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Abstract. We present in this paper a multi-agent approach for range
image segmentation. The approach consists in using autonomous agents
for the segmentation of a range image in its different planar regions.
Agents move on the image and perform local actions on the pixels, al-
lowing robust region extraction and accurate edge detection. In order to
improve the segmentation quality, a Bayesian edge regularization is ap-
plied to the resulting edges. A new Markov Random Field (MRF) model
is introduced to model the edge smoothness, used as a prior in the edge
regularization. The experimental results obtained with real images from
the ABW database show a good potential of the proposed approach for
range image analysis, regarding both segmentation efficiency, and detec-
tion accuracy.

Keywords: Image segmentation, Multi-agent systems, Range image,
Bayesian-MRF estimation.

1 Introduction

Image segmentation consists in assigning pixels of an image to homogenous and
disjoint sets called image regions. The segmentation of an image is often neces-
sary to provide a compact and convenient description of its content, suitable for
high level analysis and understanding. In range images, segmentation methods
can be divided in two distinct categories: edge-based segmentation methods and
region-based segmentation methods. In the first category, pixels which correspond
to discontinuities in depth (jump edges) or in surface normals (roof edges) are se-
lected and chained in order to delimit the regions in the image [6,11]. Edge-based
methods are well known for their low computational cost; however, they are very
sensitive to noise. Region-based methods use geometrical surface proprieties to
gather pixels with the same properties in disjoint regions [5,1]. Compared to edge-
based methods, they are more stable and less sensitive to noise. However, they are
computationally costly and their efficiency depends strongly on the selection of
the region seeds. In both approaches, image denoising is often necessary. How-
ever, in the case of highly noisy images such as range images [8], a strong noise
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smoothing can erase roof edges and smooth edges. However, if the noise is under-
smoothed distortions which remain in the image, lead to inaccurate or erroneous
results. In range images, several recent segmentation methods fail because they
do not correctly address and resolve this problem [10,1].

To deal with this problem, we introduce in this paper a multi-agent approach
for range image segmentation. It consists in using a dense population of reactive
agents. Agents move over the image and act on its pixels. While moving over
the image, an agent adapts to the current planar region on which it is situated
and memorizes its proprieties. At the boundaries between regions the agents
will be in competition to align the pixels of the boundaries to their respective
regions. The resulting alternative alignment of the boundary pixels preserves
the region boundaries against erasing. A pixel is therefore processed according
to both its neighborhood, and the agents that visit this pixel. An agent acts
on the pixels with more certainty, acquired from its move on large areas on
the regions of the image. The combination of the global information memorized
within the agent, and the local information of the image provides more reliable
decisions. Unfortunately, the competitive alignment of the region boundaries
results in distorted and badly localized edges. So, these latter are corrected using
a Bayesian regularization, based on a new Markov Random Field (MRF) model.
The introduced MRF model is used to model the smoothness of image edges,
considered as a prior in edge regularization. Extensive experimentations have
been performed using real images from the ABW database [8]. The obtained
results show a good potential of the proposed approach for an efficient and
accurate segmentation of range images.

The remainder of the paper is organized as follows: In Section 2, we review
some agent-based approaches for image segmentation, as well as some works
having used Bayesian inference in range image segmentation. Section 3 is devoted
to the proposed agent-based approach for range image segmentation. It describes
the behavior of the agents and shows the underlying collective mechanism to
deal with the image segmentation. In section 4, we introduce the Bayesian edge
regularization. The experimental results are presented in Section 5, in which
we discuss the parameter selection, and we analyze and comment the obtained
results. Finally, a conclusion summarizes our contribution.

2 Related Work

2.1 Agent-Based Systems for Image Segmentation

Several agent-based systems have been proposed for image analysis and object
recognition. In this review we consider only works which have addressed a solu-
tion in image segmentation.

Liu et al. [15] introduce a reactive agent-based system for brain MRI seg-
mentation. Agents are used to label the pixels of the image according to their
membership grade to the different regions. When finding pixels of a specific ho-
mogenous region, agents create offspring agents into their neighboring regions.
An agent is created so that it becomes more likely to meet more homogenous
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pixels. For the same type of images, Richard et al. [16] propose a hierarchical
architecture of situated and cooperative agents. Several control agents are dis-
tributed in the volume. The role of each one consists in creating tissue dedicated
agents, which perform a local region growing. The statistical parameters of the
data distribution, needed to perform region growing are updated according to
the interaction between neighboring agents. Based on a cognitive architecture,
Bovenkamp et al. [4] have developed a multi-agent system for IntraVascular Ul-
traSound (IVUS) image segmentation. They aim to elaborate a high knowledge-
based control over the algorithms of low-level image processing. In this system,
an agent is assigned to every expected object in the image.

Most of the proposed agent-based systems for image segmentation are specific
to image contents, and deal exclusively with jump edge detection. Following a
supervised approach, these systems segment images in known and previously
expected regions. The multi-agent approach proposed in this paper claims to be
general and unsupervised. It aims to segment an image into its different regions
by using geometrical surface proprieties. The adaptive and competitive behavior
of the agents allows a collective and distributed image segmentation. We show
in this work that simple interactions between agents can provide an alternative
way for image segmentation.

2.2 Bayesian Inference in Range Image Segmentation

Few authors have integrated Bayesian inference in range image segmentation.
Lavalle and Hutchinson [13] have used a Bayesian test to merge regions in both
range and textured images. The merging of two regions depends on the probabil-
ity that the resulting region is homogenous. Jain and Nadabar [9] have proposed
a Bayesian method for edge detection in range images. Authors use the Line
Process (LP) Markov random field (MRF) model [7] to label image pixels as
EDGE or NON-EDGE pixels. Wang and Wang [17] have presented a hybrid
scheme for range image segmentation. First, they proposed a joint Bayesian es-
timation of both pixel labels, and surface patches. Next, the solution is improved
by combining the Scan Line algorithm [11], and the Multi-Level Logistic (MLL)
MRF model [14]. In spite of various contributions of the works previously cited,
some aspects inherent to range image segmentation were omitted. Indeed, most
of the works use Markovian models that are based exclusively on the surface
smoothness prior. In our work, a refinement of the initial segmentation is per-
formed by Bayesian regularization of the resulting region boundaries using a new
Markov random field model. The latter models the edge smoothness, which is
considered as a prior in the edge regularization.

3 Multi-agent Range Image Segmentation

3.1 Surface Modeling

A range image is a discretized two-dimensional array where at each pixel (x, y)
is recorded the distance d(x, y) between the range finder and the corresponding
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point of the scene. Let d∗(x, y) be the equation parameters of the tangent plane
at (x, y). The best tangent plane is obtained by the multiple regression method
using neighbor pixels situated within a 3 × 3 window centred at (x, y), and with
close depths, according to a given threshold (Trh). The plane equation in a 3−D
coordinate system may be expressed as follows: z = ax+by+c; where (a, b, −1)T

is a normal vector to the plane, and |c|/
√

a2 + b2 + 1 is the orthogonal distance
between the plane and the coordinate origin.

Two planes are considered equal if they have, according to some thresholds,
the same orientation and the same distance to the coordinate origin. Let θ be
the angle between the two normal vectors, and h the distance between the two
planes; so, the two planes are considered equal if sin(θ) ≤ Trθ and h ≤ Trh,
where Trθ and Trh are respectively the angle and the distance thresholds. Plane
comparison is first used to test if a given pixel belongs to a planar region, given
its plane equation. It is also used to test if the pixel is, or is not, a pixel of
interest (edge or noise pixel). In this case, the pixel in question is considered as
a pixel of interest if at least one of its neighbors has a different plane equation,
according the previous thresholds.

3.2 Agent Behavior

The image is considered as the environment in which the agents are initialized
at random positions. An agent checks if it is situated within a planar region, and
adapts to this region if it is planar, by memorizing its plane equation. Next, the
agent performs actions, which depend on both its state and the state of the pixel
on which it is located. At each time t, an agent is characterized by its position
(xt, yt) over the image, and by its ability At to act on the encountered pixels.
At the beginning of the process, all the agents are unable to alter any pixel
of the image. After having been adapted to a planar region, an agent becomes
able to modify the first encountered pixel that not belongs to the current region
(At=true). When an agent alters a pixel, it becomes unable to alter other pixels
(At=false) and starts again searching for a new planar region. An agent having
modified a pixel records in an appropriate two-dimensional array I, at (xt, yt) the
last state of the visited pixel: I(xt, yt) ∈ {smoothed, aligned, unchanged}. We
show next, that this simple behavior of the agents allows both the detection of
the edges, and the removal of the noise regions. Following are the tasks performed
by an agent, according to its state and its position.

Searching for a Planar Region. After its creation, an agent randomly moves
within the image and searches for a planar region around its current position.
The agent uses a region seed formed by the last P visited pixels. P is called
the adaptation path-length. It represents the confidence degree that the agent is
situated within a planar region. So, the agent considers that it is within a planar
region if the pixels of the seed form a planar surface. The agent memorizes
the proprieties of the new region and considers it as its current planar region.
Henceforth it becomes able to alter the first encountered pixel that does not
belong to its new region (At=true).



A Multi-agent Approach for Range Image Segmentation 453

Moving on a Planar Region. While moving inside a planar region, an agent
smoothes the image at the pixel on which it is located by updating the equations
of both the memorized plane and the plane at the current position (d∗(xt, yt)).
This is done by replacing the two equations by their weighted average. Let (a, b, c)
and (a′, b′, c′) be the parameters respectively of the plane at the current pixel,
and the memorized plane. Resulting parameters of the average plane are obtained
as follows:

(a′′, b′′, c′′) =
1

1 + p
(a + pa′, b + pb′, c + pc′) (1)

where p is the length of the path crossed by the agent on the current region.

Pixel Alignment. When an agent meets a pixel of interest (i.e. not belonging
to its current planar region), the pixel is partially aligned to the planar region on
which the agent moves. The parameters (a′′, b′′, c′′) of the new plane equation at
the pixel position are obtained by linear combination of the current parameters
(a, b, c) and the parameters of the memorized plane equation (a′, b′, c′):

(a′′, b′′, c′′) =
1

1 + ξ
(a + ξa′, b + ξb′, c + ξc′) (2)

where ξ is the alteration strength.
The agent becomes then unable to alter pixels (At=false) and starts again to

search for a new planar region. The alteration strength ξ is a critical parameter
which affects the quality of the results and the time of computation. Indeed,
high values of ξ lead to a fast detection of regions. However, the resulting region
boundaries are strongly distorted and badly localized (Fig. 1b). Low values of
ξ result in a slow detection; nevertheless region boundaries in this case are well
detected and localized (Fig. 1c). To speed up the segmentation process and avoid
edge distortions, an agent chooses the alteration strength among ξmin and ξmax

according to the information recorded by other agents in the array I. So, an agent
assumes that the current planar region is adjacent to a noise region and thus
uses ξmax as alteration strength, if the number of ”unchanged” pixels (situated
in a noisy region) around the agent is greater than a certain threshold (fixed to
3 in our experimentations). Indeed, pixels labeled ”unchanged” in the adjacent
region mean that this latter is a noise region for which agents have not adapted
and consequently have not smoothed its pixels. Otherwise, the agent assumes
that the current planar region is adjacent to another one, where other agents
have labeled the pixels as ”smoothed” or ”aligned”. In this case the agent uses
the alteration strength ξmin.

3.3 Edge Emergence and Noise Removal

While moving over the image, an agent smoothes the pixels that approximately
belong to its planar region, and it considers all other pixels as noise pixels.
Among these latter, the agent systematically aligns the first encountered one
to its current region. However, pixels on the boundaries of planar regions are
true-edge pixels, and thus should not be aligned. Nevertheless, the competition
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(a) (b) (c)

Fig. 1. The impact of the alteration strength on the segmentation results: (a) Range
image (abw.test.3); (b) segmentation results with ξmin = ξmax = 4 at t=2500; (c) seg-
mentation results with ξmin = 0.3 and ξmax = 5 at t=13000

between agents preserves these pixels against an inappropriate smoothing. In-
deed, around an edge between two adjacent planar regions, two groups of agents
are formed on the two sides of the edge. Each group is formed of agents passing
from one region to the other. Agents of each group align the pixels of the edge
to their respective region. So, the pixels of the edge are continuously swapped
between the two adjacent regions. The resulting alternative alignment of edge
pixels allows these pixels to remain emergent in the image. This pattern of com-
petitive actions between agents allows the emergence of the edges in the image,
whose detection is not coded in any agent, but results from the collective action
of all the agents.

An agent, having aligned a pixel which belongs to the border of a noise region
and having moved inside this region, will not be able to adapt. Consequently, it
cannot align any pixel when leaving the noise region. This occurs in two distinct
situations: 1) when the region is planar but insufficiently large to allow agents
to cross the minimal path-length P , necessary to be able to adapt; 2) when the
region is sufficiently large but not planar, or made up of random depths (noise).
In both situations, the agent leaves the noise region and will adapt inside the
surrounding planar region. Boundaries of noise regions are continuously aligned
from outside by including their pixels in the true surrounding regions. So, these
regions continuously contract, and they finally disappear after several steps.

After several iterations (fixed to 13000), all image regions are well delimited
by the detected boundaries. A simple region growing, steered by the detected
boundaries, allows to provide the regions of the image.

4 Bayesian Edge Regularization

4.1 Segmentation Modeling as Bayesian Estimation

We have used piecewise smoothness of image edges as priors to model the distri-
butions of boundary pixels in range images. Let S denote the image lattice, and
M be the number of regions. So, each pixel in the image can take a label from the
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set of labels L = {l1, ..lM}. The labeling set F = {f(x,y), (x, y) ∈ S, f(x,y) ∈ L},
represents an image segmentation. If we assume that F is Markovian, segment-
ing S according to the Bayesian-MRF framework [14] can be done by computing
the maximum a posteriori (MAP) P (F/d) of the distribution of the set F , by
considering F as a Markov random field (MRF). According to Bayes rule, the
maximum a posteriori P (F/d) is expressed as follows:

P (F/d) =
p(d/F )P (F )

p(d)
(3)

P (F ) = Z−1e−U(F ) is the a priori probability of F , with Z =
∑

F e−U(F ) a
normalization constant called the partition function. The a priori energy U(F )
is the sum of clique potentials Vc(F ) over the set of all possible cliques C:
U(F ) =

∑
c∈C Vc(F ).

In order to model the edge smoothness we use cliques formed by 9 sites located
in a 3×3 window. Let c3×3 be a clique of 3×3 sites centred at an edge pixel (x, y),
and ζ (ζ < 0) a potential parameter. Considering all possible configurations in
Fig. 2, the potential Vc of cliques in C can be expressed as follows:

Vc(c3×3(x, y)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ if ∃(x′, y′), (x′′, y′′) ∈ c3×3 | f(x,y) = f(x′,y′) = f(x′′,y′′)

and ̂(x′, y′), (x, y), (x′′, y′′) = π

0 if ∃(x′, y′), (x′′, y′′) ∈ c3×3 | f(x,y) = f(x′,y′) = f(x′′,y′′)

and ̂(x′, y′), (x, y), (x′′, y′′) = 2π/3

−ζ otherwise
(4)

Configurations used to define Vc depend on the surface type. For images con-
taining polyhedral objects, considered in this work, Vc is defined on the basis
that the boundary between two adjacent regions is formed by pixels belonging
to the same straight line (Fig. 2). So, configurations which correspond to locally
unsmoothed edges are penalized by using a positive clique potential (−ζ).

The likelihood distribution p(d/F ), is obtained by assuming that observations
d are degraded by an independent Gaussian noise: d(x, y) = af(x,y)x + bf(x,y)y +
cf(x,y) + e(x, y). (af(x,y) , bf(x,y) , cf(x,y) ) are the parameters of the plane equation
at the pixel (x, y) assuming that it is labeled f(x,y).

e(x, y) ∼ N(0, σ2
l ) with σ2

l =
∑

{(x,y)|f(x,y)=l}(alx+ bly + cl − d(x, y))2. So the
likelihood distribution is expressed as follows:

p(d/F ) =
1

∏
(x,y)∈S

√
2πσ2

f(x,y)

e−U(d/F ) (5)

with the likelihood energy U(d/F ) defined by:

U(d/F ) =
∑

(x,y)∈S

(af(x,y)x + bf(x,y)y + cf(x,y) − d(x, y))2/2σ2
f(x,y)

(6)
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Since p(d) is constant for a fixed d, the solution F ∗ is obtained by maximiz-
ing the a posteriori probability P (F/d) ∝ p(d/F )P (F ), which is equivalent to
minimizing the a posteriori energy U(F/d) = U(d/F ) + U(F ):

F ∗ = argmin{U(d/F ) + U(F )}

(a) (b)

Fig. 2. Clique potential Vc(c3×3) defined according to the edge smoothness prior.
(a) Full smooth edge: Vc(c3×3) = ζ; (b) partial smooth edge: Vc(c3×3) = 0; other-
wise, the edge is not locally smooth: Vc(c3×3) = −ζ.

4.2 Optimal Solution Computation

By assuming that F is Markovian, and the observations {d(x, y)} are condi-
tionally independent, we have used the Iterated Conditional Modes (ICM) algo-
rithm [3] to minimize the a posteriori energy U(F/d). By considering U(F/d) as
the sum of energies over all image sites: U(F/d) =

∑
(x,y)∈S U(f(x,y)/d(x, y)),

we can separate it in two terms:

U(F/d) =
∑

(x,y)∈S′

U(f(x,y)/d(x, y)) +
∑

(x,y)∈S−S′

U(f(x,y)/d(x, y)) (7)

where S′ is the set of sites belonging to region boundaries:

S′ = {(x, y) ∈ S|∃(x′, y′), (x′ − x, y′ − y) ∈ {−1, 0, 1}2 ∧ f(x,y) 	= f(x′,y′)}

Assuming the correctness of the labeling of the set S−S′ (performed by the multi-
agent segmentation), the term

∑
(x,y)∈S−S′ U(f(x,y)/d(x, y)) is thus constant. So,

minimizing the energy U(F/d) is equivalent to minimizing the energy U ′(F/d)
which corresponds to the sites in S′: U ′(F/d) =

∑
(x,y)∈S′ U(f(x,y)/d(x, y)).

The assumption of the correctness of the labeling of S − S′ also allows us to
define a constraint on the set of values that a site in S′ can have during the
execution of the ICM algorithm. Indeed, the label fk

(x,y) at the iteration k, of a
site (x, y) is chosen among the set L′(x, y) ⊂ L containing the labels of the sites
in a 3 × 3 window centred at (x, y). Formally, L′(x, y) is defined as follows:

L′(x, y) = {l|∃(x′, y′) ∈ S − S′, (x′ − x, y′ − y) ∈ {−1, 0, 1}2 ∧ f(x′,y′) = l} (8)

The two previous heuristics allow to speed up the calculation of the minimum
of the a posteriori energy U ′(F/d). They allow also to satisfy the region conti-
nuity constraint. For the latter problem, if we assume that the distance between
two coplanar regions R and R′ is greater than 3 (size of the window), the labels
lR and lR′ corresponding respectively to R and R′, cannot belong to the same set
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L′(x, y). For example, if the site (x, y) is more close to R, it can not be labeled
lR′ , although energies U ′(lR/d(x, y)) and U ′(lR′/d(x, y)) are equal.

5 Experimentation and Analysis

Hoover et al. have proposed a dedicated framework for the evaluation of range
image segmentation algorithms [8], which has been used in several related works
[11,10,5,1]. The framework consists of a set of real range images, and a set of
objective performance metrics. It allows to compare a machine-generated seg-
mentation (MS) with a manually-generated segmentation, supposed ideal and
representing the ground truth (GT). Region classification is performed accord-
ing to a compare tool tolerance T ; 50% < T ≤ 100% which reflects the strictness
of the classification. The 40 real images of the ABW set are divided into two sub-
sets: 10 training images, and 30 test images. In our case, four methods, namely
USF, WSU, UB and UE, cited in [8] are involved in the result comparison.

5.1 Parameter Selection

Since the evaluation framework provides a set of training images with ground
truth segmentation (GT), we have opted to a supervised approach for the selec-
tion of parameters. For our approach, named 2ARIS for Agent-based Approach
for Range Image Segmentation, seven parameters should be fixed: ξmin, ξmax,
Trθ , Trh, N , P , and ζ. The performance criterion used in parameter selec-
tion is the average number of correctly detected regions with the compare tool
tolerance T set to 80%. The set of parameters is divided into three subsets. 1)
ξmin, ξmax, Trθ, and Trh represent respectively the two alignment strengths,
the thresholds of the angle, and the threshold of the depth. These parame-
ters are used for testing and aligning pixels of the image. 2) N and P repre-
sent respectively the number of agents, and the adaptation path-length. These
two parameters control the dynamic of the multi-agent system. 3) ζ represents
the clique potential parameter. For the first parameter subset, 256 combina-
tions namely (ξmin, ξmax, Trθ, Trh) ∈ {0.5, 0.3, 0.1, 0.05}× {1.0, 3.0, 5.0, 7.0}×
{15◦, 18◦, 21◦, 24◦} × {12, 16, 20, 24} were run on the training images. These pa-
rameters are set as follows: ξmin=0.3, ξmax=5.0, Trθ=21◦ and Trh=16. In order
to set the parameters N and P , 25 combinations of these parameters, namely
(N, P ) ∈ {1500, 2000, 2500, 3000, 3500}× {3, 5, 7, 9, 11} were run on the training
set. Optimal values of N and P are respectively 2500 and 7. The Coding method
[2] was used to estimate the parameter ζ. A value of ζ is computed for each im-
age in the training set. The Average is used as the final value of the parameter.
The optimum for each training image is calculated by the simulated annealing
algorithm [12], using a Gibbs sampler [7]. The average value of ζ obtained with
the used training set is −0.27 × 10−4.

5.2 Experimental Results

Fig. 3 shows an instance of segmentation progression within time of a typi-
cal range image (abw.test.8) [8,5]. The time t represents the number of steps
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performed by each agent since the beginning of the process. Figures 3b, 3c, 3d
and 3e show the set of pixels of interest (edge or noise pixels) respectively at
t=1000, 5000, 9000 and 13000. Regions are progressively smoothed by aligning
noise pixels to the surrounding planar regions. Edges between adjacent regions
are also progressively thinned. At the end of the process, region borders consist
of thin lines of one pixel wide (Fig. 3e). Fig. 3f shows the segmentation result
after edge regularization. We can note that the positions of some edge pixels
have been corrected. The regularization was performed typically for roof edges,
situated between adjacent regions.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Segmentation progression. (a) Range image (abw.test.8) ; (b) at t=1000 ; (c) at
t=5000 ; (d) at t=9000 ; (e) at t=13000 ; (f) after edge regularization

Table 1 contains the average results obtained with all test images, and for all
performance metrics. The compare tool tolerance was set to the typical value
80%. By considering both correct detection and incorrect detection metrics, ob-
tained results show the good efficiency of our method. Fig. 4 shows the average
numbers of correctly detected regions for all test images, according to the com-
pare tool tolerance T . Results show that the number of correctly detected regions
by our system is in average better than those of USF, UB and WSU. For in-
stance, our system scored higher than WSU for all the values of the compare
tool tolerance T . It scored higher than USF for T ≥ 80%, and better than UB
for T ≤ 80%. For all incorrect detection metrics (instances of Over-segmentation,
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Table 1. Average results of the different involved methods with T=80%

Method GT Correct det. Over-seg. Under-seg. Missed Noise
USF 15.2 12.7 0.2 0.1 2.1 1.2
WSU 15.2 9.7 0.5 0.2 4.5 2.2
UB 15.2 12.8 0.5 0.1 1.7 2.1
UE 15.2 13.4 0.4 0.2 1.1 0.8

2ARIS 15.2 13.0 0.5 0.1 1.4 0.9

Fig. 4. Average results of correctly detected regions of all methods, according to the
compare tool tolerance T ; 0.5 < T ≤ 1.0

Under-segmentation, Missed Region, Noise Region), our system has equivalent
scores to those of UE and USF. The two latter scored higher than UB and WSU,
regarding incorrect detection metrics.

6 Conclusion

In this paper we have presented a multi-agent approach for range image segmen-
tation. Edge detection and noise removal have resulted from indirect interaction
between autonomous agents moving over the image. Image edges, for which no
explicit detection was coded in any agent, result from the collective action of all
the agents. The proposed approach aims to improve efficiency and to deal with
the problem of result accuracy. Indeed, obtained results are better than those
provided by the traditional region growing algorithm. Bayesian edge regulariza-
tion using an appropriate MRF model, introduced in this paper, has allowed
improving the segmentation results. The experimental results obtained with real
images from the ABW database were compared to those provided by four typi-
cal algorithms for range image segmentation. Comparison results show the good
efficiency of the proposed approach for accurate segmentation of range images.
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