
MIC∗: A Deployment Environment
for Autonomous Agents

Abdelkader Gouäıch, Fabien Michel, and Yves Guiraud

LIRMM, CNRS,
161 rue Ada,

34392 Montpellier Cedex 5, France
{gouaich, fmichel, yguiraud}@lirmm.fr

Abstract. This paper presents the MIC∗ model of autonomous agents
deployment environment. A practical social software engineering frame-
work based on AGR is also presented to show how MIC∗ is used to
develop MAS applications.

1 Introduction

Multi-agent systems (MASs) are composed by autonomous agents (AAs) that
evolve and interact in order to achieve their goals. What is implicit in this
definition of MASs is where these AAs live. This containing place of AAs is
identified by the generic term of environment. As Odell and colleagues have
pointed out in [1], the environment defines the properties of the world in which
an agent can and does function.

However, there are different concerns for the environment regarding the level
of abstraction at which the attention is focused [2].

At the conceptual level, the environment defines the model of the AAs’ world
and the practical means by which they perceive and act on it to achieve their
goals. At the implementation level, agents are necessarily embedded in a software
system that offers them some computing facilities.

As Zambonelli and Parunak have noticed in [3], traditional software engineer-
ing approaches usually do not consider the environment at the implementation
level as a primary abstraction. In the scope of this paper, the software system
containing the AAs and defining their interactions is identified as the deployment
environment (DE).

This paper relies on the idea that understanding and explicitly representing
the DE is a crucial issue for MAS engineering. Moreover, this paper argues that
the DE plays a fundamental role in order to guarantee the autonomy property.
In fact, we will see that the internal integrity of AAs is an objective criterion
that guarantees the autonomy at the implementation level.

As an example of DE, this paper presents MIC∗ (Movement, Interaction,
Computation). MIC∗ is an algebraic model that is independent from both the
conceptual and implementation models of the AAs. Hence, AAs are considered

D. Weyns et al. (Eds.): E4MAS 2004, LNAI 3374, pp. 109–126, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



110 A. Gouäıch, F. Michel, and Y. Guiraud

as black-boxes that sense and act through the DE by sending and receiving inter-
action objects (IOs). The interaction between the AAs is defined contextually in
interaction spaces (ISs). The whole dynamics of the DE is seen as the composition
of three kinds of functions: the movement, the interaction and the computation.
MIC∗ is a DE which is defined at the implementation level. Consequently, MIC∗

has not to be confused with the modeling of the AAs’ application-dependent
world. For instance, agent-based simulations which have been developed using
MIC∗ consider the situated environment as a particular active entity operating
on the DE [4]. For instance, this entity is in charge of calculating the evapo-
rating/aggregating/diffusing of pheromone, giving an operational semantics of
simultaneous actions or environmental variables such as temperature and so on.

Finally, as a case study, this paper describes the implementation of a social
framework which relies on traditional organizational concepts inspired by the
AGR model [5].

The rest of the paper is organized as follows: Sect. 2 presents the backgrounds
of the work; Sect. 3 discusses the autonomy property and induces the require-
ments that make necessary the explicit representation of the DE within MASs
at the implementation level; Sect. 4 presents the MIC∗ DE; Sect. 5 shows how
a social framework is built upon MIC∗; Sect. 6 presents an application devel-
oped using this social framework; and finally Sect. 7 concludes and gives some
perspectives.

2 Backgrounds

2.1 Multi-agent Systems

Few works tackle the general study of DEs. In this perspective, a lot of agent
platforms have been developed and are available for the implementation of MASs
[2]. However, these DEs are passive within the MAS and are often considered
as basic middlewares used to (i) access computer resources and (ii) delivering
messages to agents on the basis of predefined and fixed routing mechanisms.
MIC∗ does not settle the interaction and routing mechanisms, it gives simply
general requirements that should be instantiated for each particular MAS.

2.2 Coordination Media

The coordination medium can be considered as a persistent place where the
interaction between the coordinating entities takes place. Linda [6] is an example
of such a coordination medium where the entities coordinate their activities by
writing and retrieving tuples. A tuple is a set of typed fields and values. Linda has
inspired many other tuple-based coordination media such as Lime [7], Tuscon
[8] and MARS [9]. The interesting feature of coordination media is the property
of generative interaction [10]. This means that the interaction between entities
is uncoupled in space and time. MIC∗ tries to offer the same property for the
interaction among AAs. However, unlike Linda-like approaches, MIC∗ gives an
explicit structure of the medium and defines its dynamics according to the MAS
paradigm.



MIC∗: A Deployment Environment for Autonomous Agents 111

3 Why an Explicit Model of Deployment Environment
Is Needed?

3.1 Implementing Autonomous Agents

This section uses Wooldridge and Jennings definition of an agent [11]:

“Perhaps the most general way in which the term agent is used is
to denote a hardware or (more usually) software-based computer system
that enjoys the following properties:
– autonomy: agents operate without the direct intervention of humans

or others, and have some kind of control over their actions and in-
ternal state [12];

– social ability: agents interact with other agents (and possibly humans)
via some kind of agent-communication language [13];

– reactivity: agents perceive their environment, (which may be the phys-
ical world, a user via a graphical user interface, a collection of other
agents, the INTERNET, or perhaps all of these combined), and re-
spond in a timely fashion to changes that occur in it;

– pro-activeness: agents do not simply act in response to their envi-
ronment, they are able to exhibit goal-directed behavior by taking the
initiative.”

This definition specifies some features that a physical or software entity must
fulfill to be considered as an AA. Still, this definition does not specify how to
implement AAs. Consequently, developers may have their own interpretation of
the presented features. In [14], Gouäich identifies two main interpretations of
autonomy in the MAS literature: autonomy as self-governance and autonomy as
independence.

3.2 Autonomy as Self-governance

This interpretation is related to the definition proposed by Steels in [15]. Steels
considers the autonomy feature from a biological point of view:

“It starts from the idea that agents are self sustaining systems which
perform a function for others and thus get the resources to maintain
themselves. But because they have to worry about their own survival they
need to be autonomous, both in the sense of self-governing and of having
their own motivations.”

The concept of autonomy is thus regarded as a consequence of a survival instinct.
For a software agent, it is a question of achieving its own goals while ensuring
its functional requirements. Notably, an agent must be able to adapt itself with
respect to a modification of the external environment. Castelfranchi [12] shares
also this vision and defines an AA as a pro-active entity which has the ability to
produce its own laws and to follow them.



112 A. Gouäıch, F. Michel, and Y. Guiraud

3.3 Autonomy as Independence

This interpretation relates the autonomy feature to the social context of an AA.
The Social Dependence Network (SDN) has been introduced by Sichman and
colleagues in [16] to allow AAs to reason about their artificial society. Within
SDN, the autonomy concept is used to evaluate the level of the social dependence.
Three forms of autonomy are distinguished. An agent is a-autonomous for a given
goal according to a set of plans, if there is a plan in this set that achieves the goal
and every action in each plan belongs to its capabilities. An agent is considered
as r-autonomous for a given goal according to a set of plans, if there is a plan
in this set that achieves the goal, and every resource in each plan belongs to
its resources. Finally, an agent is s-autonomous when it is both a-autonomous
and r-autonomous. According to this definition, an agent is autonomous for a
particular goal if it does not depend for resources or actions on another agent.

3.4 Internal Integrity: An Objective Criterion for Autonomy

Sichman and colleagues define autonomy as being independent on actions and
resources from other agents. On the other hand, [12, 15, 17] define agent’s auton-
omy as a behavioral characteristic. From a software engineering perspective, the
latter interpretation is more useful and generic since it does not imply to study
the MAS social structure. The autonomy is only related to individual charac-
teristics. However, it still remains a subjective point of view because it relies
on how the behavior of an agent is evaluated. So, as Weiss and colleagues have
pointed out in [18], objective implementation criteria are necessary to define the
autonomy of a software agent. We propose the internal integrity as an objective
criterion to implement AAs [14].

The internal integrity is a programming constraint that considers an AA as
a bounded system which internal dynamics and structure are neither control-
lable nor observable directly by an external entity. In fact, if the AA’s software
structure is accessed or modified by another entity, the decisional process and
behaviors may be altered. Since the decisional process of an AA has to be en-
tirely determined only by its own perception and behaviors, the internal integrity
becomes a sine qua none condition to implement AAs.

3.5 Agent Deployment Environment: Ensuring Internal Integrity

The internal integrity criterion also raises some issues with respect to the im-
plementation of MASs: on one hand, the internal integrity has to be taken into
account to guarantee the autonomy; on the other hand, the AAs are interacting
entities that need to act and modify the perceptions of other agents. Since these
perceptions are included within the boundaries of the AAs, this contradicts the
internal integrity statement. In other words, the problem is to enable the interac-
tion between AAs which boundaries do not intersect. To avoid this paradox, the
DE needs to be a non-agent entity that manages and carries out the interactions.

The next section presents MIC∗ as an example of a DE that guarantees the
internal integrity of the AAs while enabling their interactions.



MIC∗: A Deployment Environment for Autonomous Agents 113

4 MIC* Algebraic Model

4.1 Introduction to the MIC∗ Model

In order to fulfill the presented requirements on autonomy, the AAs have to be
considered as bounded black-boxes. Thus, no assumption is made on their in-
ternal structure. Consequently, the DE only considers the observable processes
such as the interaction. The interaction process is independent from the AAs
conceptual and implementation models. In fact, heterogeneous AAs are able to
interact at least if they agree on a common interaction language or ontology.
Within MASs, the word ’interaction’ is misused and often refers to a commu-
nication process. Communication is defined as exchanging information between
several locations; while interaction goes further and assumes that the exchanged
information modifies the state of the communicating entities. To be exchanged,
information is usually encoded using explicit carriers. Within MIC∗ these carriers
are reified as interaction objects (IOs).

For instance, a researcher’s ideas can be encoded as words and sentences in an
explicit scientific paper which represents the explicit information carrier. Other
human agents are able to read this IO and, depending on their competences, to
decode the contained information.

Once the paper has been written and published, the emitting agent does not
have control on the ongoing communication processes that occur.

For instance, Socrates is still in a communication process with other human
agents centuries after his death. Having this intuition about IOs, it would be
interesting to look further in their structure. The first abstraction is to define
an empty IO that carries no information. For instance, an empty paper is an IO
that does not carry any information but just meta-information: it is a paper and
it is empty.

The IOs can also be aggregated. For instance, the proceedings of the con-
ference is an IO represented as an aggregation of more elementary IOs. Con-
sequently, IOs naturally have a monoid structure (O,+) with the composition
law + and identity element 0. In an aggregation, we do not want to consider
the order as an additional information. So, no matter the order of the IOs in
an aggregation, one has to be able to interpret them similarly. This makes the
composition operator + commutative.

Now let us consider a situation where a poor-quality paper is rejected by the
program committee of a conference and accepted by a national workshop pro-
gram committee. This IO never reached the perceptions of other agents in the
first case and interacts with them in the second case. So, the interaction process
are contextually defined. This introduces the concept of interaction spaces (ISs).
Hence, ISs define a local context for interactions among IOs. Notice that the in-
teraction processes within MIC∗ only involve IOs and is completely independent
from the AAs.

The AAs have coordinates, in terms of IOs, in all ISs. When an agent is not
’present’ in a certain IS, its representation is equal to the empty IO 0; when an
agent is present in a certain IS its representation differs from 0.



114 A. Gouäıch, F. Michel, and Y. Guiraud

The (logical) mobility of an AA is defined as the movement of its IOs among
ISs. In order to easily define this notion of mobility, we introduce negative IOs.
Hence, an AA moves outside an IS when its representation is reduced to 0. This
can be expressed as x+(−x) = 0. So, negative IOs are defined as being IOs that
reduce other IOs under the composition law +. So, the IOs structure is no more
a commutative monoid but a commutative group (O,+). The group structure
is also used in order to define the composition of several MIC∗ DEs. Thanks
to this on-the-fly composition property, MASs for open and ubiquitous contexts
are easily modeled and implemented [19].

The MIC∗ structure T = O(A×S)×O(A×S) is composed by two matrices that
are described as follows:

1. The outbox matrix: the rows of this matrix represent agents i ∈ A and the
columns represent the ISs j ∈ S. Each element of the matrix o(i,j) ∈ O is a
representation of the agent i in the IS j. This is the only way for an agent
to exist and operate in the MAS. So, the elements of this matrix model
the means that enable an agent to perceive and influence the universe in
a particular IS. Notice that the means used to perceive the universe are
distinguished from the result of the perception. The perception results are
placed in the inbox matrix. When o(i,j) = 0, the agent i neither influences
nor perceives the universe in the IS j: agent i does not exist in IS j.

2. The inbox matrix: the rows of this matrix represent agents i ∈ A and the
columns represent the ISs j ∈ S. Each element of the matrix o(i,j) ∈ O
represents the result of the perceptions of the agent i in the IS j.

Each element, or term, T of T is represented as:

T =






[o1]a︸︷︷︸
(C)
...




s︸ ︷︷ ︸
(B)

· · ·




︸ ︷︷ ︸
(A)






[i1]a︸︷︷︸
(G)
...




s︸ ︷︷ ︸
(F)

· · ·




︸ ︷︷ ︸
(E)

(A) : the outbox matrix ; (B) : the IS ’s’ ; (C) : the outbox of agent ’a’ ; (E) :
the inbox matrix ; (F) : IS ’s’ ; (G) : the inbox of agent ’a’.

4.2 MIC∗ Dynamics

An element T ∈ T is an instantaneous snapshot of the DE state. Within all
potentially functions defined from T to T , MIC∗ considers three classes which
have special semantics for MASs:

Interaction (φ): From an external point of view, two AAs are considered as
interacting when the perceptions of an agent are influenced by the emissions
of another. Consequently, interaction functions modifies the perception re-
sults of an agent (defined in the inbox) according to its perception means



MIC∗: A Deployment Environment for Autonomous Agents 115

and others influences (both defined in the outbox) within a defined IS. The
set of all interaction functions is represented as φ.

Movement (µ): The mobility of an agent is defined as the mobility of its IOs
among different ISs. During a movement no IO is created nor lost. In fact,
this is an interesting feature to prevent incoherent duplications by guaran-
teeing that an AA actually disappears from its original IS and appears in its
destination IS. The set of all movement evolutions is represented by µ.

Computation (γ): The computation is an internal process of AAs. The only
way to observe that an AA has conducted a computation is when it changes
autonomously its outboxes within ISs. To avoid confusion between compu-
tation and movement, after a computation, AAs conserve their presence. In
other words, an agent is not allowed to appear (respectively to disappear)
suddenly in an IS when it was not present (respectively present) before the
computation. Besides, agents are rational entities that change their emis-
sions according to their perceptions. So, an agent consumes its perceptions
in order to make a computation. This is expressed in MIC∗ by resetting the
inbox of the computing agent to 0. The set of all computation evolutions is
represented by γ.

The core idea is that (i) the DE dynamics is discrete and (ii) any state of
the DE is reached from the initial state by a sequence of functions that may be
of three classes: (M)ovement, (I)nteraction, and (C)omputation (MIC∗).

4.3 Building MAS Deployment Environment with MIC∗:

The formal concepts presented above has been implemented as software struc-
tures offering a development library for the designers of DEs. To complete the
design and implementation of a DE, the designer has to provide the followings:

– IOs type description: the IOs have been used: (i) to encode and carry in-
formation, (ii) to define the perceptions of AAs in ISs, (iii) to define the
influences of AAs in ISs, and finally (iv) to define the movement of AAs
among ISs. A typing system of IOs has been introduced to describe the
fields contained in an IO and to provide a semantics. The types of IOs have
also been used to improve the performances of MIC∗, especially when using
the dynamics operators. Hence, the operators, which are typed functions,
are executed only when the matching IOs are present within the IS. The DE
designer has to provide the description of the different IO types used within
the MAS and their possible hierarchical relationships. The introduced type
system supports multiple inheritance.

– Interaction spaces: the MIC∗ library offers a default IS where AAs are ini-
tially located. The designer has to define its own application specific ISs.

Dynamics Operators. The dynamics of MIC∗ is realized by the following
operators that are defined for ISs:



116 A. Gouäıch, F. Michel, and Y. Guiraud

– Interaction operators: a couple of IOs is passed to the interaction opera-
tor, namely the sensor and effector. The interaction operator returns the
interaction result. An IS may contain zero or more interaction operators.
Consequently, the interaction is defined between the IOs and not between
the AAs. The AAs have to set their outboxes to the correct sensors in order
to perceive the effectors of other AAs according to the defined interaction
operators. The type information is used to match interaction operators with
corresponding IOs present in the IS.

– Movement operators: the movement among the ISs is decomposed in two
operators which are combined. In fact, each IS defines a set of movement out
operators that specify which IOs are allowed to get outside the IS; and a set
of movement in operators that defines which IOs are allowed to enter the
IS. A path is created between two ISs when the types of their corresponding
movement out and in operators match. If a path is found among two ISs,
the IOs may move from the source to the destination IS.

5 Building a Social Framework Upon MIC∗

MIC∗ only offers a generic and low level abstraction of a DE. To build real
world applications, one has to provide a higher level engineering framework.
This section presents a social framework. The idea is that MAS designers only
deal with social concepts which are automatically translated to MIC∗ concepts.

5.1 Presentation of the Social Framework

The presented social framework is deeply inspired by the AGR model [5]. The
MadKit [20] platform already implements the AGR model; here we explore an-
other implementation using only MIC∗ primitives.

The social abstractions presented by AGR are briefly described as follows:

– (A)gent: an agent may play one or several roles and may be member of one
or several groups;

– (G)roup: a group is a collection of roles and consequently a collection of
agents that play these roles. The interaction among the agents can occur
only when they are located within the same group;

– (R)ole: a role is an abstraction that represents a function or a service within
the society; agents playing the role fulfill the desired service.

At this stage, let us sketch a preliminary mapping between AGR and MIC∗.
As shown in Fig. 1, the group concept may be modeled as an IS: the IS concept
may be seen as a logical location where a collection of agents interact. Besides,
the agents may move across groups; this is similar to moving across ISs. The
agent concept of AGR naturally corresponds to MIC∗ AAs. Still, there is not a
one to one mapping between these concepts (see Sect. 5.2). The role concept is
considered as an IO within MIC∗. In fact, when an agent plays a certain role,



MIC∗: A Deployment Environment for Autonomous Agents 117

Fig. 1. Mapping between AGR concepts and MIC∗ concepts

it publishes an IO that describes itself as playing this role. Consequently, other
agents can identify its social function and interact with it. The implementation
of the AGR model using MIC∗ is explained in more detail in Table 1.

Two interaction schemes are considered for the social framework:

1. The role-level interaction schema: messages are delivered to agents only by
knowing their roles. This mechanism allows implementing one-to-many com-
munications and the discovery of agents’ identities by knowing only their
roles.

2. The agent-level interaction schema: messages are delivered to agents by
knowing their exact identity. This mechanism implements one-to-one com-
munications.

5.2 Implementation of the Social Framework

Interaction Objects. Fig. 2 presents the types of IOs used in the social frame-
work:

– Message: the Message type represents IOs used to exchange information
encoded as a content. This is the base-type of all other interaction related
types; it contains a single field, content, that represents the exchanged in-
formation.

Fig. 2. Type hierarchy of IOs used in the social framework



118 A. Gouäıch, F. Michel, and Y. Guiraud

– SocialMessage: the SocialMessage type represents exchanged messages for
the role-level interaction schema. The fields of this type are: sender-role
that represents the role of the sender and receiver-role that represents the
role of the receiver. This type inherits the content field from the Message
type.

– AgentMessage: the AgentMessage type represents exchanged messages at
the agent-level interaction schema. This type fields are: sender-agent-id
that represents the identity of the sender; receiver-agent-id that repre-
sents the identity of the receiver; sender-role that represents the role of
the sender; receiver-role that represents the role of the receiver. This type
inherits the content field from the Message type.

– SocialRole: the SocialRole type represents roles which are played by the
AAs. This type defines only a single field role-id that represents the unique
identifier of the role.

– AgentIdentifier: the AgentIdentifier type represents the identity of an
agent. In fact, since AAs do not have access to the structure of others, they
have to explicitly publish their identity. This type defines only a single field
agent-id that represents the unique identifier of the agent; it also inherits
the role-id field from the SocialRole type.

– Authorisation: the Authorisation type is used to control group access
using movement operators. An agent is allowed to enter an IS by presenting
the correct Authorisation instance. The Authorisation contains the name
of the played role, namely the played-role field; and the certificate field
that represents a signature confirming that the agent is allowed to play this
role.

Interaction Operators. Two interaction operators are defined in order to
model the interaction schemes:

– Role-level interaction operator: this operator is defined among SocialRole
and SocialMessage. A SocialRole interacts with a SocialMessage only
and only if the receiver role of the SocialMessage is the same as the role-id
field of the SocialRole. This is expressed algorithmically as:

1: function RoleLevelIOP::interaction(sensor,effector)
Require: sensor is instance of the SocialRole type
Require: effector is instance of the SocialMessage type

2: if sensor[’role-id’] == effector[’receiver-role’] then
3: return effector
4: else
5: return 0 
 No interaction.
6: end if
7: end function

– Agent-level Interaction Operator: the agent-level interaction is defined be-
tween AgentIdentifier and AgentMessage. An AgentIdentifier interacts



MIC∗: A Deployment Environment for Autonomous Agents 119

with an AgentMessage only and only if the id of the receiver is the same as
the id of the agent. This is expressed algorithmically as follows:

1: function AgentLevelIOP::interaction(sensor,effector)
Require: sensor is instance of the AgentIdentifier type
Require: effector is instance of the AgentMessage type

2: if sensor[’agent-id’] == effector[’receiver-agent-id’] then
3: return effector
4: else
5: return 0 
 No interaction.
6: end if
7: end function

Movement Operators. The groups are modeled as ISs. Consequently, each
IS is associated with a set of roles. To enter the IS, an agent has to play a role
that belongs to this set. To realize these movements, the group-entrance operator
allows agents to enter inside an IS. The agents have to present an Authorisation
that describes the played role. On the other hand, the group-leaving operator
allows agents to leave the IS.

Interaction Spaces. Besides the default IS defined by MIC∗, each group is
represented by an extension of MIC∗ IS, namely the social interaction space.
Each social IS is defined with a set of authorized roles; the role-level and agent-
level interaction operators; and the group-entrance and group-leaving operators.

The Autonomous Agents. Within MIC∗, the AAs may have simultaneous
activities. For instance, a single AA can sense its surrounding environment and
affect it simultaneously. To realize this simultaneity, several MIC∗ agent entries
are used. For instance, Fig. 3 shows this schema where two MIC∗ agent entries
are associated to a single AA: the sensor entry and effector entry.

From the AA perspective, the sensor entry is dedicated for sensing the uni-
verse. Consequently, IOs that perceive the universe are placed in the outbox

Fig. 3. A single AA have several entries within the MIC∗ deployment environment: an
entry dedicated to sense the universe, i.e. the sensor entry; and an entry dedicated to
affect the universe, i.e. the effector entry



120 A. Gouäıch, F. Michel, and Y. Guiraud

Fig. 4. A social autonomous agent owns an effector entry to affect the universe, and
several sensor entries representing its roles

matrix, and the result of their interaction is placed in the inbox matrix. On the
other hand, the effector entry is dedicated to affect the universe; consequently,
IOs to be perceived by other agents are placed in the outbox matrix and, in this
case, the inbox matrix is not used (marked with X, see e.g. Fig. 4). For the MIC∗

environment, the agent’s sensor and effector entries are considered as indepen-
dent agents; the AA is responsible for making this couple of agents behaving as
a single entity. This seems similar to the Holonic approach that considers a set
of agents as an single agent [21]; still, here we argue that a set of agents that
have been conceived to behave as a single entity can build a global agent.

To represent the fact that an AA plays several roles in groups, the mechanism
presented above is extended such that each AA is associated to an effector entry
and zero or more sensor entries. Each sensor entry represents a played role.
Figure 4 gives an example of an AA that plays three roles R1, R2 and R3. This
AA has a single effector to send messages, for instance this agent is sending three
messages simultaneously m1, m2 and m3 in three groups G1, G2 and G3. This
agent plays simultaneously several roles within the same group: R1 and R3 in
the group G1; and plays the same role in several groups: R3 in G1 and G3.

5.3 Mapping Table Between AGR and MIC∗:

Finally, by considering the presented concepts, the complete mapping among the
AGR concepts and MIC∗ is described by Table 1.



MIC∗: A Deployment Environment for Autonomous Agents 121

Table 1. Mapping between AGR concepts and commands to MIC∗

6 Example of Application: Ubiquitous Web

The Ubiquitous Web is an application that emulates the use of the web in a
mobile and ubiquitous environment. The purpose of this section is to present
how such an application has been modeled and built using the social framework
and to demonstrate its deployment on a simulated 3D virtual world.



122 A. Gouäıch, F. Michel, and Y. Guiraud

6.1 Organizational Modeling:

Systemic Functions. The goal of the application is to emulate the navigation
and access of html-based services for ubiquitous environments. There are two
systemic functions:

1. Web navigation and access of services: the software system is divided in
two main parts, namely the server and client modules. The server module
is responsible for delivering web-pages that describe the offered services and
forms. The client is responsible for translating the user’s commands into
requests to the server and displaying the html pages.

2. Discovery of services: the server module of the system is also responsible for
delivering a human readable description of the offered services. On the other
hand, the client is responsible for discovering all accessible services and for
retrieving their description.

Organisational Structure

Roles

1. WebServerRole: this role responds to the requests of agents playing
WebClientRole. A WebClientRole may request a html presentation;
or request a service. When requesting a service, the WebClientRole agent
can deliver the parameters which have been set by the user.

2. WebClientRole: this role represents the intermediary function between
the final user and the WebServerRole. The functions of this role are:
(a) request a particular html presentation from the WebServerRole;
(b) correctly layout the html presentation to the user;
(c) request services from the WebServerRole by sending the parameters

of the service as imported by the user.
3. ServiceDiscoveryServerRole: the main function of this role is to deliver

a human readable description of the offered service; and to deliver an access
point where to contact the actual service provider.

4. ServiceDiscoveryClientRole: the main function of this role is to check
the presence of ServiceDiscoveryServerRole agents and to retrieve their
description and the service’s access point.

Groups

1. WebGroup: this group holds agents that play WebClientRole and
WebServerRole roles.

2. ServiceDiscoveryGroup: this group holds agents that play ServiceDis-
coveryServerRole and ServiceDiscoveryClientRole roles.

6.2 Simulation of Ubiquitous Environments

In order to experiment with the application, a simulator has been developed for
ubiquitous environments using computer games technologies. The goal of this



MIC∗: A Deployment Environment for Autonomous Agents 123

Fig. 5. MIC∗ DEs are composed and decomposed according to the avatars’ communi-
cation areas

simulation is to emulate a physical world where the user, represented by an
avatar, can move and interact with the deployed services which are also repre-
sented as avatars. Behind each avatar an entire MAS is running: this includes
the AAs and the corresponding MIC∗ DE. Each avatar has a communication
area; when the avatars’ communication areas overlap, their corresponding MIC∗

DE are on-the-fly composed. Similarly, when the avatars’ communication areas
do not intersect, their corresponding MIC∗ DE are disconnected. This process is
shown graphically by Fig. 5. The user has a ’First Person Shooter’ (FPS) per-
spective and can move around in the virtual world. Figure 6 presents the main
views:

– Situation A: there is no service in the immediate surroundings of the user.
– Situation B: the user perceives a service, but the service is too far away to
establish a composition of the DEs.

– Situation C: since a communication link can be established, the MIC∗ DEs
are composed. Consequently, AAs located in both deployment environments
can interact.

When the user leaves the building of the service (after situation C), the MIC∗

DEs are immediately decomposed. Consequently, the AAs cannot interact. These
are the realistic properties of the ubiquitous environment and the applications
have to handle them. Thanks to the on-the-fly composition property of MIC∗

DEs, the constraints on communication links do not disturb drastically the soft-
ware systems. In fact, these constraints are handled explicitly in the developed
models. For instance, a disconnection is not very different from a silence of an
AA that has decided to not reply to external stimuli.



124 A. Gouäıch, F. Michel, and Y. Guiraud

Fig. 6. First-Person-Shooter (FPS) perspectives in the simulator

6.3 End User Graphical Interface

The user interacts with the client module through the web browser presented by
Fig. 7:

Fig. 7. Ubiquitous web browser GUI

– Situation 1: the agent that plays the role of ServiceDiscoveryClientRole
has not discovered any service yet. An empty list is presented to the user.
This corresponds to situations A and B of Fig. 6.

– Situation 2: the agent that plays the role of ServiceDiscoveryClientRole
has discovered some services by interacting with the agent that plays the
role of ServiceDiscoveryServerRole in the ServiceDiscoveryGroup
group. The list of the available services is presented to the user. This corre-
sponds to situation C of Fig. 6.

– Situation 3: the user has now a web-like interaction with the service. The in-
volved agents are those playing theWebClientRole andWebServerRole
roles. This also corresponds to situation C of Fig. 6.

7 Conclusion

This paper has argued that the DE is a key concept for agent-oriented engi-
neering, since it guarantees the autonomy of the agents while it defines their
interactions. As an example of such DE, MIC∗ has been presented.



MIC∗: A Deployment Environment for Autonomous Agents 125

The notion of DE separates the concerns of MAS engineering. In fact, the en-
gineering of agents is completely separated from the engineering of DEs. The DE
is the common structure offered to different developers to deploy AAs and make
a global system which functions emerge from the interactions of the individuals.

MIC∗ offers some interesting features such as the implementation of the inter-
nal integrity for AAs; the generative interaction and the on-the-fly composition.
These features have provided the basis for engineering open software systems in
complex and unpredictable environments such as ubiquitous environments.

However, MIC∗ has to provide more elaborated control and trust functions.
Currently, we are exploring the control of coordination and interaction proto-
cols by MIC∗. Hence, MIC∗ monitors the agents’ conversations with regards to
interaction and coordination protocols. Any AA that challenges these protocols
is identified by the DE and other AAs are prevented from its influences. Con-
sequently, the AAs are offered a normed DE where they can collaborate with
autonomous partners.

References

1. Odell, J., Parunak, H.V.D., Fleischer, M., Breuckner, S.: Modeling agents and
their environment. In Giunchiglia, F., Odell, J., Weiss, G., eds.: Agent-Oriented
Software Engineering (AOSE) III. Volume 2585 of Lecture Notes on Computer
Science., Springer, Berlin (2002) 16–31

2. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments
for multiagent systems: State-of-the-art and research challenges. In Weyns, D.,
Parunak, H.V.D., Michel, F., eds.: Environments for Mutiagent Systems. Volume
3477 of Lecture Note in Artificial Intelligence LNAI., Springer (to appear, 2005)

3. Zambonelli, F., Parunak, H.V.D.: From design to intention: signs of a revolution.
In: Proceedings of the first international joint conference on Autonomous agents
and multiagent systems, ACM Press (2002) 455–456

4. Michel, F.: Formalisme, méthodologie et outils pour la modélisation et la simulation
de systèmes multi-agents. PhD thesis, Université Montpellier II (2004)

5. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organi-
zational view of multi-agent systems. In Paolo Giorgini, Jrg P. Mller, J.O., ed.:
Agent-Oriented Software Engineering IV: 4th International Workshop, Aose 2003.
Lecture notes in computer science LNCS, Springer Verlag (2003) 185–202

6. Gelernter, D., Carriero, N., Chandran, S., Chang, S.: Parallel programming in
linda. In: Proceedings of the International Conference on Parallel Programming.
(1985) 255–263

7. Picco, G.P., Murphy, A.L., Roman, G.C.: Lime: Linda meets mobility. In: Inter-
national Conference on Software Engineering. (1999) 368–377

8. Omicini, A., Zambonelli, F.: The tucson coordination model for mobile information
agents. 1st Workshop on Innovative Internet Information Systems (1998)

9. Cabri, G., Leonardi, L., Zambonelli, F.: Reactive tuple spaces for mobile agent
coordination. Lecture Notes in Computer Science 1477 (1998) 237–247

10. Gelernter, D.: Generative communication in linda. ACM Transaction od Program-
ming Languages and Systems 7 (1985) 80–112

11. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The
Knowledge Engineering Review 10 (1995) 115–152



126 A. Gouäıch, F. Michel, and Y. Guiraud

12. Castelfranchi, C.: Guarantees for autonomy in cognitive agent architecture. In:
Proceedings of the workshop on agent theories, architectures, and languages on
Intelligent agents, Springer-Verlag New York, Inc. (1995) 56–70

13. Genesereth, Ketchpel: Software agents. Communications of the ACM 37 (1994)
48–53

14. Gouäich, A.: Requirements for achieving software agents autonomy and defin-
ing their responsibility. In: The First International Workshop on Computational
autonomy - Potential, Risks, Solutions (autonomy 2003). (2003)

15. Steels, L.: The biology and technology of intelligent autonomous agents. Robotics
and Autonomous Systems 15 (1995)

16. Sichman, J.S., Conte, R., Castelfranchi, C., Demazeau, Y.: A social reasoning
mechanism based on dependence networks. In Cohn, A.G., ed.: Proceedings of the
Eleventh European Conference on Artificial Intelligence, Chichester, John Wiley
& Sons (1994) 188–192

17. Luck, M., d’Inverno, M.: A formal framework for agency and autonomy. In Lesser,
V., Gasser, L., eds.: Proceedings of the First International Conference on Multi-
Agent Systems (ICMAS-95), San Francisco, CA, USA, AAAI Press (1995) 254–260

18. Weiss, G., Rovatsos, M., Nickles, M.: Capturing agent autonomy in roles and xml.
In: Proceedings of the second international joint conference on Autonomous agents
and multiagent systems, ACM Press (2003) 105–112

19. Gouäich, A., Guiraud, Y., Michel, F.: Mic∗: An agent formal environment. In: the
7th World Multiconference on Systemics, Cybernetics and Informatics (SCI 2003),
session on Agent Based Computing ABC’03. (2003)

20. Gutknecht, O., Ferber, J., Michel, F.: Integrating tools and infrastructures for
generic multi-agent systems. In: Proceedings of the fifth international conference
on Autonomous agents, AA 2001, ACM Press (2001) 441–448

21. Parunak, H.V.D., Odell, J.: Representing social structures in uml. In: Agent-
Oriented Software Engineering II. Volume 2222 of Lecture notes in computer sci-
ence LNCS., Berlin, Springer (2002) 1–16


	Introduction
	Backgrounds
	Multi-agent Systems
	Coordination Media

	Why an Explicit Model of Deployment Environment Is Needed?
	Implementing Autonomous Agents
	Autonomy as Self-governance
	Autonomy as Independence
	Internal Integrity: An Objective Criterion for Autonomy
	Agent Deployment Environment: Ensuring Internal Integrity

	MIC* Algebraic Model
	Introduction to the MIC* Model
	MIC* Dynamics
	Building MAS Deployment Environment with MIC*:

	Building a Social Framework Upon MIC*
	Presentation of the Social Framework
	Implementation of the Social Framework
	Mapping Table Between AGR and MIC*:

	Example of Application: Ubiquitous Web
	Organizational Modeling:
	Simulation of Ubiquitous Environments
	End User Graphical Interface

	Conclusion



