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Late binding and subtyping create run-time overhead for object-oriented languages, especially in
the context of both multiple inheritance and dynamic loading, for instance for Java interfaces. In
a previous paper, we have proposed a novel approach based on perfect hashing and truly constant-
time hashtables for implementing subtype testing and method invocation in a dynamic loading
setting. In this �rst study, we based our e�ciency assessment on Driesen's abstract computational
model from the time standpoint, and on large-scale benchmarks from the space standpoint. The
conclusions were that the technique was promising but required further research in order to assess
its scalability.

This article presents some new results that further highlight the bene�ts of this approach. We
propose and test both new hashing functions and an inverted problem which amounts to selecting
the best class identi�ers in order to minimize the overall hashtable size. Experiments within an
extended testbed with random class loading and under reasonable assumptions about what should
be a sensible class loading order show that perfect hashing scales up gracefully. Furthermore, we
tested perfect hashing for subtype testing and method invocation in thePrm compiler and compare
it with the coloring technique that amounts to maintaining the single inheritance implementation
in multiple inheritance. The results exceed our expectations and con�rm that perfect hashing
must be considered for implementing Java interfaces.

Categories and Subject Descriptors: D.3.2 [Programming languages]: Language classi�ca-
tions�object-oriented languages; C++; Java; D.3.3 [Programming languages]: Language
Constructs and Features�classes and objects; inheritance; D.3.4 [Programming languages]:
Processors�run-time environments; E.2 [Data]: Data Storage Representations�hash-table rep-
resentations; object representations
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Additional Key Words and Phrases: casting, coloring, downcast, dynamic loading, interfaces,
method tables, multiple inheritance, multiple subtyping, perfect hashing, single inheritance, sub-
type test, virtual function tables

1. INTRODUCTION

The implementation of object-oriented languages represents an important issue in
the context of both multiple inheritance and dynamic loading. In a recent arti-
cle [Ducournau 2008], we identi�ed three requirements that all implementations
of object-oriented languages, especially in this context, should ful�l�namely (i)
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constant-time, (ii) linear-space and (iii) inlining. This implementation issue is ex-
empli�ed by the two most used languages that support both features, namely C++
and Java. When the virtual keyword is used for inheritance, C++ provides a
fully reusable implementation, based on subobjects, which however implies a lot
of compiler-generated �elds in the object layout and pointer adjustments at run-
time1. Moreover, it does not meet the linear-space requirement and there is no
known e�cient subtype test available for this implementation. Java provides mul-
tiple inheritance of interfaces only but, even in this restricted setting, the current
implementations are not constant-time (see for instance [Alpern et al. 2001]). The
present research was motivated by this observation�though object-oriented tech-
nology is mature, the ever-increasing size of object-oriented class libraries makes
the need for scalable implementations urgent and there is still considerable doubt
over the scalability of existing implementations.
In the aforementioned article, we proposed a new technique, called perfect hash-

ing (PH), for subtyping tests and method invocation. To our knowledge, perfect
hashing is the �rst and only technique that ful�ls all �ve requirements. However,
our experiments only concluded that the technique was promising and the need
for further research was stressed. Two hashing functions were actually considered,
namely modulus, i.e. the remainder of integer division, denoted hereafter mod, and
bit-wise and. However, these two functions involve a tradeo� between space and
time e�ciency. The former yields more compact tables but the integer division
latency may be more than 20 cycles, whereas the latter is a 1-cycle operation but
yields larger tables.
In this article, we present the results of recent experiments that show that perfect

hashing provides a very e�cient implementation for object-oriented languages, in
a multiple inheritance and dynamic loading framework.

1.1 Perfect Hashing for Object Implementation

The problem can be formalized as follows. Let (X,�) be a partial order that
represents a class hierarchy, namely X is a set of classes and � the specialization
relationship that supports inheritance. The subtype test amounts to checking at
run-time that a class c is a superclass of a class d, i.e. d � c. Usually d is the dynamic
type of some object and the programmer or compiler wants to check that this
object is actually an instance of c. The point is to e�ciently implement this test by
precomputing some data structure that allows for constant time. Dynamic loading
adds a constraint, namely that the technique should be inherently incremental.
Classes are loaded at run-time in some total order that must be a linear extension

(aka topological sorting) of (X,�)�that is, when d ≺ c, c must be loaded before d.
The perfect hashing principle is as follows. When a class c is loaded, a unique

identi�er idc is associated with it and the set Ic = {idd | c � d} of the identi�ers of
all its superclasses is known�if needed, yet unloaded superclasses are recursively
loaded. So, c � d i� idd ∈ Ic. This set Ic is immutable, hence it can be hashed

1When this virtual keyword is not used, the implementation is markedly more e�cient but no
longer fully reusable because it yields repeated inheritance�so the language is no longer compatible
with both multiple inheritance and dynamic loading. In the following, we only consider C++
under the �rst implementation.
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load [object + #tableOffset], table

load [table + #hashingOffset], h

and #interfaceId, h, hv

sub table, hv, htable

load [htable +#htOffset-fieldLen], id
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call method
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Pointers and pointed values are in roman type with solid lines, and o�sets are italicized with dotted
lines. The grey rectangle denotes the group of methods introduced by the considered interface.

Fig. 1. Perfect Hashing for Java�Code sequence in Driesen's pseudo-language, for subtype testing
(left) and method invocation (right) and method table layout (bottom)

with some perfect hashing function hc, that is, a hashing function that is injective
on Ic [Sprugnoli 1977; Czech et al. 1997]. The previous condition becomes: c � d
i� htc[hc(idd)] = idd, whereby htc denotes the hashtable of c. Moreover, the
cardinality of Ic is denoted nc. The technique is obvioulsy incremental since all
hashtables are immutable and the computation of htc only depends upon Ic. To
our knowledge, PH is the only constant-time technique for subtype testing that
allows for both multiple inheritance and dynamic loading at reasonable spatial
cost.
In a static typing setting, the technique can also be applied to method invocation

and we did propose, in the aforementioned article, an application to Java interfaces.
For this, the hashtable associates, with each implemented interface, the o�set of the
group of methods that are introduced by the interface. Figure 1 recalls the precise
implementation in this context and the corresponding sequence code in the pseudo-
language of Driesen [2001]. The method table is bidirectional. Positive o�sets
involve the method table itself, organized as with single inheritance. Negative
o�sets consist of the hashtable, which contains, for each implemented interface,
the o�set of the group of methods introduced by the interface. The object header
points at its method table by the table pointer. #hashingOffset is the position
of the hash parameter (h) and #htOffset is the beginning of the hashtable. At
a position hv in the hashtable, a two-fold entry is depicted that contains both
the implemented interface ID, that must be compared to the target interface ID
(#interfaceId), and the o�set iOffset of the group of methods introduced by the
interface that introduces the considered method. The table contains, at the position
#methodOffset determined by the considered method in the method group, the
address of the function that must be invoked. To our knowledge, PH is, together
with C++ subobject-based implementation, the only constant-time technique for
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method invocation that allows for both multiple inheritance and dynamic loading
at reasonable spatial cost.
Application to plain multiple inheritance would also need to deal with attribute

access. It is possible by associating, with each superclass, the o�set of the group
of attributes introduced by this class. This makes the hashtable entries 3-fold�
the class ID and the o�sets of method and attribute groups. Such a technique,
called accessor simulation in [Ducournau 2006], can be derived from any method
invocation technique. However, with perfect hashing, the technique will likely be
time-ine�cient. Besides subtype testing, which does not depend on whether typing
is static or dynamic, the other perfect hashing applications only work in static
typing.

1.2 Limitations of Previous Work

In our previous work, we considered one-parameter collision-free hashing functions
such that hc(x) = hash(x,Hc), whereby Hc is the hashtable size. Two functions
were considered for hash, namely modulus (noted mod) and bit-wise and2. Both
represent a single instruction function. However, only bit-wise and is a 1-cycle
instruction�actually, the latency of integer division is commonly more than 20
cycles. In both cases, Hc is de�ned as the least integer such that hc is injective on
the set Ic. The algorithms for computing Hc are both e�cient and straightforward
(see Appendix B). So the point at issue is memory occupation.
In the aforementioned article, we computed the Hc parameters on a set of large-

scale benchmarks commonly used in the object-oriented compilation community.
Our requirement for space-linearity means that the memory occupation for this
kind of tables should be linear in the cardinality of the specialization relationship
�. This cardinality is exactly the space required by the technique known as Cohen's
display, proposed by Cohen [1991] for single inheritance.
The results of our tests were encouraging but not perfect�namely, PH-mod re-

quires a little more than twice the cardinality of �, but PH-and appears to be
much more greedy, especially in the case of a very large benchmark (IBM-SF). So
the scalability of PH-and was not certain.
These �rst experiments left a number of issues open:

�First of all, PH parameters depend on the class IDs which are assigned as classes
are loaded and numbered, hence they might vary according to class loading or-
ders. However, we only considered a single arbitrary order for loading classes�
this ordering was likely a top-down depth-�rst linear extension that might be far
from representative of actual class loading orders.

�We proposed a variant based on quasi-perfect hashing (qPH) [Czech 1998], that
yields at most one collision per hashed value, hence a 2-probe test; this gives
more compact tables at the expense of less e�cient code; however, we failed to
identify 2-parameter hashing functions that might reduce the table size at the
expense of smaller time overhead.

�We proposed to improve perfect hashing by optimizing the identi�er idc of the
currently loaded class: however, the technique, called perfect numbering, yielded

2With and, the exact function maps x to and(x, Hc − 1).
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strange results, so we did not include them in the article.

�Finally, our assessment of time-e�ciency relied on an abstract processor model
borrowed from Driesen [2001]; though we believe in the model validity, it should
obviously be complemented by empirical time measurement.

1.3 Contributions and Plan

In this paper, we propose answers to these di�erent issues:

�We have extended our testbed in order to generate class loading orders at random;
potentially, any order can be generated; though the complete combinatorics is
intractable, this gives rough statistics and a strong indication about the behavior
of the various techniques.

�We have tested perfect class numbering with both mod (PN-mod) and and (PN-
and) in this new setting, which better explains the observed odd behavior of
PN-and. Furthermore, we proved a simple optimality condition for PN-and in
single inheritance situations.

�We also propose several 2-parameter functions and test them in our extended
testbed.

�All of these techniques are then tested based on the assumption that only leaf-
classes can have instances��make all non-leaf classes abstract� says Meyers [1996].

�Finally, all of these experiments are repeated with benchmarks that simulate the
Java distinction between classes and interfaces.

Besides these results, which only address the space-e�ciency of perfect hashing,
we have implemented PH in the compiler of a real language, Prm [Privat and
Ducournau 2005], and tested its time-e�ciency on real programs, namely the Prm
compiler itself. In this setting, perfect hashing is compared to coloring, which
is likely the most e�cient implementation technique without global optimization
[Ducournau 2006], and to an incremental version of coloring proposed by Palacz and
Vitek [2003], that we have already compared to perfect hashing in [Ducournau 2008].
The tests have been performed on a variety of processors of the x86 architecture.
Overall, these new tests overcome all of our previous reservations about the use of

perfect hashing for implementing object-oriented languages. In a dynamic loading
setting, we consider now that the technique is e�cient from both space and time
standpoints. So it should be considered by language implementors: (i) for subtype
testing in all languages with multiple inheritance, (ii) for implementing interfaces
in all languages with multiple subtyping (e.g. Java, C#, Ada, etc.). However,
using perfect hashing for attribute access, hence complete object implementation,
requires further research and tests.
The article is structured as follows. Section 2 presents the core of this work,

namely hashing functions, experiments and statistical results, in the context of plain
multiple inheritance, and then similar experiments and results in the context of
Java interfaces. All these experiments concern space-e�ciency. Section 3 describes
the experiments that have been done in the Prm compiler and provide a �rst
empirical assessment of the run-time time-e�ciency. Finally, Section 4 discusses
conclusions and future works. An appendix gathers some simple mathematical
results about bit-wise and perfect hashing�especially a lower bound that is proven
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to be the perfect numbering optimal in case of single inheritance�and presents
some algorithms for computing PH parameters.
This article is the continuation of [Ducournau 2008]. We have tried to make

it as self-contained and short as possible, but we sometimes refer to the original
article�hereafter it will be abbreviated phapst (Perfect Hashing as an Almost
Perfect Subtype Test). There is no discussion of related works here, since this
was done at length in phapst and we are not aware of any new results on related
topics. Interested readers are referred to phapst for a more in-depth presentation
and discussion of subtype testing, perfect hashing and all related topics.

2. SPACE-EFFICIENCY TESTS

Our original testbed consists of a set of large-scale benchmarks that are commonly
used in the object-oriented compilation community, together with a set of programs
for computing various parameters that are either characteristics of the class hierar-
chies or the size requirement of various implementation techniques. So this testbed
provides simulation of the memory occupation of these various techniques. The sim-
ulation is exact and reproducible, except for techniques that rely on heuristics or
depend on some run-time input, for instance class loading order. Besides phapst,
this testbed has been used in di�erent simulations [Ducournau 2009; 2006]. For
this article, we have extended this testbed in two directions, by computing random
class loading orders and de�ning new perfect hashing variants.

2.1 Class Loading at Random

In a �rst set of experiments, we have computed various perfect hashing parameters
while loading classes at random. The precise testbed involves generating a random
class loading order, by selecting a class at random from the set of maximal yet
unloaded classes, until all classes are loaded. Then, for each class loading order, all
PH parameters are computed. This is repeated thousands of times.
The statistics presented in Tables I and II present minimum, average and max-

imum values over randomly generated class loading orders. We now only consider
PH-mod and PH-and columns, whose results presented in phapst are also recalled.
We have also tested qPH-and, but we do not include the results here, as they
are not good enough to o�set the time overhead. These numbers are all ratios
ρ =

∑
cHc/

∑
c nc that represent the space-linearity factor. Of course ρ ≥ 1.

Moreover, ρ = 2 ensures a good e�ciency on average for usual hashtables based on
linear probing [Morris 1968; Knuth 1973; Vitter and Flajolet 1990]. In Table II,
the �rst column presents a lower bound for bit-wise functions�actually, hashing n
numbers requires at least dlog2 ne 1-bits and, conversely, a mask with k 1-bits can
hash a set of 2k numbers (see Appendix A).
The conclusions of these �rst experiments are as follows:

�in all cases, the results presented in phapst are close to the minimum values,
hence rather optimistic;

�for modulus, the variations are not really signi�cant�actually, the ratio between
the maximum and minimum observed values is never greater than 1.6;

�for bit-wise and, the variation can be much more important�the same max/min
ratio can be greater than 30; on the other hand, the ratio between the average
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Table I. Statistics over random class loading orders with modulus
3130 N nc PN-and+mod PN-mod PH-and+mod PH-mod
2.7 avg min avg max min avg max min avg max ref min avg max

IBM-SF 8793 9.2 1.7 1.9 2.2 1.9 2.2 2.8 2.1 2.2 2.6 2.5 2.5 2.9 3.4
JDK1.3.1 7401 4.4 1.2 1.3 1.4 1.3 1.3 1.5 1.5 1.6 1.7 1.9 1.9 2.0 2.2
Java1.6 5074 4.4 1.3 1.3 1.4 1.3 1.4 1.5 1.5 1.6 1.7 1.9 1.9 2.0 2.3
Orbix 2716 2.8 1.1 1.1 1.2 1.1 1.2 1.3 1.3 1.4 1.5 1.6 1.5 1.7 2.0
Corba 1699 3.9 1.2 1.3 1.5 1.2 1.4 1.7 1.5 1.6 1.8 1.7 1.7 1.9 2.4
Orbacus 1379 4.5 1.3 1.4 1.6 1.3 1.5 1.8 1.6 1.7 1.8 1.8 1.9 2.1 2.4
HotJava 736 5.1 1.3 1.5 1.7 1.3 1.5 2.1 1.6 1.7 1.9 1.9 1.8 2.1 2.5
JDK.1.0.2 604 4.6 1.1 1.3 1.5 1.2 1.3 1.4 1.5 1.6 1.9 1.8 1.7 2.0 2.5
Self 1802 30.9 1.6 2.7 3.3 1.3 2.4 3.2 1.9 2.2 2.4 2.1 2.0 2.3 2.5
Geode 1318 14.0 2.1 2.5 3.2 2.2 2.8 3.8 2.4 2.7 3.1 3.0 3.0 3.3 3.9
Vortex3 1954 7.2 1.5 1.6 1.8 1.6 1.7 1.9 1.8 2.0 2.1 2.1 2.3 2.5 2.7
Cecil 932 6.5 1.4 1.5 1.7 1.4 1.6 1.8 1.7 1.8 2.1 2.0 2.1 2.3 2.6
Dylan 925 5.5 1.2 1.3 1.4 1.1 1.2 1.5 1.4 1.6 1.9 1.6 1.7 1.9 2.4
Harlequin 666 6.7 1.5 1.7 1.8 1.6 1.8 2.0 1.8 1.9 2.1 2.0 2.2 2.4 2.6
Lov-obj-ed 436 8.5 1.7 1.9 2.1 1.8 2.0 2.3 1.9 2.1 2.3 2.3 2.3 2.5 2.8
SmartEi�el 397 8.6 1.2 1.4 2.0 1.2 1.3 2.0 1.6 1.8 2.2 1.9 1.7 2.1 2.7
Unidraw 614 4.0 1.1 1.2 1.3 1.1 1.2 1.3 1.4 1.5 1.7 1.7 1.7 1.8 2.2
PRMcl 479 4.6 1.2 1.3 1.4 1.2 1.3 1.4 1.5 1.6 1.8 1.8 1.7 1.9 2.2
Total 37925 7.3 1.5 1.9 2.2 1.5 1.9 2.4 1.8 2.0 2.2 2.2 2.2 2.4 2.8

The top-left number is the sample count for each benchmark. The �rst columns present the class
number N of each benchmark and the average value of nc on all classes. All other numbers are ratios
ρ =

P
c Hc/

P
c nc, whereby the sum is obtained for all classes, Hc is the hashtable size and nc ≥ 1 is

the number of superclasses of c including itself (the denominator is the cardinality of �). The minimum,
average and maximum values of ρ are presented for each technique and the `ref' column recalls the tests
presented in phapst. Line �Total� sums parameter N on all benchmarks and represents, for all other
columns, the same ratios as for each benchmark, but computed from the sum of the corresponding
parameters on all benchmarks, i.e. when a column depicts some pb/qb ratio for each benchmark b, the
last line is

P
b pb/

P
b qb. Italic numbers are PN avg or max that are greater than the corresponding

PH min or avg. Bold numbers are PN max that are less than PH min.

and minimum values is never greater than 2, so most of the class loading orders
should yield more acceptable results.

Overall, our previous conclusions about PH-mod are con�rmed, namely, with this
hashing function the ratio ρ is not much greater than 2, hence close to the linear
probing optimal. On the contrary, PH-and can be dramatically ine�cient�ρ can be
greater than 200�and it only depends on the class loading order which is a problem
input. However, all linear extensions are not sensible class loading orders. So an
open issue involves modelling class loading orders. This issue will be addressed in
Section 2.4. Anyway, the PH-and minimum is about twice the PH-mod maximum�
hence, restricting class loading orders will likely not su�ce to make PH-and as good
as PH-mod.

2.2 Perfect Class Numbering

In phapst, we proposed a variant of perfect hashing that amounts to optimizing
the class identi�er idc in order to minimize the Hc parameter. So, instead of
numbering classes as they are loaded, the Hc parameter is �rst computed from the
superclass identifers, before computing the best idc that �ts the resulting hashtable.
The approach was called perfect numbering (PN). Note that the code generated for
PN is exactly the same as that for PH, so they have the same time-e�ciency�
the only di�erence involves computation of the Hc and idc parameters. Moreover,
this computation only involves a slight overhead over that of PH (see Appendix B).
Hence, PN must always be preferred to PH when the space improvement is e�ective.
We tested perfect class numbering in the context of both mod and and functions.
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Table II. Statistics over random class loading orders with bit-wise and

3130 PN-and+shift PN-and PH-and+shift PH-and
2.6 2dlog2(nc)e min avg max min avg max min avg max ref min avg max

IBM-SF 1.42 2.5 4.5 30.0 3.5 8.6 76.1 4.8 8.2 58.6 10.4 10.1 19.0 118.8
JDK1.3.1 1.24 1.5 1.8 5.3 1.9 3.5 32.6 2.5 3.3 9.9 11.7 6.6 10.6 71.2
Java1.6 1.27 1.5 1.9 8.3 2.1 3.7 32.0 2.5 3.4 10.8 7.7 6.5 10.2 92.6
Orbix 1.13 1.2 1.4 3.2 1.3 1.9 32.3 1.6 2.0 23.2 4.4 4.1 5.9 67.8
Corba 1.19 1.4 1.9 9.6 1.7 2.9 34.5 2.2 3.1 18.6 5.1 4.6 7.1 69.7
Orbacus 1.20 1.5 2.3 14.9 2.1 4.0 34.2 2.5 3.8 16.5 5.3 5.4 8.8 48.2
HotJava 1.31 1.5 2.2 8.0 1.7 3.5 23.2 2.5 4.1 15.7 6.4 4.9 8.0 27.3
JDK.1.0.2 1.30 1.3 1.5 6.1 1.3 1.8 11.0 2.2 3.4 22.5 7.4 4.1 7.1 28.3
Self 1.30 2.0 3.9 7.8 2.1 4.0 7.8 6.3 9.2 17.4 5.9 6.3 9.2 17.5
Geode 1.48 2.9 6.7 24.4 4.6 9.0 28.5 6.0 11.0 26.5 11.5 8.6 15.0 33.0
Vortex3 1.33 2.0 2.9 7.7 2.6 4.7 16.3 3.9 5.9 21.6 11.0 7.2 12.3 36.0
Cecil 1.28 1.7 2.5 10.3 1.8 3.8 12.4 3.2 5.0 13.3 8.3 5.1 9.3 31.8
Dylan 1.35 1.4 1.6 5.1 1.4 1.6 5.1 4.3 6.9 29.2 4.6 4.3 6.9 29.2
Harlequin 1.32 2.0 3.1 7.1 2.3 4.0 9.1 3.3 5.3 14.9 5.9 5.8 9.0 18.5
Lov-obj-ed 1.38 2.6 4.0 9.3 3.0 5.2 11.1 4.0 6.3 11.4 6.3 5.7 8.7 16.1
SmartEi�el 1.41 1.4 1.9 12.1 1.4 1.9 12.1 4.4 7.0 16.0 4.6 4.4 7.0 16.0
Unidraw 1.27 1.3 1.3 2.9 1.3 1.3 3.0 1.9 2.7 9.6 4.2 4.0 6.1 27.8
PRMcl 1.31 1.3 1.5 6.0 1.4 2.0 9.0 2.2 3.1 8.4 4.4 4.0 6.4 18.3
Total 1.33 2.0 3.5 15.2 2.6 5.4 36.5 4.3 6.8 28.8 8.6 7.3 12.5 65.3

The table follows the same convention as Table I. The �rst column presents the lower bound for bit-wise

hashing, as a ratio
P

c 2dlog2(nc)e/
P

c nc which is always in interval [1, 2[.

Contrary to plain perfect hashing which relies on a straightforward mathematical
de�nition�namely, the Hc parameter is the least integer that makes the hashing
function injective�there is not such a simple de�nition for perfect numbering. It
actually consists of a greedy optimization that does not ensure any formal mini-
mization of

∑
cHc. So we only propose a heuristic that might well be improved by

further research.
Let I ′c = {idd | c ≺ d} be the set of identi�ers of all of the strict superclasses of

c. Hc is now de�ned as the least integer such that (i) hc is injective on the set I ′c
and (ii) the resulting hashtable has some free entry for an extra identi�er. In the
mod case, Hc is simply de�ned as the least integer greater than or equal to nc (the
cardinality of Ic) such that hc is injective on I

′
c�hence, the resulting hashtable has

at least one empty entry, say i, and for all k, i+ kHc is a suitable identi�er for c.
With and, a hashtable may have a lot of empty entries, while being full in the

sense that no other number can be hashed within it. This follows from the fact that
the hashtable capacity depends on the 1-bit count of the mask, not on its magnitude
(see Appendix A). So, Hc is now de�ned as parameter H ′c computed for PH-and
on I ′c if the bit-wise mask (i.e. H ′c − 1) has at least log2 nc 1-bits. Otherwise, when
nc = 2k + 1 and the bit-wise mask H ′c − 1 has exactly k 1-bits, the least-weight
0-bit of the mask is switched to 1. This ensures that there is a subset of 1-bits in
the mask that forms the o�set of an empty entry in the table. Moreover, PN-and
presents an interesting property�namely it is optimal, i.e. Hc = 2dlog2(nc)e, for all
classes c in single inheritance, that is, such that c and all its superclasses have a
single direct superclass (see Proposition A.5).
With both functions, the identi�er idc is then computed as the least free (i.e. not

yet used as a class identi�er) integer that can be hashed in an empty place in the
resulting hashtable.
This technique was tested on all benchmarks with random class loading and

the results are presented in Tables I and II. The conclusions are that PN always
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markedly improves upon PH. More exactly,

�with mod, the PN maximum is almost always lower than the PH average (the few
exceptions are in italic type in Table I) and often lower than the PH minimum
(in bold type);

�with and, the PN average is always lower than the PH minimum, except again in
a few cases; moreover, the PN minimum is close to PH-mod; however, the PN-and
maximum is generally higher than the PH-and average, though markedly lower
than its maximum.

Note that PN minimum values are far better than the corresponding PH values
because the class numbering associated with PN random are not among those of
PH�indeed PH relies on consecutive numbering.
In phapst, we did not conclude about PN because our �rst results seemed er-

ratic. Actually PH-and is itself erratic, but PN is always an improvement upon
PH. Overall, perfect numbering must always be used instead of perfect hashing.
However, the technique remains space-ine�cient with bit-wise and, at least in the
worst-case orders of class loading. But now, the PN-and minimum is generally bet-
ter than the PH-mod maximum�hence, restricting class loading orders might make
PN-and acceptable.

2.3 Two-Parameter Hashing Functions

Two-parameter hash functions might be an improvement from the space standpoint,
but the extra instruction would likely degrade the time e�ciency unless it is 1-
cycle. In phapst, we actually could not imagine two 1-cyle instructions that would
combine e�ciently.

2.3.1 Modulus-Based Functions. Modulus provides space-e�cient combinations
that are, however, time-ine�cient. Modulus indeed has interesting properties: (i)
it is monotonic in the sense that mod(x, y) ≤ x for all positive integers, (ii) it
is also monotonic in the sense that Hc − 1 ≤ max(Ic), i.e. the maximum index
is lower than the maximum input number, and (iii) it is not associative. Hence,
PH-mod can be recursively applied to the set I2

c = {mod(x,Hc) | x ∈ I1
c } whereby

I1
c = Ic. This yields a series of techniques PH-modi and parameters Hi

c that are
decreasing and quickly convergent. Moreover, PH-mod can also be applied to the
set {and(x,Hc − 1) | x ∈ Ic}�it should improve on PH-and.
We tested PH-mod2, PH-mod∞ and PH-and+mod. They are all better than PH-mod

but only the latter should be considered further because several integer divisions
would be time-ine�cient. However, the results of PN-mod are similar to that of
PH-and+mod, so PN-mod should be preferred. Of course, this combination can
also be applied to perfect numbering, and PN-and+mod gives slightly better results
(Table I).
In contrast, bit-wise and does not provide the same monotonicity, because the

upper bound of HC is only 2dlog2(max(Ic)+1)e ≤ 2 max(IC), so the maximum index
is not decreasing and PH-mod+and does not always improve on PH-mod.

2.3.2 Bit-Wise Functions. As bit-wise and is associative, it is meaningless to
apply it recursively, i.e. PH-and∞=PH-and1. However, bit-wise and can be com-
bined with shift in order to truncate the bit-wise mask and remove all trailing
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Table III. Statistics over random concrete leaf-class loading orders with modulus
25680 class leaf nc PN-and+mod PN-mod PH-and+mod PH-mod

number avg min avg max min avg max min avg max min avg max

IBM-SF 8793 6001 8.8 1.4 1.6 2.0 1.2 1.4 1.8 1.7 1.9 2.2 1.8 2.0 2.4
JDK1.3.1 7401 5806 4.5 1.2 1.3 1.4 1.1 1.2 1.3 1.5 1.5 1.6 1.7 1.8 2.0
Java1.6 5074 3825 4.6 1.2 1.3 1.5 1.1 1.2 1.3 1.5 1.5 1.7 1.7 1.8 2.0
Orbix 2716 2440 2.7 1.0 1.1 1.3 1.0 1.0 1.2 1.3 1.3 1.5 1.4 1.5 1.8
Corba 1699 1473 3.7 1.1 1.2 1.5 1.0 1.1 1.6 1.4 1.5 1.7 1.5 1.7 2.1
Orbacus 1379 954 4.7 1.1 1.3 1.7 1.0 1.1 1.4 1.4 1.6 1.8 1.6 1.8 2.2
HotJava 736 525 5.6 1.2 1.4 1.7 1.1 1.3 1.6 1.4 1.6 1.9 1.6 1.8 2.2
JDK.1.0.2 604 445 4.9 1.1 1.3 1.6 1.0 1.1 1.4 1.4 1.5 1.8 1.5 1.7 2.1
Self 1802 1134 31.9 1.2 1.4 1.9 1.1 1.2 1.6 1.5 1.8 2.2 1.5 1.6 2.2
Geode 1318 732 14.7 1.4 1.7 2.6 1.3 1.6 2.5 1.7 2.0 2.8 1.8 2.1 2.9
Vortex3 1954 1216 7.4 1.3 1.5 1.8 1.2 1.4 1.6 1.6 1.7 2.0 1.8 2.0 2.3
Cecil 932 601 6.8 1.2 1.4 1.7 1.1 1.3 1.5 1.5 1.7 2.0 1.7 1.9 2.2
Dylan 925 806 5.6 1.1 1.3 1.7 1.0 1.2 1.9 1.3 1.5 1.9 1.5 1.7 2.4
Harlequin 666 371 7.5 1.3 1.5 1.8 1.2 1.4 1.6 1.6 1.8 2.0 1.7 2.0 2.2
Lov-obj-ed 436 218 9.9 1.4 1.6 2.0 1.3 1.5 1.9 1.6 1.9 2.2 1.7 2.0 2.5
SmartEi�el 397 311 8.9 1.2 1.3 1.7 1.0 1.1 1.5 1.4 1.6 1.9 1.5 1.7 2.0
Unidraw 614 481 4.0 1.1 1.2 1.4 1.0 1.1 1.2 1.3 1.4 1.6 1.5 1.7 1.9
PRMcl 479 294 5.1 1.1 1.3 1.5 1.0 1.1 1.3 1.4 1.5 1.7 1.6 1.7 2.1
Total 37925 27633 7.0 1.3 1.4 1.8 1.1 1.3 1.6 1.5 1.7 2.0 1.7 1.9 2.2

The �rst columns present the respective class and leaf numbers and the average value of nc on all leaves.
All other numbers are now ratios ρ =

P
c Hc/

P
c nc where the sum is restricted to leaf-classes.

zeros. In that case, the PH-and parameter is de�ned in a slightly di�erent way.
Hc is no longer the least integer that makes hc injective and an extra constraint
is required to minimize the distance between the highest and lowest 1-bits (see the
algorithm in Appendix B.4). Moreover, and and shift can also be combined with
perfect numbering. We tested PH-and+shift and PN-and+shift�the results are
presented in Table II. The e�ect of this combination of and and shift is similar to
that of perfect numbering, i.e. the statistics are roughly twofold lower. The com-
bination with perfect numbering is still better�on average, the result is close to
PH-mod but, in the worst-case orders, the resulting size remains more than twice
that of the PH-and estimation in phapst. So PN-and+shift might be the solution
if we can be sure that the worst-case orders are excluded.

2.4 Leaf-Class Loading at Random

The main issue with these random tests is that bit-wise and is highly dependent on
the class loading order but it is likely that all linear extensions are not sensible class
loading orders. Class loading depends on precise implementation of runtime systems
like virtual machines. However, without loss of generality, one may assume that
class loading is always triggered by the need to instantiate a yet unloaded class�
all other uses of yet unloaded classes could be made lazy. Hence, only concrete,
i.e. nonabstract, classes must be ordered and abstract classes are only inserted
when needed in concrete class orders. As our benchmarks do not record the fact
that a class is or is not abstract (See Appendix B in phapst for a discussion of
these benchmarks), we consider an assumption that is often advocated��make all

non-leaf classes abstract� [Meyers 1996]. This is indeed a common methodological
advice�see for instance [Steimann 2000]. Table III presents the leaf number of
all benchmarks. On average, according to this assumption, there would be a little
more than one abstract class to four classes. This is obviously an upper bound of
the actual ratio, since it is meaningless for a leaf-class to be abstract, and a little
more than the ratio of one to six advocated by Lorenz and Kidd [1994] (however,
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Table IV. Statistics over random leaf-class loading orders with bit-wise and

19025 PN-and+shift PN-and PH-and+shift PH-and
2dlog2(nc)e min avg max min avg max min avg max ref min avg max

IBM-SF 1.42 2.2 3.0 7.5 2.2 3.1 6.2 6.7 8.8 15.1 10.4 7.1 9.3 40.0
JDK1.3.1 1.24 1.4 1.6 5.0 1.6 2.0 6.6 3.9 5.6 20.2 11.7 5.7 8.1 34.4
Java1.6 1.27 1.4 1.7 4.2 1.6 2.1 6.2 3.8 5.7 13.1 7.7 5.6 7.7 20.2
Orbix 1.13 1.1 1.2 6.0 1.2 1.3 3.8 1.7 2.5 7.5 4.4 3.8 4.7 30.1
Corba 1.19 1.3 1.8 5.9 1.4 2.0 6.1 2.6 3.9 10.8 5.1 4.0 5.4 25.7
Orbacus 1.20 1.3 1.6 8.0 1.4 1.9 9.6 3.3 5.0 14.3 5.3 4.1 6.1 18.4
HotJava 1.31 1.4 1.8 3.8 1.5 2.0 3.9 3.1 4.7 7.7 6.4 3.9 5.6 9.8
JDK.1.0.2 1.30 1.3 1.5 3.6 1.3 1.6 3.8 2.7 4.4 9.7 7.4 3.6 5.3 10.7
Self 1.30 1.4 1.6 2.4 1.3 1.6 2.4 4.8 5.8 10.5 5.9 4.8 5.8 10.5
Geode 1.48 2.1 3.0 7.9 2.2 3.2 8.5 5.2 7.3 13.7 11.5 5.3 7.5 13.8
Vortex3 1.33 1.7 2.4 4.9 1.8 2.5 5.0 4.9 7.3 11.8 11.0 5.4 7.9 13.0
Cecil 1.28 1.4 1.9 4.3 1.5 2.1 4.8 4.2 6.0 12.1 8.3 4.6 6.6 12.4
Dylan 1.35 1.4 1.6 12.1 1.4 1.6 12.1 3.9 5.5 20.6 4.6 3.9 5.5 20.6
Harlequin 1.32 1.7 2.4 4.2 1.8 2.5 5.1 3.9 5.8 9.6 5.9 4.2 6.3 10.6
Lov-obj-ed 1.38 1.8 2.6 4.7 1.8 2.7 4.9 3.9 5.5 8.4 6.3 4.1 5.8 8.9
SmartEi�el 1.41 1.4 1.5 2.7 1.4 1.5 2.7 3.8 4.9 7.1 4.6 3.8 4.9 7.1
Unidraw 1.27 1.3 1.4 2.0 1.3 1.4 2.0 2.4 3.6 6.3 4.2 3.3 4.8 10.2
PRMcl 1.31 1.4 1.5 3.5 1.4 1.7 3.7 2.6 4.1 9.7 4.4 3.4 5.0 10.8
Total 1.33 1.7 2.2 5.5 1.7 2.3 5.5 4.9 6.6 13.5 8.6 5.5 7.4 24.2

The table presents exactly the same data as Table II, except that the statistics are restricted to the
subset of class loading orders that are triggered by leaves. Italic numbers are PN max that are greater
than the corresponding PH avg. Bold numbers represent either PN minimums that are optimal, or PN
maximums that are less than the corresponding PH minimums.

at a time when class hierarchies were markedly smaller).
The informal algorithm is as follows. A leaf c is selected at random, and the

set Xc = {x | c � x} is partitioned into two subsets X ′c and X ′′c , that contain,
respectively, already loaded and yet unloaded superclasses, including c. X ′′c is
ordered in a top-down linear extension. For each class x in this order, idx and
Hx are computed. In the PN case, two algorithms can be considered. The �rst
one only substitutes PN for PH in the previous algorithm�each class in X ′′c is
considered separately. An alternative is a global optimisation of X ′′c numbering�
the Hc parameter is computed from the set I ′c = {idx | x ∈ X ′c}, in such a way that
the resulting table has enough free places for the elements in X ′′c . There are actually
pros and cons for both approaches, since PN-and is optimal for single inheritance
classes (Proposition A.5). So mixing both strategies is certainly better. However,
our experiments show that global optimization gives slightly better results. Anyway,
with both hashing functions this involves straightforward extensions of the perfect
numbering functions (see Appendix B for more details).
There is however a huge number of linear extensions�namely, in this restricted

setting, factorial of the number of leaves which may be as many as 6000 in the largest
benchmarks (Table III). So the number of orders is above 1020000�obviously, the
point cannot be to compute exact statistics. It is possible to somewhat reduce this
combinatorial explosion because the set of leaves can be partioned according to their
parents�the way leaves with the same parents are ordered with each other is not
signi�cant. Therefore, a more e�cient algorithm involves taking a set of equivalent
leaves at random, then the �rst element in this set. In this way, the combinatorics
reduces to about 1012000 orders3�this is better though yet exhaustively intractable.

3The exact number of orders is now fact(
Pk

i=1 pi)/
Qk

i=1 fact(pi), whereby k is the number of
equivalence classes and pi the cardinality of each of them.
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Table V. Statistics over random concrete leaf-class loading orders with bit-wise and

25680 PN-and+shift PN-and PH-and+shift PH-and
2dlog2(nc)e min avg max min avg max min avg max min avg max

IBM-SF 1.43 2.0 3.0 9.2 2.1 3.1 8.2 6.8 9.2 19.0 7.4 9.9 55.8
JDK1.3.1 1.24 1.3 1.6 5.2 1.4 1.9 7.9 3.9 5.8 23.0 5.9 8.3 41.1
Java1.6 1.28 1.4 1.7 4.5 1.5 2.0 6.8 4.0 6.0 14.5 5.8 8.1 18.3
Orbix 1.11 1.1 1.2 6.6 1.1 1.3 6.6 1.7 2.3 7.9 3.8 4.8 32.3
Corba 1.18 1.2 1.7 6.4 1.2 1.9 7.1 2.5 3.7 11.8 4.0 5.5 28.6
Orbacus 1.20 1.2 1.5 10.2 1.2 1.8 10.7 3.4 5.3 18.3 4.5 6.5 26.4
HotJava 1.33 1.4 1.8 3.7 1.5 2.0 4.2 3.3 5.1 8.5 4.1 6.0 11.0
JDK.1.0.2 1.32 1.3 1.4 3.9 1.3 1.5 4.8 2.8 4.7 9.4 3.7 5.7 11.2
Self 1.33 1.4 1.5 2.8 1.3 1.5 2.8 4.9 6.1 12.8 4.9 6.1 12.8
Geode 1.48 1.9 2.8 11.5 1.9 2.9 11.7 5.3 7.9 20.1 5.4 8.1 20.2
Vortex3 1.33 1.5 2.2 5.4 1.6 2.4 5.5 5.2 7.7 14.4 5.8 8.3 15.3
Cecil 1.27 1.4 1.8 3.9 1.4 2.0 5.1 4.3 6.4 10.8 4.7 7.0 12.5
Dylan 1.37 1.4 1.6 13.6 1.4 1.6 13.6 3.9 5.7 22.4 3.9 5.7 22.4
Harlequin 1.33 1.5 2.2 5.0 1.6 2.2 4.8 4.1 6.4 10.9 4.6 6.8 11.5
Lov-obj-ed 1.41 1.7 2.5 4.4 1.8 2.6 4.8 4.0 5.9 9.0 4.2 6.1 9.2
SmartEi�el 1.42 1.4 1.5 2.3 1.4 1.5 2.3 4.1 5.2 8.3 4.1 5.2 8.3
Unidraw 1.27 1.3 1.3 1.9 1.3 1.3 2.0 2.4 3.7 6.4 3.6 4.9 10.4
PRMcl 1.32 1.3 1.4 3.5 1.3 1.6 3.7 2.8 4.5 11.4 3.5 5.4 12.1
Total 1.33 1.6 2.1 6.4 1.6 2.2 6.8 4.9 6.8 16.3 5.7 7.8 30.8

Like in Table III, all sums are now restricted to leaf-classes.

Though we were unable to prove that there were no frequent worse cases, our
experiments tended to quickly converge, that is, after some thousands of tests, the
rate of new maximal records was rather low, i.e. less than one to a thousand, the
average remained stable and the growth of the maximum extremely slow.
So, we tested all perfect hashing functions on the same set of benchmarks, under

this new assumption. We did it under two forms:

�Table IV presents the same statistics as in Table II except that they are restricted
to the subset of class loading orders triggered by leaf-classes. However, in the
ratio

∑
cHc/

∑
c nc, sums are still applied to all classes. The analogue for mod is

not presented because it does not su�ciently di�er from the second form.

�Tables III and V present the same statistics when sums in
∑
cHc/

∑
c nc are now

restricted to leaf classes�indeed only concrete classes require a method table.

In this setting, the results of both function families are markedly better. For
instance, PN-mod often results in almost minimal perfect hashing�actually, in the
best cases, even though the ratio ρ is close to 1, all hc are not minimal perfect hash-
ing functions, i.e. functions such that Hc = nc (Table III). Furthermore, modulus
does not present the same optimality property as bit-wise and with Proposition A.5.
So, with mod, it would seem that Hc = nc is a matter of chance. The PH-and min-
imum values are also markedly improved (Tables II and IV). As the sums run on
the same set of classes, this only con�rms that our random testbed cannot explore
all possible orders, whereas leaf-class ordering focuses on the best orders. Regard-
ing PN, it is not clear whether the optimization takes advantage of loading and
numbering a set of classes as a whole. On average, the resulting Hc parameter does
not signi�cantly di�er, whether all yet unloaded classes are numbered as a whole,
or whether they are numbered one by one by successive applications of PN in a
top-down ordering. Hence, the gain is likely mostly due to the selection of speci�c
class loading orders. In contrast, the comparison between Tables IV and V does
not show signi�cant di�erences according to whether the sums are done over all
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Table VI. Statistics for Java over random class loading orders with modulus
15975 class intf nc PN-and+mod PN-mod PH-and+mod PH-mod

number avg min avg max min avg max min avg max ref min avg max

IBM-SF 7920 873 6.2 1.4 1.7 2.0 1.5 1.7 2.1 1.6 1.8 2.3 2.3 1.7 1.9 2.4
JDK1.3.1 7056 345 1.2 1.6 1.7 1.9 1.6 1.8 2.0 1.7 1.8 2.0 2.0 1.8 2.0 2.3
Java1.6 4517 1057 1.7 1.3 1.4 1.5 1.3 1.5 1.7 1.4 1.5 1.7 1.6 1.5 1.7 1.9
yJava1.6 4876 1057 1.6 1.3 1.4 1.6 1.4 1.5 1.7 1.4 1.5 1.7 1.7 1.6 1.7 2.0
xJava1.6 4804 270 1.5 1.5 1.6 1.7 1.5 1.6 1.8 1.5 1.7 1.9 1.7 1.6 1.8 2.0
Orbacus 1297 82 1.7 1.4 1.6 1.9 1.5 1.7 2.2 1.5 1.8 2.1 1.9 1.6 1.9 2.4
Corba 1634 65 1.1 1.7 1.9 2.1 1.8 2.0 2.3 1.8 2.0 2.2 2.0 1.8 2.1 2.5
HotJava 681 55 2.4 1.3 1.4 1.9 1.3 1.4 1.7 1.3 1.5 1.9 1.8 1.4 1.6 2.1
Orbix 2676 40 0.3 3.4 3.5 3.8 3.4 3.5 3.8 3.4 3.6 4.0 3.7 3.5 3.6 4.0
JDK.1.0.2 576 28 1.1 1.4 1.6 2.0 1.4 1.6 2.3 1.4 1.6 2.1 1.7 1.5 1.7 2.3
Total 36037 3872 2.4 1.5 1.6 1.9 1.5 1.7 2.0 1.6 1.8 2.1 2.1 1.7 1.9 2.3

The �rst columns represent the respective numbers of classes and interfaces, and the average nc value
which is now the number of interfaces implemented by the class c. All other numbers are ratios
ρ =

P
c Hc/

P
c nc, whereby the sum is done on classes only and Hc is the hashtable size and nc ≥ 0

the number of interfaces implemented by c (the denominator is the cardinality of the implements rela-
tionship).

classes or only concrete leaf-classes.
The most interesting observation is that the erratic behavior of PH-and has al-

most disappeared and the comparison between Tables II and IV (or V) shows that
ordering leaf-classes rules out most worst-case orders. Very few ratios ρ exceed 10
for PN-and and they mostly concern benchmarks with a low nc average. Hence
they should not yield overconsuming tables. Only Geode combines high nc average
with a worst-case ratio that exceeds 10�however, the average ratio is far lower,
about 3. Overall, PN-and produces excellent results. It is often very close to its
lower-bound 2dlog2(nc)e, though it does not exclude a risk of a bad-case class loading
order. However this risk is low, as the bad cases are unfrequent, and not fatal, as
the resulting memory occupation would be large but not unreasonable. Actually, it
would seem that there is no need for any other hashing function�PN-and+shift
is not su�ciently better to counterbalance its expected time-overhead.
Of course, it would be interesting to con�rm that a leaf-class order is a good

model of any class loading order. The reality is likely midway between both models.
Programmers and class hierarchies only partly comply with Meyers' directive. The
worst-case orders might not be sensible class loading orders, but real class loading
orders might have PH parameters that are not as perfect as those of leaf-class
orders.

2.5 Application to Java

In phapst, perfect hashing was also applied to Java interfaces in a restricted form
close to the restriction to concrete classes. In Java, only the implements relation-
ship between classes and interfaces needs to be hashed�the extends relationship
between classes is indeed in single inheritance, so Cohen's display and usual single
inheritance implementation apply more e�ciently. Overall, only classes require a
hashtable and only interfaces are numbered and hashed�this has an important
consequence that nc can be zero whereas Hc must be at least one.
We have adapted all perfect hashing and perfect numbering functions to Java

interfaces and tested them on the same benchmarks as in previous work. The algo-
rithm is exactly the same as that for leaf-class ordering, except that c is randomly
selected among maximal unloaded classes and X ′c and X

′′
c are the sets of, respec-
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Table VII. Statistics for Java over random class loading orders with bit-wise and

15975 PN-and+shift PN-and PH-and+shift PH-and
2dlog2(nc)e min avg max min avg max min avg max ref min avg max

IBM-SF 1.42 2.3 3.3 5.8 2.3 3.3 5.8 3.9 5.9 10.6 6.6 4.0 5.9 10.6
JDK1.3.1 1.65 1.8 2.3 4.2 2.0 2.7 5.3 2.4 3.4 6.7 3.2 2.7 4.0 7.5
Java1.6 1.35 1.5 2.0 9.7 1.6 2.7 17.1 1.9 3.2 19.3 3.5 2.4 4.9 24.2
yJava1.6 1.39 1.5 2.0 9.5 1.7 2.7 16.5 1.9 3.2 16.9 3.0 2.5 5.0 20.5
xJava1.6 1.50 1.7 2.1 3.7 1.8 2.5 5.3 2.1 3.0 4.7 3.2 2.6 3.6 6.5
Orbacus 1.58 1.6 2.2 4.8 1.7 2.4 5.7 2.0 3.3 7.3 2.4 2.1 3.7 7.5
Corba 1.81 2.0 2.5 4.1 2.2 2.6 4.2 2.2 3.1 5.1 2.6 2.4 3.2 5.4
HotJava 1.44 1.5 1.8 3.1 1.6 2.0 3.4 1.7 2.3 3.8 2.5 1.8 2.5 4.1
Orbix 3.54 3.5 3.7 5.1 3.5 3.7 5.1 3.6 4.0 5.2 4.0 3.6 4.1 5.5
JDK.1.0.2 1.67 1.7 1.8 4.0 1.7 1.9 4.0 1.7 1.9 4.5 1.8 1.7 2.1 4.5
Total 1.48 2.0 2.8 6.0 2.1 3.0 7.5 3.1 4.7 10.6 5.0 3.3 5.2 11.6

As nc can be zero, the �rst column represents the optimal ratio ρ =
P

c oc/
P

c nc, where oc = 1 if

nc = 0 and 2dlog2(nc)e otherwise. This explains why the ratio can be greater than 2 in the Orbix case.

Table VIII. Statistics for Java over random leaf-class loading orders with bit-wise and

30545 PN-and+shift PN-and PH-and+shift PH-and
2dlog2(nc)e min avg max min avg max min avg max min avg max

IBM-SF 1.44 1.8 2.6 5.0 1.9 2.7 4.7 3.6 5.2 8.8 3.7 5.2 8.9
JDK1.3.1 1.66 1.8 2.2 5.5 1.9 2.5 5.8 2.3 3.3 7.7 2.6 3.9 10.4
Java1.6 1.35 1.5 1.7 5.0 1.6 2.1 8.5 1.9 2.9 9.3 2.4 4.0 11.2
yJava1.6 1.35 1.4 1.7 5.3 1.6 2.1 8.9 2.0 2.9 9.7 2.5 4.0 11.7
xJava1.6 1.49 1.7 2.0 4.2 1.8 2.4 5.3 2.0 2.9 5.9 2.3 3.6 9.2
Orbacus 1.58 1.6 1.9 5.6 1.6 2.1 5.9 2.0 3.0 7.0 2.0 3.3 8.7
Corba 1.96 2.0 2.4 2.9 2.1 2.4 4.0 2.3 2.8 4.0 2.3 2.9 6.0
HotJava 1.42 1.5 1.9 3.5 1.5 2.0 3.7 1.7 2.4 4.4 1.8 2.7 4.6
Orbix 4.24 4.2 4.3 4.7 4.2 4.3 5.5 4.2 4.5 5.5 4.3 4.6 6.5
JDK.1.0.2 1.66 1.7 1.7 4.1 1.7 1.7 4.1 1.7 1.8 4.6 1.7 1.9 4.7
Total 1.50 1.8 2.3 4.9 1.8 2.5 5.6 2.9 4.1 8.3 3.1 4.5 9.3

nc represents now the average on all leaves of the number of implemented interfaces.

tively, already loaded and still unloaded interfaces implemented by c. Most of our
benchmarks do not record the di�erence between classes and interfaces, so we com-
puted this di�erence according to simple heuristics. See Appendix B in phapst for
a discussion on the validity of these heuristics�the Java1.6 benchmark has been
generated in order to provide an empirical assessment of these heuristics and its
di�erent variants show similar behaviors though the interface numbers di�er.
Tables VI and VII present the statistics over random class loading orders and

Table VIII presents the same statistics when only leaf-classes are ordered. The
analogue is not presented for mod because it does not su�cently di�er from Table
VI. One observes that the results are very similar to those of the corresponding
Tables I to V�the main di�erence here is that the linear-space criterion is relative
to the cardinality of the implements relationship. As a class can implement zero
interface, nc can be 0 while Hc is at least 1. Hence, the ratio could be in�nite, when
a class hierarchy does not implement any interface. Of course, it is unrealistic but it
explains why the ratio ρ can be much higher than in multiple inheritance tests�e.g.
for the Orbix benchmark which has very few interfaces. Another di�erence is that
PH-and is markedly less erratic than with plain multiple inheritance. Moreover, the
statistics with all-class and leaf-class orders do not markedly di�er. This is likely
due to the fact that ordering only classes implies a structure that is strong enough
to avoid most worst-case orders.
Anyway, the overall conclusion is that PN-and would also give excellent results

for Java interfaces.
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1
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3

4

load [object + #tableOffset], table

load [table + #targetColor], id

comp #targetId, id

bne #fail

load [table +#methOffset], method

call method

method

meth
Offset

method table

id

targetColor

table

The �gure follows the same convention as Figure 1. When coloring is applied on the whole class hierarchy,
method invocation and subtype testing involve only direct access in the method table (pointed by table),
as in single inheritance.

Fig. 2. Coloring for full multiple inheritance

3. TIME-EFFICIENCY TESTS

Our abstract assessment in phapst of the run-time e�ciency of perfect hash-
ing should obviously be con�rmed by actual run-time experiments. This section
presents these experiments and the results.

3.1 The Prm testbed

These experiments are original, as they compare di�erent implementation tech-
niques, in a common framework that allows a fair comparison, all other things

being equal.

Tested techniques. Three families of techniques are compared:

�The best known constant-time technique, namely coloring, generalizes to mul-
tiple inheritance the usual single inheritance implementation, at the expense of
a global computation [Ducournau 2006]. Coloring represents, for instance, the
technique used in Java for implementing classes, hence for method invocation
and subtype testing when the receiver's type or target type is a class (Figure
2), and for all attribute accesses. With multiple inheritance, coloring requires a
global optimization which has no impact on the run-time time e�ciency.

�In phapst, we also compared perfect hashing with incremental coloring (IC),
that has been proposed for subtype testing by Palacz and Vitek [2003] in a Java
real-time setting. As coloring is not inherently incremental, its use with both
dynamic loading and multiple inheritance yields marked overhead at load-time,
since some recomputation can be required, and at run-time, since these possible
recomputations increase the number of memory accesses, while degrading their
locality (Figure 3). Overall, our abstract estimation was that incremental coloring
should not be better than perfect hashing, or at least not su�ciently better to
counterbalance the load-time overhead.

�The most promising variants of perfect hashing have been tested, namely PH-
mod, PH-and and PH-and+shift. As the tests concern only time-e�ciency, there
is no di�erence between PH and PN.
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10

load [object + #tableOffset], table

load [table + #ctableOffset], ctable

load [#interfaceColor], color

add ctable, color, ctable

load [table + #ctableOffset+4], clen

comp color, clen

bgt #fail

load [ctable], id

comp #interfaceId, id

bne #fail

load [ctable +#fieldLen], ioffset

add ioffset, table, itable

load [itable +#methOffset], method

call method

method

interface

Color

meth

Offset

method table

color table

table

color

id iOffset

iOffset

color
clen

clen

ctable

When coloring is incremental, the method table itself (pointed by table) is constant but color tables
(ctable) and colors (color) may be recomputed at load-time. Hence three disconnected memory areas
are involved and a bound check is required for subtype testing (see phapst for an in-depth discussion of
this implementation).

Fig. 3. Incremental coloring of JAVA interfaces

Moreover, all techniques are considered for application to the three basic mech-
anisms required by object-oriented programming: (i) subtype tests, (ii) method
invocation and (iii) attribute access. Perfect hashing was originally proposed for
subtype testing. However, in our Prm testbed, there are very few runtime subtype
checks compared to, say Java 1.4 programs, so a comparison based only on subtype
testing would not have been signi�cant. Fortunately, PH also applies to method
invocation which makes the comparison much more signi�cant. For PH and IC,
the technique for method invocation follows the scheme proposed in phapst for
Java interfaces (Figure 1, page 3)�that is, each table entry contains the class or
interface ID for subtype test and the o�set of the group of methods introduced by
the class or interface, for method invocation. For attribute access, two variants are
considered. Attribute coloring is the most e�cient implementation, that of Java
for instance, so combining PH or IC with attribute coloring provides a sound as-
sessment of the considered techniques when applied to Java interfaces. Accessor

simulation is a general alternative for attribute access that relies on any method in-
vocation technique [Ducournau 2006]. Attributes are grouped by introduction class
and the group o�set is placed in the method table, as if it were a method. Here it
is associated with the class ID in the method table (for coloring), in the hashtable
(for PH) or in the color table (for IC). So the tests with accessor simulation provide
an assessment of the use of the considered technique (IC or PH) for implementing
full multiple inheritance. Overall, 5 techniques for method invocation and subtype
testing have been compared, each one with 2 attribute access techniques.

Tested program. So we implemented all these techniques in the Prm compiler,
which is dedicated to exhaustive assessment of various implementation techniques
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compiler

v1

executable

compiler

executable

v2

compiler

executable

vn

compiler

source

compiler

executable

compiler

source
compiler

executable

....

.

Fig. 4. The Prm testbed
Some compiler source is compiled by some compiler executable, according to di�erent options, thus
producing di�erent variants v1, .., vn, of the same executable compiler (solid lines). Another com-
piler source (possibly the same) is then compiled by each variant, with all producing exactly the same
executable (dashed lines), and the compilation time is measured.

Table IX. Static and dynamic characteristics of the Prm compiler

number of static dynamic

classes 511
method introductions 2525
method de�nitions 4269
attributes 614

method calls 14530 2600 M
attribute accesses 4323 300 M

The �static� column depicts the number of program elements (classes, methods and attributes) and
the number of sites for each mechanism. The �dynamic� column presents the number of mechanism
invocations at run-time (in millions).

and compilation schemes [Privat and Ducournau 2005; Morandat et al. 2009]. The
benchmark program is the compiler itself, which is written in Prm and compiles
the Prm source code into C code. There are a lot of compilers in the picture, so
Figure 4 depicts the precise testbed.
In these tests, the C code generated by the Prm compiler is either the code for

global or incremental coloring, or the code for PH. The Prm compiler is actually
not compatible with dynamic loading but the code for PH or IC has been gener-
ated exactly as if it were generated at load-time. The usual optimizations of the
Prm compiler (see [Privat and Ducournau 2005]) are deactivated in all cases. The
class load ordering does not matter since we here only consider time measurement.
Although these tests represent a kind of simulation, they must be quite reliable.
Only the e�ect of cache misses is likely underestimated, especially for incremen-
tal coloring�all color tables are here allocated in the same memory area, whereas
load-time recomputations should scatter them in the heap. The only thing that
is not considered at all, here, is load-time computation, but our previous analysis
shows that it is not signi�cant for perfect hashing in both practice and theory (see
Appendix A in phapst).
Table IX presents the static characteristics of the Prm compiler, namely the

number of di�erent entities that are counted at compile-time, together with the run-
time invocation count for each mechanism. These statistics show that the program
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Table X. Compilation time according to implementation techniques and processors

processeur
frequency
cache
reference time

1

108.7s

Xeon Prestonia
1.8 GHz
512 K
2001

2

53.2s

Xeon Irwindale
2.8 GHz
2048 K
2006

3

44.0s

Core T2400
2.8 GHz
2048 K
2008

technique

Coloring
IC
PH-and
PH-and+shift
PH-mod

ac as as/ac

0 5.4 5.4
3.8 14.1 10.0
4.9 19.4 13.8
4.6 20.7 15.4
46.8 194.8 100.8

ac as as/ac

0 9.8 9.8
5.3 23.3 17.1
4.3 30.0 24.6
14.1 51.9 33.1
70.4 245.9 103.0

ac as as/ac

0 13.6 13.6
5.8 33.0 25.8
8.5 46.8 34.9
7.7 47.8 37.2
30.9 147.3 88.9

Each subtable presents the results for a precise processor, with the processor characteristics and the
reference compilation time. All other numbers are percentage. Each row describes a method invocation
and subtype testing technique. The �rst two columns represent the overhead vs pure coloring, respec-
tively with attribute coloring (AC) and accessor simulation (AS). The third column is the overhead of
accessor simulation vs attribute coloring.

size is signi�cant and that it makes intensive usage of object-oriented features.

Time-measurement conditions. Tested variants di�er only by the underlying im-
plementation technique, with all other things being equal. Moreover, this is true
when considering executable �les, not only the program logic. Indeed, the compila-
tion testbed is deterministic�that is, two compilations of the same program by the
same compiler executable produce exactly the same executable. This means that:
(i) the compiler always proceeds along the program text and the underlying object
model in the same order; (ii) the memory locations of program fragments, method
tables and objects in the heap are roughly the same. So two compiler variants di�er
only by the code sequences of the considered techniques, all program components
occurring in the executables in the same order. Moreover, when applied to some
program, two compiler variants vi and vj produce exactly the same code. All pro-
gram equalities have been veri�ed with the diff command on both C and binary
�les. Overall, the e�ect of memory locality should be roughly constant, apart from
the speci�c e�ects due to the considered techniques4.
The tests were performed on several processors, from the Intel R© PentiumTM or

AMD R© AthlonTM families, all under Linux Ubuntu 8.4, with gcc 4.2.4. Two runs
of the same compiler on the same computer should take the same time were it not
for the noise produced by the operating system. A solution involves running the
tests under Linux recovery-mode boot. It has been done for some processors (e.g.
1, 2, 5) but this was actually not possible for remote computers. Finally, a last
impediment concerned laptops. Modern laptop processors (e.g. processor 5) are
frequency-variable. The frequency is low when the processor is idle or hot. When
running a test, the processor must �rst warm up before reaching its peak speed,
then it �nishes by slowing down for cooling down. So the peak speed can be very
high but only on a short duration. Inserting a pause between each two runs seemed
to �x the point. Overall, considering that the di�erence between two runs of the
same executable is pure noise, we took, for each measure, the minimum value of 10

4In early tests, compilation was not deterministic and the variation of compilation times between
several generations of the same compiler was marked. Hence, the variation between di�erent
variants was both marked and meaningless.
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Table XI. Compilation time according to implementation techniques and processors (cont.)

processeur
frequency
cache
reference time

4

43.4s

Athlon 64
2.2 GHz
1024 K
2003

5

36.0s

Core2 T7200
2.0 GHz
4096 K
2006

6

22.2s

Core2 E8500
3.16 GHz
6144 K
2008

technique

Coloring
IC
PH-and
PH-and+shift
PH-mod

ac as as/ac

0 21.9 21.9
14.6 53.4 33.9
18.1 73.1 46.6
18.2 73.5 46.8
110.2 345.8 112.1

ac as as/ac

0 16.6 16.6
6.8 35.2 26.6
7.3 45.7 35.7
7.5 46.0 35.8
23.9 158.6 108.6

ac as as/ac

0 14.1 14.1
6.5 34.1 25.9
7.6 45.2 35.0
7.5 45.3 35.1
25.0 119.8 75.8

runs or more.

3.2 Results and Discussion

Tables X and XI presents, for all variants and processors, the time measurement and
overhead with respect to the full coloring implementation. Overall, notwithstanding
some exceptions that will be discussed hereafter, these tests show that:

�when used for method invocation and subtype testing, PH-and yields very low
overhead of about 5-7%�this is better than expected;

�the extra instructions of PH-and+shift entails low extra overhead when used
only for methods and subtyping; on most processors, the di�erence from PH-and
is actually far below the precision of measurement;

�when also used for attribute access, the overhead of PH-and is much higher,
though still reasonable (between 20 and 30%) on some processors, but less rea-
sonable on others;

�incremental coloring (IC) is close to PH-and, without signi�cant di�erence;

�in contrast, the overhead of PH-mod is much higher and highly variable, between
24 and 100%, when only used for method invocation and subtype tests;

��nally, when used for attribute access, PH-mod becomes unreasonable as it always
doubles or triples the compilation time.

The processor in�uence is also signi�cant, even though it does not reverse the
conclusions. Most of them present similar behaviour, although several provide some
speci�c exceptions that make them unique�double overheads on processor 4, rather
e�cient PH-mod on proc. 5 and 6, marked overhead for PH-and+shift on proc. 2.
These aberrations might be explained, either by some artefact in the experiment,
or by some speci�c feature of the processor�for instance, processor 4 is both an
early 64-bit that might be specially ine�cient and a remote computer that might
be specially noisy. Processors are presented and numbered in the decreasing order
of the reference duration, which is strongly correlated with the manufacturing time.
It is however hard to �nd strong correlations between the observed overheads and
time or overall performance.
These empirical results can be partly explained by comparing them to the theo-

retical predictions done in phapst according to the computational model proposed
by [Driesen 2001]. Table XII sums up this abstract time-e�ciency analysis. The
Driesen computational model accounts for pipe-line architectures and instruction-
level parallelism, though the impact of the latter within PH code sequences concerns
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Table XII. Cycle counts for the di�erent techniques and the three mechanisms
method call subtype test attribute access

technique cycles code cycles code cycles code
Coloring 2L+ B 16 3 2L+ 2 8 4 L 3 1
IC 4L+ B + 2 24 8 3L+ 4 13 10 4L+ 2 14 8
PH-and 4L+ B + 3 25 8 3L+ 5 14 8 4L+ 3 15 8
PH-and+shift 4L+ B + 4 26 10 3L+ 6 15 10 4L+ 4 16 10
PH-mod 4L+ B +D + 2 49 8 3L+D + 4 38 8 4L+D + 2 39 8

The table recalls the cycle count and code length that are presented in phapst, according to the com-
putational model of [Driesen 2001] which is illustrated in Figures 1, 2 and 3. L, B and D represent
the respective latencies of memory loads, undirect or mispredicted branches and integer division. The
considered values are L = 3, B = 10 and D = 25 (instead of the optimistic value of 6 used in phapst).
For each mechanism, all techniques present the same cache miss or misprediction risks, except attribute
access for which PH and IC add cache miss risk, and IC which adds misprediction risk for subtype
testing and cache miss risks in all mechanisms.

only PH-and+shift and IC. However, there may be much more parallelism between
these code sequences and the rest of the code�this is certainly the case for attribute
access, since the single coloring load can be easily parallelized.

�For method invocation and subtype testing, PH-and adds a few loads from a
memory area that is already used by the reference technique, hence without
extra cache misses, plus a few 1-cycle instructions; the few extra cycles represent
real overhead that is, however, slight in comparison with the overall method call
cost; PH-and+shift adds a load and a shift that are partly or even totally done
in parallel, hence without signi�cant overhead.

�PH-mod adds high integer division latency, about 20-25 cycles, that is much more
expensive than extra loads�hence marked overhead; according to this latency
and the number of method invocations (Table IX), the overhead should be about
20 seconds on all processors; however, the observed overhead runs from 5 seconds
(proc. 6) to 40 (proc. 4)�the fact that calls to FPU break the pipeline on Pentium
architecture likely accounts for the di�erence for the latter; however, it does not
explain the performance of processors 5 and 6.

�For attribute access, accessor simulation replaces the single coloring load by a
sequence that adds several loads from a memory area (i.e. the method table)
that was not already used�hence it increases the cache miss risks with marked
overhead.

�In Table XII, the di�erence between IC and PH-and is not signi�cant, and the
tests con�rm it�extra indirections in IC and extra computations in PH-and cause
similar overheads. However, as IC implies access to two new memory areas, a
�rst one for the color and a second one for the recomputable color table, extra
cache misses are expected, that are likely underestimated in our tests. As the
PH load-time cost is also far lower than IC, PH-and must be preferred to IC.

�So far, there is no surprise and the theoretical predictions are mostly con�rmed;
however, when the accessor simulation sequence is complicated by an extra shift
(on processors where PH-and+shift di�ers from PH-and) or the mod latency, the
overhead is no longer additive; an explanation may be that the sequence forms
a bottleneck that blocks instruction-level parallelism, whereas the single coloring
load can be done in parallel in most cases.

Overall, PH-and is better than expected for method invocation and subtype
testing, so it should provide very high e�ciency in Java virtual machines for im-
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plementing interfaces. When used for attribute access, the overhead becomes less
reasonable. In contrast, the integer division overhead is higher than expected on
many processors and it would seem that PH-mod should be reserved to processors
that have e�cient integer division�contrary to the processors tested here which
uses the �oating-point unit for integer division. Of course, the validity of such ex-
periments that rely on a single program may be questioned. This is however a large
program, which is fully object-oriented and intensively uses the basic mechanisms
that are tested. Moreover, as the experiments compare two implementations with
all other things being equal, the sign of the di�erences must hold for all programs
and only the order of magnitude should vary. This limitation is also inherent to
our experimentation. The Prm compiler is the only one that allows such versatility
in the basic implementation of object-oriented programs. The counterpart is that
the language has been developed with this single goal, so its compiler is the only
large-scale program written in Prm.

4. CONCLUSIONS AND PERSPECTIVES

Our previous works on perfect hashing [Ducournau 2008] concluded that the tech-
nique was promising and deserved further consideration. However, a more in-depth
assessment was also required. The tests presented in this paper allow us to draw
some new and much more de�nitive conclusions about the time and space e�ciency
of perfect hashing.
From the space standpoint, we have proposed and tested, in this paper: (i) a

family of hashing functions, (ii) an optimized approach, namely perfect numbering,
and (iii) a more systematic testbed based on random class loading. It follows from
these new tests that

�the tests presented in [Ducournau 2008] were optimistic because the class loading
order was arbitrary and not representative of any possible class loading order;

�however, the conclusions concerning modulus-based perfect hashing still hold, as
the variations according to the class loading order are not signi�cant; on the
contrary, PH-and appears to be erratic and over space-consuming in the worst-
case class loading orders;

�anyway, perfect class numbering provides a marked improvement over plain per-
fect hashing, with both mod and and hashing functions; PN-mod is certainly the
best tradeo� using mod;

�however, PN-and presents a dual face�in spite of its optimality in single inheri-
tance, it is still over space-consuming in the worst cases, but combining it with
shift provides an improvement that is slight on average but marked in the worst
cases.

At this point, the conclusion would be to prefer PN-mod or PN-and+shift, with
the time-space tradeo� that the former involves the latency of integer division
whereas the latter remains slightly over space-consuming in the rare worst-case
load orders.
However, these �rst conclusions rely on the assumption that all linear extensions

represent possible class loading orders�this is certainly not the case and a better
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assumption would be that only concrete classes should be ordered. As our bench-
marks do not include information about abstract classes, we considered a common
assumption that only leaves are concrete. Under this assumption, all PH and PN
functions are far better. Actually the erratic behavior of PH-and vanishes, espe-
cially with perfect numbering, so the conclusion would now be that PN-and is the
solution.
Regarding time-e�ciency, it is quite interesting to note that the conclusions are

not halfhearted, namely PH-mod and PH-and are respectively worse and better than
expected. Our experiments on the Prm compiler show that the overhead ofmodulus

is marked on a processor which uses the �oating-point unit for integer division, with
a 20- or 25-cycle latency. Therefore, PH-mod should be reserved to processors with
e�cient integer division. On the contrary, the time-e�ciency of PH-and is better
than expected when used for method invocation and subtyping tests. Therefore,
PN-and is certainly a very good solution for implementing Java interfaces�this
is actually the best solution that we are aware of. Moreover, when it is also used
for attribute access, the perfect hashing overhead becomes unreasonable�hence, it
might be not an alternative to theC++ subobject-based implementation. However,
the accessor simulation overhead has been overestimated in our tests�indeed, true
accessors are also intensively used in the tested programs, in such a way that they
add both overheads of accessor methods and simulation. So accessor methods
should be implemented by direct access to the attribute, at least when the method
is generated by the compiler.
So we can conclude this paper by recalling the �ve criteria that we stressed

in [Ducournau 2008], namely (i) constant-time, (ii) linear-space, (iii) compatible
with multiple inheritance, (iv) compatible with separate compilation and dynamic
loading, (v) implemented with a code sequence that is short enough to be inlined.
Coloring does not satisfy (iv) and C++ does not satisfy (ii). Moreover, there is no
known constant-time technique for subtype testing that is directly compatible with
the C++ implementation. Currently, all known Java interface implementations
do not meet either (i) or (iv) requirements. For instance, the proposal of Palacz
and Vitek [2003] is not inherently incremental, so it yields potentially high load-
time overhead, together with extra run-time indirections. All other techniques, for
instance [Alpern et al. 2001] or [Click and Rose 2002], are not time-constant. The
only exception might be the proposal by Gagnon and Hendren [2001] of using direct
access tables, that instead does not meet (ii). However, the empty slots of these
huge tables are used for allocating other data, and we do not know the extent to
which it counterbalances the nonlinear size�moreover, this trick cannot be used for
subtype testing, for which empty entries represent failure, hence useful information.
Overall, to our knowledge, perfect hashing is the only technique that ful�ls all �ve
criteria and the tests described in this paper show that its time constant and space
factor are quite good.
The prospects of this work are manyfold:

�As PN-and provides a technique for implementing all three basic object-oriented
mechanisms, namely method invocation, subtype testing and attribute access,
that is e�cient at least for the �rst two, it would be interesting to compare it
with the C++ subobject-based technique which is the only one, with PH, that
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ensures constant-time method invocation in a multiple inheritance and dynamic
loading framework, while being inherently incremental.

�As aforementioned, accessor simulation must be optimized in the case of true
accessor methods�this might make PH competitive with subobject-based im-
plementations.

�The �rst experiments in Prm led us expect that PH-and would be very e�-
cient for implementing Java interfaces�so experiments in a production virtual
machine would be very interesting in order to con�rm it.

�Experiments with the Prm testbed must be generalized to other processor fami-
lies, manufacturers or architectures�especially for testing more e�cient integer
divisions; other programs than the PRM compiler would also be of great interest.

�PN-and remains dependent on the class loading order; our assumption that only
the leaf ordering matters should be con�rmed, either empirically or theoretically.
However, large-scale empirical experiments on real programs seem to be almost
impossible. Palacz and Vitek [2003] present empirical experiments and they
note that their benchmarks are running Java programs based on almost ten-
thousand class libraries but that each run hardly loads one thousand classes
and interfaces. Perfect hashing and perfect numbering with bit-wise and are
always very good on one-thousand class benchmarks. So it would seem that the
scalability of these techniques cannot be proven otherwise than by simulations.
This is, however, somewhat unavoidable�scalability is the ability to gracefully
scale up over future programs. Conversely, empirical experiments, in spite of
their smaller scale, could provide models of class load orderings that would be
less theoretical than the slogan �make all non-leaf classes abstract�.

APPENDIX

A. ABOUT PERFECT HASHING FUNCTIONS WITH BIT-WISE AND

The e�ects of bit-wise perfect hashing are not always intuitive, so we present here
some very simple results that might help readers. Besides the intuition, perfect
hashing presents a simple lower bound and a �ne optimality condition. In the
following, hashing means perfect hashing with bit-wise and. Let I be a set of n
positive or null integers, m an integer that serves as a bit-wise mask and H = m+1
the hashtable size.
The �rst propositions give some lower and upper bounds to the number of 1-bits

in the mask, as a function of n. Of course, they give a lower bound but no upper
bound to the mask itself.

Proposition A.1 (Bit-wise and lower bound). Hashing n > 0 numbers requires

a mask with at least log2 n 1-bits, so 2dlog2 ne ∈ [n, 2n[ is a lower bound for the H
parameter.

The proof follows from the fact that a mask with k 1-bits can discriminate exactly
2k numbers. ut
The point is that the hashtable capacity depends on the 1-bit count of the mask,

not on the 1-bit positions, which determine its magnitude, that is, the hashtable
size. So, contrary to PH-mod, with PH-and, a hashtable may have a lot of empty
entries, while being full in the sense that no other number can be hashed within it.
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This certainly accounts for the di�erent behaviors of both hashing functions and,
in practice, it prevents us from using the same algorithms for both functions.
A mask m is minimal i� switching any 1-bit in m makes it loose its injectivity

on the considered set.

Proposition A.2 (Minimal mask 1-bit count upper bound). A perfect hashing

mask m that is minimal for a set I with cardinality n has at most n− 1 1-bits.

The proof is by induction. It is trivial for n = 1. Suppose now that it is true for any
set of cardinality n−1. Let I be a set of n numbers and x be the maximum element
of I. Suppose that a mask m with n 1-bits is minimal for hashing I. Consider now
the set I ′ = I\{x}. According to the recurrence assumption, m is not minimal for
I ′ and two 1-bits in m can be switched�let m′ be the resulting minimal mask for
I ′. As m′ does not make a perfect hashing function on I (otherwise we get the
proof), there is a single y ∈ I ′ that agree with x on all 1-bits of m′. So x and y
must di�er on the two bits that are 1 in m and 0 in m′ but only one is required
to make a perfect hashing mask since y is unique. Hence, m is not minimal. The
upper bound is reachable when each number di�ers from all others by exactly one
1-bit�for instance, if I = {2i | i = 0..n− 1}. ut
The following proposition gives an upper bound as a function of the maximum

element of I.

Proposition A.3 (Minimal mask magnitude upper bound). A minimal maskm
is strictly less than 2dlog2(max(I)+1)e ≤ 2 max(I) and the bound 2 max(I)− 1 can be

reached.

The minimal mask is bounded by the integer formed by all the 1-bits of all numbers
in I. So an upper bound is formed by a chain of k consecutive 1-bits, where k − 1
is the rank of the leftmost 1-bit in max(I). In the worst-case, all these 1-bits are
required to form the mask�for instance, if k = n and I = {2i | i = 0..n− 1}. ut
The next proposition is the basis for perfect numbering. It means that any set

can be completed to reach a 2k cardinality while keeping the same bit-wise mask.

Proposition A.4. Let I be a set of n numbers and m a mask that forms a

perfect hashing function on I. Let k be the number of 1-bits of m. Then there is

a set J of cardinality 2k − n, disjoint from I, such that m forms a perfect hashing

function on I ∪ J .

This is a direct consequence of Proposition A.1. Among the 2k combination of
1-bits of m, only n are used by I and the remaining is free and can be used for
numbers in J . ut
So, in theory, it is always possible to allocate 2k − n free numbers that �t the

hashtable. However, in practice, class identi�ers are bounded by the underlying
integer implementation, e.g 16- or 32-bit integers, and it might happen that no
free numbers �t the hashtable, though our experiments show that it would be very
unlikely.
The last proposition is a limited converse of Proposition A.1, thus a condition

for optimality of PN-and.
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Proposition A.5 (Optimality of PN-and). Perfect numbering is optimal, i.e.

Hc = 2dlog2(nc)e, for every class c that is in single inheritance, i.e. such that c and
all its superclasses have a single direct superclass.

This means that, in single inheritance, all masks are formed by a chain of 2dlog2(nc)e

rightmost consecutive 1-bits. The proof is by induction on nc, i.e. class depth.
Let c be the considered class, and c′ its single direct superclass. By induction,
Hc′ = 2dlog2(nc−1)e. If nc = 2k + 1, Hc′ = 2k and the mask is full, so an extra
bit is required and Hc = 2k+1. Otherwise, according to Proposition A.4, the
mask has some place for an extra identi�er and it can be inherited by c, hence
Hc = Hc′ = 2dlog2(nc)e. ut
Intuitively, all 1-bits of the mask form a rightmost pre�x of the mask and are

�inherited�. When a class c has two direct superclasses c1 and c2, each one with
a mask formed by a chain of, respectively, k1 and k2 1-bits with k1 ≤ k2, the k2

1-bits of the highest mask cannot always discriminate between the extra identi�ers
inherited from c1, either because there are not enough 1-bits, or because there are
some multiple inheritance con�icts, that is, the same 1-bits are used by each class
for discriminating its proper ancestors. So extra bits are required, that can be
much more leftward, yielding an exponential increase in the mask. This explains
why PN and PH can be erratic with bit-wise and in multiple inheritance. Proposi-
tion A.5 is important because all multiple inheritance class hierarchies are mostly
in single inheritance�see, for instance, the statistics in [Ducournau 2006]. Hence,
PN-and should be optimal on a large part of the hierarchies and this should coun-
terbalance its worst-case behaviour on the multiple inheritance core. In contrast,
PN-and+shift cannot improve on PN-and for all single inheritance classes�the
shift is always 0�and the observed improvement only comes from the multiple
inheritance core.
Finally, one observes that this single-inheritance optimum yields an overall ratio

ρ =
∑
cHc/

∑
c nc in interval [1, 2[. The upper bound is asymptotically reachable,

that is, for all ε > 0, there are class hierarchies such that ρ > 2 − ε. Consider, for
instance, a chain A2k ≺ A2k−1 ≺ ... ≺ A1 of 2k classes, with A2k having x direct
subclasses. For any such subclass c, nc = 2k + 1, dlog2 nce = k+ 1 and Hc = 2k+1.
So, in this framework, x can be large enough to make ρ ≈ 2k+1/(2k+1). In practice
(Table II), ρ is always lower than 1.5 in our multiple inheritance benchmarks.

B. ALGORITHMS

The computation of perfect hashing parameters is presented in a simple Com-

monLisp code [Steele 1990], like in phapst. We �rst present the code for PH-mod
then PH-and and its variants. In the following algorithms, we give �rst priority to
simplicity over e�ciency.

B.1 With Modulus

The general idea for computing the PH parameter is to test each number, beginning
from the cardinality of the set that must be hashed. This works for both and and
mod hashing functions, but it generalizes to PN only for mod. So, with mod, the
functions for both perfect hashing and perfect numbering are built according to
this common schema and the latter is just completed by the allocation of free IDs.
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The input of the basic function is a list ln of all-di�erent integers�the identi�er
of superclasses that are already loaded�plus a number n of new IDs that must be
allocated. The output is the H parameter, i.e. the least integer greater or equal
to the total number of identifers, that makes mod injective on the list of already
known identi�ers.

(defun basic-ph-mod (ln n)

(if (null ln)

(max 1 n)

(loop for h from (+ (length ln) n) by 1

when (ph-p-mod ln h) return h)))

The ph-p-mod function checks that its parameter h forms a perfect hashing func-
tion for the list ln of identi�ers. *ht* is a global variable that is bound to an array
that is presumed to be large enough. When ph-p-mod succeeds, its call leaves the
hashtable �lled by numbers in ln on length hc.

(defun ph-p-mod (ln h)

(fill *ht* nil :start 0 :end h) ;; resets *HT*

(loop for i in ln

for hv = (mod i h) do

(if (aref *ht* hv)

(return nil) ;; fails

(setf (aref *ht* hv) t))

finally return t)) ;; succeeds

The ph-mod function is a simple call to the base function:

(defun ph-mod (ln) (basic-ph-mod ln 0))

Perfect numbering has two parameters, the set ln of superclass IDs and the
number n of new IDs that must be allocated. There is actually no need to make
a di�erence between the case where all superclasses are already loaded (so, the
number is 1) and the case where a set of classes or interfaces is loaded as a whole.
The function begins by computing the Hc parameter, by calling basic-ph-mod,
then selects the �rst free numbers that are hashed in an empty entry. It returns
two values5, namely the set of new identi�ers idc and the hashtable size hc.

(defun pn-mod* (ln n)

(let ((hc (basic-ph-mod ln n)))

(values (compute-least-free-ids-mod n hc) hc)))

(defun compute-least-free-ids-mod (n hc) ;; computes N free identifiers

(let ((idc))

(loop for i in *free* until (= n 0)

for hv = (mod i hc) do

unless (aref *ht* hv) do

(setf (aref *ht* hv) t)

(push i idc)

(decf n))

idc))

5The function here uses the CommonLisp feature called multiple values, with the values special
form. Another special form that is used hereafter, multiple-value-bind, binds a list of variables
to such multiple values.
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*free* is a data structure that represents the set of free identi�ers. Note that
the loop on *free* is actually slightly more complicated, as *free* is a more
e�cient data structure than a simple list, e.g. a union of intervals. More e�cient
algorithms are possible, for instance one could start from the empty entries in
*ht* and search for their intersections modulo hc with intervals in *free*. It
would certainly improve the worst-case complexity but our tests show a marked
degradation on average. However, the naive loop is e�cient in practice and can
also be applied to PN-and.

B.2 Basic Perfect Hashing With Bit-wise and

PH-and can be based on exactly the same function, analogous to basic-ph-mode

but, in the case of bit-wise and, it only works for n = 0 and does not generalize
to perfect numbering. This is the consequence of Proposition A.1�with bit-wise
and, a hashtable can have empty entries that cannot be �lled by any number. So
an algorithm is required that works at the bit level. By the way, it is also more
e�cient as it yields a logarithmic complexity. For the basic version of PH-and, one
�rst computes a mask with all discriminant bits, i.e. bits which are not 0 or 1 in
all numbers. The resulting integer gives a perfect hashing function since all integer
pairs in the input di�er by at least one bit in the mask. Then the function checks
each 1-value bit, by decreasing weight, and switches the bit when it is not required
for injectivity.

(defun ph-and (ln)

(if (null (cdr ln))

1

(let ((mask (logxor (apply #'logior ln) (apply #'logand ln))))

;; MASK consists of all discriminant bits

(loop for b from (1- (integer-length mask)) by 1 downto 0

when (logbitp b mask) do ;; B-bit is 1 in MASK

(let ((new (logxor mask (ash 1 b)))) ;; NEW is MASK with B-bit at 0

(when (ph-p-and ln new) (setf mask new)))

finally return (1+ mask)))))

In the previous code, logxor, logior and logand areCommonLisp integer func-
tions for bit-wise operations: exclusive and inclusive or, and and. (Integer-length
n) gives the position of the leftmost 1-bit of a positive integer n. (Logbitp n b)

tests if the b-th bit of n is 1. (Ash n b) shifts n left by b positions (when b is
positive). Function ph-p-and is the analogue of ph-p-mod for bit-wise and.

(defun ph-p-and (ln mask)

(fill *ht* nil :start 0 :end (1+ mask)) ;; resets *HT*

(loop for i in ln

for hv = (logand i mask) do

(if (aref *ht* hv)

(return nil)

(setf (aref *ht* hv) t))

finally return t))

Like ph-p-mod, when ph-p-and succeeds, its call leaves the hashtable �lled by
numbers in ln on length hc. However, contrary to ph-mod, ph-and does not �nish
by a successful call to ph-p-and, therefore a subsequent call to ph-p-and may be
required in the following functions.
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B.3 Perfect Class Numbering

PN-and is slightly more complicated than both PH-and and PN-mod. The algorithm
is based on Proposition A.4 as follows. It �rst computes the PH-and parameter
for the input list of numbers. If the bit-wise mask does not contain enough 1-
bits (logcount is the function that returns the 1-bit count of its argument), the
rightmost 0-bit is switched. Then *ht* is reset by ph-p-and and the function ends
like pn-mod*, by selecting free identi�ers and returning 2 values.

(defun pn-and* (ln n)

(let ((mask (1- (ph-and ln)))

(rbit 0))

(loop while (> (+ (length ln) n) (ash 1 (logcount mask))) do

;; when there are not enough 1-bits

(loop for b from rbit by 1 ;; rightmost

unless (logbitp b mask) ;; 0-bit

return (setf mask (logxor mask (ash 1 b)) ;; switch

rbit b)))

(ph-p-and ln mask) ;; resets *HT*

(values (compute-least-free-ids-and n mask) (1+ mask))))

(pn-and* ln n) is certainly not exactly equivalent to iterating (pn-and ln)=
(pn-and* ln 1) n times. Their respective results must depend, however, on the
structure of the class hierarchy. Consider, for instance, a diamond formed by classes
A, B, C and D such that D ≺ B,C ≺ A. Suppose that only A is already numbered,
so all other classes must be numbered as a whole (i.e. n=3). Proposition A.5
states that (pn-and ln) is optimal in the presence of single inheritance. Hence,
it should be preferred for B and C, especially if they have many subclasses. On
the contrary, (pn-and* ln n) should likely be preferred for D, especially if D has
many subclasses. So, the overall e�ciency depends on the whole class hierarchy,
which is unpredictable when the considered classes are loaded. Our experiments
are actually not conclusive, as the di�erences are not signi�cant. Finally, a mixed
algorithm has been implemented. The idea is to use the iterative form for all single
inheritance trailing chains. Suppose that the diamond is extended by two chains
A = Am ≺ Am−1 ≺ .. ≺ A1, and Dp ≺ Dp−1 ≺ .. ≺ D1 = D, and all of these
classes must be numbered as a whole when Dp is loaded. The chain (A1, A2, .., Am)
is �rst numbered according to the iterative scheme, then the rest of the diamond is
globally numbered and, �nally, the chain (D2, .., Dp) is iteratively numbered. This
general algorithm also applies to PN-mod, though we do not have any optimality
result. However, in practice, it does not yield markedly better results and the data
in Tables IV and V are produced by pn-and*.

(defun compute-least-free-ids-and (n mask)

(let ((idc))

(loop for i in *free* until (= n 0)

unless (aref *ht* (logand i mask)) do

(setf (aref *ht* (logand i mask)) t)

(push i idc)

(decf n))

idc))

Optimizing the loop in compute-least-free-ids-and is likely not as straight-
forward as for compute-least-free-ids-mod. Determining empty entries in *ht*
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�rst requires the combinatorics of all 1-bits in mask. However, it seems to be dif-
�cult to compute the least number in an interval that matches one of these free
entries without enumerating all numbers in the interval. So this naive loop is likely
a good tradeo� between simplicity and e�ciency. On the other hand, the algorithm
could be slightly changed in order to compute the least n integers that �t the least
n empty entries in the table.

B.4 Bit-wise shift

The combination of and and shift relies on a similar algorithm but the optimal
value is less straightforward, so we use nonoptimal heuristics and only present one
of them. Anyway, the function must return four values�namely the hashtable size,
the bit-wise mask, the shift (i.e. the rightmost 1-bit) and the leftmost 1-bit. The
function is like ph-and except that the 1-bits of the mask are not scanned in the
same order. It �rst attempts to switch leftmost 1-bits, then rightmost 1-bits, and
�nally all remaining bits from left to right.

(defun ph-and+s (ln)

(if (null (cdr ln))

(values 1 0 0 0)

(let ((mask (logxor (apply #'logior ln) (apply #'logand ln)))

(lbit (1- (integer-length mask))) ;; leftmost 1-bit

(rbit)) ;; rightmost 1-bit

(loop for lb from lbit by 1 downto 0 ;; leftmost

when (logbitp lb mask) do ;; 1-bit

(let ((new (logxor mask (ash 1 lb)))) ;; switch

(if (ph-p-and ln new)

(setf mask new)

(return (setf lbit lb)))))

(loop for rb from 0 by 1 ;; rightmost

when (logbitp rb mask) do ;; 1-bit

(let ((new (logxor mask (ash 1 rb)))) ;; switch

(if (ph-p-and ln new)

(setf mask new)

(return (setf rbit rb)))))

(loop for b from (1- lbit) by 1 downto (1+ rbit) ;; left to right

when (logbitp b mask) do ;; inner 1-bit

(let ((new (logxor mask (ash 1 b)))) ;; switch

(when (ph-p-and ln new) (setf mask new))))

(values (1+ (ash mask (- rbit))) mask rbit lbit))))

The combination with perfect numbering gives the following algorithm. The
main di�erence with pn-and* is that the bit that is switched is �rst selected in the
interval between leftmost and rightmost 1-bits, if any, and otherwise the mask is
extended, preferably on the right.

(defun pn-and+s* (ln n)

(multiple-value-bind

(hc mask rbit lbit) (ph-and+s ln)

(loop while (> (+ (length ln) n) (ash 1 (logcount mask))) do

(loop for b from rbit by 1 ;; rightmost

unless (logbitp b mask) do ;; inner 0-bit

(when (and (> b lbit) (> rbit 0))

(setf b (1- rbit)

rbit b))
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(setf mask (logxor mask (ash 1 b)) ;; switch

hc (1+ (ash mask (- rbit))))

(return)))

(ph-p-and ln mask) ;; ends like PN-AND*

(values (compute-least-free-ids-and n mask) hc)))
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