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ogAbstra
t. This paper presents generi
 simulation tools whi
h rely onan original methodologi
al approa
h of designing multi-agent simulators.We will see that these tools are generi
 spe
ially be
ause they are notrelated to a parti
ular s
heduling method. On the 
ontrary they aimat providing fa
ilities that allow to design 
omplex a
tivation stru
turesthat remain 
omprehensible, analyzable and moreover modi�able, thanksto a problem division. To a
hieve this, the main idea of this methodologyis to express the multi-agent system (MAS) simulator as a parti
ularMAS itself and use expli
itly its subja
ent organizational stru
ture. Wewill show how the Aalaadin organizational model enables us to �nelyapply su
h a methodology. Pre
isely, we will present a parti
ular agentof MadKit (the platform that relies on Aalaadin): the S
heduler agentand its tool 
alled A
tivator.1 Introdu
tionAs Axtell has pointed out [1℄, agent intera
tion and a
tivation stru
tures
an play important roles in multi-agent systems (MAS). Espe
ially the outputresults given by a single MAS model 
an be very di�erent 
onsidering the way ithas been 
omputed [2℄ [3℄. This observation �nds an explanation in the fa
t thatwe do not have a suitable formalism to 
ompute agent intera
tions. Parti
ularly,modeling the simultaneity of those intera
tions is very diÆ
ult by now as theoryis almost missing on this parti
ular point[4℄. However very few works 
on
ern theanalysis of the simulators themselves. In other words, we mean that habituallythe main preo

upation of simulation designers is to 
ompute agents' behavioursrather than explore di�erent ways of 
omputing the MAS simulation dynami
.So this matter that we will 
all the s
heduling problem does not have almostany methodologi
al support whereas paradoxi
ally this is a mandatory stagewhen 
omputing a MAS simulation.Indeed, MAS paradigm is founded impli
itly on the 
omposition of 
on
ur-rent individual behaviours [5℄. Moreover multipro
essors ar
hite
tures do notprovide an obvious solution: without syn
hronization, agents evolve at the rateof their internal ar
hite
ture 
omplexity. Then it is not possible to 
ontrol the
oheren
e of the entire system. Thus all the solutions planned to simulate entities




on
urren
y generate more or less skews in the simulation 
ourse. In other wordsthe 
omputation of this parti
ular point has depth in
uen
e on the evolution ofMAS models whereas its neutrality should be wished.On the other hand, this observation 
an be an explanation of the multitude ofsimulation platforms. Indeed, when one wants to 
ompute a MAS model one hastwo 
hoi
es: �nd a platform that ful�ll the needs or, at least, develop one froms
rat
h. Considering that almost every simulation platform is domain-spe
i�
,and that there is also a great probability for the 
onsidered model to be �eldidenti�able too (roboti
, e
ology, so
iology, ethnology, multi-agent 
oordination,et
), we 
ould expe
t that everyone 
an �nd its wishes. And truly speaking, formany the se
ond 
hoi
e is a reality. Why this? Be
ause almost all platforms aremore or less esoteri
 in their engineering. By this we mean that most of the timeit is diÆ
ult, and at least not possible as an external proje
t user, to modify thesimulator's basi
 operations. Espe
ially the s
heduling method employed. So ifthe 
onsidered model is 
omplex, it is surely more reassuring to develop froms
rat
h in order to be aware of all the simulation development stages and thenbe able to understand all the meanings of the output results.So 
onsidering that many have to develop from s
rat
h, we really think thata proposal for generi
 simulation tools should be very interesting. Rather thangive a 
ustomized platform, the idea is to provide building tools that are basedon a methodology that 
an be helpful for everybody who wants to 
ompute aMAS simulation platform independently of the model 
onsidered. So our �rstgoal is that these tools allow to 
ompute MAS simulators without having towrite everything from s
rat
h.Moreover, as we think that the s
heduling problem must take a dominatingpla
e when developing a MAS simulation, su
h a methodology have to be estab-lished with the worry of allowing a simple analysis of this problem. Espe
ially,this methodology must make this problem expli
it and 
larify it.Without solving the simultaneity matter, the main idea here is not to 
he
kan hypotheti
al mat
h with reality but to better understand our experimentationtools and their impli
ation in the �nal result, espe
ially in order to be able toevaluate approximations and errors that depend dire
tly on this problem.Within this framework, our working hypothesis is that any MAS simulator
an itself be expressed as a MAS and then, by nature, this system de�nes asubja
ent organizational stru
ture. An expli
it use of this stru
ture must providea solution to the problems that we raised, as well on a des
ription level as on
omputation of s
heduling me
hanisms.We will see how this approa
h 
an easily be exhibited using the Aalaadinorganizational meta-model[6℄. Based on three 
ore 
on
epts -agent/group/role-this model allows simple and powerful des
ription of organizational stru
turesand intera
tions independently of the agents' internal ar
hite
ture. Thus its usewill enable us to simply de�ne the MAS dynami
 by dividing up the globalsyn
hronization problem into several sub problems de�ned as terms of variousgroups and roles emerging from the whole simulation's model stru
ture. We will



show how this method enables us to 
ompute very di�erent a
tivation stru
turesthat 
an 
oexist inside only one single simulation.In the �rst part of this paper, we spe
ify the stakes of the s
heduling problemand we make a synthesis of the 
urrent s
heduling te
hniques and the diÆ
ultiesthat they raise. Se
tion 3 des
ribes related works and de�nes our approa
h.se
tion 4 exposes the proposed methodology. We present brie
y the Aalaadinmodel and we des
ribe our approa
h. Then we �nish by some prospe
ts.2 The Problem of Time in MAS2.1 The Fundamental S
heduling Me
hanismsIn a 
lassi
al way, a simulation 
onsists in trying out models given in the formof mathemati
al relations between variables representing real physi
al obje
ts.On the 
ontrary MAS simulation proposes to dire
tly represent the individuals,their behaviours and their intera
tions [7℄.The enumeration of all the works based on MAS simulations 
ould be verytiresome. However we 
an note that the majority have as an aim to simulatea spe
i�
 MAS model: a ant 
olony[8℄, so

er robots[9℄, or to o�er a more orless generi
 platform related to a parti
ular appli
ability: e
ology (Cormas[10℄,E
ho[11℄), roboti
 (MissionLab[12℄), ethology (LiveWorld[13℄), multi-agent
oordination(Mass[14℄).The development of simulation platforms is usually made around the follow-ing 
on
epts:{ The agent type 
onsidered: rea
tive, 
ognitive, situated, et
.{ The environment in whi
h the agents evolve : dis
rete, 
ontinuous, 2D, 3D,et
.{ The intera
tions nature: 
oordination, negotiation, per
eptions and a
tionson the environment, spee
h a
ts, et
.being given the variety of MAS appli
ations, this approa
h, whi
h one 
an de-s
ribe as " theoreti
al model dire
ted ", is justi�ed and models 
an requirethorough analysis.Modeling Time But su
h an approa
h does not reveal the painful problem ofmodeling time. And it is 
lear that ea
h model will not require the same levelof temporal granularity: from real time in roboti
s to several years for e
ologi
almodels. On this parti
ular point, very interesting approa
hes 
an be found in[14℄ and [15℄.Simultaneity of A
tions In addition, a MAS simulation supposes that onehas 
omputed a me
hanism allowing to syn
hronize the agents' a
tions. Assume� de�nes the whole possible system states, every MAS simulation is based onthe assumption that the environment evolution from one moment t to the next



t+dt results from the 
omposition of the a
tions A1(t); A2(t):::An(t) produ
edby the agents at t. In a simpli�ed way, the problem is to build a time fun
tion,Dynami
 D : � 7! �, su
h as�(t+ dt) = D(�Ai(t); �(t)) (1)The symbol � is used here to appoint the a
tion 
omposition operator. It de�neshow the a
tions produ
ed at t must be summoned in order to 
al
ulate their
onsequen
es on the initial world state �(t).Without detail this 
al
ulus, it is easy to measure the diÆ
ulty of 
on
ep-tualizing su
h an operation knowing the multitude and the nature of 
on
eptshidden behind the word a
tion (movement, de
ision-making, environment mod-i�
ation). Moreover, as we said in introdu
tion, the impli
it simultaneity of a
-tions is extremely diÆ
ult to model. Thus, all MAS simulation designers have tomake a personal 
hoi
e on this matter. And this 
hoi
e is painful: a MAS modeldoes not de�ne a parti
ular te
hnique itself, as it is pre
isely a 
omputationalproblem. Thus the same model 
an be implemented, on this point, in multipleways. Then it is simple to see that one single "paper model" 
an give di�erentresults a

ording to the s
heduling te
hnique used to 
ompute it, like it is shownin [3℄.This is why, on the 
ontrary of mathemati
s in digital simulations (on whi
hthe validity and 
onstan
y do not depend on a model), the s
heduling poli
yused to 
ompute a MAS model has a 
ru
ial impa
t on the output results.In a 
onventional way, the experimentation and the sensibility analysis areused to evaluate the model quality. They parti
ipate to 
orroborate the model orto 
all it into question for refute. We think that within MAS simulation frame-work, it is imperative to in
lude the exe
ution poli
y employed when evaluatinga model.2.2 Usually S
heduling Te
hniquesIn this se
tion we present three kinds of syn
hronization te
hniques used in
urrent simulation platforms : simple a
tivation, double bu�er and event-based." Dis
rete Time Simulation" This method 
onsists in a
tivating the agents(and possibly the simulation's obje
ts) in a sequential way. Then the a
tivationof the whole system 
orresponds to a time step for the simulation.
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a constant value  T     T+dT


 Fig. 1. simple a
tivation loop



This te
hnique has the advantage of avoiding the presen
e of 
on
i
ts inthe a

ess to the environment variables in the sense that ea
h gets to exe
uteexa
tly on
e during ea
h 
lo
k 
y
le. This form of 
on
urren
y makes agentssyn
hronized by default, allowing them to be simpler than they would have tobe if they needed to a
hieve syn
hronization through expli
it 
onstru
ts. Then,it is by far the most used te
hnique be
ause of its simpli
ity.Our obje
t here is not to enumerate all the skews generated by this kindof operation. But, as these skews are related to the diÆ
ulty of modeling si-multaneity in MAS, the problems raised by this kind of operation 
an easily beextended to others. So, in order to show the signi�
an
e of a
tivation stru
turesin simulation 
ourses, we will use two simple examples.Our �rst example des
ribes a simulation model known as " prey/predator ".We pose that a prey (a triangle) is 
aptured when surrounded by four predators(
ir
les). One will �nd a des
ription more exhaustive as well as experimentalresults in[4℄.
OR
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Fig. 2. the prey's survival depends on the ordering of agentsFigure 2 shows that the ordering of agents (represented here by a number)
an 
hange the result with the same initial situation. Here, the prey is livingor dies. Randomize the ordering of agents to smooth the problem is a regularlyused method (like [16℄).Our se
ond example stresses the problem of time granularity of a
tions. Thisexample is drawn from the StarLogo platform [5℄. A turtle (agents' denomi-nations in this model) 
an 
arry out, in ea
h time step, a primitive a
tion. Herethe primitive 
onsidered is "fd N". The parameter N means that the turtle goesN pat
hes forward.Figure 3 shows that, as N is not �xed, several turtles 
an have 
ross traje
-tories without being at no moment on the same pat
h, due to the fa
t that themovement speed has no dire
t link with time.Double Bu�er Extension of the pre
edent one, this te
hnique aims at bringinga solution to simultaneity problem. The main idea is to make all the agentshaving the same per
eption of the world state at one moment t. To do this, theidea is that all a
tion e�e
ts are delayed until the end of an entire 
y
le. So
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Fig. 3. the problem of a
tion granularitythe agent a
tions are done on bu�ered variables and the world is not dire
tlymodi�ed. On
e all the agents 
arried out, the se
ond phase takes pla
e to makethe new values 
urrent.



Sequential execution of 
agents' action on

buffered variables



Conflict resolution and 

validation of actions






Incrementing time of�

a constant value  T       T+dTFig. 4. double bu�er simulationFor example the Conway's game of life is relied on this te
hnique: the stateof the world is updated on
e that all the 
ells 
al
ulated their next state. TheTravers's, LiveWorld[13℄, platform provides this operating mode.With the use of this method there is a new 
oheren
e problem that arises. A
on
i
t appears when two agents or more spe
ify di�erent values for the samevariable. Thus the 
on
i
ts that lead to an in
onsisten
y of the world stateshould be solved.In addition, as Travers saw himself, there is a serious drawba
k : if an agentmodi�es a variable, it 
annot make use of it in further 
omputation withoutobtaining an in
oherent result, knowing that the variable value is only validatedat the end of a 
y
le.Without taking into 
onsideration the diÆ
ulties related to 
on
i
t resolu-tions, we 
an simply noti
e that, in a way or another, we have to set up apriority me
hanism between agents at the time of 
on
i
t resolution. Thus, evenif this te
hnique relies on an analysis of the situation rather than a preset listof s
heduling, one 
an easily �nds situations similar to those of our pre
edingexamples.



Event-Based Simulation Rather than syn
hronizing all the agents at onemoment t, the idea is to expli
itly preset a 
hronologi
al order between theagent a
tions. It 
onsists in determining �rst, or in the simulation 
ourse, thefuture events, their date and their nature.



Computation of

future events



activation of next events


 Fig. 5. prin
iple of event-based simulationFor example, in his Sieme simulator, Magnin[9℄ uses a set of environmentalrules to progressively determine the events to pro
eed : if < event 
ondition >then < pro
eed event >. Thus a 
ausality law between events is his main worry.On the 
ontrary in the platform Swarm[17℄, intera
tions 
hronology is settledat �rst. A swarm is de�ned as a 
olle
tion of obje
ts together with a s
hedule ofa
tivity over those obje
ts. It is this s
hedule of a
tivity that de�nes the systemdynami
. Although this kind of simulation seems far from the pre
edents, it doesnot remain about it that the same kinds of problems are found. Indeed, whenseveral events are 
on
urrent, the diÆ
ulties of simulating simultaneity remainthe same ones.3 Dis
ussion3.1 The Need of Flexibly A
tivation Stu
turesAs we saw, implement a MAS simulation is somehow diÆ
ult when the s
hedul-ing problem arises. Espe
ially knowing that a parti
ular model is not related toa parti
ular s
heduling te
hnique and that all these methods are, one way or an-other, skew produ
ers. Nevertheless a 
hoi
e should be made. But, in our pointof view, the simple fa
t of making on the matter a unilateral and un
hangeable
hoi
e is an error. It should be noti
ed that the simulation operation is alwaysbased on a single strategy.Thus almost all the simulation agents are subje
ted to it. For example Swarma�ord generi
 tools but the whole platform is based on a single s
heduling poli
y.From there, 
ompute 
omplex models that 
omprise several kinds of agents
an be very tri
ky knowing that a
tion granularity (movement, de
ision, et
.)and intera
tion semanti
 (
ollisions, 
oordination, et
.) 
an be very di�erent.Moreover it is not o

asional that pro
esses that 
ome with the agents ex-e
ution (displays, statisti
al investigation, et
) are also managed on the sameguidelines. For example, in an event based system, the graphi
al display 
ouldbe a parti
ular event that should be managed like the others. Thus the fa
tthat all the simulation pro
esses are subje
ted to the same s
heduling routine




ontributes to make diÆ
ult, and at least una
hievable, to really 
hange thesimulator's basi
 operations. So it 
ould be very diÆ
ult to analyze the s
hedul-ing impa
t on the output results. Furthermore, it degrades the possibility ofextension to other agents.3.2 Related WorksSome approa
hes are not related to a parti
ular implementation and aim atproviding a formal framework for MAS design. For example, Desire [18℄ is aframework for the design and formal spe
i�
ation of 
ompositional systems andrelies on a task-based approa
h. A task hierar
hy is used to de�ne 
omponentsdistinguished within a formal spe
i�
ation. Intera
tion between 
omponents isformally spe
i�ed by information links between 
omponents to model 
omplexbehaviour. As Desire does not de�ne a representation of time, the modeler isnot limited to a parti
ular one. For example, this 
ompositional developmentmethod was used to design the Generi
 Agent Model, Gam [19℄, that abstra
tsfrom spe
i�
 appli
ation domain. Within this model, several 
omponents (asyn-
hronous pro
esses) are 
omposed and linked to model the whole agent task
ontrol.Sdml [15℄, whi
h is a stri
tly de
larative language that 
orresponds to a frag-ment of Konoliges strongly grounded autoepistemi
 logi
, is also not limited toa parti
ular s
heduling method. Within Sdml, agents in
orporate rules that de-termine their behaviour. Sdml's rules are �red in respe
t of de
larative 
lauses
ontained within agents' databases that 
an be shared. So it supports repre-sentations of intera
tion and 
ommuni
ation by agents to assert 
lauses to oneanothers databases. It also supports nested time levels and, within time levels,agents 
an a
t in parallel for instan
e. So it enables the user to �nely spe
ify aparti
ular s
heduling me
hanism using di�erent agent types (serial, parallel andmerging 
omposite agent) and di�erent grains of time levels.3.3 Position of our Approa
hCon
erning us, we will fo
us our attention on a higher level of abstra
tion. Ourmain goal is not to provide to users a 
omplete solution for designing MASsimulations but sound means to do it. Both Sdml and Desire, or other formalapproa
hes like [20℄, are generi
 in the sense that they formally spe
ify MAS, us-ing logi
al formalisms, in an implementation -and domain- independent mannerat a high level of abstra
tion. None the less, the way they model MAS is quiteadvan
ed and they propose a parti
ular solution for modeling agents' a
tions andintera
tions: information links between 
omponents in Desire, rule-�ring andassertion of 
lauses in shared databases in Sdml. So it is diÆ
ult, within thesekind of approa
hes, to in
orporate other ways of modeling agent intera
tions likethe in
uen
e/rea
tion [21℄ approa
h.As we aim at providing tools that 
an be helpful to develop every kind ofsimulators, that is to say every way of simulating MAS (from empiri
al ones toformal approa
hes like Sdml), we must make the fewest assumptions as possible



on how a MAS 
an be simulated. On the matter we 
an say one thing: most ofthe time, MAS simulation is about organizing method invo
ations over obje
ts.If su
h a work 
an be done using an impli
it methodology, we believe that theinherent use of it will be in some way useful.4 The Simulator as a Parti
ular MAS4.1 Organize-and-ConquerOur idea is simple and besides it is not new in the guidelines. It is about divid-ing the global s
heduling problem into as many of sub problems that ne
essary.Indeed, it is enough to noti
e that - whatever the method - syn
hronize allagents does not have a real meaning when 
onsidering several kinds of agentswith di�erent s
heduling requirements. Thus it is more operative to 
on
entrateon an agent group where syn
hronization is 
ru
ial for the simulation pro
ess.Ea
h group 
an then be independently handled in order to identify a s
hedul-ing proto
ol adapted to the situation. These groups then de�ne naturally anorganizational stru
ture that re
e
ts expli
itly the simulator logi
.4.2 The Aalaadin model and the MadKit platformWe present here very brie
y the organizational model Aalaadin[6℄ and theMadKit1[22℄ platform whi
h relies on it.This organizational model is based on three 
ore 
on
epts : agent, group androle (AGR). Figure 6 presents a diagram of this model.
Agent

RoleGroup

is member handles

contains

1..*

1..*

1..*

1..*

*

*Fig. 6. Agent/Group/Role ModelAgent This model pla
es no 
onstraints on the internal ar
hite
ture of agentsand does not assume any formalism for individual agents. An agent is onlyspe
i�ed as an a
tive 
ommuni
ating entity whi
h plays roles within groups.1 refer to [23℄ for a detailed des
ription of its formal operation semanti
s.



Group We de�ne groups as atomi
 sets of agent aggregation. Ea
h agent is partof one or more groups. In its most basi
 form, the group is only a way to tag aset of agents. In a more developed form, in 
onjun
tion with the role de�nition,it may represent any usual MAS. An agent 
an be a member of n groups at thesame time. A major point of Aalaadin groups is that they 
an freely overlap.Role The role is an abstra
t representation of an agent fun
tion, servi
e oridenti�
ation within a group. Ea
h agent 
an handle several roles, and ea
h rolehandled by an agent is lo
al to a group.The MadKit platform implements these 
on
epts and adds two design prin
i-ples: a mi
ro-kernel ar
hite
ture and the agenti�
ation of the servi
es.4.3 The S
heduler Agent of MadKitOur idea is to have transposed the MadKit's design prin
iples to simulation.We thus implemented a mi
ro-kernel dedi
ated to simulation 
alled syn
hronousengine. So, a MadKit mi
ro-kernel spe
ial agent, the S
heduler agent, o�erservi
es related to the design of heterogeneous s
heduling methods.Its role 
onsists in handling exe
ution poli
ies on whi
h no 
onstraint is sup-posed. Thus this agent is asso
iated with a generi
 tool obje
t 
alled A
tivator.In its simplest form, an A
tivator is simply a mean for the S
heduler to identifya parti
ular agent set given a group and a role. For example, the S
heduler 
an
reate an A
tivator on the role agent within the group simulation, or displayerwithin Graphi
al interfa
e.The idea is to spe
ialize sub
lasses of A
tivator in order to de�ne a parti
ulars
heduling pro
edure that 
ould then be applied pun
tually, by the s
heduler, onvarious groups of agents. The advantage lies in the fa
t that the same S
heduleragent 
an 
reate as many a
tivators as ne
essary. Its task is simply summarized inorganizing the a
tivation of its a
tivators in order to de�ne the whole simulationpro
ess.Figure 7 shows an example where a S
heduler S 
omprises two di�erent kindsof a
tivators (two di�erent s
heduling poli
ies) on three di�erent groups. More-over this �gure shows that an agent 
an belong to several groups simultaneously.The prin
ipal advantage of dividing the global s
heduling lies in the possibil-ity of modifying, or repla
ing, an a
tivator without having to tou
h the wholestru
ture : we have un
oupled the simulation management problems (the S
hed-uler's work) from the agent syn
hronization problem (The A
tivator's work). Ana
tivator is the pla
e where the modeler have to deal with the problems illus-trated in �gures 2 and 3. So, one 
an noti
e that a S
heduler is not responsiblefor the quality of a parti
ular a
tivator2. Additionally, a S
heduler agent 
an, asa regular one, be s
heduled by an agent hierar
hi
ally higher.2 Thus, the designer is also responsible of the simulation 
omplexity in terms of time,knowing that the MadKit's mi
ro-kernel is responsible for maintaining 
orre
t in-formation about group members and roles handled
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Fig. 7. An organizational simulatorAnother advantage is that this me
hanism is not related to the internal ar-
hite
ture of agents. Thus an agent (a parti
ular Java 
lass) 
an be substitutedby another one (another 
lass) without having to 
hange the s
heduler or itsa
tivators. By the way, an agent 
an enter a simulation pro
ess just by playingthe right role in the right group as an A
tivator overlooks this parti
ular 
ouple.So you 
an 
ompile an agent during a simulation and then put it within thesimulation without having to stop it.4.4 Design Methodology of an Organizational SimulatorWe suggest a design methodology of MAS simulators that 
onsists in threestages:1. Express the simulator organizational stru
ture in terms of groups and roles.2. Work out new kinds of A
tivators if ne
essary for the 
onsidered simulation(i.e lo
al s
heduling poli
ies).3. De�ne the whole simulator logi
 by ordering the a
tivators exe
ution.The statement of the third stage 
an make one believes that we are dealing withthe same problems that we raised in the se
ond se
tion. In fa
t, an a
tivator,related to a group, de�nes a parti
ular s
heduling method (event based, doublebu�er, et
.) for agents whose syn
hronization is regarded as ne
essary. On the
ontrary, the a
tivators a
tivation simply des
ribes simulator logi
, that is to saythe spe
i�
 order in whi
h the various key groups (simulated agents, displays,observations, et
.) intervene in the simulation 
ourse.Figure 8 illustrates this aspe
t of our approa
h. It des
ribes an example wherefour di�erent a
tivators A1, A2, A3 and A4 are used. Ea
h a
tivator is related toan agent set identi�ed by a group and a role. The s
heduling poli
ies of used bythe various a
tivators are independent. For example A1 
an use a double bu�ermethod whereas A2 de�nes an event-based prin
iple



simulationA1 agent type 1

simulationA2 agent type 2

interfaceA3 displayer

analysisA4 observer

group roleActivator

Fig. 8. Prin
iple of simulation using a
tivatorsHowever it is obvious that the ordering of the a
tivators 
an in
uen
e theresults. Thus if one reverses A1 and A2, one 
an obtains di�erent results sin
ethese a
tivators handle agents that 
an modify the world. Nevertheless it is nota syn
hronization problem here : this split into two a
tivators implies that thesevarious groups of agents should not intervene at the same time.On the other hand it is 
ompletely possible to 
onsider, after analysis of theresults, that the syn
hronization of two groups is �nally ne
essary. It is then veryinteresting to be able to 
hange lo
ally the simulator operation. For example, we
an imagine the fusion of A1 and A2 in only one more adequate a
tivator, A3and A4 remain valid.The A
tivator inter
hangeability obtained thanks to the organizational sight,�nds all its meaning here: it is now possible to qui
kly 
onstitute several sim-ulations based on various s
heduling methods without having to rewrite thesimulation agents.We 
laim that su
h a methodology is well suited to build very 
omplexs
heduling pro
edures that remain intelligible thanks to the problem division.Moreover, being able to lo
ally modify the simulator's operations permits therealization of simulations in
reasingly 
omplex 
omprising a great number ofstrongly heterogeneous agents.4.5 Implementation Code ExampleWe present here a simple example of the s
heduler's implementation 
ode relatedto our approa
h. In the following example, a S
heduler uses one of the simplesta
tivator that we have developed: the SingleMethodA
tivator. This a
tivator isused to invoke a parti
ular method over an agent set. First the s
heduler mustinstantiate needed a
tivators.The �rst 
onstru
tor's parameter represents the method's name, the se
ondone is the group and the third is the role.



observers =new SingleMethodA
tivator("wat
h","simulation","observer");rabbits =new SingleMethodA
tivator ("doIt", "simulation", "rabbit");
oyotes =new SingleMethodA
tivator ("doIt", "simulation", "
oyotes");guis =new SingleMethodA
tivator ("display", "simulation", "gui");Then add the a
tivators to the system:addA
tivator(rabbits); addA
tivator(
oyotes);addA
tivator(guis); addA
tivator(observers);Then the s
heduler has just to exe
ute the a
tivators during its life 
y
le tode�ne the whole simulation pro
ess:While(true) frabbits.exe
ute();
oyotes.exe
ute();observers.exe
ute();guis.exe
ute(); gA �rst variant of this simulation is to reverse the ordering of the two �rsta
tivators for example. However, if one is interested in trying out a spe
ial a
-tivation stru
ture, one 
an freely de�ne a new kind of a
tivator that ful�ll theneeds. It 
an be about trying to solve the simultaneity matter for instan
e. Sothe rabbits and 
oyotes a
tivators 
an be repla
ed by one more 
omplex a
ti-vator. Call it swarm for instan
e. Then the two �rst lines be
ome the followingone:swarm = new SwarmA
tivator("simulation", "animat");and the S
heduler's life 
y
le be
omes:While(true) fswarm.exe
ute();observers.exe
ute();guis.exe
ute(); gThis implementation 
ode just de�nes the simulation's guidelines. But if oneis interested in further understanding, it is obvious that one has to take a lookinside the SwarmA
tivator's implementation. In this obje
t, one will �nd onlywhat is of interest: the lo
al a
tivation stru
ture used to s
hedule the simulatedanimats.



4.6 Advantages and Drawba
ksAdditionally to the advantages about whi
h we have already dis
ussed, we be-lieve that the simpli
ity of S
hedulers' implementation 
ode allows our method-ology to be easily understood by external proje
t users. Moreover, these toolsare only a part of the MadKit platform. So, a parti
ular simulation platformis only regarded as a parti
ular MAS within MadKit. Thus, simulator design-ers bene�t from other works done within the platform. Even those that are notrelated to simulation (system agents, interfa
e agents, test agents).This advantage is also a drawba
k. Even if these tools are made to be themore generi
 as possible, they rely on a spe
i�
 organizational model and on theplatform related to it. And users have to de�ne several group and role in respe
tof the Aalaadin model. And, although organization seems to be a key point inrepresenting MAS, Aalaadin is only one point of view.Another short
oming is that, for now, our approa
h does not provide anyformal support like Sdml for example. In fa
t, we believe that the level of ab-stra
tion on whi
h we fo
us by now is an explanation to this.4.7 Appli
ationsBy now, all the simulations produ
ed by our MAS team rely on these tools. Fromtoy simulations to more 
omplex ones like the TurtleKit of MadKit.The last one is a library of simulation for rea
tive agents that mimi
 a partof the fun
tionalities of StarLogo[5℄. Although TurtleKit looks like a s
aled-down StarLogo 
lone, the turtles, and all the agents of the simulation (laun
h-ers, observers, viewers) are a
tual MadKit agents written in Java. Knowingthat the MadKit platform does not impose any 
onstraint on the agent ar-
hite
ture, a turtle or an observer 
an be freely de�ned. Thus a turtle is notlimited to its basi
 
ommands. Moreover, as MadKit messaging engine worksusing the Agent/Group/Role model, the simulation's agents have the ability to
ommuni
ate using messages with any other agent running in MadKit and notonly with these of their own simulation. Thus it is also possible to use all theusual fun
tionalities of the platform and its tools like the MessageTra
er agentof MadKit.Far from this last example, Simonin[24℄ is 
urrently using the syn
hronous en-gine to simulate autonomous mobile robots. Another proof that the syn
hronousengine is not limited to a parti
ular domain and 
an be easily reused.5 Con
lusionsIn this paper we have seen that the s
heduling is a key problem within theframework of MAS simulation. So, as our main goal was to provide generi
simulation tools, we have proposed ones that are not related to a parti
ulars
heduling method. Moreover, as these tools are a part of the MadKit's kernel,they pla
e no 
onstraint on the internal ar
hite
ture of agents.



We also argued that an expli
it use of MAS organizational stru
tures 
anbe very helpful to 
on
eive MAS simulators. The methodology presented hereis based on this idea. We 
laim that this methodology 
an give rise to 
omplexs
heduling poli
ies whi
h remain 
omprehensible (thus analysable) thanks to thelo
alization of syn
hronization problems.So, our future works will 
onsist in try out new s
heduling methods. Espe-
ially, it would be very interesting to use more 
omplex 
omputation models ofa
tion that have not yet been used in MAS simulations like the in
uen
e/rea
tionmodel[21℄.On the other hand, we have seen that a MAS model must not be evaluatedindependently of the s
heduling te
hnique used to implement it. In this respe
t,we argue that the possibility of modifying lo
ally the simulator, is a fa
ility forinvestigating MAS models' behaviours.We hope that it is the �rst step towards a thorough and more pro�tableanalysis of multi-agent simulation me
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