Defining a Methodology Based on GPU
Delegation for Developing MABS using GPGPU

Emmanuel Hermellin' and Fabien Michel®

LIRMM - CNRS - University of Montpellier,
161 rue Ada, 34095 Montpellier, France.
{hermellin,fmichel}@lirmm.fr

Abstract. Multi-Agent Based Simulation (MABS) is used to study com-
plex systems in many research domains. As the number of modeled agents
is constantly growing, using General-Purpose Computing on Graphics
Units (GPGPU) appears to be very promising as it allows to use the
massively parallel architecture of the GPU (Graphics Processing Unit)
to do High Performance Computing (HPC). However, this technology
relies on a highly specialized architecture, implying a very specific pro-
gramming approach. So, to benefit from GPU power, a MABS model
need to be adapted to the GPU programming paradigm.

Contrary to some recent research works that propose to hide GPU pro-
gramming to ease the use of GPGPU, we present in this paper a method-
ology for modeling and implementing MABS using GPU programming.
The idea is to be able to consider any kind of MABS rather than ad-
dressing a limited number of cases. This methodology defines the iter-
ative process to be followed to transform and adapt a model so that it
takes advantage of the GPU power without hiding the underlying tech-
nology. We experiment this methodology on two MABS models to test
its feasibility and highlight the advantages and limits of this approach.

Keywords: MABS, GPGPU, Methodology, GPU delegation

1 Introduction

Using Multi-Agent Based Simulation (MABS), computing resources require-
ments often limit the extent to which a model could be experimented [16]. Con-
sidering this issue, General-Purpose computing on Graphics Processing Units
(GPGPU) is a relevant way of speeding up MABS. Indeed, Graphics Processing
Unit (GPU) is an excellent computational platform which is able to perform
general-purpose computations [15]. GPGPU relies on using the massively paral-
lel architecture of usual PC graphics cards for accelerating very significantly the
performance of programs! [4].

Still, implementing MABS using GPGPU is very challenging because GPU
programming relies on a highly specialized hardware architecture [18,1]. Based
on the SIMD (Single Instruction, Multiple Data) parallel computing model, also

! e.g. https://developer.nvidia.com/about-cuda

called Stream Processing, which consists in executing simultaneously a series
of operations on a dataset, an efficient GPU implementation requires that the
MABS is modeled by means of distributed and independent data structures.
Moreover, usual object oriented features, which are very common in Agent-Based
Model (ABM), are no longer available using GPGPU [3].

Among research works that aim at enabling the use of GPGPU in a MABS
context, most of them release dedicated tools and frameworks which integrate
GPGPU through a transparent use of this technology (e.g. [21]). However, doing
so, such approaches have to abstract many parts of the MABS models and thus
handle only specific cases, while there exists a wide variety of MABS models.

In [8], we have studied the relevance of directly using GPGPU (transform or
adapt a model) and promoted the idea that a dedicated methodology would be
a valuable contribution to the field. Especially, the purpose of such methodology
would be twofold: (1) helping potential users to decide if they could benefit
from GPGPU considering their models and (2) describing the modeling and
implementation process of MABS models without hiding GPU programming.

From a Software Engineering (SE) perspective, this paper details the method-
ology extracted from the experiment presented in [8] and the development as-
pects related to this solution. Then, we test this methodology on two models to
highlight the advantages and limits of such an approach. Section 2 presents the
evolution of the use of GPGPU in MABS. Section 3 describes the methodology
which is proposed in this paper. Section 4 experiments the methodology on two
models. Section 5 concludes this paper by listing the advantages and limits of
the proposed methodology and outlines planed improvements.

2 Related Works and Motivations

Initially designed for graphics rendering, GPU are now able to perform general-
purpose computations. The associated programming paradigm consists in exe-
cuting simultaneously a series of operations on a dataset. When the data struc-
ture is suitable (and only if), the massively parallel architecture of the GPU
can provide very high performance gains (up to thousands of times faster) [4].
Empirical results from various experiments in a MABS context show that high
simulation speeds can be achieved especially with very large agents populations
[6]. However, this excellent speedup comes at the expense of modularity, ease of
programmability and reusability [18].

The release of CUDA? and OpenCL? have simplified GPGPU and greatly
contributed to increase the number of MABS using this technology. Flame GPU
[21] is a flagship example of the possibilities offered by the rise of specialized
GPU programming tools for MABS: It is a ready-to-use solution for creating
and simulating MABS using GPGPU.

2 Compute Unified Device Architecture, e.g. https://developer.nvidia.com/
what-cuda
3 Open Computing Language, e.g. http://www.khronos.org/opencl

Nonetheless, the existing frameworks are still difficult to reuse and target
only a limited number of MABS use cases. Therefore, most of the new research
works still start from scratch and put all their attention on acquiring the best
computational gains without considering the accessibility, reusability and mod-
ularity aspects.

Moreover, as pointed out in [1], implementing a model using GPGPU does
not necessarily imply an increase of performance, notably in the field of MABS
where many different and heterogeneous architectures can be conceived. Indeed,
achieving an efficient implementation requires to take into account the specific
programming model that comes with GPU. Therefore, most of MABS using
GPGPU are realized in an ad hoc way and only represent one-off solutions.

Until 2011, the most used approach to implement MABS with GPGPU con-
sisted in executing completely the model on the GPU. Called here all-in-GPU,
this approach is useful when the main objective is only to accelerate the simu-
lation. But from a software engineering point of view, it is not adapted because
all development efforts are lost. Indeed, all-in-GPU implementations are very
specific and therefore cannot be reused in other contexts. This is especially true
in the scope of works that address the study of flocking [7], crowd [20], traffic
simulations [23] or autonomous navigation [2].

Considering these issues, hybrid approaches have been proposed and repre-
sent a very attractive alternative because they consist in sharing the execution
of the MABS between the CPU and the GPU. Despite the fact that an all-in-
GPU implementation is more efficient than an hybrid one, the latter has two
main advantages. Firstly, hybrid approaches enable a step further toward more
complex MAS models because one can choose what is executed on the GPU ac-
cording to the nature of the computations (e.g. [12,11]). Secondly, by removing
the programming constraints related to all-in-GPU systems, hybrid approaches
are by definition more flexible and open to other technologies [12,13], which in
turn brings greater modularity and reusability (e.g. the explicit implementation
distinction between the agents and the environment in [13,17]).

So, from this overview, works dealing with GPGPU in MABS can be divided
into two categories: (1) works that are only interested in performance gains,
and which are hardly reusable and (2) works that take into account aspects
related to modularity, genericness, reusability and accessibility. However, works
from the later category mostly rely on hiding the use of GPGPU through pre-
defined programming languages or interfaces which are based on specific agent
and environment models (e.g. [19]). Even though they represent concrete solu-
tions for easing the use of GPGPU for MABS, such approaches cannot take into
account the wide variety of MABS which can be conceived because they rely on
predefined software structures and conceptual models [8].

Consequently, instead of hiding GPGPU, we here argue on the idea that it
would be interesting to provide the MABS community with a methodology that
would concretely help to adapt and implement a MABS model using directly
GPU programming. This would allow to take into account a larger number of
models because such an approach would not rely on a predefined agent model and

implementation. This paper presents the methodology on which we are working
according to this objective.

3 Defining a GPU Methodology Dedicated to MABS

3.1 The GPU Delegation Principle

The GPU delegation principle [13] is based on the fact that it is very difficult to
deport the entire MABS model on graphics cards. Inspired by an Agent-Oriented
Software Engineering (AOSE) trend which consists in using the environment as a
first class abstraction in MAS [24, 25], GPU delegation uses an hybrid approach
which divides the execution of the MAS model between the CPU and the GPU.
Especially, this principle consists in making a clear separation between the agent
behaviors, managed by the CPU, and environmental dynamics, handled by the
GPU.

To this end, the design guideline underlying this principle is to identify agent
computations which can be transformed into environmental dynamics and thus
implemented into GPU modules (called kernel, these modules contain the com-
putations executed on the GPU). The GPU delegation principle can be stated as
follows: Any agent perceptions and computations that do not modify the agent’s
states could be translated to an endogenous dynamic of the environment, and
thus considered as a potential GPU environment module.

3.2 Objectives of the GPU Delegation Methodology

As previously mentionned, using GPGPU in the context of MABS remains dif-
ficult mainly because of accessibility and reusability issues. In this context, [10]
has proposed an overview of several case studies on using the GPU delegation
principle for adapting MABS models to GPU programming. Moreover, the var-
ious practical results obtained with this approach are detailed and discussed.
Especially, all these experiments [13,9, 8] showed that this approach is an origi-
nal and relevant solution which can be generalized in a methodology.

Furthermore, this methodology is different from other developed solutions
because it does not hide the used technology and it puts forward a modular
iterative modeling process focusing on the reusability of created tools. In this
context, this methodology intends to reach four main objectives:

1. Simplify the use of GPGPU in the context of multi-agent based simulations
by describing the modeling and implementation process to follow;

2. Define a generic approach which can be applied on a wide variety of models;

Promote the reusability of created tools;

4. Help potential users to decide whether they can benefit from GPGPU ac-
cording to their models.

@

3.3 Definition of the GPU Delegation Methodology

All the experiments carried out within the scope of GPU delegation [10] allow
to extract a design methodology based on the GPU delegation principle and
divided into 5 distinct phases (illustrated in figure 1). The first step consists in
decomposing all the computations which are presents in the model. The second
step consists in identifying, among the above listed computations, those which
are compliant with the criteria of the GPU delegation principle. The third step
consists in checking if the computations identified as compatible with the GPU
delegation principle have already been converted into environmental dynam-
ics and therefore if there is a dedicated GPU module that can be reused. The
fourth step verifies the compatibility of selected computations with the GPU
architecture. The idea is to choose and apply the GPU delegation principle only
on computations that will give the best performance gains once translated into
GPU modules. The fifth step consists in concretely implementing the GPU del-
egation principle on computations that respect all previous constraints. So, the
workflow of the methodology can be summarized as follows:

Decomposing all the computations;

Selecting eligible computations according to the GPU delegation criterion;
Reusing GPU modules;

Evaluating if computations are compatible with GPU architecture;
Implementing the GPU delegation.

G o =

Step 1: Decomposing Model’s Computations This phase consists in de-
composing all the computations used in the model. Carry out such a decom-
position is interesting because a number of computations present in the model
are not explicit. Highlighting all the computations that are used by the agents
to perform their behaviors, by decomposing them into the most possible prim-
itive, will help to implement GPU delegation and thus increase its efficiency
on the considered model. With this approach, we do not work with one large
kernel containing all the GPU computations but with many small and simple
kernels which allows to capitalize on the modular and hybrid aspect of the GPU
delegation principle.

So, the more the model is decomposed in simple computations, the more GPU
delegation could be then successfully applied. This decompositing of actions was
also identified as important in [5], where a new division of the actions of agents
limits the concurrent access to data what increases the overall performance of
the model using GPGPU.

Step 2: Identifying Compatible Computations The selection of compu-
tations is an essential step because it relies on deciding which one respect the
criterion of the GPU delegation principle and could benefit from GPGPU. If no
part of the model is compliant with the GPU delegation criterion, it is there-
fore useless to go further because, in such a case, the gains brought by GPGPU

Step 1: Decomposing Step 2: Identifying compatible computations

Decompose all computations Identify computations which are compatible
present in the model with the GPU delegation principle

The environment contains
computations or
environmental dynamics

Computations made within
the perceptions of the agent
do not modify the agent's states

no yes

Step 3: Reusing modules Step 4: C ibility with GPU archi e

A module has already been created no
for the considered computation

yes

Reuse the module

Computations can be distributed on the GPU threads grid

Computations are performed by a large number of agents
or on many cells

End of the metl y

Data structures are independent and can be adapted
to the GPU architecture

Step 5: Implementation

Creating the GPU kernels

Adapting the Linking the agent API ‘
data structures with GPU modules ‘

Fig. 1. Diagram of the proposed methodology

could be insignificant or even negative [12]. Moreover, this identification process
is different depending on whether the computation is in the environment or in
the agent behaviors.

For the environment If the environment is not static and if it contains dynam-
ics, these dynamics must be applied on the entire environment and have a global
impact. Indeed, the impact of the dynamics is an important parameter. Take
the example of an environmental dynamics which reveals a random amount of
food in the environment (at a given position), at each time step of the simula-
tion. This dynamic is well apply to the whole environment but will only have a
very localized impact. In this case, translate this dynamic into a GPU module
is not justified because the expected gains will be insignificant. Otherwise, if the
dynamic has a global impact and respects all specified requirements, the com-
patibility with the GPU delegation criterion is established and its translation
into GPU module is then possible and relevant.

For the agents If computations made within the perceptions of the agent do not
modify the agent’s states, they could be translated into environmental dynamics
and then performed by a dedicated GPU module. The idea is to transform a
computation realized locally into an environmental dynamic applied in the whole
environment.

Step 3: Reusing GPU Modules One objective of the methodology is to
promote the reusability of the created GPU modules. So, given that compatible
computations have been identified, it is worth checking if one of the modules
created previously could be reused. If this is the case, it is possible to skip to
Step 5 in order to adapt the data structures of the computation to correspond
with those of the reused module.

Step 4: Computations and GPU Architecture Before applying GPU del-
egation on the selected computations, it is necessary to evaluate if computations
could fit the massively parallel architecture of the GPU. Indeed, the compatibil-
ity of a computation with the criterion of the GPU delegation does not neces-
sarily imply an improvement of performances once this principle applied. Under
these conditions, an estimate of the expected gains must be carried out to eval-
uate if the identified computations will bring performance gains in order to not
waste time in useless developments. This assessment phase can be achieved by
answering three questions:

— Do identified computations could be distributed on the GPU ¢
These computations must be independent and simple and do not contain
too many conditional tests which can cause problems or slowing down the
execution in GPGPU context (e.g. divergence of threads, [22]). Computations
containing iterative loops are better suited to parallel architectures.

— Do identified computations are performed in a global way ?
Because of the very high data transfer costs between GPU and CPU, if
computations are rarely used, triggering a GPU computation could be not
efficient even if their are compatible with the principle. So, it is necessary
to verify that computations are performed by a large number of agents or
applied on a lot of cells (for the environment).

— Do the data structures associated to the identified computations could fit the
GPU architecture ¢
The data structures used by these computations must be independent from
each other and must fit the GPU architecture. Indeed, if the data are not
stored by taking into account the constraints of the memory architecture on
the GPU, this will impact the overall performance of the model (see [3] for
more information on this aspect).

To give an example, based on our different case studies, we recommend in
the case of discretized environments the use of arrays or data structures that
fit the environment size. So, data will be more suited to the structure of the
GPU because, in such case, each cell of the environment will be computed by a
thread*. Figure 2 illustrates the use of arrays with GPU delegation and section
4.1 described in details the architecture of a GPU and the associated program-
ming philosophy. With this data structure, agents will only drop off and perceive
information (see the example of heatbugs model in section 4.2).

4 Thread is similar to the concept of task: A thread may be considered as an instance
of the kernel which is performed on a restricted portion of the data depending on
its location in the global grid of the GPU (its identifier).

CPU

Discretized environment GPU modules Global grid of threads

1
| computed by
| | |
|
i - [G | | |
BEE |EEE |
poffa oz |
|
‘

perceive results are written (0 J)

Data array (that fit sent to a kernel Kernel 1

environment size)

Fig. 2. Structuring data with GPU delegation and a discretized environment

Step 5: Implementation of the GPU Delegation Implementing GPU del-
egation can be divided into three parts for each selected computation:

1. Creating the GPU kernels;
2. Adapting the data structures;
3. Linking the agent API with the GPU modules.

Applying GPU delegation starts with the creation of the GPU kernel, that is the
GPU programming version of the selected computation. Thanks to the decom-
position which have been done in the identifying step, little GPGPU knowledge
is required and the produced kernels are easy to implement through a few lines
of code (e.g. [8]). Then, the data structures need to be adapted to the new GPU
module. This adaptation is based on the nature of both the computations and
the environment model (arrays fitting the discretization of the environment are
mostly used, as recommended previously). Finally, these new elements must be
integrated and linked with the CPU part of the model. So, new functions must
be created to allow the agents and the environment to collect and use the data
computed by the GPU module®.

4 Experimenting the GPU Delegation Methodology

In this section, we experiment the proposed methodology on two MABS models:
heatbugs and prey/predator. Specifically, the application of the method on these
two models was conducted so as to make explicit the 5 steps of the process in
order to define what are the advantages and limitations of such an approach.
But first, we present some basics about GPU programming.

4.1 GPGPU Implementation with CUDA

To program on the graphics card and exploit its GPGPU capabilities, we use
CUDA which is the GPGPU programming interface provided by Nvidia. The

® The TurtleKit platform (http://www.turtlekit.org, [14]) has been used for the
development of the GPU delegation principle and methods for the integration of
GPGPGU were defined only once at the beginning and then reuse for all the next
experiments.

associated programming model relies on the following philosophy®: The CPU
is called the host and plays the role of scheduler. The host manages data and
triggers kernels, which are functions specifically designed to be executed by the
GPU, which is called the device. The GPU part of the code really differs from
sequential code and has to fit the underlying hardware architecture. More pre-
cisely, the GPU device is programmed to proceed the parallel execution of the
same procedure, the kernel, by means of numerous threads. These threads are
organized in blocks (the parameters blockDim.x, blockDim.y characterize the size
of these blocks), which are themselves structured in a global grid of blocks. Each
thread has unique 3D coordinates (threadldz.x, threadldz.y, threadldz.z) that
specifies its location within a block. Similarly, each block also has three spatial
coordinates (respectively blockIdx.x, blockIdz.y, blockldz.z) that localize it in the
global grid. So each thread works with the same kernel but uses different data
according to its spatial location within the grid. Moreover, each block has a lim-
ited thread capacity according to the hardware in use. In the remainder of this
document, the identifiers of the threads in the global grid of the GPU will be
denoted by ¢ and j. Figure 3 illustrates this organization for the 2D case. More
informations about GPU programming are available in [15] and [22].

Global grid: 4 x 5 blocs Block (2, 2) : 3 x 3 threads Thread (0, 2)

.‘1
threadldx.x = 2

@ollwy||wa||an]|aa @ 0||@ |2 threadidx.y = 0
i=2x3+2=8
j=2x3+0=6

.

blockDim.x = 3 blockldx.x = 2
blockDim.y = 3 blockldx.y = 2

Fig. 3. Thread, blocks, grid organization

For both of these implementations (heatbugs and prey/predator), the inte-
gration of GPU computations was performed in the TurtleKit platform by using
the JCUDA library which allows to use CUDA through Java’.

4.2 The Heatbugs Model

Heatbugs is a model of biologically-inspired agents that attempt to maintain an
optimum temperature around themselves. In this model, the bugs (the agents)
move around on a 2D environment discretized in cells. A bug may not move to
a cell that already has another bug on it. Each bug radiates a small amount

5 e.g. http://docs.nvidia.com/cuda/
" e.g. http://www. jcuda.org

10

of heat which gradually diffuses through the world. Moreover, each bug has an
”ideal” temperature it wants to be. The bigger the difference between the cell’s
temperature and the bug’s ideal temperature is high, the more "unhappy” the
bug is. When a bug is unhappy (the cell is too cold or too hot), it moves randomly
to find a place that better suits those expectations.

Applying the Methodology The first step consists in enumerating and de-
composing all the computations presents in the model (Figure 4 illustrates this
decomposition):

— Environment: Diffusion of the heat emitted by agents (C1).

— Agent: Bugs move (C2), radiate (C3), compute the temperature difference
between that of the cell and their ideal temperature (C4) and adjust their
happiness (C5).

Compute temperature |
differential (C4) <

Compute
happiness
(C5)

»| Move (C2)

Radiates a small
amount of heat

Y

Is the cell where Is the cell where
i am too cold ? i am too hot ?

Fig. 4. Summary of behavioral processes of agents in the Heatbugs model

Secondly, we identify eligible computations. The heat diffusion (C1) is an
environmental dynamic. So, it is eligible and can be transformed into a GPU
kernel. C5 consists in perceiving a temperature information and computing the
difference between the ideal temperature of the bug and the present temperature
according to the value perceived. Because it does not modify the agents’ states,
it is thus eligible and can be transformed into an environmental dynamics. How-
ever, C2, C3 and C4 modify the agents’ states, so we do not consider them for
the next steps.

Thirdly, we check whether a GPU module exists for the identified computa-
tions. C4 has never been implemented in a GPU module in contrary to C1 which
consists in computing a diffusion in the environment and was performed several
times before [10]. Therefore, we reuse the corresponding GPU module for C1.

Fourthly, we evaluate if these computations can fit the GPU architecture.
The heat diffusion is performed for all the cells and data structures used for this
computation (a 2D array) are particularly well adapted to the GPU architecture
so that GPU delegation could be applied. Considering C4, it can benefit from
the GPU power because it consists in computing the difference between two
values and can be easily distributed on the whole GPU grid. Moreover, this
computation is performed by all the agents at each time step. Finally, we can
use 2D arrays for storing the data from this computation.

11

Fifthly, we implement GPU delegation on the two selected computations. For
C1, we use a 2D array (matching the size of the environment) containing the
heat value for each cell. It is sent to the GPU that computes simultaneously the
heat’s diffusion for all the environment. More precisely, for each cell, a sum of
heat values from neighboring cells is performed and modulated by a diffusion
variable. Algorithm 1 presents the implementation of the corresponding GPU
kernel®.

After the execution of this kernel, the heat of each cell is used to compute the
delta value (C4): The difference between the temperature of the cell where the
agent is and the agent’s ideal temperature. To this end, agents have previously
filled their ideal temperature in a 2D array (fitting the environment size) accord-
ing to their position. Then, once this computation is done, the agents recover the
resulting value (the delta value) in the array and adjust their behavior accord-
ingly. Algorithm 2 presents an implementation of this GPU kernel. So, instead of
a computation performed in their behavior, the agents now drop information in
the environment and then realize a perception which is precomputed by a GPU
kernel.

Algorithm 1: Heat diffusion Kernel

input : width, height, heat Array, radius
output: resultArray (the quantity of heat)
i = blockldx.x * blockDim.x + threadldx.x ;
7 = blockldx.y x block Dim.y + threadldx.y ;
sumO fHeat =0 ;
if ¢ < width and j < height then
‘ sumO f Heat = getNeighborsHeat(heat Arrayli, j], radius);
end
resultArrayli, j] = sumO f Heat x heat Adjustment ;

B =L BNV VR

Algorithm 2: Delta computation kernel

input : width, height, heat Array, idealTemperature Array
output: result Array (the delta value)

i = blockldx.x x blockDim.x + threadldx.x ;

j = blocklIdx.y x blockDim.y + threadldz.y ;

happiness = 0 ;
if i < width and j < height then

‘ happiness = heatArrayli, j| — idealTemperatureArrayli, j];
end

result Arrayli, j] = happiness ;

N O Otk W N

8 4 and j are the coordinates of a thread which is considered as an instance of the

kernel. Each thread is performed on a restricted portion of the data depending on
its location (these coordinates) in the global GPU architecture grid.

12

To evaluate model’s performance after the application of the methodology,
we compare the CPU and hybrid versions?. The model is simulated for different
environment sizes and a fixed density of agents (40%). Figure 5 presents the
acceleration coefficients obtained between the two versions of the model. From
this results, we notice that the acceleration coefficient obtained for the environ-
ment is more important when the environment is big (e.g. the gain reaches x7.5
for the biggest environment). However, the gain for the agents’ behavior is low
(about 5%). We can explain these results as follows: Environmental dynamics
is applied to all the cells and performed by a GPU kernel while only a small
part of computation made within the agent behavior (the computation of the
delta value) has been delegated to a GPU module. Moreover, for the latter, the
gain highly depends on the density of agents: If it is too low the gain may be
negative.

Computation time of agent behavior

Computation time of the environment

Acceleration of

the execution time
OOHFNNWWHE R TUTTD DI~
DU U DU O UTD D
[Slelalelololeleletoleleletele el

T

T T
256 512 1,024 2,048

Size of the environment

Fig. 5. Performance gains between CPU and Hybrid versions of the Heatbugs model

4.3 The Prey/Predator Model

The Prey/Predator model describes the dynamics of biological systems in which
two species interact, one as a predator and the other as prey. In our model,
the agents evolve in a 2D environment discretized in cells. Predators and prey
are placed randomly in the environment. All predators have a Field Of Vision
(FOV) that reaches 10 cells around them. Predators search for a prey in their
FOV. If no prey can be targeted, they move randomly. In the other case, they
head to the targeted prey. Prey have a smaller FOV. They randomly move in
the environment and when a predator is in their field of vision, they run away

9 For those tests, the configuration is composed of an Intel i7-4770 processor (Haswell
generation, 3.40 GHz) and an Nvidia K4000 graphics card (Kepler architecture, 768
CUDA cores).

13

in the opposite direction. A prey dies when it is targeted and when one predator
is on the same cell.

Applying the Methodology The first step consists in enumerating and de-
composing all the computations present in the model (Figure 6 illustrates this
decomposition):

— The environment is static and does not have any endogenous dynamics.

— Agents: Predators (C1) compute the intercept heading toward the targeted
prey and (C2) move, prey (C3) compute the escape heading that allows them
to flee from the nearest predator and (C4) move.

Predator behavior Prey behavior

Search for | Is there a prey in my FOV ? Look in my | s there a predator in my FOV ?
a prey field of view
‘ Am | targeted by Is there a predator

ves several predators ? on my cell ?

Change
direction

Compute the
escape heading (C3)

¢ Compute the
Move (C2) intercept heading (C1)

Fig. 6. Summary of behavioral processes of agents in the Prey/Predators model

Secondly, we identify eligible computations. Among these four computations,
C2 and C4 modifying the agent’s states (the agent’s position) while C1 and C3
consist in computing displacement directions that do not modifying the agent’s
states. So, C1 and C3 can be transformed into environmental dynamics. These
dynamics will compute for each cell of the environment the direction toward the
closest agent (prey and predator). The agents will only perceive, according to
their type, the direction that interest them and act accordingly.

Thirdly, we check whether a GPU module exists for the identified computa-
tions. For C1 and C3, we can reuse the GPU field perception module previously
created in [13] which computes a pheromone field gradients. Indeed, this module
computes for each cell of the environment the direction of neighboring cells with
the greatest / smallest amount of a given data. Here, the data is the presence or
absence of agents in the neighborhood.

Fourthly, we evaluate if these computations can fit the GPU architecture.
Given that we reuse an existing module, and no new computation has been
identified as compatible, we can directly go to step 5 because we know that C1
and C can fit the GPU architecture.

Fifthly, we implement GPU delegation on the two selected computations.
For C1 and C3, we reuse one kernel already created in previous works. It will
just be necessary to adapt the data that will be sent to this kernel. C1 and C3

14

Algorithm 3: The presence gradient kernel

input : width, height, preyMark]]
output: preyMazDirection|]

1 ¢ = blockldx.x % blockDim.x + threadldx.x ;
2 j = blockIdx.y * blockDim.y + threadldz.y ;
3 float max =0 ;
4 int maxIndex =0 ;
5 if ¢ < width and j < height then
6 forintu=1;u<8 u++ do
7 float current = getNeighborsValues(u, preyMark]i, j]);
8 if max < current then
9 max = current;
10 maxIndexr = u;
11 end
12 end
13 preyMaz Direction[i, j| = mazIndex % 45 ;
14 end

being similar computations, we only take as an example the implementation of
C3. So, each prey files a presence mark in a two-dimensional array (preyMark)
according to its location. The presence mark is all the greater as there are prey
in the neighborhood. Then, this array is sent to the GPU module which tests
the vicinity of each cell of the environment and determines the direction leading
to the strongest presence mark. The directions are written in a second array
(preyMaxDirection). Predators only have to perceive in this array the heading
value leading to the nearest prey. Algorithm 3 presents an implementation of
this GPU kernel.

It is the same process for Cl: Each predators files a presence mark in a
two-dimensional array (predatorsMark) which is sent to the GPU module. Prey
only perceive in the result array (predatorsMaxDirection) the heading value
leading to the nearest predators and flee according to this value.

To evaluate model’s performance after the application of the methodology,
we compare the CPU and hybrid versions'®. The model is simulated for different
environment sizes and a fixed density of agents (40%). The distribution between
prey and predators is the following: 90 % of prey and 10 % of predators. Figure
7 presents the computation time for one time step obtained for the two versions
of the model.

From this results, we notice that the performance difference between the two
versions of the model increase with the size of the environment. This observation
has already been made in our previous work [10].

10 For those tests, we reuse the same configuration as previously detailed.

15

S

= 4,500 -

2 B 4,000 | —=— CPU

= A, 3,500 —— Hybride

o 3 3,000

£ 5 2,500

s g 2,000

S E 1,500

g g 1,000 -

Qo O 500 | ‘

o 0 *# & = T T
%56 512 1,024 2,048

Size of the environment

Fig. 7. Performance between CPU and Hybrid versions of the Prey/Predator model.

5 Conclusion and Future Work

This paper presented a methodology for modeling and implementing MABS
using GPU programming, namely GPU delegation. It is based on [13,9] and
extracted from the experiment conducted in [8,10]. The long term goal of the
GPU delegation methodology is to provide a complete workflow for actually
considering GPU programming in the context of MABS, that is (1) without
hiding this technology to the user and (2) by promoting an iterative modeling
process that put forward software engineering aspects such as modularity and
reusability.

Compared to existing works which are related to the use of GPU program-
ming in MABS, one main advantage of the proposed methodology is accessibility.
Indeed, considering the two experiments presented in this paper, we have seen
that applying the GPU delegation methodology workflow is easy and helps to
identify which parts of a MABS model could be considered for GPU program-
ming. Especially, we have seen that it was possible to find eligible computations
on the two selected models. Moreover, we have seen that this workflow promotes
modularity and thus reusability, which is an advantage of this approach com-
pared to other existing works. For instance, considering the heatbugs model, we
have been able to directly reuse a kernel (for the heat diffusion) which has been
achieved in another context (for [8]).

Another advantage of GPU delegation relies on its versatility in the sense
that it does not make any assumption on the kind of MABS which could be
envisaged. Especially, considering all the adapted models and experiments which
have led to the definition of this methodology (e.g. [13,9,8]), one can see that a
wide variety of use cases have been implemented: Reynolds boids, game of life,
Schelling’s segregation, fire spreading, heatbugs, prey/predator, etc.

As a first limitation, this last point has to be moderated by the fact that
most of our use cases embed discretized environments for which GPU delegation
is relatively easy to achieve in terms of implementation. So, one future work will
be to test GPU delegation of more heterogeneous models and use cases (e.g.
with continuous environments), strengthening its scope of applicability.

16

Another limit is about its ability to be used for deciding if a particular model
is worth porting on the GPU or not. Indeed, as we have seen in this paper, even
if a model validates the second step (containing eligible computations), in some
cases, the performance gains could be low. This is particularly true when the
model does not contain environmental dynamics. In such a case, obtaining per-
formance gains only depends on the number of agents which is simulated. If
this number is small, the gain could be insignificant or even negative (e.g. as
for the heatbugs model). In fact, we are here facing one limit of the proposed
methodology in the sense that we can not predict in advance the benefits of the
application of the methodology. In such a case, the application of the method-
ology is very dependent on the parameters of the model and on the hardware
configuration. So, determining the threshold above which GPU delegation could
be useful still requires an empirical evaluation.

For addressing this last issue, one research perspective is to develop a software
solution (benchmark), that one could run on his particular hardware configura-
tion to have an idea of the threshold above which a GPU implementation could
be worth doing. More specifically, the idea is to develop a set of common agent
computation patterns (GPU kernels) which would be used to test the relevance
of applying GPU delegation considering both the hardware platform and the
MABS model.

References

1. B. G. Aaby, K. S. Perumalla, and S. K. Seal. Efficient Simulation of Agent-based
Models on multi-GPU and Multi-core Clusters. In Proceedings of the 3rd Inter-
national ICST Conference on Simulation Tools and Techniques, SIMUTools ’10,
pages 29:1-29:10, ICST, Brussels, Belgium, 2010. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

2. A. Bleiweiss. Multi agent navigation on the GPU. Games Developpement Confer-
ence, 2009.

3. M. Bourgoin, E. Chailloux, and J.-L. Lamotte. Efficient Abstractions for GPGPU
Programming. International Journal of Parallel Programming, 42(4):583-600,
2014.

4. S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron. A perfor-
mance study of general-purpose applications on graphics processors using CUDA.
Journal of Parallel and Distributed Computing, 68(10):1370-1380, 2008.

5. S. Coakley, P. Richmond, M. Gheorghe, S. Chin, D. Worth, M. Holcombe, and
C. Greenough. Intelligent Agents in Data-intensive Computing, chapter Large-
Scale Simulations with FLAME, pages 123-142. Springer International Publishing,
Cham, 2016.

6. R. M. D’Souza, M. Lysenko, and K. Rahmani. SugarScape on steroids: simulating
over a million agents at interactive rates. Proceedings of Agent 2007 conference,
2007.

7. U. Erra, B. Frola, V. Scarano, and I. Couzin. An Efficient GPU Implementation for
Large Scale Individual-Based Simulation of Collective Behavior. In High Perfor-
mance Computational Systems Biology, 2009. HIBI ’09. International Workshop
on, pages 51-58, Oct 2009.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

17

E. Hermellin and F. Michel. GPU Delegation: Toward a Generic Approach for
Developping MABS using GPU Programming. In (To be published) the proceedings
of the international conference on Autonomous Agents and Multiagent Systems,
AAMAS, Singapor, pages —, 2016.

E. Hermellin and F. Michel. Multi-Agent Based Simulation XVI: International
Workshop, MABS 2015, Istanbul, Turkey, May 5, 2015, Revised Selected Papers,
volume 9568, chapter GPU Environmental Delegation of Agent Perceptions: Ap-
plication to Reynolds’s Boids, pages 71-86. Springer International Publishing,
2016.

E. Hermellin and F. Michel. Overview of Case Studies on Adapting MABS Models
to GPU Programming. In J. Bajo, M. J. Escalona, S. Giroux, P. Hofa-Dabrowska,
V. Julian, P. Novais, N. Sanchez-Pi, and R. A.-S. Rainer Unland, editors, Highlights
Practical Applications of Scalable Multi-Agent Systems. The PAAMS Collection.,
pages —. Springer International Publishing, 2016. To be published.

G. Laville, K. Mazouzi, C. Lang, N. Marilleau, B. Herrmann, and L. Philippe.
MCMAS: A Toolkit to Benefit from Many-Core Architecure in Agent-Based Sim-
ulation. In D. an Mey, M. Alexander, P. Bientinesi, M. Cannataro, C. Clauss,
A. Costan, G. Kecskemeti, C. Morin, L. Ricci, J. Sahuquillo, M. Schulz, V. Scarano,
S. Scott, and J. Weidendorfer, editors, Euro-Par 2013: Parallel Processing Work-
shops, volume 8374 of Lecture Notes in Computer Science, pages 544-554. Springer
Berlin Heidelberg, 2014.

G. Laville, K. Mazouzi, C. Lang, N. Marilleau, and L. Philippe. Using GPU for
Multi-agent Multi-scale Simulations. In Distributed Computing and Artificial Intel-
ligence, volume 151 of Advances in Intelligent and Soft Computing, pages 197-204.
Springer Berlin Heidelberg, 2012.

F. Michel. Translating Agent Perception Computations into Environmental Pro-
cesses in Multi-Agent-Based Simulations: A means for Integrating Graphics Pro-
cessing Unit Programming within Usual Agent-Based Simulation Platforms. Sys-
tems Research and Behavioral Science, 30(6):703-715, 2013.

F. Michel, G. Beurier, and J. Ferber. The TurtleKit Simulation Platform: Applica-
tion to Complex Systems. In A. Akono, E. Tonyé, A. Dipanda, and K. Yétongnon,
editors, Workshops Sessions of the Proceedings of the 1st International Conference
on Signal-Image Technology and Internet-Based Systems, SITIS 2005, November
27 - December 1, 2005, Yaoundé, Cameroon, pages 122-128. IEEE, november 2005.
J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E. Lefohn, and
T. J. Purcell. A Survey of General-Purpose Computation on Graphics Hardware.
Computer Graphics Forum, 26(1):80-113, 2007.

H. Parry and M. Bithell. Large scale agent-based modelling: A review and guide-
lines for model scaling. In A. J. Heppenstall, A. T. Crooks, L. M. See, and
M. Batty, editors, Agent-Based Models of Geographical Systems, pages 271-308.
Springer Netherlands, 2012.

R. Pavlov and J. Mller. Multi-Agent Systems Meet GPU: Deploying Agent-Based
Architectures on Graphics Processors. In L. Camarinha-Matos, S. Tomic, and
P. Graa, editors, Technological Innovation for the Internet of Things, volume 394
of IFIP Advances in Information and Communication Technology, pages 115-122.
Springer Berlin Heidelberg, 2013.

K. S. Perumalla and B. G. Aaby. Data parallel execution challenges and run-
time performance of agent simulations on GPUs. Proceedings of the 2008 Spring
simulation multiconference, pages 116-123, 2008.

18

19.

20.

21.

22.

23.

24.

25.

P. Richmond, S. Coakley, and D. M. Romano. A High Performance Agent Based
Modelling Framework on Graphics Card Hardware with CUDA. In Proceedings
of The 8th International Conference on Autonomous Agents and Multiagent Sys-
tems - Volume 2, volume 2 of AAMAS 09, pages 1125-1126, Richland, SC, 2009.
International Foundation for Autonomous Agents and Multiagent Systems.

P. Richmond and D. M. Romano. A High Performance Framework For Agent Based
Pedestrian Dynamics On GPU Hardware. Furopean Simulation and Modelling,
2011.

P. Richmond, D. Walker, S. Coakley, and D. M. Romano. High performance cellular
level agent-based simulation with FLAME for the GPU. Briefings in bioinformat-
ics, 11(3):334-47, 2010.

J. Sanders and E. Kandrot. CUDA by Ezxzample: An Introduction to General-
Purpose GPU Programming. Pearson, 2011.

D. Strippgen and K. Nagel. Multi-agent traffic simulation with CUDA. In High
Performance Computing Simulation, 2009. HPCS ’09. International Conference
on, pages 106-114, June 2009.

D. Weyns, H. Dyke Parunak, F. Michel, T. Holvoet, and J. Ferber. Environments
for Multiagent Systems State-of-the-Art and Research Challenges. In D. Weyns,
H. Dyke Parunak, and F. Michel, editors, Environments for Multi-Agent Systems,
volume 3374 of Lecture Notes in Computer Science, pages 1-47. Springer Berlin
Heidelberg, 2005.

D. Weyns and F. Michel. Agent Environments for Multi-Agent Systems IV, 4th
International Workshop, E4MAS 2014 - 10 Years Later, Paris, France, May 6,
2014, Revised Selected and Invited Papers, volume 9068 of LNCS. Springer, 2015.

