored separately into two lists.

1 @ l i s t a n o ( p r e =” MayShared ( t o S p l i t , mask ) ; ”
2 ” NotMayShared ( par t InMask , r e s t ) ” ,
3 p o s t =” MayShared ( t o S p l i t , p a r t I n M a s k ) ; ”
4 ” MayShared ( t o S p l i t , r e s t ) ; ”
5 ” MayShared ( mask , p a r t I n M a s k ) ” )
6 p r i v a t e s t a t i c vo id l i s t S p l i t ( L i s t t o S p l i t , L i s t mask ,
7 L i s t pa r t InMask ,
8 L i s t r e s t ) {
9 / / method code . . .

10 / / {( r e s t , par t InMask ) , ( r e s t , temp$7 ) ,
11 / / ( par t InMask , temp$6 ) , ( t o S p l i t , mask )}
12 }
13

14 p u b l i c s t a t i c L i s t g e n F o l l o w S e t ( L i s t p a r t i a l M a t c h e s ,
15 Expans ion exp ,
16 long g e n e r a t i o n ) {
17 L i s t v = . . .
18 L i s t v1 = new A r r a y L i s t ( ) ; L i s t v2 = new A r r a y L i s t ( ) ;
19 l i s t S p l i t ( v , p a r t i a l M a t c h e s , v1 , v2 ) ;
20 / / {( v , v1 ) , ( v , v2 ) , ( p a r t i a l M a t c h e s , v1 ) ,
21 / / ( v , p a r t i a l M a t c h e s ) , ( v1 , v2 ) )}
22 }

Figure 11. JavaCC snippets with pre- and post-annotations

Figure 10 first shows our analysis results in the absence of
annotations. Our analysis follows the call graph and analyzes
listSplit() first. At the end of listSplit(), we find two
containment pairs (rest,temp$7) and (partInMask, temp$6), where
temp$7 and temp$6 are local variables introduced by the Jimple
intermediate representation, and a sharedness pair (rest, partIn-
Mask), indicating that rest and partInMask may share values at the
end of the callee method. However, without annotations, our in-
traprocedural analysis of genFollowSet() does not know about
the behaviour of its callee, listSplit(). We must conservatively
conclude that all collections may share elements after every method
call. Annotations enable us to sharpen our analysis results.

Figure 11 shows both pre-annotations and post-annotations. At
the end of listSplit(), toSplit is may-shared with both part-
InMask and rest, since toSplit is possibly stored in both partIn-
Mask and rest. mask and partInMask are also may-shared, since
all masked elements in toSplit are possibly stored in partInMask.
We therefore add the post-annotation “MayShared(toSplit, partIn-
Mask); MayShared(toSplit, rest); MayShared(mask, partInMask)”.

When analyzing the method call at line 19, our analysis com-
putes sharedness pairs (v,v1),(v,v2), and (partialMatches,v1), which
reflect the may-shared relation between v and v1, v and v2, and par-
tialMatches and v1.

Remark on single-collection methods. We analyze methods
which take a single collection as an argument by conservatively
treating this collection as an external collection which is may-
shared with all other collections. To generate sound results, we
require pre-annotations for methods that takes more than one col-
lection as arguments. Such methods are rare in practice.

4.1 Disjointness results from SableCC
We next present the disjointness results from SableCC, which
are in methods createParser() (8 pairs) and createLexer()
(4 pairs), from classes org.sablecc.sablecc.GenParser and
org.sablecc.sablecc.GenLexer respectively. We have veri-
fied their disjointness through manual inspection.

Figure 12 depicts the results of our analysis on the createParser()
method. We briefly discuss the structure of this method.

1. Vector r173 is instantiated, gets four int arrays, added to another
r170 vector, converted to an enumeration, and written out.

2. Vector r279 is instantiated, gets two int arrays, added to vector
r277, converted to an enumeration, and written out.
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r170

r173

$r205 $r244 $r226 $r254

r351 $r386

$r303 $r319

r279 r277

contains

contains

The above five collections are disjoint, except (r170,r173) and
(r277,r279).

Figure 12. Analysis results for createParser().

3. Vector r351 is instantiated, gets a String, is converted to an
Enumeration, and its length written out.

We manually inspected the Jimple code for this method to con-
firm our analysis results, which contain all expected pairs, such as
{(r351, r173)}, and no unexpected pairs (e.g. (r170, r173)). We
have not yet sampled arbitrary code to compare our disjointness
results with the ground truth.

5. Related Work
In this section, we discuss object representatives, heap reachability
analysis, and static reasoning about contents of containers.

Object Representatives. Object representatives [1] provide pre-
cise must and not-may alias analysis results. Our analysis employs
object representatives to represent abstract objects in our data-
flow sets, simplifying the transfer function calculations and making
our data-flow sets easy-to-understand. Object representatives deter-
mine whether two objects (rather than containers) are disjoint in the
heap. Our disjointness analysis can be seen as a generalization of
object representatives from individual objects to collections.

Disjointness Analysis for Java-like Languages. The disjointness
analysis for Java-like languages by Jenista, Eom and Demsky [7]
has the same goal as our analysis. However, it reasons about dis-
jointness by creating a static heap reachability graph and declaring
collections disjoint if they are not mutually reachable. We instead
use containment and sharedness pairs to reason about the heap; we
are insensitive to the details of container implementation, and in-
stead use the Collections API to understand the program. Our ap-
proach is therefore limited to a given set of implementations of
data structures, but is much less complex than their approach. The

two approaches should be equally effective on their mutual domain.
Differences may arise from Jenista et al’s use of summary nodes.
Note also that their analysis applies to Bamboo, which is a task-
based extension to Java that they have developed.

Static Reasoning about Contents of Containers. Dillig, Dillig
and Aiken have developed a technique for precisely and automat-
ically monitoring the contents of containers [4]. Their approach
classifies containers into two types: position-dependent containers
and value-dependent containers. Like us, their analysis focusses on
understanding the contents of containers without regard to how
those containers are implemented. However, they instead model
container contents (not just relationships between containers), us-
ing functions that convert a key into an abstract (integer) index, and
then map this index to elements in the container. Container opera-
tions may read from, write to, and allocate abstract containers.

The key difference between approaches lies in the choice of ab-
straction. Our abstraction is more lightweight. We define contain-
ment pairs to monitor objects contained in containers and employ
object representatives to represent contained objects. Our analysis
of the contents of collections is not as precise as their approach
is, due to the difference in abstractions. However, our analysis can
still provide sound results in finding not-may-shared collections.
The results are not directly comparable, as their approach works
for C and C++, while ours works for Java.

6. Conclusion
We have defined the notion of disjointness between collections and
presented an intraprocedural analysis to calculate disjointness rela-
tions, along with an annotation language for specifying disjointness
at method entry and exit. Our analysis hard-codes the semantics of
the Java Collections API into its transfer function. We have imple-
mented our analysis in the context of the Soot framework [10] and
presented experimental results. Our collection-disjointness analy-
sis enables light-weight specifications, which contribute to program
understanding, verification and parallelization.
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