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ABSTRACT
This paper presents the MIC∗ algebraic structure modelling an en-
vironment, called the deployment environment, where autonomous,
interacting and mobile entities evolve. The underlying idea of this
work is that the system coherency rules assumptions are guaran-
teed by the structure of the deployment environment itself and no
assumption is made on of the internal behaviours of agents. Thus,
every agent has to follow the rules of the deployment environment
to being able to interact with others. So, any misuse will be trans-
parently rejected by the structure and other agents are not affected
by bogus actions.

1. INTRODUCTION
Nowadays, agent oriented technology is an attractive alternative

to build complex distributed applications. Distributing the control
among local entities and clearly defining their interactions is a log-
ical abstraction that helps to develop efficient complex distributed
systems. Within this framework, building safe software is a real
challenge. Indeed, the environment surrounding software system,
namely the deployment environment, becomes more complex and
the properties of this environment cannot be ignored anymore dur-
ing the engineering process. In fact, as mentioned in [3] ignoring
the deployment environment properties may lead to dysfunctions
when the applicative system is deployed and these dysfunctions
may not be explainable when the system is isolated from its en-
vironment. For instance, a complex software system that operates
correctly in a fully controlled and predictable environment such
as local area networks may not achieve its design goals when de-
ployed on a globally uncontrolled environment such as Internet due
to unreliability and latency of the interaction mediums. This shows
clearly the correlation between the deployment environment and
the applicative system. To solve this problem, the first approach
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was to develop the software system to a specific deployment en-
vironment. This solution is difficult because the properties of the
deployment environments are continuously evolving and software
designers cannot totally control them. For instance, in the previous
example, once the system adapted to the Internet environment, how
will it react when deployed in a ubiquitous environment?
The second approach, that is developed in this paper, is to identify
the deployment environment as an explicit structure and to study its
properties at the design level. Afterward, the system’s entities are
deployed on this particular environment.

1.1 Motivations
This paper argues that understanding and explicitly representing

the deployment environment where computational entities evolve
is a crucial issue especially for dynamic and unpredictable environ-
ments. Therefore, an algebraic model, named {Movement, Inter-
action, Calculus}∗ (or MIC∗ for short), has been developed. MIC∗

is an abstract model where autonomous, interacting and mobile en-
tities evolve. It should not to be considered as a formal model of a
mobile calculus such as Ambient [3], PI calculus [10] or Join cal-
culus [8]. In fact, MIC∗ suggests a separation between the environ-
ment surrounding the calculating entities and the internal calculus
of these entities. MIC∗ studies the environmental properties, while
calculus models study the properties of the calculus (algorithm).
The motivations of our approach can be summarised as following:

Rigorous description: complex systems use concepts that are over-
loaded and shared between several research fields. MIC∗

does not give universal definitions, but at least characterises
formally, in the scope of its study, some fundamental con-
cepts such as interaction, movement and observable compu-
tation.

Implementation ready model: The MIC∗ algebraic structure is
implemented using simple computational structures that sat-
isfy the constraints imposed by the algebraic objects. Conse-
quently, it is possible to link the concrete computational sys-
tem that is executed to its corresponding MIC∗ formal term
and obviously it is possible to implement any MIC∗ formal
description in concrete software structure.

For experimental purposes, this paper presents the MIC∗ and its
applications in the scope of ubiquitous software systems. In fact,



ubiquitous systems, that are enabled by ad hoc networking tech-
nologies, seem to be the most complex deployment environments
that are currently challenging software engineering community and
where classical pure engineering approaches, such as object ori-
ented paradigm, fail to give a satisfactory answer. Indeed, the in-
teraction schema among the entities is severally modified by en-
vironmental properties and heterogeneous agents may act together
spontaneously just in time and just in space. Besides, ubiquitous
environments exhibits a composition property that was previously
unknown in classical software environments. For instance, differ-
ent systems can be merged spontaneously when joined spatially.

2. BACKGROUNDS
This section presents some research fields that are addressing

the problem of controlling the influences of the deployment envi-
ronment on the applicative system.

2.0.1 Multi-Agent Systems
Multi-agent systems (MAS) consider a computational system as

a coherent aggregation of software entities, named agents. An
agent is an autonomous entity that achieves its local goals by in-
teracting with other agents and its environment [20]. MAS works
have been focused on two major directions: studying the internal
state of the agents and studying the interactions among the agents.
Works such as [4, 18, 16, 9] and the BDI agent architecture are ex-
amples of the first tendency. The second direction of research has
been illustrated by works on high level interaction languages (such
as FIPA ACL [7] and KQML [5]), coordination protocols such as
FIPA protocols [7] and the works on the organisational aspects of
MAS such as [6, 21]. MAS community has contributed in under-
standing how to build complex systems involving the collaboration
of several distributed entities. However, few works tackle the gen-
eral study of the environments where the agents are deployed. This
point was considered as an implementation problem and the agents’
deployment environment was considered as a middleware that of-
fers low level services such as networking and monitoring services.
This paper identifies the deployment environment as an active en-
tity within the MAS framework and describes a generic abstract
structure of such an environment.

2.0.2 Mobile Computing
Mobile computing studies computational systems, where soft-

ware components can change execution environment during their
life cycle [17]. Similarly to MAS, mobile code components inter-
act1 together to achieve some specific goals. Mobile code commu-
nity has already identified the central role played by the coordina-
tion media to perform controlled and safe components’ interactions
[1, 2]. Thus, several coordination media models were proposed
such as Lime [14], Tuscon [13] and MARS [2]. The coordina-
tion media can be defined as an explicit entity, defined outside the
applicative system that performs the interactions between entities.
Moreover, it may actively influence the interactions between com-
ponents and consequently the functionalities of the global system.
We propose to generalise this concept as the deployment environ-
ment, which achieves not only the interactions between the sys-
tem’s components, but defines also their movement laws and the
”acceptable” observations of their computation.

2.1 Formal Mobile Calculus
1In the scope of this paper, we are interested in mobile compo-
nents that move in order to interact with other components, which
excludes load balancing motivated code mobility.

Formal models of calculus describe formal computational lan-
guages. The Lambda calculus [12] is probably the most known
and studied formal computational language. Unfortunately, it can
expresse just sequential and static algorithms. This leads to the
development of several calculus models such as π-calculus [11],
Ambient [3] and the Join calculus [8], that handle modern com-
puting concepts such as mobility, location and distribution. MIC∗

adopts a different view by clearly separating the calculus from its
environment. Consequently, the mobility, interaction and the ob-
servations of the entities’ computations are defined and studied at
the environmental level.

3. INFORMAL EXAMPLE
In order to introduce the MIC∗ formal structure, this section ex-

tracts the main concepts starting from a simple ubiquitous applica-
tion scenario.

3.1 Ubiquitous Electronic Chat Scenario
The ubiquitous electronic chat application emulates verbal con-

versations between several humans about some specific topics. This
kind of applications has already met a success in the Internet con-
text. For ubiquitous environment, the user is no longer connected
permanently to a central network, but owns a small device equipped
with some ad hoc networking capabilities. Thus, when several
users are spatially joined, for instance in a metro station, they can
converse together. The general description of the application can
be summarised as following: (i) each user participates in one or
several discussions; (ii) the interaction between the users are con-
ducted by explicitly sending messages.

3.2 Interaction Objects
The first reflection concerns the interactions among agents. These

interactions are materialised by concrete objects that we identify
as interaction objects. Interaction objects are structured objects.
For instance, they can be composed in simultaneous interactions.
Moreover, a special empty interaction object (the zero 0) can be
abstractly identified to express ’no interaction’. In the presented
scenario, messages represent the interaction objects and receiving
simultaneous messages is viewed as receiving a sum (

∑
o) of in-

teraction objects.

3.3 Interaction Spaces
The interaction spaces are abstract locations where several enti-

ties interact by exchanging explicitly interaction objects. An inter-
action space is an active entity that rules the interactions among
agents and may alter the exchanged interaction objects. In the
ubiquitous chat scenario, each topic is represented by an interac-
tion space, where several human agents can exchange messages.
To illustrate the active nature of the interaction space, it is easy to
imagine some specific topics that determine the participation rules
or defines certain messages acceptance policy. Hence, when a mes-
sage violates the policy of the topic it is simply ignored by the inter-
action space (reduction to zero); and as opposed to most of current
MAS implementations, the interaction actually does not happen2 .
Reduction to zero may appear as a radical alteration of the interac-
tion objects by the interaction space. A more elaborated example
can be sketched: for instance, checking and correcting the spelling
of messages. Concerning the mobility over the interaction spaces, it
is easy to encode the agents’ desires to participate in certain topics

2The inboxes of the agents are structurally not changed: oldinbox+
0 = oldinbox. We consider that changing the structure of the inbox
is an interaction even if no reaction is observed



as a logical movement inside these interaction spaces. Naturally,
an agent can be present in several interaction spaces. This property
defines its logical ubiquity.

3.4 Computational Entities or Agents
Agents perceive and react to external interaction objects by a lo-

cal computation and the emission of other interaction objects in the
interaction spaces. These reactions are considered as attempts to in-
fluence the universe (others). In fact, the reactions are materialised
by explicit and discrete interaction objects that are fully controlled
by the local laws of the interaction space.

3.5 Ubiquity Levels
In the presented scenario, two levels of ubiquity are identified:

physical ubiquity and logical ubiquity. Physical ubiquity can be
viewed as the ability to maintain the computational structures of a
system everywhere. For instance, when a group of users take to-
gether the same metro wagon: the system computational structures
are still coherent and independent from the wagon mobility. Logi-
cal ubiquity is defined as the ability of an entity to interact coher-
ently and simultaneously as a whole in several interaction spaces.
For example, a user sends messages to several topics reacting as a
whole to previously received messages.

4. {MOVEMENT, INTERACTION,
COMPUTATION}∗

Due to space constraints this section presents semi-formally and
briefly some aspect of the {Movement, Interaction, Computation}∗

structure. The algebraic theoretical definitions are omitted.

4.1 MIC∗ Matrices
In order to present easily the formal structure, a more intuitive

view of the manipulated algebraic objects was designed. In fact,
matrix representations are familiar to computer scientists and give
spatial representation better than complex linear formulas. To present
the matrix view, the reader should assume the following minimal
definitions:

• (O, +) represents the commutative group of interaction ob-
jects. This means that interaction objects can be composed
commutatively by the + law, and that the empty interaction
object exists (0 ∈ O). Furthermore, each interaction object
x has an opposite (−x) and x + (−x) = 0;

• A and S represent respectively the sets of agents and interac-
tion spaces. S contains a special element: 1 ∈ S represent-
ing the universe as a global interaction space. Moreover, this
special element has the following features: (i) no interaction
between the entities is possible; (ii) all the interaction objects
can move inside or outside this interaction spaces without re-
striction.

Each MIC∗ term is represented by the following matrices:

Outboxes Matrix: The rows of this matrix represent agents Ai ∈
A and the columns represent the interaction spaces Sj ∈ S .
Each element of the matrix o(i,j) ∈ O is the representation
of the agent Ai in the interaction space Sj .

Inboxes Matrix: The rows of this matrix represent agents Ai ∈ A
and the columns represent the interaction spaces Sj ∈ S .
Each element of the matrix o(i,j) ∈ O defines how the agent
Ai perceives the universe in the interaction space Sj .

Memories Vector: Agents Ai ∈ A represent the rows of the vec-
tor. Each element mi is an abstraction of the internal mem-
ory of the agent Ai. Except the existence of such element
that can be proved using the Turing machine model, no fur-
ther assumptions are made in MIC∗ about this element.

Figure 1: Agents in an environment.

1 S T V

A a b c 0
B d 0 e 0
C f 0 0 g

D h 0 0 0

Table 1: Outboxes matrix of figure 1 environment.

For instance, the outboxes matrix presented in table 1 models the
situation of the figure 1. When an agent is present in an interaction
space, its corresponding interaction object or representation is dif-
ferent from zero. Similarly, a zero represents the fact that an agent
is not present in the interaction space.

4.2 Environmental Composition
MIC∗ terms model naturally ubiquitous environments. In fact,

the union or split of computational environments are simply repre-
sented as an addition + and a subtraction − defined between the
matrices. For instance, let consider two environments e1 and e2

where the outboxes matrices are defined as following: eoutbox
1 =

Sj

Ai oi,j
and eoutbox

2 =
Sj

Ai′ oi′,j

The agents Ai and Ai′ belong to the same interaction space
Sj but are contained in two independent environments e1 and e2.
Consequently, no interaction is possible between them since their
representations are unavailable to calculate the perceptions. Let
consider now the union of these environments. e3 = e1 + e2:

eoutbox
3 = eoutbox

1 + eoutbox
2 =

Sj

Ai oi,j

Ai′ oi′,j

The result of this union is a new environment e3 where the agents
Ai′ and Ai can interact by exchanging their interaction objects.
Similarly, any environment can be split into sub environments to
model situations where ubiquitous components are disjoint.

4.3 MIC∗

The previous section has presented the static objects to describe
environmental situations. In this section, we will characterise three
main transformations of this static description: the movement, the
interaction and the computation (see Figure. 2). A movement is a
transformation of the environment where both inboxes and memo-
ries matrices are unchanged, and where outboxes matrix interaction
objects are changed but globally invariant. This means that the in-
teraction objects of an agent can change positions in the outboxes
matrix and no interaction object is created or lost. The interaction



Figure 2: Movement, Interaction and Computation

is characterised by a transformation that leaves both outboxes and
memories matrices unchanged and transform a row of the inboxes
matrix. Thus, interaction is defined as modifying the perceptions of
the entities. Finally, an observable computation of an entity trans-
forms its representations in the outboxes matrix and the memories
vector.

5. UBIQUITOUS CHAT

5.1 Application Description
Section 3 has introduced ubiquitous chat application emulating

human verbal discussions. This demo was implemented using a
MIC∗ prototype written in PYTHON [15] and is fully functional
for both LAN and ad hoc networking environments.

5.2 Situation A:

Figure 3: Agent ’A’ moving inside two interaction spaces

As presented in section 3, each topic is represented by an in-
teraction space. For instance, ”sport” and ”computing” topics are
represented by two interaction spaces (figure 3). When the user se-
lects a chat topic x, the software agent expresses this by sending
an interaction object gox. This interaction object is automatically
absorbed by the correct interaction space. In fact, the interaction
space has a full control of its local movement policy allowing cer-
tain interaction objects to enter and refusing the access to others.
In the presented scenario, the movement policy of an interaction
space x is to absorb all interaction objects gox and to move outside
−gox interaction objects. The situation expressed in figure 3 can
be described formally by the following outboxe matrices:

eoutbox
0 =

1 sport computing

A gosport + gocomputing 0 0
that evolves to :

µ(µ(eoutbox
0 )) = eoutbox

1 =
1 sport computing

A 0 gosport gocomputing

After these two movements, agent A exists in both interaction
spaces: sport and computation.

5.3 Situation B:
As illustrated in figure 4, when two environments E1 and E2 are

joined a new environment E3 is defined. In this environment, the
interaction schema among the entities is modified. For instance,
agents A and B are now able to interact since they belong to same

Figure 4: union and disjunction of environments

interaction space, sport, defined in the same environment. On the
other side, when the physical network link is disconnected, the en-
vironment E3 is split into E1 and E2. This situation is formally
described by the following outboxes matrices:

1 sport computing

A 0 gosport gocomputing +

1 sport computing

B 0 gosport 0 →

1 sport computing

A 0 gosport gocomputing

B 0 gosport 0

5.4 Situation C:

Figure 5: Interaction among agents

Computation is an internal process of an agent that modifies its
memory (Turing model [19]). Consequently, an agent does not
modify the state the surrounding universe directly, but by sending
some interaction objects. For instance, when a human agent com-
putes internally what he should write as message, the observation
of this process is the written message (interaction object) that is
yielded in the interaction space. The surrounding entities receive
this interaction object through the interaction space (see figure 5).
For instance, when agent A writes a hello message, the outboxes
matrix is changed as following:

1 sport computing

A 0 gosport gocomputing

B 0 gosport 0

→
1 sport computing

A 0 hello hello

B 0 gosport 0

The following inboxes matrices describe interaction among agents
A and B:

1 sport computing

A 0 0 0
B 0 0 0

→
1 sport computing

A 0 hello hello
B 0 hello 0



Both agents A and B receive the hello message that was emitted
in the outboxes matrix. Therefore, they can consider this interac-
tion for their future computations.

6. CONCLUSION
This paper has presented, semi-formally, the MIC∗ algebraic

structure modelling combinable environments where mobile, au-
tonomous and interacting entities evolve. Complex environmental
evolutions are described as the composition of three atomic evolu-
tions: the movement, the interaction and the computation. These
evolutions are formally characterised using the MIC∗ matrices.

The ubiquitous chat experiment has demonstrated how this struc-
ture is integrated into a simple (human) agents system that interact
together when specially joined. For a particular agent based sys-
tem, the main goal of the design process is to define particular el-
ementary evolutions of movement, interactions and acceptable ob-
servation of entities’ computation, which yields a particular deploy-
ment environment where applicative agents are deployed. These
agents may be locally (trusted) defined or encounter dynamically
(untrusted) during the system life cycle. To deal with untrusted en-
vironments, the system coherency rules and assumptions are guar-
anteed by the structure of the deployment environment itself and no
assumption is made on of the internal behaviours of agents. For in-
stance, it is quite easy to conceive an interaction space that checks
the coherency of a particular interaction protocol. Hence, the co-
herency of the protocol, as an engineering design assumption, is
guaranteed by the interaction space, and all agents belonging to
this interaction space have to follow it. Any misuse will be trans-
parently rejected by the structure of the interaction space and other
agents are not affected by this bogus action.

The next step of our work is to generate the deployment environ-
ment automatically starting from system description using organi-
sational and dependency theory. Hence, each dependency between
social agents yields an interaction space where agents interact to
resolve the dependency following a specific interaction protocol.
The interaction space guarantees all the social norms on interaction,
mobility and other engineering design assumptions. The main goal
is to conceive ubiquitous systems as virtual mobile communities
that interact when joined spatially (as in human migrant communi-
ties). Each community has its own internal organisation model and
interact with other communities through social and organisational
interfaces.
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