Laboratoire d’Informatique, de Robotique
et de Microélectronique de Montpellier

‘ : Unité Mixte de Recherche UMR 5506
L | R M M CNRS - Université Montpellier 11

RAPPORT DE RECHERCHE

06/2002

Introduction to TurtleKit:
A Platform for Building Logo Based
Multi-Agent Simulations with MadKit

Fabien MICHEL
fmchel @irmmfr

RR LIRMM 02215

161 rue Ada — 34392 Montpellier Cedex 5 — France
Tél: (33) 4 67 41 8585 —Fax :(33)4 67418500

TurtleKit

A Platform for Building Logo Based
Multi-Agent Stmulations with MadKit

Fabien MICHEL

This document describes the TurtleKit simulation model, a reactive agent execution tool that
runs on the "synchronous engine” of the MadKit platform. This document contains two
chapters: the first presents the simulation model and the tools provided by the platform, the

second shows several examples of simulations built withTurtleKit.

TABLE OF CONTENTS

Chapter [:The TurtleKit PLAtfOTTIl.......c.ouiiiiniiieieieee e 4
1. INTrOAUCTION «.uenenii et e e eens 4
1.1. Simulation model OVEIVIEWc.ccoiiiiiiiiiiiiiiiiiiiiiii e 4
1.2, MOUVATIONIS ..ouiuiiiiiiiiiiiiiii et 4
1.3. "Mixing" Logo and MadKit..........cccoiuiiiiiiiiiiiiiiiiiiereeeee e 5
2. The TurtleKit TUrtlesc.ooiiiiiiiii e 6
2.1. Logo programming approach.........c.coeeiiiiiiiiiiiiiiiiiiirieeeeee e 6
2.2. Programming the turtles..........coooiiiiiiii e 6
2.3. The turtle COnSIIUCTOTc.iuiiiiiiii i 7
2.4. The setup Method..........ooiiiiiiii e 8
2.5. Default Valuesc.oeuiiiiiiiiii e 8
2.6. The TUITIE ADI . euenininiiiii e e e e e e e aaes 8
3. The Launcher a@ent.........ccoiuiiiiiiiii et eenes 12
S L. SYTIOP SIS ettt e 12
3.2, CONSIIUCTOT ..ttt e 12
3.3. Launching simulation agents..........c.ccvviiiiiiiiiiiiiiiiiiiieeeeeen 13
3.4. Add some patch variables.........c.ccccoiiiiiiiiiiii e 13
4. The TurtleKit simulation ODSEIVerc.cciiiiiiiiiiiiiiiiiiiir e 15
)74 4 (0] 01 £ T P PP PP 15
4.2. The ODSEIVET CLaSS ..c.vuiiiiiiiiiiiiii e 16
4.3. Initialization and observation: the setup and watch methods........... 16
4.4. The initGUI Methodc.ccoiiiiiiiiiii e 17
5. The TurtleKit simulation VIEWeT.............cooiiiiiiiiiiiiiiiiiinceeeens 18
5.1 SYTIOPSIS. . cutiiiiii e 18
5.2. How to create your own representationc.coeoveveiiiieiininenienenenn, 18
5.3. Controlling the display with the property BoXccccoviiiiiiinininint. 20
6. A step by Step eXamPlec.oniiiiiniii e 21
6.1. The Termite class: Termite.java.......c.cooeveiiiiiiiiiiiiiiiiiiiiiiieeeneen, 21
6.2. The PatchInitializer Class..........coooiiiiiiiiiiiiiiie, 23
6.3. Launch the simulation using MadKit............c.oooooiiiiiiiiiinnnnnnn.. 24
7. Using the PythonTurtle interpretercocoviiiiiiiiiiiiiiiie e, 25
7.1. The pyTurtle command CENTETocvuiiiiniiiiiiiiniiiieiieeeeeeeeeenenes 25
7.2. The Termites simulation in pyTurtle...........ccoveviiiiiiiiiiiiiiiiiiiiiiinnan, 26
7.3. Pyturtle language’s possibilitiescooiiiiiiiiiiiiiii 27

Chapter II: The TurtleKit STMulAtion PACK............ccoiuviiiiiuiiiiiiiiniiiniieenenenes 28

1. SUIMIMATY .ottt e e e aeas 28
2. Demo SIMUIATIONS. ..c.iuiiii e 28
2.1 WALKETS it 28
2.1, 1. SYNOPSIS wittiiiiiiii e 28

2. 1.2, GOt 29
2.2, MOSQUITOCS ...ttt et ee e e eaes 30
2.2. 1. SYTIOPSIS tuettiiiii et ea 30
2.2.2. GOttt e 31
2.3, CreatiOn . ..ouiuiiiiiiiiiiii e 32
2.3, 1. SYTIOPSIS +uettiiiiii e 32
2.3.2. COAEC....eneneieeee et aaes 32
2.4 OV Lt 34
2.4, 1. SYTIOPSIS tueittniiiii et ea 34

G IV b E PP PP PPNt 35
Sl SYTIOP SIS ettt 35
3.2. Virus transmission simulation...........c..cccoeoviiiiiiiiiiiiiniie 35
3.3. Observing the simulation.........c.coooiiiiiiiiiiiiiii e 37
3.4. ADOUL The COAE ..uenininininiiii e e e 37
I € v- L7 1 AP PP P PPN 38
T S) 2 0 (6] 815 £ T PP PRSPPSO PPN 38
4.2, ADOUL The COAE ...unviiiiiiiii e e e 38
5. Gas SIMUIATION «..c.viiiiii e 39
ST RS 2 0 0] o 1) T PP PP TP PPPRN 39
5.2. Using the simulationcooiiiiiiiiiiii e 39
5.3. AboUt the COAEouiiniiiiiiiiiii e 40
B. SOCCET ..euiuiiiiitii ittt eaes 41
B. L. SYTIOP SIS ettt 4]
6.2. ADOUL The COAE ..uvnininininiiii et e e e 41
7. Patch variable diffusions...........cooeiiiiiiiiiiiiiiiii e 42
7.1, SYNOPSIS. cuiuininiiii i 42
7.2. Initializing the simulation...........c.coooiiiiii i 42
7.3. AbOUL the COAEiuiiniiiiiiiiiii e 42
8L TEITIUEES .ouvtiniiiii e 44
8.l SYTIOP SIS ettt e 44
8.2. About the COAe ...c..iviiiiiiiiiiiii i 44
9. Conway’s Game Of Lifecooiiuiiiiiiiiiii e 45
. 1. SYTIOP SIS ettt 45
9.2. Using an observer as a cellular automata programmer..................... 45
9.3. AboUt the COAe ...c.uiniiiiiiiiiiiii e 46

Chapter 1
The TurtleKit Platform

1. Introduction

1.1. Simulation model overview

The simulation engine of TurtleKit provides tools for modelling, using and exploiting multi-
agents simulations based on agents who evolve in a discretized world and act on it.

E2%1 NEED SPACE =] E3

Figure 1: Gas simulation

It has been largely inspired by Logo based multi-agent platform such as the StarL.ogo system
(http://education.mit.edu/starlogo/) or NetLogo (http://ccl.northwestern.edu/netlogo/).

The simulation model is a discrete 2D environment on which the so-called turtles (the
simulated agents) evolve. The TurtleKit is a Java library with basic classes designed to
quickly model, use and observe these kinds of simulation.

1.2. Motivations

Our primary goal when developing TurtleKit was not to do another turtle-based simulation
engine. In fact, our main goal was to test the MadKit generic simulation module. This
specialized engine is completely based on the synchronous engine (Watchers, Schedulers,
Probes and Activators). From a simple test case, this library has grown to a full featured
simulation model, so we now include it in the standard distribution. With TurtleKit we aim at
bridging the gap between logo platforms like StarLogo or NetLogo, which are designed for
newbie users, and simulation tools like Swarm (ww.swarm.org) that provide simulation
libraries for advanced users using high level programming languages.

We see two parts in multi-agent simulation:

« Organize the agents’ execution.
« Interpret or display the data produced by the simulation: system representations,
database updates, agents’ variable analysis...

Indeed, doing a scheduler job and a watcher job. These jobs requires to instantiate (explicitly
or not) a multi-agents organization model which defines interactions between agents. As
multi-agent organizations are the central concept of MadKit, building a MAS simulation
simply consists in defining an appropriate Agent/Group/Role model.

1.3. "Mixing" Logo and MadKit

Although TurtleKit looks like a scaled-down StarLogo clone, the turtles, and all the agents of
the simulation (launchers, observers, viewers) are actual MadKit agents written in Java.
Knowing that the MadKit platform does not impose any constraint on the agent architecture, a
turtle or an observer has an internal architecture that can be freely defined. Moreover, as
MadKit messaging engine works using the Agent/Group/Role model, the agents of the
simulation have the ability of communicating using messages with any other agent running in
MadKit and not only with these of their own simulation. It is also possible to use all the usual
functionalities of the platform and its tools like the GroupObserver system agent.

GroupObserver

25 % ﬁi @
9 < puhlic B
& A VIRUS TRANSMISSION B

% <B) launcher
fE2 rmika:Epidermic B@LEC:KT 039432304562

% B infected
@ mkaturtle1 63,17 2@LBCK1 035432304462

@ mkaturtle284 293@LBCK1 035432304462 |
@ mkaturtlel 3 28ELECIK1039432394562 i

Sender | Receiver | Message Class | Content | Date |
turtle31 turtler4 WirushMessage Sendermkaturtl... [12:13:35 0781
turtle220 turtle@y Wirushessage Sendermkaturtl... [12:13:35 0781
turtle239 turtle184 Wirushessage Sendermkaturtl... [12:13:35 0781
turtle 287 turtleas WirlsMessage Sendermkaturtl.. [12:13:35 0781
turtle3s turtle20 Wirlshlessage Sendermkaturtl.. [12:13:35 0796
turtleg3 turtle 257 WirlsMessage Sendermkaturtl . [12:13:35 0796
turtle164 turtle113 WirlsMessage Sendermkaturtl. [12:13:35 0796
turtle229 turtle189 VirusMessage Sendermkaturtl. [12:13:35 0796
turtle138 turtle1 Wirushessage Sendermkaturtl. [12:13:35 0812
turtle231 turtleB6 VirusmMessage Sendermkaiturl.. 12:13:35 0812
turtle20 turtled4d WirushMessage Sendermkaturtl.. [12:13:35 0843
turtle110 turtled4 Wirushessage Sendermkaturtl... [12:13:35 0843
turtle112 turtle 186 Wirushessage Sendermkaturtl... [12:13:35 0843
turtle132 turtle221 Wirushessage Sendermkaturtl... [12:13:35 0843
turtle154 turtie10 WirlsMessage Sendermkaturtl.. [12:13:35 0843 =

S

Figure 2: The GroupObserver agent of MadKit

2. The TurtleKit turtles

2.1. Logo programming approach

The Logo language, was designed in the late sixties at the Massachusetts Institute of
Technology (MIT). The main motivation was to provide a learning tool that does not require
programming skills while giving immediate graphical results. The principle is to manipulate a
graphical animat, a turtle', typing simple commands to make it move and draw shapes on the
screen. For instance the forward 10 command makes the turtle moves forward 10 steps. Logo
programs are usually collections of small procedures that define turtle behaviours which can
be combined to achieve more complex behaviours. In multi-agent versions of Logo such as
StarLogo, NetLogo and TurtleKit, a turtle lives on a 2D discrete world and is spatially located
in a patch (the space unit). Turtles have the ability to locally interact with the environment,
other turtles and patches, by changing environmental properties using turtle commands like
setPatchColor for instance. In TurtleKit, a turtle can also leave an object on a patch (any
java object).

2.2. Programming the turtles

In TurtleKit, defining a turtle consists in identifying its atomic behaviours, and coding them
as Java methods. To setup the succession of these single behaviours, each method is required
to return a String, which is the name of the next behaviour to be run at the next step. Inside
each method, we can use tests, turtle commands, etc. The only requirement is to return this
"next action" string. Thus, the global behaviour of a turtle is a small automaton, with
transitions coded within the methods that return a string. For instance, a termite begins its life
with the searchForChip() behaviour that will evolve into findNewPile() when a chip is
found, and so on.

getAway searchForChip

Time Step +
/"'"""

findEmptyPatch findMNewPile

Figure 3: A Turtle's behaviour is defined as an automaton of atomic behaviours

! Originally a robotic creature that sat on the floor and could be directed to move around by typing commands at
the computer.

The actual code of the findNewPile() method is:

Public String findNewPile()

if (getPatchColor() == Color.yellow)
return("findEmptyPatch");
else

{
wiggle();
return(“findNewPile");

}
}

Of course, we can use additional method to code findNewPile()

void wiggle()
{

fd(1);
turnRight(Math.random()*45);
turnLeft(Math.random()*45);

Note that a TurtleKit turtle is a (direct or not) subclass of the abstract class Turtle
(turtlekit.kernel package). You must have the turtlekit.jar (as well as madkit.jar)
archive in your CLASSPATHo compile new projects. So you have to import at least this class
to write the code of a new turtle class. All the basic turtle commands are defined in this
Turtle class.

import turtlekit.kernel.Turtle

public class Termite extends Turtle

{..

2.3. The turtle Constructor

The constructor is very important: it is where who have to define the procedure that will be
done before the first simulation step. This is done by calling the constructor of the super class
Turtle with, and only with, a String argument witch is the name of the desired procedure.

public Termite()

super("getAway");
}

Of course it is also where you can initialize your own variables but a very important point is
that you cannot use a turtle command in the constructor.

2.4. The setup method

Setup is an empty method of the class Turtle that you can override to initialize the agent. It is
where the turtle can setup commands that will be executed only at the beginning of the
simulation. It is the place where you should initialize the turtle properties (color, localization,
played roles, variable initializations, etc...).

public void setup()

{

playRole("termite");
setColor(Color.red);
setHeading(West);
/I = setHeading(180);

}

2.5. Default values

By default the colour of a turtle is red and its heading is East (0).

2.6. The turtle Api

These variables and methods are the core part of the model. The turtles use them to act on
their world.

Field Summary

static int East

default direction values: setHeading(East) ~ setHeading(0)
static int North

default direction values: setHeading(East) ~ setHeading(0)
static int Nor t hEast

default direction values: setHeading(East) ~ setHeading(0)
static int Nor t hWest

default direction values: setHeading(East) ~ setHeading(0)

static int Sout h
default direction values: setHeading(East) ~ setHeading(0)

static int

static int

static int

Sout hEast
default direction values: setHeading(East) ~ setHeading(0)

Sout hWést
default direction values: setHeading(East) ~ setHeading(0)

West
default direction values: setHeading(East) ~ setHeading(0)

Method Summary

void

void

int

int

int

double

void

void

int

int

void

void

java.awt.Color

activate()
Madkit kernel usage
bk int nb)
turtle move backward
count Turt | esAt (int a, int b)
return the number of turtles in the patch situated at (a,b) units
away

count Turt | esHer e()

createTurtl e(Turtle t)
create a turtle at the creator position (xcor,ycor) returns the ID of
the new turtle

di st ance(double a, double b)
returns the distance from the patch (a,b).

dr ophar k (java.lang.String markName,
java.lang.Object theMark)

Drop a mark on the patch

dr ophar kAt (java.lang.String markName,
java.lang.Object theMark, int a, int b)

dx()
return the x-increment if the turtle were to take one step forward

in its current heading.

dy()
return the y-increment if the turtle were to take one step forward

in its current heading.

end()
Madkit kernel usage

fd(int nb)
turtle move forward

get Col or ()

double |get Headi ng()
return the current heading of the turtle

boolean | get Hi dden()

java.lang.Object get Mar K (java.lang.String variableName)
get a mark deposed on the patch
java.lang.Object get Mar KAt (java.lang.String variableName, int a, int b)
java.awt.Color get Pat chCol or ()
java.awt.Color get Pat chCol or At (int a, int b)

get the color of the patch situated at (a,b) units away

double |get Pat chVari abl e(java.lang.String variableName)
return the value of the corresponding patch variable

double |get Pat chVari abl eAt (java.lang.String variableName, int a,
int b)
return the value of the patch situated at (a,b) units away
Turtle |get Turtl eWthl D(int a)
return the Turtle with the specified ID, null if not alive

int | get Wor | dHei ght ()

int |get Worl dW dt h()

void | gi veUpRol e(java.lang.String role)
the turtle will no longer play the specified role

void | hone()
teleport the turtle to the center patch
void |i ncrenent Pat chVari abl e(java.lang.String variableName,
double value)
set the value of the corresponding patch variable

void |i ncrenent Pat chVari abl eAt (java.lang.String variableName,
double value, int a, int b)

boolean i sMar kPr esent (java.lang.String markName)
test if the corresponding mark is present on the patch (true or
false)

boolean i sMar kPr esent At (java.lang.String markName, int a, int b)
test if the corresponding mark is present on the patch situated at
(a,b) units away

boolean i sPl ayi ngRol e(java.lang.String role)

void |noveTo(int a, int b)
teleport the turtle to patch (a,b).

int nySel f ()
return the turtle ID

10

void

void

void

void

void

void

void

void

void

void

void

java.lang.String

double

void

void

Turtle [l

pl ayRol e(java.lang.String role)

one way to identify a kind of turtle: give them a Role in the

simulation.
r andontHeadi ng()

set Col or (java.awt.Color c)

set Headi ng(double direction)
set the turtle heading to the value of direction

set H dden(boolean b)
if true, the turtle hides itself (not draw)

set Pat chCol or (java.awt.Color c)

set Pat chCol or At (java.awt.Color c, int a, int b)
set the color of the patch situated at (a,b) units away

set up()

set X(double a)
set XY(double a, double b)
set Y(double b)

toString()

t owar ds(double a, double b)
returns direction to the patch (a,b).

t ur nLef t (double a)

t ur nRi ght (double a)

turtl esAt (inta, int b)

Turtle]

return turtles who are on the patch situated at (a,b) units away

turtl esHere()

int

int

return other turtles on the current patch

xcor ()

ycor ()

11

3. The Launcher agent
3.1. Synopsis

The launcher agent is the special TurtleKit agent that customizes and launches simulation.
This agent GUI allows you to control the simulation process. To build a TurtleKit simulation,
you'll have to write a subclass of Launcher and override some methods: the constructor, the
initializePatchVariables method and the addSimulationAgents method. The use of
these methods is explained below. The Launcher class is located in the turtlekit.kernel
package.

] The termites simualt... 9 [=] B3

RESET

WRAP O ADD WIEWER

STEP BY STEP

PYTHOM COMMAND CENTER
Step o/UR ﬂ
step 8770
step 8534
step 8598

step 961
-

clear ‘

Sirmulation speed

. . /

Figure 4: The simulation Launcher's default Gui

import turtlekit.kernel.Launcher

public class TermiteLauncher extends Launcher

{.

3.2. Constructor

In the constructor, you can modify different simulation properties like the world width, height
or the default cell size display. You can also give the simulation a default name, which will be
used to create the simulation group.

public Epidemic()

{

setSimulationName("VIRUS TRANSMISSION");
setWidth(60);

setHeight(60);

setCellSize(2);

}

12

If you're running the Launcher in the Desktop of, it will have its "property box". You may
find here various options to control your simulation. We remind you that a property XXX is
displayed when a getXXX() setXXX(...) couple of methods exists in the agent code (see
section 3.4).

3.3. Launching simulation agents

The Launcher can launch three kinds of agents: turtles, observers and viewers. There is one
special method for each kind. addTurtle, addObserver and addViewer.

public void addSimulationAgents()

addViewer(3); // we choose a default viewer with a cell size of 3
for (inti = 0; i < nbOfTermites; i++) //add the termites
addTurtle(new Termite());
/I this method adds the Patchinitializer (an Obse rver) with no GUI
;fgljs(;e())bserver(new Patchlnitializer(nbOfTermites),fa Ise);

Only the Viewer has a default instantiation method. To add a turtle or an observer, you will
have to define a subclass.

3.4. Add some patch variables

In some simulations (ants for example), you might need to define some patch variables in
order to give turtles the capacity to mark their environment: by example the ants drops
pheromone that other ants can smell and value the concentration. Moreover this pheromone
might diffuse and evaporate itself.

To model this kind of simulation you will have to use the Patchvariable class to define this
behavior. Once you have created a new Patchvariable object and set its properties with the
methods of Patchvariable (setEvapCoef , setDiffuseCoef and setDefaultvalue), add it
to the simulation using addPatchVariable in the initializePatchVariables method of
the Launcher:

protected void initializePatchVariables()
{
PatchVariable p = new PatchVariable("flavor");
p.setDiffuseCoef(0.3153); //Optional
p.setEvapCoef(0.025); //Optional
p.setDefaultValue(32); //Optional
addPatchVariable(p);

13

Like any other MadKit agent in the Desktop gui of MadKit, a launcher has a properties
window that allows simple customization from the user. Adding this kind of property simply
consists in writing a setProperty and getProperty couple of public methods.

int nbOfTermites=50;

public void setNbOfTermites(int n)
{

nbOfTermites = n;

}

public int getNbOfTermites()
{

return nbOfTermites;

}

[E3 Properties - TermiteLauncher =] E3

~Editahle properties

width 100

height 100

cellSize 4

densityRate 0.5

nhOfTermites 200

harmne ermiteLauncher
simulationMame ERMITES

debug False LI

Figure 5: The property box of the Termite Launcher

In this example, these two methods permit to modify, directly in the properties Box, the
nbOfTermites variable. Then it is possible to change this value before launch or reset the
simulation. In this example the densityRate property was obtained by the same procedure.

14

4. The TurtleKit simulation Observer

4.1. Synopsis

An Observer is a kind of MadKit watcher specially designed for the TurtleKit simulations.
This agent is extensible, and may be specialized to send messages to other agents, have a
specific interface, write into a database, ... The turlekit observer initialize the world and
observe it (patches+turtles). It has specially the capacity to access turtles. As it gets these
references it can examine their properties or make them do some commands. In this example
the Observer displays the number of turtles that are infected just by observing the turtles that
play the role "infected": an easy way to give a closer look to some subset of simulated
entities. To build an observer you have to create a subclass of the Observer class of the
turtlekit package and optionally override some key methods: setup ,
initializeTurtleTables and watch .

import turtlekit.kernel.Observer

public class VirusObserver extends Observer

{.

[E3VIRUS TRANS - O] x|

infected turtles
e}

240 /

200 /

140 /

100 /

al

/ iteratinn%n

Figure 6: The virus observer displays customized model informations

15

4.2. The Observer class

A TurtleKit Observer has a direct access to patches using its public variables: patchGrid a
Patch[][] array, envwidth and envHeight (the grid dimension). Moreover, it can access the
turtles using arrays (Turtle[]) built through a role parameter. In order to create these arrays,
you must initialize them in the initializeTurtleTables method using the
getTurtleWithRole(String role) method that returns the corresponding Turtle array. So
distinctions are possible as turtles use their playRole primitive. In the following example the
gasTable is composed by every turtle who play the role of "gas" in the simulation. Note the
arrays that have been setup through this mechanism are automatically updated by the
simulation engine. So an array size always represents the number of alive turtles playing the
corresponding role.

public class gasWatcher extends TurtleWatcher
Turtle[] gasTable;

public void initializeTurtleTables()

{
gasTable = getTurtleWithRole("gas");

}

4.3. Initialization and observation: the setup and watch
methods

To initialize the world (patch variables' values, colors...) you have to override the setup
method. In the following example the Patchlnitializer of the termites simulation makes the
path color black (empty) or yellow (a chip).

public void setup()

for(int i=0;i<envWidth;i++)
for(int j=0;j<envHeight;j++)
if (Math.random() < densityRate)
patchGrid[i][j].setColor(Color.yellow);
else
patchGrid]i][j].setColor(Color.black);

To finally observe the world you have to override the watch method. This method will be
executed at each step of the simulation engine.

16

public void watch()

{

int cpt=0;

for(int i = 0;i < turtleTable.length;i++)
if (turtleTable[i].xcor() > 10) cpt++;

}
printin(“there is "+cpt+" turtles on the right sid e (>10)");
}

4.4. The initcu method

Like any other MadKit agent a TurtleWatcher may manage its own interface. By example in
the virus simulation the Observer's GUI is a special component that plot data. For instance:

public void initGUI()

setGUIObject(plot = new SimplePlotPanel("infected
turtles",250,nbMax));

}

Override this method is not mandatory. If you do not and launch an Observer with a GUI
(addObserver(o,true)), MadKit will give the agent a default interface where you can
display text information using the printin(String s) primitive.

17

5. The TurtleKit simulation Viewer

5.1. Synopsis

A TurtleKit Viewer is the simulation default display agent. It draws the patches and turtles.
The default behaviour is to represent them with a coloured rectangle. To add a viewer to the
simulation, you should use the addViewer method in the addSimulationAgents method of
the Launcher. These methods allow you to add a default viewer or a special viewer (your own
subclass), with a default or a customized cell size (the onscreen patch size).

public void addSimulationAgents //in the Launcher

addViewer(3); //default with 3 for cell size

}

Eﬁf’g Mozquitoesz like ligth

Figure 7: Simulation default viewer

5.2. How to create your own representation

It is possible to define your own representation of the patch or the turtle (independently). A
Viewer uses two methods to draw the world: paintTurtle , and paintPatch . These methods
can be overridden in order to obtain a different display effect. By example, It is possible to
make a patch variable concentration visible by drawing patches according to the value of the
corresponding variable. So to view different representations of the same simulation you have
just to instantiate the Viewer class as many times as you want. Here are two examples of that:

18

public class FlavorViewer extends Viewer

public void paintPatch(Graphics g, Patch p,int x,i nt y,int CellSize)
{
int a = ((int) p.getVariableValue("flavor"))%256 ;
g.setColor(new Color(a,a,a));
g.fillRect(x,y,CellSize,CellSize);

}
}
Figure 8: The flavour viewer is a special viewer that displays particular model's information
public void paintTurtle(Graphics g,Turtle t,int x, int y,int cellSize)
{

g.setColor(t.getColor());
g.fillOval(x,y,cellSize*3,cellSize*3);

public void paintPatch(Graphics g,Patch p,int x,in ty,int cellSize)
{

g.setColor(p.getColor());

g.fillOval(x,y,cellSize*3,cellSize*3);

Figure 9: This viewer redefines the default shape of the turtles

19

5.3. Controlling the display with the property Box

In order to control the display process, each Viewer owns a properties Box where you can
make changes. By example, you can stop the display by setting the show property to false. In
the same way, you can choose to view the world state only some times by setting the flash
value to true and the wanted flashStepSize . In this example if flash is settled to true the
display will occur every ten simulation steps. All these options are made in order to accelerate
the simulation. Indeed the simulation display seriously reduces the simulation speed.

[=2 Properties - TERMITES _[O] %]
- Editable properties
show |Tr|_|e ;'
flash |Falae ;'
redraAll False 7
hame TERMITES
flashStepSize 10
debug |False ;'

Figure 10: The viewer's property box

20

6. A step by step example

In this example we will see how to build the termite simulation example from scratch. This
simulation is a copy of the corresponding StarLogo project.

This project is inspired by the behavior of termites gathering wood chips into piles. The
termites follow a set of simple rules. Each termite starts wandering randomly. If it bumps into
a wood chip, it picks the chip up, and continues to wander randomly. When it bumps into
another wood chip, it finds a nearby empty space and puts its wood chip down. With these
simple rules, the wood chips eventually end up in a single pile.

This example is a transcription of the original. The goal of the termite is to search for
woodchips and place them into piles. The presence of a chip on a patch is modeled by the
patch's current color: black (empty) or yellow (a chip). The termites are red.

6.1. The Termite class: Termite.java

The first thing to do is to create a new java file: Termite.java. This class is a sub class of
turtlekit.kernel. Turtle:

public class Termite extends turtlekit.kernel. Turtl e

Then we have to write the java methods that define the simulated termite behavior. To
compute such a behavior, we have to identify the basic behavior of a termite. For instance, we
could say: the first behavior of a termite is to search for woodchips. The termite will adopt
this behavior until it will find a chip. Then its behavior will be to search for a pile where put
the chip down.

Table 1. The first behaviour

/I As a one time step procedure, to searchForChip
/[it returns a String: the next time
behaviour
/[call a defined procedure (see
public String searchForChip() below)
{ do a random move;
wiggle();
if (there is a chip on the
if (getPatchColor() == Color.yellow) patch)
{
setPatchColor(Color.black); take the chip;
randomHeading();
fd(20); don't stay in the same
return(“findNewPile"); place;
}
else findNewPile;
return ("searchForChip"); }
} else
searchForChip;
}

21

The wiggle method just defines a sub procedure:

void wiggle()
{

fd(1);
turnRight(Math.random()*45);
turnLeft(Math.random()*45);

}

We define the other behaviours: findNewPile, findEmptyPatch and getaway

Table 2. Other behaviours

Tableau 1: java code

public String findNewPile()

if(getPatchColor()==Color.yellow)

return(“findEmptyPatch");

else

{

wiggle();

return(“findNewPile");

}
}

public String findEmptyPatch()

wiggle();

if(getPatchColor()== Color.black)
{
setPatchColor(Color.yellow);
return("getAway");
}

else

return(“findEmptyPatch");

}

public String getAway()

{

if(getPatchColor()== Color.black)
return("searchForChip");

else

randomHeading();

fd(20);
return("getAway");

}

Tableau 2: Associated behaviour

to findNewPile

{
if (there is a chip)

findEmptyPatch;
else
{
do a random move;
findNewPile;
}
}
to findEmptyPatch
{

do a random move;
if (the patch is empty)

{

chip;
}
else

}

put down the chip;
getAway; //go where there is no

findEmptyPatch;

to getAway // from the pile

{

if (there is no chip)

else

{

searchForChip;

do a jump in a random direction;
getAway;

22

Now that we have defined the termite behavior, we have to define how the initialization will
be done for this turtle. To do this we have to override the mandatory setup method (to make
the termite initialize itself at the beginning of the simulation) and to write the Termite
constructor where we choose the first behavior the termite will take.

public void setup()
{

playRole("termite");
setColor(Color.red);
randomHeading();

}

public Termite()

super("searchForChip");

}

The Termite is now completely defined. Now, we have to do the initialization of the patches
for this simulation. To do this we will use a custom Observer.

6.2. The Patchlnitializer class

For this simulation the patch initialization is simple: the patches have to be black or yellow
given a density rate. So we need to build a special Observer and just override his setup
method to make the patch initialization.

public class Patchlnitializer extends turtlekit.ker nel..Observer
float densityRate;

public Patchlinitializer(float density)
{

densityRate = density;

}

public void setup()

for(int i=0;i<envWidth;i++)

for(int j=0;ji<envHeight;j++)
if (Math.random() i< densityRate)
patchGrid[i][j].setColor(Color.yellow);

else
patchGrid]i][j].setColor(Color.black);

23

It is in the setup method where we finally make the initialization of the patches. Note that we
do not have overridden the watch method of the Observer. Indeed this Observer has no
function during the simulation. With these two couples of methods, these variables will be
added to the other default properties of a Launcher. So they will be directly accessible during
the simulation in the Launcher's properties Box. So you can change the values before
launching the simulation or doing a reset. Now we have to add the agents in the simulation
engine by overriding the addSimulationAgents method of the TermiteLauncher:

public void addSimulationAgents()

//Add the termites with the addTurtle method
for (inti=0; i i< nbOfTermites; i++)

{

Termite t = new Termite();
addTurtle(t);

/IWe choose to add a default viewer with a display cell size of 3 pixels.
addViewer(3);

/IAdd the Patchlinitializer with no GUI (false)
addObserver(new
Patchinitializer(densityRate), false);
}

The simulation is now ready to run, but we can write a constructor for the TermiteLauncher in
order to give this simulation our own default values (width, height, simulation name, wrap
mode...).

public TermiteLauncher()

{
setSimulationName("TERMITES");
setWidth(150);

setHeight(110);

}

Now the only thing to do (after the compilation) is to launch the TermiteLauncher within
MadKit !

6.3. Launch the simulation using MadKit

To finally use the simulation you have to launch the TermiteLauncher within Madkit. There is
various way of doing that. You will find all you need in the MadKit User and Developer
Guides.

24

7. Using the PythonTurtle interpreter

7.1. The pyTurtle command center

To be more flexible, turtlekit also provides the possibility of using the Python language to
implement turtles or directly interact within a running simulation using simple commands. It
is even possible to dynamically create procedures which can be associated with a button like
in the original StarLogo.

] ovmipyt
File Edit Actions

P E RS ENOREE

clearAlld
cri(110)
defgai;

askTurtles{"fd{2) turnRight{100"
makeProcedure"ga")

go

|_| Forever

- EditorAsgent 1.1 {c) Madkit team
Here vou can type some turtle commands using python interpreter like this
ariinrange {0,200
askTurtles{"fd{1)"
== ControlMessage: eval
Dk
== ControlMessage: eval
Dk

Figure 11: The PyTurtle command center

In this figure, first part of window is where you have to type the pyturtle code. Under this, the
pyturtle interpreter shows evaluation messages.

In this example, the first line, clearAll() , will reset everything in the environment: delete
every turtle and set the patches’ colour to black. The second line, crt(110) , will create 110
turtles with random heading and colour. The three following lines define a procedure named
go that will ask every turtle to do some actions with the askTurtles primitive. This primitive
take a string as parameter which defines a list of regular turtle commands. Then the
makeProcedure primitive will create a button associated with this procedure. These five lines
exactly correspond to the simulation named OVNI (see chapter 2). Moreover it is possible to
save predefined scripts which can be run in the interpreter. The open button opens a directory
that contains several examples of such scripts.

25

7.2. The Termites simulation in pyTurtle

This code is contained in the termites.pyt source file. To ensure having the same execution
procedure than the regular java turtles, it is here necessary to create a python class which
define the Termite. This is mandatory because termites define four different behaviours which
must be called in a specific order (see section 6 for details). So we have to create a variable,
whatToDoNext , which define the next behaviour to activate when the turtle’s turn comes.

from java.lang import Math
from turtlekit.kernel import Turtle
from java.awt import Color

class PythonTermite(Turtle):
whatToDoNext=0

def initWorld(self):
self.setColor(Color.red)
for x in range(0,120):
for y in range(0,120):
if Math.random() > 0.8:
self.setXY(x,y)
self.setPatchColor(Color.yellow)

def init(self):
self.setColor(Color.red)
self.randomHeading()
self.setX(Math.random()*120)
self.setY(Math.random()*120)

def wiggle(self):
self.turnRight(Math.random()*45)
self.turnLeft(Math.random()*45)
self.fd(1)

def getAway(self):
if self.getPatchColor() == Color.black:
self.whatToDoNext=1
else:
self.randomHeading()
self.fd(20)
self.whatToDoNext=0

def searchForChip(self):

self.wiggle()

if self.getPatchColor() == Color.yellow:
self.setPatchColor(Color.black)
self.fd(20)
self.whatToDoNext=2

else:
self.whatToDoNext=1

def findNewPile(self):
if self.getPatchColor() == Color.yellow:
self.whatToDoNext=3
else:
self.wiggle()
self.whatToDoNext=2

26

def findEmptyPatch(self):
self.wiggle();
if self.getPatchColor() == Color.black:
self.setPatchColor(Color.yellow)
self.whatToDoNext=0
else:
self.whatToDoNext=3

def makelt(self):
if self.whatToDoNext == 0:
self.getAway()
elif self.whatToDoNext == 1:
self.searchForChip()
elif self.whatToDoNext == 2:
self.findNewPile()

else:
self.findEmptyPatch()

def setupWorld():

clearAll()

addTurtle(PythonTermite())

askTurtles("initWorld()") #faster than asking an an onymous turtle
to do it with askTurtles

clearT()

for i in range(0,125):
addTurtle(PythonTermite())
askTurtles("init()")

makeProcedure("setupWorld")

def dolt():
askTurtles("makelt()")

makeProcedure("dolt")

As termites are a python class, it is necessary to use the addTurtle command instead of the
crt command. This command takes a subclass of Turtle as parameter and adds it to the
system. Then, to initialize the system, we ask a single turtle to do it with the setupworld
procedure. This script will create two button procedures, setupworld and dolt . To run the
simulation, just press the setupWorld button, then press the dolt button after check its forever
parameter (run the procedure forever).

7.3. Pyturtle language’s possibilities

The main interest of this feature is to check java behaviours dynamically at runtime. Indeed it
is possible to stop a java regular simulation to type some pyTurtle command to see how a
particular behaviour is executed by the turtles. Furthermore, it is possible to add perturbations
in a model at runtime by make the turtles doing a dynamically defined procedure.

This feature has been added recently and all its possibilities have not been explored yet. For
examples it is possible to activate several forever procedures at the same time but such
simulations have unknown properties that we do not analysis for now. We hope to give
further explanations and examples of its use in a near future, stay tune.

27

Chapter 11

The TurtleKit simulation Pack

1. Summary

This section includes some demonstration simulations that show several functionalities of the
TurtleKit simulator.

This pack includes the following simulations:

« Demo simulations. Simple test demonstrations with several source codes: Walkers,
Mosquitoes, Creation and Ovni.

« Virus. An epidemic simulation.

« Gravity. Turtles turn around others. No mathematic considerations here, just simple
behaviours to obtain an interesting visual effect.

« Gas simulation. A transcription of a StarLogo project.

« Soccer. Turtles love playing soccer too.

« Patch variable diffusions. A simple simulation without turtles, to show diffusion in
the environment of two patch variables.

« Termites. The transcription of the well known StarLogo project.

« Conway’s Game Of Life. This shows how to use TurtleKit as a cellular automata
platform

2. Demo simulations

2.1. Walkers

2.1.1. Synopsis

[E3MO0N WA . =] E3

Figure 12: Walkers are just walking

28

Walkers is a little simulation where the turtle have two behaviours: walk forward or change its
colour according to a new random heading. This simulation was made to test the good

working of the heading primitives.

2.1.2. Code

package turtlekit.simulations.tests;

import turtlekit.kernel.Turtle;
import java.awt.Color;

/** the only thing is to walk and change color
@author Fabien MICHEL
@version 1.2 6/12/1999 */

public class Walker extends Turtle
{

int count=10;

public Walker(String s)
{super(s):;}

public void setup()

{
randomHeading();
playRole("walker");
}
public String walk()
{
fd(1);
if (count < 0)
{
count = (int) (Math.random()*90);
return("change”);
}
else
{
count--;
return ("walk™);
}
}
public String change()
{
randomHeading();
if (getHeading() > South) setColor(Color.red);
else if (getHeading() > West) setColor(Color.blue);
else if (getHeading() > North) setColor(Color.green
else setColor(Color.yellow);
return("walk");
}
}

setHeading(towards(x,y));

29

2.2. Mosquitoes

2.2.1. Synopsis

E"g% Moszquitoes like ligth [=] B3

Figure 13: Mosquitoes fly around but always return to the light source
In Mosquitoes the turtles just "fly" in a random way during a countdown and then fall down to

a light source represented by a yellow patch. Turtles known the localization (x,y) of this patch
(as a parameter in the constructor). So they use the towards command to set their heading.

30

2.2.2. Code

package turtlekit.simulations.tests;
import turtlekit.kernel.Turtle;
import java.awt.Color;

/** a turtle for a turtle command test

@author Fabien MICHEL
@version 1.1 4/1/2000 */

public class Mosquito extends Turtle

{

(Math.random()*256),(int) (Math.random()*256)));

}

int sunX,sunY,cpt=50;
public Mosquito(int a,int b)

{
super("move");
sunX=a;
sunY=b;
}
public String move()
{
if (Math.random() > 0.5) turnRight(15);
else turnLeft(15);
fd(1);
cpt--;
if (cpt < 0)
{
setHeading(towards(sunX,sunY));
return ("fall");
else return ("move");
}

public String fall()

fd(1);
if (distance(sunX,sunY) < 1)

cpt = (int) (Math.random()*100);
return "move";

else return "fall";

}

public void setup()

{
setXY(sunX,sunY);

setPatchColor(Color.yellow);

moveTo(sunX+(int) (Math.random()*10),sunY +(int) (M

setHeading(Math.random()*360);
setColor(new Color((int)

ath.random()*10));

(Math.random()*256), (int)

31

2.3. Creation

2.3.1. Synopsis

Figure 14: A turtle can create other turtles

In this simulation a turtle, a creator, tests the good working of the createTurtle command.
When moving, a creator draws the patches in white. Then, when it crosses a patch that is
already white, it creates a new turtle of a random kind using the createTurtle command.

createTurtle(new Walker());

At the beginning of the simulation, you can set the wanted number of creator in the launcher's
properties box. Moreover an Observer, CreationObserver, displays the total number of turtles
alive.

2.3.2. Code

/** Turtles who create other kind of turtle during simulation and dies
after a countdown

@author Fabien MICHEL
@version 1.1 6/12/1999 */

public class Creator extends Turtle
{
public int life=50;

public Creator()
{

}

public void setup() { playRole("creator"); }

super("ride");

[**these behaviors have no means, just a test*/

public String ride()

32

}

fd(1);
if (getPatchColor()==Color.white)
{
if (Math.random()<0.99) createTurtle(new Walker("
else
if (Math.random() < 0.95)
for (inti=0;i<50; i++)
createTurtle(new Ovni());
else
launchGravity();
life--;

setPatchColor(Color.black);
return("erase");

else

{
setPatchColor(Color.white);
return("ride");

}

public String erase()

}

if (life < 0) return null; //the turtle dies

turnLeft(Math.random()*50);
turnRight(Math.random()*50);
fd(1);

if (getPatchColor()==Color.white)

setColor(Color.lightGray);
setPatchColor(Color.black);
return("erase");

}

else

{
setColor(Color.cyan);
return("ride");

}

[**launch turtles of the gravity simulation*/

public void launchGravity()

{

Turtle[] ts = new Turtle[1];

Turtle t1 = new BlackHole();

ts[0] = t1;

createTurtle(tl);

for (inti=0; i< 30; i++)
createTurtle(new Star(ts,13));

createTurtle(new Walker());

walk"));

33

2.4. OVNI

2.4.1. Synopsis

Special
Viewer !

[Ei MARS ATTACK _ |0l

Default
ﬁ Viewer

Figure 15: Multiple world interpretations

The Ovni (french for UFO) simulation was made only to test the display of multiple
representations at the same time. To do this we have written a SpecialViewer (extends
Viewer) and overridden its paintTurtle ~ method in order to obtain that the turtles was shown
like disks. So it is possible to create your own representation of a patch or a turtle (you can
use a gif for a turtle).

public class SpecialViewer extends Viewer

{
public void paintTurtle(Graphics g,Turtle t,int x,int y,int cellSize)
{
g.setColor(t.getColor());
g.filloval(x,y,cellSize*3,cellSize*3);
}
public void paintPatch(Graphics g,Patch p,int x ,int y,int cellSize)
{
g.setColor(p.getColor());
g.fillRect(x,y,cellSize*3,cellSize*3);
}
}

We have also overridden the paintPatch method in order to avoid that the only draw of the
turtles drops some residue on the floor. This dues to the optimizations made in the default
display engine (using the redrawAll function (slower) is a solution too).

34

3. Virus
3.1. Synopsis

EZVIRUS TRANSMISSION M=k

Figure 16: The green turtles are contaminated by the red ones

In this simulation, we want to simulate the transmission of a virus in a population and observe
it. To do this, we have created a kind of turtle (Virus class) that can take two behaviors:
infected or non infected (red and green). The all turtles just walk around and the red ones
contaminate the others when cross them on a patch.

3.2. Virus transmission simulation

We have created two classes of Virus to simulate two ways to transmit the virus. The first
way is to use real MadKit agent messages: when a red turtle cross turtles that are green, it gets
their AgentAddress and sends them a VirusMessage.

So if a sane turtle has its mailbox not empty, it changes of behavior and becomes a red turtle.

(Just like an email virus: we can imagine another version of this simulation where a turtle
might be capable of being careful when reading its mailbox.

35

public String red()
{

wiggle();
Turtle[] ts = turtlesHere(); //returns the other tu rtles that are

on the same patch

if (ts != null)

for (int i=0; i < ts.length;i++)
if (ts[i].getColor() == Color.green)
sendMessage(ts[i].getAddress(),new

VirusMessage());

return("red");
}
}

public String green()
if (nextMessage() '= null) //check mailbox
setColor(Color.red);

playRole("infected");
return ("red");

}
else
{
wiggle();
return ("green");
}
}

The second way (Virus2) consists in directly interact with the other turtles by changing their
color to simulate the transmission. So a sane turtle always check its color and adopts the
corresponding behavior: red or green.

public String red()
{

wiggle();
Turtle[] ts = turtlesHere();
if (ts != null)
for (int i=0; i < ts.length;i++)
if (ts[i].getColor() == Color.green)
ts[i].setColor(Color.red);
return("red");

}

public String green()

{
if (getColor() == Color.red)
{

playRole("infected");
return ("red");

}
else
{
wiggle();
return ("green");
}
}

36

In each case, an infected turtle plays the role "infected" in order to be distinguished by the
observer.

3.3. Observing the simulation

=3 VIRUS TRANSMISSION Obs... [Mi[=] B3

infected turtles
GO0

]

E] /

300 /

200 /

100

‘/ iteratin:m%s':I

Figure 17:displaying simulation's results in a special Observer

The Observer of this simulation, the VirusWatcher, just creates a TurtleTable with the role
infected and displays the corresponding number wusing a special GUI (a
madkit.lib.simulation.SimplePlotPanel) suited to draw mathematic curves.

/** initialize the variable infectedTurtles (a Turt le[]) using
getTurtleWithRole*/
public void initializeTurtleTables()

{
infectedTurtles = getTurtleWithRole("infected") ;

}

/**this method overrides watch in the class Observe r. So it will be invoked
for each simulation step*/
step public void watch()

plot.addPoint(infectedTurtles.length); //plot is t he GUI

3.4. About the code

A Turtle is a real MadKit agent: it owns all the possibilities of any AbstractAgent of
MadKit. Specially, interesting points are the usage of group, roles and AgentAddress
concepts to structure the application logics and identify the agents.

37

4. Gravity
4.1. Synopsis

Egﬁ Gravity

Figure 18: Turtles are a part of the universe

In this simulation we have computed two kinds of turtle with different behaviours. One class
called BlackHole and another one called Star . The starts turn around the nearest black hole.
If a star is too near from two black holes, it is just no longer under influence. Here, the
simulation of the gravity is far from having relation with real physic.

4.2. About the code

The turltes' code is based on the usage of the following turtle commands: towards , distance ,
xcor and ycor . See source files for details.

38

5. Gas simulation

5.1. Synopsis

This simulation mimics the StarLogo team's Molecules project.

Figure 19: PV = nRT

This project presents a (highly simplified) model of gas molecules in a box. The box is
divided into two sections with a small hole between the two sections.

5.2. Using the simulation

You can choose the number of molecule and it is also possible to choose the size of the hole
(in the properties box of the Launcher, GasExperiment).

39

5.3. About the code

For this simulation, we just have created a kind of Turtle Gas with a single behavior: look for
free space. A special Observer GasObserver observes and displays the number of turtles that
are on the right side of the wall.

[2i1 NEED SPACE Observer _ O] =]
nas on the right side of the wall

agal

5200

4541

3000

KRE]

]

1940

1200

kol

iteratinn%m

Figure 20: curve will stabilize when molecules will be proportionally distributed

40

6. Soccer

6.1. Synopsis

[=3 SOCCER

Figure 21: Turtles like soccer too!

This simulation is the most complex one and is not achieved. For now, the turtles' "internal

Al" is very poor. But we will try to increase it :).

6.2. About the code

Although the code is not very explicit, You can try to modify the behaviour of the players by
modifying the following classes: Player , the super class of all soccer players, RedPlayer and
BluePlayer that define particular behaviour for each team. The ball is also a turtle Ball . The
turtles are created in such a way that the red team is composed by the turtles 0 to 10 (blue 11
to 21). This is done by adding the turtles in the right order in the addSimulationAgents of
the Launcher (Soccer). A turtle's ID corresponds to the number of invocations of the
addTurtle method made by the Launcher.

41

7. Patch variable diffusions

7.1. Synopsis

The diffusion The diffusion
of lavor1 f of lavor?

=10] x|

Figure 22: Two patch variables views at the same time

This simulation was made in order to test the diffusion of the patch variables in the
environment. At the beginning of the simulation the values of the center patch's variables are
settled to a big number.

7.2. Initializing the simulation
You can set the diffusion and evaporation coefficients and the value of the center patch of

each patch variable (flavor and flavor2) in the Launcher's properties box (Diffusion). So you
will obtain different effects during the simulation.

7.3. About the code

This little demo shows how to initialize and use patch variables: the Flavor class. These jobs
have to be done in the Launcher code in the initializePatchVariables like in the
following example.

42

protected void initializePatchVariables()

{

PatchVariable a = new PatchVariable("flavor");
a.setDiffuseCoef(valueDiff);
a.setEvapCoef(valueEvap);
addPatchVariable(a);

PatchVariable b = new PatchVariable("flavor2");
b.setDiffuseCoef(value2Diff);
b.setEvapCoef(value2Evap);
addPatchVariable(b);

To view these two diffusions independently, we have made two specials viewers classes:
Flavorviewer and FlavorViewer2 . In each Viewer we have just overridden the paintPatch
method in order to make the flavor's concentration visible on the screen.

public class FlavorViewer extends Viewer

public void paintPatch(Graphics g, Patch p,int x,int y,int CellSize)

{
int a = ((int) p.getFlavorValue("flavor"))%256;

g.setColor(new Color(a,a,a));
g.fillRect(x,y,CellSize,CellSize);

The way the flavor's intensity is interpreted as a specific color has no specific meaning.

Moreover we have used an Observer , Gridinitializer , to setup the center patch at the
beginning of the simulation overriding the setup . Note that in this simulation there is no
turtle.

public class Gridlnitializer extends Observer

{

double val,val2;

public GridInitializer (double v, double v2)

{
val = v;
val2 = v2;
}
public void setup()
{
patchGrid[(int) (envWidth/2)][(int)(envHeight/2)].s etFlavorValue("flavor",
val);
patchGrid[(int) (envWidth/2)][(int)(envHeight/2)].s etFlavorValue("flavor2",
val2);
}
}

43

8. Termites

8.1. Synopsis
This simulation mimics the well known StarLogo team's project named Termites.

This project is inspired by the behaviour of termites gathering wood chips into piles. The
termites follow a set of simple rules. Each termite starts wandering randomly. If it bumps into
a wood chip, it picks the chip up, and continues to wander randomly. When it bumps into
another wood chip, it finds a nearby empty space and puts its wood chip down. With these
simple rules, the wood chips eventually end up in a single pile.

This example is a transcription of the original. The presence of a chip on a patch is modeled
by the patch's current color: black (empty) or yellow (a chip). The termites are red.

EE5 TERMITES _[O] =]

1 [EENE I [=] 3
T

"

o
C
-,
Sl

PR = TERMITES =10] x|

o - . 2 a®
a e L

Figure 23: Termites: an illustration of emergence

8.2. About the code

This simulation and its computation are explained in details in the section A step by step
example in the chapter I.

44

9. Conway’s Game of Life

9.1. Synopsis

& game of life Observer

Figure 24 : The Conway’s game of life

This simulation implements the Conway’s game of life. This simulation is not a regular one in
the sens that it does not involve any turtle. Here, the TurtleKit is used as a cellular automata
platform.

9.2. Using an observer as a cellular automata programmer

To use the TurtleKit as a cellular automaton, it is possible to use an observer that controls the
patches’ evolution during the simulation. This operation is done using the patchGrid variable
of the observer. The observer simply updates the patches’ properties once per turn considering
the vinicity of each patch.

45

9.3. About the code

First, the observer setup the simulation to give patches a starting value (alive or dead).

public void setup()

gridBuffer=new byte[envWidth][envHeight];
for(int i=0;i<envWidth;i++)
for(int j=0;j<envHeight;j++)
patchGrid[i][j].setPatchVariable("lifeValue",0);

for(int i=0;i<envWidth;i++)
for(int j=0;j<envHeight;j++)
if(Math.random()<percentage)

patchGrid][i][j].setPatchVariable("lifeValue",1);
else
patchGrid][i][j].setPatchVariable("lifeValue",0);

Then the watch method is implemented in the following way to create the cellular
automaton’s evolution.

public void watch()
{
for(int i=0;i<envWidth;i++)
for(int j=0;j<envHeight;j++)

[*Patch[]*/ neighbors =
patchGrid[i][j].getNeighbors();
byte alive=0;
for(int k=0;k<neighbors.length;k++)

alive+=(byte)neighborsl[k].getVariableValue("lifeV alue");
gridBuffer[i][j]=(byte)patchGrid[i][j].getVariable Value("lifeValue™);
if (gridBuffer[i][j]==1 && (alive < 2 || al ive >3))
{

gridBuffer][i][j]=0;

else if (alive == 3)
gridBuffer[i][j]=1;

for(int i=0;i<envWidth;i++)
for(int j=0;j<envHeight;j++)

patchGrid]i][j].setPatchVariable("lifeValue",gridB uffer[i][j]);

46

