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Abstract. This paper presents generic simulation tools which rely on
an original methodological approach of designing multi-agent simulators.
We will see that these tools are generic specially because they are not
related to a particular scheduling method. On the contrary they aim
at providing facilities that allow to design complex activation structures
that remain comprehensible, analyzable and moreover modifiable, thanks
to a problem division. To achieve this, the main idea of this methodology
is to express the multi-agent system (MAS) simulator as a particular
MAS itself and use explicitly its subjacent organizational structure. We
will show how the AALAADIN organizational model enables us to finely
apply such a methodology. Precisely, we will present a particular agent
of MADKIT (the platform that relies on AALAADIN): the Scheduler agent
and its tool called Activator.

1 Introduction

As Axtell has pointed out [1], agent interaction and activation structures
can play important roles in multi-agent systems (MAS). Especially the output
results given by a single MAS model can be very different considering the way it
has been computed [2] [3]. This observation finds an explanation in the fact that
we do not have a suitable formalism to compute agent interactions. Particularly,
modeling the simultaneity of those interactions is very difficult by now as theory
is almost missing on this particular point[4]. However very few works concern the
analysis of the simulators themselves. In other words, we mean that habitually
the main preoccupation of simulation designers is to compute agents’ behaviours
rather than explore different ways of computing the MAS simulation dynamic.
So this matter that we will call the scheduling problem does not have almost
any methodological support whereas paradoxically this is a mandatory stage
when computing a MAS simulation.

Indeed, MAS paradigm is founded implicitly on the composition of concur-
rent individual behaviours [5]. Moreover multiprocessors architectures do not
provide an obvious solution: without synchronization, agents evolve at the rate
of their internal architecture complexity. Then it is not possible to control the
coherence of the entire system. Thus all the solutions planned to simulate entities



concurrency generate more or less skews in the simulation course. In other words
the computation of this particular point has depth influence on the evolution of
MAS models whereas its neutrality should be wished.

On the other hand, this observation can be an explanation of the multitude of
simulation platforms. Indeed, when one wants to compute a MAS model one has
two choices: find a platform that fulfill the needs or, at least, develop one from
scratch. Considering that almost every simulation platform is domain-specific,
and that there is also a great probability for the considered model to be field
identifiable too (robotic, ecology, sociology, ethnology, multi-agent coordination,
etc), we could expect that everyone can find its wishes. And truly speaking, for
many the second choice is a reality. Why this? Because almost all platforms are
more or less esoteric in their engineering. By this we mean that most of the time
it is difficult, and at least not possible as an external project user, to modify the
simulator’s basic operations. Especially the scheduling method employed. So if
the considered model is complex, it is surely more reassuring to develop from
scratch in order to be aware of all the simulation development stages and then
be able to understand all the meanings of the output results.

So considering that many have to develop from scratch, we really think that
a proposal for generic simulation tools should be very interesting. Rather than
give a customized platform, the idea is to provide building tools that are based
on a methodology that can be helpful for everybody who wants to compute a
MAS simulation platform independently of the model considered. So our first
goal is that these tools allow to compute MAS simulators without having to
write everything from scratch.

Moreover, as we think that the scheduling problem must take a dominating
place when developing a MAS simulation, such a methodology have to be estab-
lished with the worry of allowing a simple analysis of this problem. Especially,
this methodology must make this problem explicit and clarify it.

Without solving the simultaneity matter, the main idea here is not to check
an hypothetical match with reality but to better understand our experimentation
tools and their implication in the final result, especially in order to be able to
evaluate approximations and errors that depend directly on this problem.

Within this framework, our working hypothesis is that any MAS simulator
can itself be expressed as a MAS and then, by nature, this system defines a
subjacent organizational structure. An explicit use of this structure must provide
a solution to the problems that we raised, as well on a description level as on
computation of scheduling mechanisms.

We will see how this approach can easily be exhibited using the AALAADIN
organizational meta-model[6]. Based on three core concepts -agent/group/role-
this model allows simple and powerful description of organizational structures
and interactions independently of the agents’ internal architecture. Thus its use
will enable us to simply define the MAS dynamic by dividing up the global
synchronization problem into several sub problems defined as terms of various
groups and roles emerging from the whole simulation’s model structure. We will



show how this method enables us to compute very different activation structures
that can coexist inside only one single simulation.

In the first part of this paper, we specify the stakes of the scheduling problem
and we make a synthesis of the current scheduling techniques and the difficulties
that they raise. Section 3 describes related works and defines our approach.
section 4 exposes the proposed methodology. We present briefly the AALAADIN
model and we describe our approach. Then we finish by some prospects.

2 The Problem of Time in MAS

2.1 The Fundamental Scheduling Mechanisms

In a classical way, a simulation consists in trying out models given in the form
of mathematical relations between variables representing real physical objects.
On the contrary MAS simulation proposes to directly represent the individuals,
their behaviours and their interactions [7].

The enumeration of all the works based on MAS simulations could be very
tiresome. However we can note that the majority have as an aim to simulate
a specific MAS model: a ant colonyl[8], soccer robots[9], or to offer a more or
less generic platform related to a particular applicability: ecology (CORMAS[10],
EcHO[11]), robotic (M1ssIONLAB[12]), ethology (LIVEWORLD[13]), multi-agent
coordination(MAss[14]).

The development of simulation platforms is usually made around the follow-
ing concepts:

— The agent type considered: reactive, cognitive, situated, etc.

— The environment in which the agents evolve : discrete, continuous, 2D, 3D,
etc.

— The interactions nature: coordination, negotiation, perceptions and actions
on the environment, speech acts, etc.

being given the variety of MAS applications, this approach, which one can de-
scribe as ” theoretical model directed ”, is justified and models can require
thorough analysis.

Modeling Time But such an approach does not reveal the painful problem of
modeling time. And it is clear that each model will not require the same level
of temporal granularity: from real time in robotics to several years for ecological
models. On this particular point, very interesting approaches can be found in
[14] and [15].

Simultaneity of Actions In addition, a MAS simulation supposes that one
has computed a mechanism allowing to synchronize the agents’ actions. Assume
X defines the whole possible system states, every MAS simulation is based on
the assumption that the environment evolution from one moment ¢ to the next



t+dt results from the composition of the actions Aj(t), As(¢)...A,(t) produced
by the agents at . In a simplified way, the problem is to build a time function,
Dynamic D : ¥ +— X such as

o(t+dt) = D(ITA;(t),o(t)) (1)

The symbol IT is used here to appoint the action composition operator. It defines
how the actions produced at ¢ must be summoned in order to calculate their
consequences on the initial world state o(t).

Without detail this calculus, it is easy to measure the difficulty of concep-
tualizing such an operation knowing the multitude and the nature of concepts
hidden behind the word action (movement, decision-making, environment mod-
ification). Moreover, as we said in introduction, the implicit simultaneity of ac-
tions is extremely difficult to model. Thus, all MAS simulation designers have to
make a personal choice on this matter. And this choice is painful: a MAS model
does not define a particular technique itself, as it is precisely a computational
problem. Thus the same model can be implemented, on this point, in multiple
ways. Then it is simple to see that one single "paper model” can give different
results according to the scheduling technique used to compute it, like it is shown
in [3].

This is why, on the contrary of mathematics in digital simulations (on which
the validity and constancy do not depend on a model), the scheduling policy
used to compute a MAS model has a crucial impact on the output results.

In a conventional way, the experimentation and the sensibility analysis are
used to evaluate the model quality. They participate to corroborate the model or
to call it into question for refute. We think that within MAS simulation frame-
work, it is imperative to include the execution policy employed when evaluating
a model.

2.2 Usually Scheduling Techniques
In this section we present three kinds of synchronization techniques used in

current simulation platforms : simple activation, double buffer and event-based.

” Discrete Time Simulation” This method consists in activating the agents
(and possibly the simulation’s objects) in a sequential way. Then the activation
of the whole system corresponds to a time step for the simulation.

Sequential execution of > Incrementing time of
) agents' action a constant value T~ T+dT —‘

Fig. 1. simple activation loop



This technique has the advantage of avoiding the presence of conflicts in
the access to the environment variables in the sense that each gets to execute
exactly once during each clock cycle. This form of concurrency makes agents
synchronized by default, allowing them to be simpler than they would have to
be if they needed to achieve synchronization through explicit constructs. Then,
it is by far the most used technique because of its simplicity.

Our object here is not to enumerate all the skews generated by this kind
of operation. But, as these skews are related to the difficulty of modeling si-
multaneity in MAS, the problems raised by this kind of operation can easily be
extended to others. So, in order to show the significance of activation structures
in simulation courses, we will use two simple examples.

Our first example describes a simulation model known as ” prey/predator ”.
We pose that a prey (a triangle) is captured when surrounded by four predators
(circles). One will find a description more exhaustive as well as experimental
results in[4].
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Fig. 2. the prey’s survival depends on the ordering of agents
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Figure 2 shows that the ordering of agents (represented here by a number)
can change the result with the same initial situation. Here, the prey is living
or dies. Randomize the ordering of agents to smooth the problem is a regularly
used method (like [16]).

Our second example stresses the problem of time granularity of actions. This
example is drawn from the STARLOGO platform [5]. A turtle (agents’ denomi-
nations in this model) can carry out, in each time step, a primitive action. Here
the primitive considered is ”fd N”. The parameter N means that the turtle goes
N patches forward.

Figure 3 shows that, as N is not fixed, several turtles can have cross trajec-
tories without being at no moment on the same patch, due to the fact that the
movement speed has no direct link with time.

Double Buffer Extension of the precedent one, this technique aims at bringing
a solution to simultaneity problem. The main idea is to make all the agents
having the same perception of the world state at one moment ¢. To do this, the
idea is that all action effects are delayed until the end of an entire cycle. So
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Fig. 3. the problem of action granularity

the agent actions are done on buffered variables and the world is not directly
modified. Once all the agents carried out, the second phase takes place to make
the new values current.

Sequential execution of

) - > Conflict resolution and
agents aCt'(.Jn on validation of actions
buffered variables

Incrementing time of
aconstantvalue T < T+dT

Fig. 4. double buffer simulation

For example the Conway’s game of life is relied on this technique: the state
of the world is updated once that all the cells calculated their next state. The
Travers’s, LIVEWORLD[13], platform provides this operating mode.

With the use of this method there is a new coherence problem that arises. A
conflict appears when two agents or more specify different values for the same
variable. Thus the conflicts that lead to an inconsistency of the world state
should be solved.

In addition, as Travers saw himself, there is a serious drawback : if an agent
modifies a variable, it cannot make use of it in further computation without
obtaining an incoherent result, knowing that the variable value is only validated
at the end of a cycle.

Without taking into consideration the difficulties related to conflict resolu-
tions, we can simply notice that, in a way or another, we have to set up a
priority mechanism between agents at the time of conflict resolution. Thus, even
if this technique relies on an analysis of the situation rather than a preset list
of scheduling, one can easily finds situations similar to those of our preceding
examples.



Event-Based Simulation Rather than synchronizing all the agents at one
moment ¢, the idea is to explicitly preset a chronological order between the
agent actions. It consists in determining first, or in the simulation course, the
future events, their date and their nature.

future events

> Computation of > activation of next events

Fig. 5. principle of event-based simulation

For example, in his SIEME simulator, Magnin[9] uses a set of environmental
rules to progressively determine the events to proceed : if < event condition >
then < proceed event >. Thus a causality law between events is his main worry.

On the contrary in the platform SWARM[17], interactions chronology is settled
at first. A swarm is defined as a collection of objects together with a schedule of
activity over those objects. It is this schedule of activity that defines the system
dynamic. Although this kind of simulation seems far from the precedents, it does
not remain about it that the same kinds of problems are found. Indeed, when
several events are concurrent, the difficulties of simulating simultaneity remain
the same ones.

3 Discussion

3.1 The Need of Flexibly Activation Stuctures

As we saw, implement a MAS simulation is somehow difficult when the schedul-
ing problem arises. Especially knowing that a particular model is not related to
a particular scheduling technique and that all these methods are, one way or an-
other, skew producers. Nevertheless a choice should be made. But, in our point
of view, the simple fact of making on the matter a unilateral and unchangeable
choice is an error. It should be noticed that the simulation operation is always
based on a single strategy.

Thus almost all the simulation agents are subjected to it. For example SWARM
afford generic tools but the whole platform is based on a single scheduling policy.

From there, compute complex models that comprise several kinds of agents
can be very tricky knowing that action granularity (movement, decision, etc.)
and interaction semantic (collisions, coordination, etc.) can be very different.

Moreover it is not occasional that processes that come with the agents ex-
ecution (displays, statistical investigation, etc) are also managed on the same
guidelines. For example, in an event based system, the graphical display could
be a particular event that should be managed like the others. Thus the fact
that all the simulation processes are subjected to the same scheduling routine



contributes to make difficult, and at least unachievable, to really change the
simulator’s basic operations. So it could be very difficult to analyze the schedul-
ing impact on the output results. Furthermore, it degrades the possibility of
extension to other agents.

3.2 Related Works

Some approaches are not related to a particular implementation and aim at
providing a formal framework for MAS design. For example, DESIRE [18] is a
framework for the design and formal specification of compositional systems and
relies on a task-based approach. A task hierarchy is used to define components
distinguished within a formal specification. Interaction between components is
formally specified by information links between components to model complex
behaviour. As DESIRE does not define a representation of time, the modeler is
not limited to a particular one. For example, this compositional development
method was used to design the Generic Agent Model, GAM [19], that abstracts
from specific application domain. Within this model, several components (asyn-
chronous processes) are composed and linked to model the whole agent task
control.

SpML [15], which is a strictly declarative language that corresponds to a frag-
ment of Konoliges strongly grounded autoepistemic logic, is also not limited to
a particular scheduling method. Within SDML, agents incorporate rules that de-
termine their behaviour. SDML’s rules are fired in respect of declarative clauses
contained within agents’ databases that can be shared. So it supports repre-
sentations of interaction and communication by agents to assert clauses to one
anothers databases. It also supports nested time levels and, within time levels,
agents can act in parallel for instance. So it enables the user to finely specify a
particular scheduling mechanism using different agent types (serial, parallel and
merging composite agent) and different grains of time levels.

3.3 Position of our Approach

Concerning us, we will focus our attention on a higher level of abstraction. Our
main goal is not to provide to users a complete solution for designing MAS
simulations but sound means to do it. Both SDML and DESIRE, or other formal
approaches like [20], are generic in the sense that they formally specify MAS, us-
ing logical formalisms, in an implementation -and domain- independent manner
at a high level of abstraction. None the less, the way they model MAS is quite
advanced and they propose a particular solution for modeling agents’ actions and
interactions: information links between components in DESIRE, rule-firing and
assertion of clauses in shared databases in SDML. So it is difficult, within these
kind of approaches, to incorporate other ways of modeling agent interactions like
the influence/reaction [21] approach.

As we aim at providing tools that can be helpful to develop every kind of
simulators, that is to say every way of simulating MAS (from empirical ones to
formal approaches like SDML), we must make the fewest assumptions as possible



on how a MAS can be simulated. On the matter we can say one thing: most of
the time, MAS simulation is about organizing method invocations over objects.
If such a work can be done using an implicit methodology, we believe that the
inherent use of it will be in some way useful.

4 The Simulator as a Particular MAS

4.1 Organize-and-Conquer

Our idea is simple and besides it is not new in the guidelines. It is about divid-
ing the global scheduling problem into as many of sub problems that necessary.
Indeed, it is enough to notice that - whatever the method - synchronize all
agents does not have a real meaning when considering several kinds of agents
with different scheduling requirements. Thus it is more operative to concentrate
on an agent group where synchronization is crucial for the simulation process.
Each group can then be independently handled in order to identify a schedul-
ing protocol adapted to the situation. These groups then define naturally an
organizational structure that reflects explicitly the simulator logic.

4.2 The AALAADIN model and the MADKIT platform

We present here very briefly the organizational model AALAADIN[6] and the
MADKIT![22] platform which relies on it.

This organizational model is based on three core concepts : agent, group and
role (AGR). Figure 6 presents a diagram of this model.

Agent [

is member handles

1.7 1.”

Group | 1.7 Role

contains

Fig. 6. Agent/Group/Role Model

Agent This model places no constraints on the internal architecture of agents
and does not assume any formalism for individual agents. An agent is only
specified as an active communicating entity which plays roles within groups.

! refer to [23] for a detailed description of its formal operation semantics.



Group We define groups as atomic sets of agent aggregation. Each agent is part
of one or more groups. In its most basic form, the group is only a way to tag a
set of agents. In a more developed form, in conjunction with the role definition,
it may represent any usual MAS. An agent can be a member of n groups at the
same time. A major point of AALAADIN groups is that they can freely overlap.

Role The role is an abstract representation of an agent function, service or
identification within a group. Each agent can handle several roles, and each role
handled by an agent is local to a group.

The MADKIT platform implements these concepts and adds two design princi-
ples: a micro-kernel architecture and the agentification of the services.

4.3 The Scheduler Agent of MADKIT

Our idea is to have transposed the MADKIT’s design principles to simulation.
We thus implemented a micro-kernel dedicated to simulation called synchronous
engine. So, a MADKIT micro-kernel special agent, the Scheduler agent, offer
services related to the design of heterogeneous scheduling methods.

Its role consists in handling execution policies on which no constraint is sup-
posed. Thus this agent is associated with a generic tool object called Activator.
In its simplest form, an Activator is simply a mean for the Scheduler to identify
a particular agent set given a group and a role. For example, the Scheduler can
create an Activator on the role agent within the group simulation, or displayer
within Graphical interface.

The idea is to specialize subclasses of Activator in order to define a particular
scheduling procedure that could then be applied punctually, by the scheduler, on
various groups of agents. The advantage lies in the fact that the same Scheduler
agent can create as many activators as necessary. Its task is simply summarized in
organizing the activation of its activators in order to define the whole simulation
process.

Figure 7 shows an example where a Scheduler S comprises two different kinds
of activators (two different scheduling policies) on three different groups. More-
over this figure shows that an agent can belong to several groups simultaneously.

The principal advantage of dividing the global scheduling lies in the possibil-
ity of modifying, or replacing, an activator without having to touch the whole
structure : we have uncoupled the simulation management problems (the Sched-
uler’s work) from the agent synchronization problem (The Activator’s work). An
activator is the place where the modeler have to deal with the problems illus-
trated in figures 2 and 3. So, one can notice that a Scheduler is not responsible
for the quality of a particular activator?. Additionally, a Scheduler agent can, as
a regular one, be scheduled by an agent hierarchically higher.

2 Thus, the designer is also responsible of the simulation complexity in terms of time,
knowing that the MADKIT’s micro-kernel is responsible for maintaining correct in-
formation about group members and roles handled
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Fig. 7. An organizational simulator

Another advantage is that this mechanism is not related to the internal ar-
chitecture of agents. Thus an agent (a particular Java class) can be substituted
by another one (another class) without having to change the scheduler or its
activators. By the way, an agent can enter a simulation process just by playing
the right role in the right group as an Activator overlooks this particular couple.
So you can compile an agent during a simulation and then put it within the
simulation without having to stop it.

4.4 Design Methodology of an Organizational Simulator

We suggest a design methodology of MAS simulators that consists in three
stages:

1. Express the simulator organizational structure in terms of groups and roles.

2. Work out new kinds of Activators if necessary for the considered simulation
(i.e local scheduling policies).

3. Define the whole simulator logic by ordering the activators execution.

The statement of the third stage can make one believes that we are dealing with
the same problems that we raised in the second section. In fact, an activator,
related to a group, defines a particular scheduling method (event based, double
buffer, etc.) for agents whose synchronization is regarded as necessary. On the
contrary, the activators activation simply describes simulator logic, that is to say
the specific order in which the various key groups (simulated agents, displays,
observations, etc.) intervene in the simulation course.

Figure 8 illustrates this aspect of our approach. It describes an example where
four different activators A1, A2, A8 and A/ are used. Each activator is related to
an agent set identified by a group and a role. The scheduling policies of used by
the various activators are independent. For example A1 can use a double buffer
method whereas A2 defines an event-based principle
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Fig. 8. Principle of simulation using activators

However it is obvious that the ordering of the activators can influence the
results. Thus if one reverses A1 and A2, one can obtains different results since
these activators handle agents that can modify the world. Nevertheless it is not
a synchronization problem here : this split into two activators implies that these
various groups of agents should not intervene at the same time.

On the other hand it is completely possible to consider, after analysis of the
results, that the synchronization of two groups is finally necessary. It is then very
interesting to be able to change locally the simulator operation. For example, we
can imagine the fusion of A7 and A2 in only one more adequate activator, A8
and A/ remain valid.

The Activator interchangeability obtained thanks to the organizational sight,
finds all its meaning here: it is now possible to quickly constitute several sim-
ulations based on various scheduling methods without having to rewrite the
simulation agents.

We claim that such a methodology is well suited to build very complex
scheduling procedures that remain intelligible thanks to the problem division.
Moreover, being able to locally modify the simulator’s operations permits the
realization of simulations increasingly complex comprising a great number of
strongly heterogeneous agents.

4.5 Implementation Code Example

We present here a simple example of the scheduler’s implementation code related
to our approach. In the following example, a Scheduler uses one of the simplest
activator that we have developed: the SingleMethodActivator. This activator is
used to invoke a particular method over an agent set. First the scheduler must
instantiate needed activators.

The first constructor’s parameter represents the method’s name, the second
one is the group and the third is the role.



observers =

new SingleMethodActivator("watch","simulation","observer");
rabbits =

new SingleMethodActivator ("doIt", "simulation", "rabbit");
coyotes =

new SingleMethodActivator ("doIt", "simulation", "coyotes");
guis =

new SingleMethodActivator ("display", "simulation", "gui");

Then add the activators to the system:

addActivator (rabbits); addActivator(coyotes);
addActivator(guis); addActivator (observers);

Then the scheduler has just to execute the activators during its life cycle to
define the whole simulation process:

While(true) {
rabbits.execute();
coyotes.execute();
observers.execute();
guis.execute(); }

A first variant of this simulation is to reverse the ordering of the two first
activators for example. However, if one is interested in trying out a special ac-
tivation structure, one can freely define a new kind of activator that fulfill the
needs. It can be about trying to solve the simultaneity matter for instance. So
the rabbits and coyotes activators can be replaced by one more complex acti-
vator. Call it swarm for instance. Then the two first lines become the following
one:

swarm = new SwarmActivator("simulation", "animat");
and the Scheduler’s life cycle becomes:

While(true) {
swarm.execute();
observers.execute();
guis.execute(); }

This implementation code just defines the simulation’s guidelines. But if one
is interested in further understanding, it is obvious that one has to take a look
inside the SwarmActivator’s implementation. In this object, one will find only
what is of interest: the local activation structure used to schedule the simulated
animats.



4.6 Advantages and Drawbacks

Additionally to the advantages about which we have already discussed, we be-
lieve that the simplicity of Schedulers’ implementation code allows our method-
ology to be easily understood by external project users. Moreover, these tools
are only a part of the MADKIT platform. So, a particular simulation platform
is only regarded as a particular MAS within MADKIT. Thus, simulator design-
ers benefit from other works done within the platform. Even those that are not
related to simulation (system agents, interface agents, test agents).

This advantage is also a drawback. Even if these tools are made to be the
more generic as possible, they rely on a specific organizational model and on the
platform related to it. And users have to define several group and role in respect
of the AALAADIN model. And, although organization seems to be a key point in
representing MAS, AALAADIN is only one point of view.

Another shortcoming is that, for now, our approach does not provide any
formal support like SDML for example. In fact, we believe that the level of ab-
straction on which we focus by now is an explanation to this.

4.7 Applications

By now, all the simulations produced by our MAS team rely on these tools. From
toy simulations to more complex ones like the TURTLEKIT of MADKIT.

The last one is a library of simulation for reactive agents that mimic a part
of the functionalities of STARLOGO[5]. Although TURTLEKIT looks like a scaled-
down STARLOGO clone, the turtles, and all the agents of the simulation (launch-
ers, observers, viewers) are actual MADKIT agents written in JAvAa. Knowing
that the MADKIT platform does not impose any constraint on the agent ar-
chitecture, a turtle or an observer can be freely defined. Thus a turtle is not
limited to its basic commands. Moreover, as MADKIT messaging engine works
using the Agent/Group/Role model, the simulation’s agents have the ability to
communicate using messages with any other agent running in MADKIT and not
only with these of their own simulation. Thus it is also possible to use all the
usual functionalities of the platform and its tools like the Message Tracer agent
of MADKIT.

Far from this last example, Simonin[24] is currently using the synchronous en-
gine to simulate autonomous mobile robots. Another proof that the synchronous
engine is not limited to a particular domain and can be easily reused.

5 Conclusions

In this paper we have seen that the scheduling is a key problem within the
framework of MAS simulation. So, as our main goal was to provide generic
simulation tools, we have proposed ones that are not related to a particular
scheduling method. Moreover, as these tools are a part of the MADKIT’s kernel,
they place no constraint on the internal architecture of agents.



We also argued that an explicit use of MAS organizational structures can
be very helpful to conceive MAS simulators. The methodology presented here
is based on this idea. We claim that this methodology can give rise to complex
scheduling policies which remain comprehensible (thus analysable) thanks to the
localization of synchronization problems.

So, our future works will consist in try out new scheduling methods. Espe-
cially, it would be very interesting to use more complex computation models of
action that have not yet been used in MAS simulations like the influence/reaction
model[21].

On the other hand, we have seen that a MAS model must not be evaluated
independently of the scheduling technique used to implement, it. In this respect,
we argue that the possibility of modifying locally the simulator, is a facility for
investigating MAS models’ behaviours.

We hope that it is the first step towards a thorough and more profitable
analysis of multi-agent simulation mechanisms.
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