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Stable-by-Design Kinematic Control Based on Optimization
Vinicius Mariano Gonçalves, Bruno Vilhena Adorno, André Crosnier and Philippe Fraisse

Abstract—This paper presents a new kinematic control
paradigm for redundant robots based on optimization. The gen-
eral approach takes into account convex objective functions with
inequality constraints and a specific equality constraint resulting
from a Lyapunov function, which ensures closed-loop stability by
design. Furthermore, we tackle an important particular case by
using a convex combination of quadratic and l1-norm objective
functions, making possible for the designer to choose different
degrees of sparseness and smoothness in the control inputs. We
provide a pseudo-analytical solution to this optimization problem
and validate the approach by controlling the center of mass of
the humanoid robot HOAP3.

I. INTRODUCTION

MANY practical problems in robot motion control in-
volve some kind of constraints. For instance, a robot

manipulator usually has joints limits and its actuators have
saturation limits [1]; in robotic surgery the workspace is
very constrained and the robot must avoid sensitive areas
and respect anatomy-based constraints [2], [3]; in order to
keep balance, humanoids must maintain their zero moment
point (ZMP) inside the support polygon [4]; and fixed-wing
unmanned aerial vehicles must have a minimum forward
velocity in order to fly [5].

In order to deal with constraints directly in the motion
control law, Liégeois’s early work [6] has introduced a task-
priority framework that takes into account two hierarchical
levels, where the one with higher priority corresponds to the
main task (e.g., control of the end-effector pose) and the
lowest level is used to impose equality constraints. This way,
inequality constraints such as joint limits can be transformed
into equality constraints by means of a gradient projection
method; however, the constraints are not respected if they
come into conflict with the main task [7]. This hierarchical
structure has been extended for an arbitrary number of tasks
[8] and a scheme for inserting and removing tasks in order to
enforce an arbitrary number of secondary equality constraints,
called Stack of Tasks, has been proposed [9]. The Stack
of Tasks has been extended to take into account inequality
constraints [10], but according to Kanoun et al. [11] this
formalism has exponential cost in the number of inequatilies.

Other approach to deal explicitly with both equality and
inequality constraints is optimization-based control. The great
advantages of using such approach are that both equality
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and inequality constraints are easily included in the problem
formulation and it can be implemented in real time.

Owing to these advantages, several works have proposed
motion control techniques based on optimization. Faverjon and
Tournassoud [12] are one of the pioneers of this technique
applied to robotics, and they have proposed quadratic program-
ming to generate the robot control inputs, where inequality
constraints are used to implement collision avoidance. Other
works have extended quadratic programming to a hierarchical
structure [13], [11], [14] and there is also a recent application
that aims at optimizing the robot manipulability, based on
a quadratic programming formulation [15], in the context of
inverse kinematic control for redundant robots.

Instead of using quadratic programming, other works used
linear programming to solve the problem of real-time inverse
kinematics [16], [17] but usually they are not concerned
with closed loop stability and in some cases the optimization
problem formulation is not suitable for the application. For
instance, in the linear program proposed by Ho et al. [16], the
differential kinematics is used as an equality constraint; there-
fore, the problem is feasible only if the task-space velocities
are in the range space of the Jacobian matrix, which is not
always possible if the robot is underactuated or in a singular
configuration. In addition, Berthet-Rayne et al. [18] use sparse
kinematic control laws, based on linear and quadratic program-
ming formulations, to teleoperate a redundant snakelike robot
in minimally invasive surgery.

One of the major drawbacks of those optimization-based
motion control techniques is that very few are concerned
with closed-loop stability, with some notable exceptions. For
instance, Al Khudir et al. [19] propose an optimization-
based controller and rely on experimental evaluations to claim
that the closed-loop system achieves stable and consistent
behaviors but it does not present a formal proof of closed-
loop stability. Stability, however, refers to an infinite number
of scenarios that cannot be tested experimentally and it needs
theoretical proof or must be ensured by design. Realizing the
importance of formally ensuring closed-loop stability, Escande
et al. [14] analyzes the Lyapunov stability of hierarchical
systems and Scianca et al. [20] have designed an intrinsically-
stable model predictive controller for gait generation. The
latter, however, proposes an application-specific constraint,
which ensures that the robot center of mass trajectory is
stable, and consequently cannot be extended to generic tasks.
Gonçalves et. al [21] have proposed an efficient formulation
for the kinematic control based on linear programming whose
solution is always feasible, there is formal proof of closed-
loop stability, but it depends on the solver (i.e., Simplex) to
obtain sparse solutions.

On the one hand, the choice of linear programming over
quadratic programming in robotics applications is often justi-
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fied by computational efficiency or, in some special cases (i.e.,
when specific solvers are used), because of its sparse solutions.
On the other hand, control inputs generated by linear programs
tend to be less smooth than the ones generated by quadratic
programs.

In order to obtain the best of both worlds, this paper presents
a general formulation that takes into account a general positive
objective function, which can be specialized to a quadratic
convex optimization problem and hence the designer can
choose between different degrees of sparseness and, conse-
quently, different degrees of smoothness in the control inputs.
Moreover, we propose a special equality constraint on the
control inputs, which ensures closed-loop stability by design
for general applications.

This paper is organized as follows: Section II presents the
problem definition and the overview of the solution, whereas
Section III presents a thorough analysis on important aspects
such as solution feasibility, properties arising from different
choices of objective functions, and Lyapunov constraints.
Section IV presents a particular, but very useful, optimization-
based controller that enables tuning the control input sparse-
ness and its corresponding pseudo-analytical solution. Sec-
tion V presents the experimental results and Section VI
presents the conclusions and final remarks.

II. PROBLEM DEFINITION AND OVERVIEW OF THE
SOLUTION

Let Q ⊆ Rn be a smooth manifold representing the robot
configuration space and q ∈ Q be the robot configuration.
Assume that the control inputs are the configuration velocities;
that is,

q̇ = u. (1)

The goal is to design the control input u(q) to guide q to
a subset Qtg ⊂ Q, which represents the completeness of a
given task (e.g., desired end-effector pose), while consider-
ing equality and inequality constraints on the trajectory and
ensuring closed-loop stability. Those constraints are defined
to ensure, for instance, maximum and minimum configuration
velocities, obstacle avoidance, and avoidance of joint limits.

The target set is defined as Qtg , {q : e(q) = 0}, where
e : Q → Rm is a differentiable task function [22], which
represents an error between desired and current variables. For
instance, if h (q) is the current end-effector pose and hd is the
desired end-effector pose, the task function can be defined as
e (q) , h (q)− hd. This way, when e (q) = 0 the end-effector
pose is at the desired set-point and the set Qtg represents all
configurations that fulfill the task.

A. Overview of the solution

In order to design the control law that fulfills the aforemen-
tioned requirements, we first define a differentiable Lyapunov
function V : Q → [0,∞) to the set Qtg that satisfies

ξm (d (q,Qtg)) ≤ V (q) ≤ ξM (d (q,Qtg)) , (2)

where ξm, ξM : [0,∞) → [0,∞) are non-decreasing positive
definite functions and d(x,X ) , minx∈X ‖x − x‖2 is the

distance function between a point x ∈ Rn and a closed subset
X of Rn.

Consider a function Φ : Rn × Q → [0,∞) that quantifies
how good a control input is at configuration q according to
a relevant metric (e.g., ‖u‖22 and ‖u‖1). The optimal control
input u∗ is obtained as

u∗ ∈ argmin
u

Φ (u, q)

subject to A (q)u ≤ b (q)

∇V (q)
T
u = −ρΨ (q) ,

(3)

where A : Q → Rs×n and b : Q → Rs define the inequality
constraints in the control inputs—which can be used to enforce
joint limits, bounds on joint velocities, etc.—, ρ ∈ [0, 1]
is a variable used to ensure feasibility of the optimization
problem when the Lyapunov and inequality constraints are
incompatible, and Ψ : Q → [0,∞) is a positive definite
function that defines how fast the system stabilizes. More
specifically, V̇ (q) = ∇V (q)Tu = −ρΨ(q) ≤ 0 ensures
stability by design of the closed loop q̇ = u∗(q).

The control law (3) arises some important questions:

1) How do the choice of the function Φ, the Lyapunov
function V , and the function Ψ affect the closed-loop
behavior?

2) What are the appropriate values for ρ in order to ensure
that the solution to this problem is always feasible?

3) How do we choose A and b to enforce relevant con-
straints?

We address the first two questions in Section III and the third
one, although already discussed in the literature, is briefly
analyzed in Section III-E from a more theoretical point of
view.

The proposed approach aims to solve, simultaneously, three
important problems in robotics: inverse kinematics, local mo-
tion planning, and stable closed-loop control. Inverse kinemat-
ics because the configuration q evolves toward the set Qtg ,
which is not known explicitly, as e(q) approaches 0. Local
motion planning because we can specify, using the constraints
A(q)u ≤ b(q), movement constraints such as to perform,
for instance, obstacle avoidance. Finally, stable closed-loop
control because we specify the control inputs that generate
the trajectory related to the task.

It is important to note, however, that convergence to Qtg
is not guaranteed with this approach, since it uses only local
information of the function V . Therefore, the optimal control
input u∗(q) in (3) can guide, eventually, the system to a local
minimum of V (q) such that e (q) 6= 0 (although we ensure
that ė (q) = 0), which can be aggravated by the constraints
A (q)u ≤ b (q). In other words, our approach ensures stability
but not necessarily asymptotic stability. Consequently, when
this local approach is not able to solve the proposed task,
we may need to consider strategies that take into account
the global structure of the configuration space and V (q), like
motion planning algorithms. However, global motion planning
is out of the scope of this paper.
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III. ANALYSIS

Given the problem definition in Section II and the proposed
solution in Section II-A, we analize the control law (3) in
terms of feasibility, relevant objective functions, constraints
implementation, and the function Ψ that determines overall
convergence behavior.

A. Feasibility

Problem (3) can be unfeasible due to (i) the inequality con-
straint A(q)u ≤ b(q), (ii) the equality constraint ∇V (q)Tu =
−ρΨ(q)—which we call Lyapunov specification and specifies
the convergence behavior—, (iii) or a combination of the two.

In most practical cases, it is reasonable to assume that the
set {u ∈ Rn : A (q)u ≤ b (q)} is non-empty as long as q (0)
does not violate any constraint, as shown in Section III-E,
therefore we can rule out (i).

To ensure the feasibility of the Lyapunov specification (i.e.,
finite control inputs), it suffices to impose some conditions on
the positive definite function Ψ (q). First, when ‖∇V (q)‖2 = 0
then Ψ(q) = 0; in addition, since ∇V (q)

T
u = −ρΨ (q) im-

plies ‖u‖2 ≥ ρΨ (q) / ‖∇V (q)‖2, then a necessary condition
for a bounded control input u∗ is

lim
q→q∗

ρΨ(q)

‖∇V (q)‖2
6=∞, ∀q∗ ∈ {q̄ : ∇V (q̄) = 0} . (4)

For instance,

u = − ρΨ(q)

‖∇V (q)‖2
∇V (q)

‖∇V (q)‖2
(5)

is a feasible solution, which is always bounded, owing to
(4). Therefore, we can also rule out (ii) by choosing Ψ (q)
appropriately.

The final concern is when the constraints are feasible when
considered separately but are conflicting between them. Since
the Lyapunov constraint ∇V (q)Tu = −ρΨ(q) determines
how fast the closed-loop system stabilizes, it may conflict
with the system capabilities and the constraints described by
A(q)u ≤ b(q). One natural idea is to choose an appropriate
value for ρ to prevent this conflict. To find the set of all ρ that
guarantee compatibility between the Lyapunov specification
and the inequality constraint in (3), we solve

(v∗, ρ∗) ∈ argmax
v,ρ

ρ

subject to A(q)v ≤ b(q)
∇V (q)T v = −ρΨ(q).

(6)

By letting ρ = −∇V (q)T v/Ψ(q), which is always defined
owing to (4), and using the fact that Ψ(q) ≥ 0, (6) is equivalent
to

v∗ ∈ argmin
v

∇V (q)T v

subject to A(q)v ≤ b(q).
(7)

Problems (6) and (7) admit a feasible, but not necessarily
optimal, solution ρ = 0 whenever v = 0 is feasible for
A(q)v ≤ b(q), that is, b(q) ≥ 0. This is a not very
restrictive assumption for a wide class of robots, as shown
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Figure 1: Effect of inequality constraints Au ≤ b (blue square)
and the Lyapunov constraint ∇V Tu = −ρΨ (red line): (a) if
ρ > ρ∗ then the constraints are conflicting and the problem is
unfeasible; (b) when ρ < ρ∗ the red line is inside the square,
therefore the dark blue line is the new feasible set; (c) when
ρ = ρ∗ there is only one feasible solution (the blue point in
the corner), except in the very specific case where the red line
is parallel to its closest edge on the polygon defined by the
constraint Au ≤ b.

in Section III-E.1 Therefore, we guarantee that Problem (6)
is feasible and there exists an optimal solution ρ∗ ≥ 0. If
ρ∗ = 0 then V̇ (q) = ∇V (q)

T
u = 0, meaning that the

system reached a local minimum, which may or may not be
the desired global one. This local minimum is not necessarily
a local minimum of V , because the inequality constraints
also need to be taken into consideration as they can create
other local minima that are not minima of V . For instance, if
A(q)u ≤ b(q) is satisfied only if u = 0, for all q ∈ Q, then
the entire set Q is a local minimum even if ∇V (q) 6= 0.

After obtaining the maximal ρ, namely

ρ∗(q) = −∇V (q)T v∗

Ψ(q)
,

we choose ρ = min {ρ∗(q), 1} to guarantee feasibility of the
control law (3) while respecting the specification Ψ (q) as best
as possible. Then we solve (3) with this chosen value ρ to
obtain the optimal input u∗.

Two important things must be taken into consideration.
First, the variable v∗ obtained in (6) is a dummy velocity asso-
ciated with the largest ρ∗ possible at that moment. Therefore,
if we choose u = v∗, the objective function Φ (u, q) would
be completely disregarded and the Lyapunov function would
have the greatest descent at that moment. In case ρ∗ (q) > 1,
choosing ρ = ρ∗ makes the function Ψ (q) ineffective, because
(3) may have as feasible set only the single point u = v∗, as
shown in Fig. 1.

Second, we do not need to solve (6) at each control period.
Once we calculate the relaxation variable ρ, we can use it as
long as the optimization problem (3) is feasible. If not, then
we need to obtain a new relaxation by solving (6).
Remark 1. Alternatively, the equality constraint in (3) can
be replaced by the inequality constraint ∇V (q)Tu ≤ 0. The
latter always ensure feasible closed-loop stability, as it implies
V̇ (q) ≤ 0 and u = 0 is a feasible solution, but it does not
allow the designer to fine tune the closed-loop behavior.

1This first analysis assumes the set-point regulation case, but we further
extend it to the tracking of time-varying trajectories, as well as for the case
where v = 0 is not feasible, in Section III-D.
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B. The function Φ

The function Φ(u, q) provides a measure of how good is
the control input u at a given configuration q. One interesting
choice is the family of lp-norms2 of u, that is, Φ(u, q) = ‖u‖p
for a real number p > 0. In this case, we penalize large control
inputs, but different choices of p induce different behaviors. In
a nutshell, as p increases from 0 to ∞, we shift from sparse
control inputs to even control inputs. Sparser control inputs
result in more zero entries in the control input vector u while
fullfiling the constraints and minimizing the magnitude of u
(according to the chosen lp-norm).3 This behavior is strongly
present when the l0-norm is used (i.e., limp→0 ‖u‖p). More
specifically, optimizing ‖u‖p is equivalent to optimizing ‖u‖pp
and

lim
p→0
‖u‖pp = lim

p→0

∑
i

|ui|p = # {i : ui 6= 0} ,

where #A denotes the cardinality of set A; therefore, taking
into account all constraints, we obtain min limp→0 ‖u‖pp =
min # {i : ui 6= 0}. This way, the control input vector u will
have as few nonzero entries as possible.

On the other hand, even control inputs results in a control
input vector u distributed as evenly as possible in magnitude
(discarding signs) while keeping the constraints and minimiz-
ing the magnitude of u. This behavior is strongly present when
the l∞-norm is used (i.e., limp→∞ ‖u‖p). Since

‖u‖∞ = max
i
|ui|, (8)

if the vector coefficients ui are not evenly distributed in
absolute value—for instance, ∃j such that uj > ui for all
i 6= j—the objective function is decreased by reducing uj and
redistributing the remaining value to the other coefficients. Due
to the saturating nature of the max function, the norm will
decrease, as long as all constraints are fulfilled. The choice
of this norm for solving differential inverse kinematics has
already been studied and is called a minimum effort approach
[23]. In a more general context, solutions to underdetermined
linear systems that have maximum possible evenness have also
been called democratic [24].

Example 2. Consider the optimization problem

min
x

‖x‖p

subject to
n∑
i=1

aixi = b,

where ai 6= 0, ∀i and |ai| > |aj | ∀i < j. Applying the
Karush-Kuhn-Tucker conditions, the analytical solution to this
problem is

xi = b

(
sgn(ai)|ai|1/(p−1)∑n

j=1 |aj |p/(p−1)

)
(9)

2The lp-norm ‖x‖p of a vector x, with 0 < p <∞, is given by ‖x‖p =(∑
i |xi|p

)1/p.
3This is related to the parsimonious behavior in kinematic control discussed

in our previous work [21]. That work required the use of the simplex algorithm
to achieve sparse behavior, whereas the method presented in this paper is
independent of the algorithm used to solve the optimization problem.

when 1 < p < ∞ (convex case) and x1 = b/a1 and xi = 0,
∀i 6= 1, when 0 < p ≤ 1. In addition, the function sgn : R→
{−1, 0, 1} is defined for scalars as

sgn (a) =


−1 a < 0

0 a = 0

1 a > 0

and extended to vectors by applying it component-wise.
Since both solutions for p→ 1+ and p→ 1− agree, then for

0 < p ≤ 1 the solution is sparse and the only non-null entry xi
is the one that corresponds to the largest coefficient in absolute
value. On the other hand, when p → ∞, the solution is x =
sgn(a)b/‖a‖1; that is, all |xi| = |xj |, ∀i, j, which results in
the most even situation possible in terms of the absolute value.
�

Norms between l0 and l∞ induce these behaviors in varying
degrees. The l0-norm is inconvenient because is nonconvex,
and thus yields difficult optimization problems. Indeed, opti-
mizing the l0-norm, even under linear constraints, is NP-hard
[25]. The l∞-norm, although convex, has the inconvenience
of being non-differentiable and cumbersome to handle ana-
lytically. Thus, in practice, it is convenient to consider the
sparseness induced by the l1-norm and the evenness induced
by the l2-norm. Section IV presents the analytical solution to
an optimization problem composed of a weighted sum of those
two norms.

C. The function Ψ

Since the function Ψ in (3) influences the decreasing rate of
the Lyapunov function V , it also determines how fast the task
is achieved. There are several possibilities for choosing Ψ, as
long as the conditions ‖∇V (q)‖2 = 0 =⇒ Ψ(q) = 0 and
(4) are fulfilled, as shown in Section III-A. Whereas the latter
is necessary to generate bounded control inputs, the former
ensures that u = 0 is a valid control input when the robot
reaches a local minimum (i.e., ∇V (q) = 0).

1) Design of Ψ based on desired closed-loop behav-
ior: Suppose we desire a closed-loop behavior given by
V̇ (q) = −η′V (q), where η′ ∈ (0,∞). The goal is to
find a function Ψ(q) that enforces this behavior, at least
in most regions of the configuration space. Let us choose
Ψ(q) = ηV (q) tanh (κ‖∇V (q)‖2) with κ, η ∈ (0,∞). This
function fulfills both requirements as ‖∇V (q)‖2 = 0 implies
Ψ(q) = ηV (q) tanh(0) = 0 and, letting Γ , ‖∇V (q)‖2, we
obtain4

lim
Γ→0

ρΨ(q)

Γ
= lim

Γ→0

ρηV (q) tanh (κΓ)

Γ

= lim
Γ→0

ρηV (q)κ sech2 (κΓ)

= ρηV (q)κ <∞.

By choosing an appropriate value κ, when far from local
minima tanh (κ‖∇V (q)‖2)→ 1, hence Ψ(q)→ ηV (q). Thus,
let η′ , ρη to obtain

V̇ (q) = ∇V (q)
T
u = −ρΨ (q) = −η′V (q),

4We use L’Hôpital’s rule and the fact that d
dΓ

tanh (κΓ) = κ sech2 (κΓ).
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which means that the system will converge at exponential rate.
2) Design of Ψ based on Φ to enforce actuation limits:

We can use Ψ to enforce actuation limits (i.e., bounded
configuration velocities) by means of its explicit relationship
with the objective function Φ. For example, let us consider the
objective function

Φ (u) = γ‖u‖1 + (1− γ)
1

2
‖u‖22,

which, as shown in Section IV, has very interesting properties.
Since (5) is a feasible solution, which we denote as ufeas, and
u∗ is the optimal one, then

γ‖u∗‖1+
(1− γ)

2
‖u∗‖22 ≤ γ‖ufeas‖1+

(1− γ)

2
‖ufeas‖22 (10)

as the objective function is nondecreasing. Substituting (5) in
(10), we obtain

γ‖u∗‖1 +
(1− γ)

2
‖u∗‖22 ≤

γ
‖∇V (q)‖1
‖∇V (q)‖22

ρΨ(q) +
(1− γ)

2

ρ2Ψ(q)2

‖∇V (q)‖22
. (11)

Since ‖x‖∞ ≤ ‖x‖1 and ‖x‖∞ ≤ ‖x‖2, ∀x, then

γ‖u∗‖∞ +
(1− γ)

2
‖u∗‖2∞ ≤ γ‖u∗‖1 +

(1− γ)

2
‖u∗‖22 (12)

In addition, ‖x‖1 ≤
√
n‖x‖2, ∀x,5 in which n ∈ N is the

size of x, and y ≤ ny, ∀y ∈ [0,∞); thus, by using the right-
hand term in (11), we obtain

γ
‖∇V (q)‖1
‖∇V (q)‖22

ρΨ(q) +
(1− γ)

2

ρ2Ψ(q)2

‖∇V (q)‖22
≤

γ
√
n

ρΨ(q)

‖∇V (q)‖2
+ n

(1− γ)

2

ρ2Ψ(q)2

‖∇V (q)‖22
. (13)

Using (11), (12) and (13), yields

γ‖u∗‖∞ +
(1− γ)

2
‖u∗‖2∞ ≤

γ
√
n

ρΨ(q)

‖∇V (q)‖2
+ n

(1− γ)

2

ρ2Ψ(q)2

‖∇V (q)‖22
.

Let F (x) , γx+ (1/2)(1− γ)x2, thus

F (‖u∗‖∞) ≤ F
( √

nρΨ(q)

‖∇V (q)‖2

)
. (14)

As the function F is increasing in the interval [0,∞), the
previous inequality reduces to

‖u∗‖∞ ≤
√
nρΨ(q)

‖∇V (q)‖2
. (15)

Therefore, let us choose

Ψ(q) ,
umax√
n
‖∇V (q)‖2R(q), (16)

5Recall that, using the Cauchy–Schwarz inequality, ‖x‖1 =
∑n
i=1 |xi| =∑n

i=1 |xi| · 1 ≤
(∑n

i=1 |xi|2
)1/2 (∑n

i=1 |1|2
)1/2

= ‖x‖2
√
n.

where umax is the desired upper bound for the configuration
velocity and R(q) : Q → [0, 1]. Thus

‖u∗‖∞ ≤ umaxρR(q) ≤ umax, (17)

which implies that the optimal control input u∗ has all its
entries bounded by umax.

D. Handling non-null velocity inputs

In Section III-A, we assumed that the control input u = 0
must belong to the set of admissible solutions to ease the
feasibility analysis, but this assumption is not strictly necessary
to ensure the feasibility of Problem 3 and can be relaxed,
under mild considerations, to handle time-varying trajectories
or persistent motions.

1) Time-varying constraints: To handle time-varying tasks,
which are encoded in V (q, t), it is necessary to add a
feedforward term in the Lyapunov constraint in Problem 3.
More specifically, since we want to induce stability by design,
we enforce the constraint V̇ (q(t), t) = −ρΨ(q(t), t), which
yields6

∇qV (q, t)Tu+
∂V

∂t
(q, t) = −ρΨ(q, t), (18)

where ∂V (q, t)/∂t is the feedforward term.
In addition, to guarantee that a bounded solution always

exists, it is necessary that

lim
(q,t)→(q∗,t∗)

∣∣ρΨ(q, t) + ∂V
∂t (q, t)

∣∣
‖∇qV (q, t)‖2

6=∞, ∀(q∗, t∗) ∈ ΩS , (19)

where ΩS = {(q̄, t̄) : ∇qV (q̄, t̄) = 0}. From Condition 4,
|ρΨ(q, t)|/‖∇qV (q, t)‖2 is required to be bounded for all
(q∗, t∗) ∈ ΩS ; therefore, by using the triangle inequality,
Condition 19 is satisfied if

lim
(q,t)→(q∗,t∗)

∣∣∂V
∂t (q, t)

∣∣
‖∇qV (q, t)‖2

6=∞. (20)

2) Persistent motion: Suppose we want to make the system
converge to a one-dimensional curve C in the configuration
space Rn and circulate it in a given direction. This curve
can be defined by n− 1 level surfaces of differentiable scalar
functions, αi : Rn → R, as [26]

C , {q ∈ Rn : αi(q) = 0, i = 1, 2, . . . , n− 1}, (21)

where the gradients ∇qαi(q) are linearly independent for all
q. If we consider the vector T (q) ∈ Rn in the tangent space
of the curve C at point q, such that ‖T (q)‖2 6= 0 when q ∈ C,
then the system of n− 1 linearly-independent equations

∇qαi(q)TT (q) = 0, ∀i ∈ {1, . . . , n− 1} (22)

have infinite non-null solutions for T (q), but if we impose
the additional constraint ‖T (q)‖2 = 1, then there are only

6The constraint (18) can be written as ∇qV (q, t)Tu = −ρΨ(q, t) −
∂V
∂t

(q, t). Therefore, the resulting problem is a QP12. See Problem 27 in
Section IV.
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two possible non-null solutions, one being the opposite of the
other. In the particular case that q lies on C, both solutions
are normalized tangent vectors on C that allow the traversal
of the curve, where T (q) and −T (q) enable the circulation in
opposite directions.

Consider a solution T (q) to (22), where ‖T (q)‖2 = 1, which
can be made continuous on q because the gradients ∇qαi(q)
are always linearly independent. Let φ, Vα : Rn−1 → [0,∞)
be two positive definite functions without local minimas and
consider the control law

u∗ ∈ argmin
u

φ(∇qα1(q)Tu, . . . ,∇qαn−1(q)Tu)

subject to T (q)Tu = ζ(q)

∇qV (q)
T
u = −ρΨ (q) ,

(23)

which is a particular case of (3), where V (q) =
Vα(α1(q), α2(q), . . . , αn−1(q)) is a Lyapunov function and
ζ(q) ∈ (0,∞). This control input u∗ guarantees that con-
vergence to the curve is achieved and, once on the curve, the
configuration q(t) will circulate the curve in a direction given
by T (q). Indeed, by construction, T (q) and

∇qV (q) =

n−1∑
i=1

∂V

∂αi
∇qαi(q)

are always orthogonal, so the optimization problem is always
feasible. The Lyapunov constraint guarantees convergence to
C because the gradients are always linearly independent and
Vα has no local minima. In addition, once on the curve,
the objective function guarantees that the optimal solution is
u∗(q) = ζ(q)T (q), which is the solution to the first equality,
because in that situation only the first constraint in (23) is
active, as on the curve both ∇qV (q) and Ψ(q) are null.
Therefore, the configuration q(t) will move along the curve
in the direction given by T (q).

E. Implementing constraints

The control law (3) takes into account the general inequality
constraint

A (q)u ≤ b (q) , (24)

where q̇ = u is the control input. Therefore, all constraints
must be linear in the control inputs. Furthermore, to always
ensure feasible solutions when the task consists in set-point
regulation, as discussed in Section III-A, we must enforce
b (q) ≥ 0, ∀q, and u = 0 must be a feasible solution (i.e., the
robot can stop). In case u = 0 is not a feasible solution, such
as when tracking a time-varying trajectory, the feedforward
term must satisfy (20) whereas when executing persistent
motions, the component enforcing the minimum velocity must
be orthogonal to ∇V .

To briefly exemplify how to represent useful constraints as
(24), we consider three types of constraints: 1) maximum
and minimum control inputs (configuration velocities); 2)
constraints of the form h(q) ≤ 0, which can be used to
enforce obstacle avoidance [27], joint limits, and static balance
constraints (e.g., to ensure that the zero moment point is inside

the support polygon in humanoid robots); and 3) Pfaffian
nonholonomic constraints of the form C(q)q̇ = 0 [28].

In the first case, we can write q̇ ≤ ωu and −q̇ ≤ ωl where
ωu, ωl ∈ (0,∞)

n are the velocities upper and lower limits,
respectively. Therefore, A (q) , blkdiag (In,−In) is a block
diagonal matrix, where In is the n × n identity matrix, and
b(q) ,

[
ωTu ωTl

]T ≥ 0.
In the second case, first we define a differentiable function

h(q) : Rn → R such that h(q) ≤ 0 represents feasible robot
configurations whereas h(q) > 0 represent forbidden config-
urations [27]. We then transform the nonlinear configuration
constraint h(q) ≤ 0 in a linear constraint (in the control inputs)
by using

∂h

∂q
(q)q̇ ≤ −ηh(q), (25)

for a positive scalar η > 0 [12], [11]. Since (25) is equivalent
to ḣ + ηh ≤ 0, then if h(q(0)) ≤ 0 (i.e., the robot initial
configuration is outside the forbidden configuration space),
by Gronwall’s Lemma7 we have h(q(t)) ≤ e−ηth(q(0)) ≤ 0
for all t ≥ 0 (i.e., the configuration always stays outside the
forbidden configuration space). If Qfree is the space of all
non-forbidden configurations, then any dynamical system that
implements (25) on q̇ has Qfree as a positive invariant set. In
addition, we must ensure that Qtg ∩Qfree 6= ∅, otherwise it is
impossible to achieve the task. If we have k constraints such
as (25), then

A (q) ,

∂h1/∂q
...

∂hk/∂q


and b (q) ,

[
−η1h1 (q) · · · −ηkhk (q)

]T
, with ηi ∈

(0,∞), ∀i ∈ {1, . . . , k}. Since

q(0) ∈ Qfree =⇒ hi(q) ≤ 0, ∀t, i =⇒ −ηihi(q) ≥ 0, ∀i,

then b(q) ≥ 0, for all q (t).
In the third case, we can write C(q)q̇ = 0 as 0 ≤ C(q)q̇ ≤

0; therefore,
[
C(q)T −C(q)T

]
q̇ ≤ 0, where b(q) , 0, for

all q.

IV. THE CANONICAL QP12

Since (3) is a very general formulation that, in general, does
not have an analytical solution, we propose the control law8

u∗ ∈ argmin
u

γ‖u‖1 + (1− γ)
1

2
‖u‖22

subject to ∇V (q)
T
u = −ρΨ (q) ,

(26)

with 0 ≤ γ ≤ 1. In addition to being stable by design,
as discussed in Section II-A, and penalizing large values of
the control input u, the control law (26) can be solved very
efficiently in a semi-analytical manner and provides a trade-off
between sparse and even behaviors by properly choosing γ.

7Gronwall’s Lemma [29] establishes that the differential inequality Ω̇(t) +
αΩ(t) ≤ 0 implies the inequality Ω(t) ≤ e−αtΩ(0).

8Since the objective function is strictly convex for γ ∈ [0, 1) and the
constraint is convex, it has only one solution; therefore, argmin returns a
singleton set.
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More specifically, γ → 1 =⇒ Φ(u)→ ‖u‖1, which induces
sparseness, whereas γ → 0 =⇒ Φ (u)→ (1/2) ‖u‖22, which
induces evenness, as shown in Example 2; anything in between
produces a mixed behavior.

In order to perform mathematical analysis on (26), we first
introduce a mathematically convenient canonical form in order
to establish the theoretical results.

Definition 3. The canonical QP12 is given by the quadratic
convex optimization problem

min
x

γ‖x‖1 + (1− γ)
1

2
‖x‖22

subject to aTx = b,
(27)

where 0 ≤ γ < 1, b ∈ (0,∞) and the m coefficients ai of a
obey a1 ≥ a2 ≥ · · · ≥ am ≥ 0 with a1 > 0.

Since a 6= 0, the constraint aTx = b is always fulfilled;
therefore, the canonical QP12 is always feasible. Furthermore,
it can be characterized in an almost analytic manner, as
shown next in Proposition 6, and a single algorithm can be
used to find its solution. But first we introduce two lemmas,
which will help in the proof of Proposition 6. The first one,
Lemma 4, shows that any solution to a canonical QP12 has
only nonnegative coefficients and the second one, Lemma 5,
shows that it always exists a solution that is as sparse as
possible.

Lemma 4. Any solution x to a canonical QP12 optimization
problem is such that x ≥ 0.

Proof: The proof follows by contradiction. Suppose we
have the optimal x and ∃xi < 0. There are two possible cases:

1) If ai = 0 then xi can be taken to 0 without violating the
constraint aTx = b while improving the objective func-
tion. Thus, x is not optimal, which is a contradiction;

2) If ai > 0 then ∃j such that xj > 0 and ajxj > 0,
because otherwise it would be impossible to have aTx =
b with b > 0. Therefore, if xi is increased to zero then
xj can be decreased accordingly, which will improve
the objective function. Thus, x is not optimal, which is
a contradiction.

Lemma 5. Let S (x) , {i : xi 6= 0} and S (x) ,
{1, . . . ,m}, where x ∈ Rm, then there must exist a solution
x∗ of the canonical QP12 such that S(x∗) = {1, 2, . . . ,M}
for some M ≤ m.

Proof: Consider a solution x such that S(x) 6=
{1, 2, . . . ,M}, because otherwise the result is trivially proved
by letting x∗ = x. We will construct, from x, an equivalent
solution x∗ in which S(x∗) = {1, 2, . . . ,M} for some
M ≤ m.

Since S(x) 6= {1, 2, . . . ,M}, there must exist r, s ∈ S (x),
with r < s, such that xr = 0 and xs 6= 0. Assuming that ar =
as, we can choose x∗r = xs, x∗s = xr, and x∗i = xi for i /∈
{r, s}. Applying these changes until there are no such indexes
r, s, we obtain a solution x∗ such that S(x∗) = {1, 2, ..,M}.

We now show by contradiction that the assumption ar = as
holds. Let us suppose that as 6= ar such that as < ar as the

indexes are ordered in a non-increasing order. A solution x∗ is
constructed from the optimal solution x such that x∗i = xi for
i /∈ {r, s}, x∗r = asxs/ar, and x∗s = 0. Note that aTx∗ = b.

Rewriting the objective function in (27), we obtain φ (x) =∑n
i=1 φ̄ (xi), where φ̄ (xi) = γ|xi| + (1 − γ)(1/2)x2

i with
0 ≤ γ < 1. Since xi ≥ 0 according to Lemma 4 and φ̄ (xi)
is a strictly increasing function in the interval xi ∈ [0,∞),
then φ (x) is also strictly increasing in the valid interval of x.
However, since x∗i = xi for i /∈ {r, s} and as < ar, then x∗s =
0 ≤ xr and x∗r = asxs/ar < xs, hence the objective function
will strictly decrease with this new solution x∗. Thus x is
not an optimal solution, which is a contradiction. Therefore,
ar = as.

We can then prove the following result.

Proposition 6. When γ 6= 1, a solution to the canonical QP12
optimization problem is

xi =

{
(λMai−γ)

1−γ if i ∈ {1, . . . ,M}
0 otherwise,

(28)

where M ≤ m and

λM =

(
M∑
i=1

a2
i

)−1(
(1− γ)b+ γ

M∑
i=1

ai

)
(29)

with9

aMλM > γ ≥ aM+1λM . (30)

Proof: Since the optimization problem is convex and
the constraint is linear in x, the Karush-Kuhn-Tucker (KKT)
conditions for non-differentiable functions [30], which are
necessary and sufficient for optimality to this problem, are10

0 ∈ γsgn(x) + (1− γ)x− λa, (31)

b = aTx. (32)

where λ is the Lagrange multiplier and the set-valued function
sgn : R⇒ {−1, [−1, 1], 1} is defined as

sgn (a) =


{−1} a < 0

[−1, 1] a = 0

{1} a > 0

and extended to vectors by applying it component-wise.
From Lemma 4 and Lemma 5, there exists a solution x ≥ 0

and a natural number M ≤ m such that S(x) = {1, . . . ,M}.
By definition, ∀i ∈ S (x), xi 6= 0; therefore, ∀i ∈ S (x),
xi > 0 and (31) reduces to

xi =
λMai − γ

1− γ
, (33)

9The rightmost condition does not need to be verified if M = m.
10Only the stationarity and primal feasibility conditions are needed for our

particular problem, namely 0 ∈ ∂Φ (x) + λ∂g (x) and g (x) = 0, where λ
is the Lagrange multiplier, ∂Φ (x) and ∂g (x) are the subdifferentials of the
objective and constraint functions, respectively, and + is the Minkowski sum.
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in which we write λ , λM to emphasize the dependence of
λ on M .
Since ∀i /∈ S (x), xi = 0, then

λMai > γ, ∀i ∈ S (x) (34)

and, by (31),

λMai ∈ [−γ, γ], ∀i /∈ S (x) , (35)

which can be written equivalently as

|λM |ai = |λMai| ≤ γ, ∀i /∈ S (x) . (36)

Using (32) and (33), we obtain

λM =

(
M∑
i=1

a2
i

)−1(
(1− γ)b+ γ

M∑
i=1

ai

)
, (37)

which is nonnegative. In that case, (36) reduces to

λMai ≤ γ, i /∈ S (x) . (38)

Since aM = min {a1, a2, . . . , aM} and aM+1 =
max {aM+1, . . . , am} , then (34) reduces to λMaM > γ and
(38) reduces to λMaM+1 ≤ γ. Therefore, λMaM > γ ≥
λMaM+1, which concludes the proof.
Remark 7. When γ = 1 (i.e., sparsest behavior), the solution
(28) is not defined and we obtain the optimal solution to (27)
by taking M = 1 and, since max {a1, . . . , am} = a1 > 0,
x1 = b/a1 and xi = 0 for all i ∈ {2, . . . ,m}. On the other
hand, when γ = 0 (i.e. most uniformly distributed behavior),
the solution can be obtained with M = m such that λM =
b/‖a‖2 and thus x = ba/‖a‖22 =

(
aT
)+
b, where

(
aT
)+

is
the right pseudoinverse of aT .

The solution described in Proposition 6 requires an appro-
priate value for M that satisfies (30). Although M depends
on the parameter γ, there is no analytical expression to find it,
but it can be obtained by using an iterative procedure in O(m)
time. For that, we begin from M = 1 and compute the value
of λM incrementally to prevent unnecessary computations, as
shown in Algorithm 1. More specifically, in line 4 we initialize
λM considering M = 1, and from line 7 to line 10 the value
of λM is updated by reusing its previous value and computing
only the remaining terms inside the summations in (29). Those
updates are done until condition (30) is fulfilled, which in the
worst case happens when M = m.

In order to solve Problem (26), we first convert it to the
canonical QP12 form, which can be done in O(m logm) time.
Since Ψ(q) = 0 ⇐⇒ ∇V (q) = 0 implies the trivial solution
u = 0 when ∇V (q) = 0, we need to analyze only the case
where ∇V (q) 6= 0.

Since the equality ∇V (q)
T
u = −ρΨ (q) in (26) must be

satisfied, then

b , ρΨ (q) = −
m∑
i=1

viui,

where
[
v1 · · · vm

]
, ∇V (q)

T . Let ûi , −sgn (vi)ui and
âi , |vi| for all i, sort â in a decreasing ordering to obtain

Algorithm 1: Pseudo-code for solving the canonical
QP12.

Data: a ∈ [0,∞)m with a1 > 0, b ∈ (0,∞) ,
γ ∈ [0, 1)

Result: x ∈ [0,∞)m

1 x← 0
2 α← (1− γ)b+ γa1

3 β ← a2
1

4 λ← α/β
5 M ← 1
6 while M + 1 ≤ m and (aMλ ≤ γ or γ < aM+1λ) do
7 M ←M + 1
8 α← α+ γaM
9 β ← β + a2

M

10 λ← α/β
11 end
12 x1:M ← (λa1:M − γ)/(1− γ) /* The

coefficients x1 to xM of x are
updated */

a and then construct a vector z ,
[
z1 · · · zm

]
such that

ai = âzi ; that is, zi contains the unique index of the coefficient
in â that corresponds to ai. Since b > 0 and a ≥ 0 (and with
coefficients in a decreasing ordering), the canonical QP12 can
be used to find the solution x ≥ 0 such that xi = ûzi .

To verify that x is indeed a solution to the original problem,
first we show that it respects the constraint:

aTx =

m∑
i=1

âzi ûzi

= −
m∑
i=1

|vzi |sgn (vzi)uzi = −
m∑
i=1

vziuzi = b,

where the last equality holds because zi 6= zj for all i 6= j
and zi ∈ {1, . . . ,m}. Second, since x is just a reordering of
the input u with signal changes in some of its coefficients, the
objective function does not change as it is sign invariant; that
is, Φ (x) = Φ (u). The procedure to find the solution to (26)
is summarized in Algorithm 2.

The sorting in line 6 of Algorithm 2 can be done in
O(m logm) time with a Quicksort algorithm, whereas the
problem in canonical form in line 2 can be solved using O(m)
operations. The mapping from the variable x to the variable
u, by reordering the vector and making the necessary sign
changes, is also done in O(m) operations.

However, owing to the continuous nature of the control
problem, as q changes from one control period to another
the vector ∇V (q) usually changes very little. Therefore, the
same ordering of the previous control input is almost always
applicable to the next one. As a consequence, the ordering
phase—which has the largest complexity— can be skipped by
just checking if the previous ordering is also applicable to the
current problem. Since this warm-start strategy can be done in
O(m) time, the solution to (26) can be solved almost always
using O(m) operations.
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Algorithm 2: Pseudo-code for solving the QP12.
Data: ∇V (q) ∈ Rm, ρΨ (q) ∈ (0,∞), γ ∈ [0, 1)
Result: Control input u ∈ Rm

1 b← ρΨ (q)
2 v ← ∇V (q)
3 for i← 1 to m do
4 âi , |vi|
5 end
6 a← Sort(â)
7 z ←

[
z1 · · · zm

]
such that ai = âzi

8 x← CanonicalQP12(a, b, γ)
9 for i← 1 to m do

10 j ← zi
11 uj ← −xisgn (vj)
12 end
13 u←

[
u1 · · · um

]T

Figure 2: Fujitsu HOAP-3 humanoid robot

V. EXPERIMENTAL RESULTS

In order to evaluate the control law (26), which is described
in Section IV, an experiment was performed with the Fujitsu
HOAP-3 humanoid robot, shown in Fig. 2, which has 21
revolute joints controlled in position. The goal was to control
the robot Center of Mass (CoM), denoted by m(q) and defined
with respect to the right foot, while the pose of the right foot
was kept constant on the ground.

Given the initial joint configuration q0, shown in Fig. 2, the
task consists in moving the initial statically stable Center of
Mass position to a constant desired statically stable position,
given respectively by

m(q0) =
[
−0.0085 0.0279 0.2869

]T
m,

md =
[
0.01 0.025 0.2869

]T
m.

The desired task function is given by em(q) = m(q) − md,
where m(q) is the CoM current position associated with the
joint configuration q, and the task differential kinematics is
expressed by ėm = Jm(q)q̇, where Jm(q) = ∂m/∂q and
ṁd = 0, ∀t.

Remote Controller HOAP-3

RT-Linux Kernel
Read/Write
Sensors/Actuators
∆t = 1ms

q∗k+1 qk

6

?
TCP/IP
Server

RT-FIFO

-q∗k+1

� qk

∆t = 1ms

INIT(q0, md)

m(qk), em(qk)
Jm(qk)
u∗
k=QP12(em,Jm,λ)
q∗k+1 = f(qk, u

∗
k)

q0 md

TCP/IP
Client

-

qk

?
q∗k+1

?

Figure 3: Control Architecture of the experimental setup.

A. Experimental setup

The HOAP-3 robot is equipped with a 1 GHz Pentium III
processor using RT-Linux Operating System running at 1 ms
sampling period. Since this processor is not powerful enough
to solve the CoM controller using the 21 DOF at this sampling
period, we have developed a remote controller with a TCP/IP
connection using the Julia language v1.0 [31]. The remote
controller was implemented on a laptop equipped with a 3.1
GHz Intel Core i7 processor (7920HQ) running Mac OS 10.14.

The total duration time required to compute one sample
on the remote controller is in average 0.5 ms.11 The data
communication between the remote controller and the em-
bedded RT-Linux controller on HOAP-3 is carried out by
using TCP/IP communication. The TCP/IP server uses the
RT-Scheduler through the RT-FIFO to send the current joint
position value qk, read from the robot onboard sensors, to
the TCP/IP client on the remote controller. Then, 1 ms after
receiving qk the TCP/IP client sends the control vector q∗k+1

back, which synchronizes the remote controller with the real-
time task at 1 ms sampling period.

B. Benchmark

In order to assess the performance of QP12 (with γ = 0.5)
in terms of computational time, we compared it with two other
algorithms by using the BenchmarkTools package available on
Julia. The first algorithm (PINV) is based on the pseudoinverse
of the Jacobian matrix [32] and the other one is based on
OSQP, which is an operator splitting solver for quadratic
programs [33]. Using those three algorithms, we used the
@benchmark function from the BenchmarkTools package to
calculate 10,000 samples of the CoM inverse kinematics for
the configuration shown in Fig. 2, whose corresponding center
of mass is m(q0). The results are summarized in Table I,

11We solve the QP12 optimization problem in a semi-analytical manner by
using Algorithm 2 at each sample time k in the control loop. The optimal
solution u∗(k) is then used to compute the desired joint positions of the robot
by using first-order Euler integration, that is, q∗(k+ 1) = q(k) +u∗(k) ∆t,
where q(k) is the joint position of the robot measured at time k and ∆t is
the sampling period.
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Figure 4: Center of Mass trajectory projected onto the support
polygon (right foot) along the x and y axes from m0 , m (q0)
to md with QP12.

showing that QP12 outperforms both PINV and OSQP in
terms of minimum, mean, and maximum times.

QP12 PINV QP (OSQP)
Minimum Time (µs) 1.259 7.713 29.64

Mean Time (µs) 1.358 12.04 32.3
Maximum Time (µs) 7.575 35.15 153.24

Table I: Benchmark of QP12 versus PINV and QP

When considering the equality constraint defined by (16),
QP12 takes in average 1.358µs for solving the same inverse
kinematics problem. In addition, the computational time to
calculate the CoM forward kinematics m(q) is in average
160.95µs, and the computational time to calculate the corre-
sponding Jacobian matrix is in average 109.85µs. However,
both the forward kinematics and Jacobian calculations are
identical for all algorithms.

C. Analysis of QP12

First, we consider the Lyapunov function V (q) =
‖em(q)‖22/2; therefore,

∇V (q) = Jm(q)T em(q). (39)

The canonical QP12 in (26) is expressed as

u∗ ∈ argmin
u

γ‖u‖1 + (1− γ)
1

2
‖u‖22

subject to em(q)TJm(q)u+ ρΨ(q) = 0.

(40)

Second, in order to take into account input saturation (i.e.,
joint velocity constraints), we use (16) with (39), and

R(q) =
2

π
arctan (β‖em(q)‖2) , (41)

where umax is the desired maximum velocity in the joint space
and β ∈ (0,∞).

We have assessed the QP12 semi-analytical algorithm with
γ ∈ {0, 0.3, 0.7, 0.99}, as shown in Fig. 4. When γ = 0, the
length of the CoM trajectory along the x axis, shown in Fig. 4,
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Figure 5: QP12 with β = 46, umax = 0.6 rad/s, 0 ≤ γ ≤
0.99: (a) Lyapunov function V (q); (b) Ψ(q) function.

within the support polygon is about ∆CoMx = mdx−m0x =
1.85cm. Based on this trajectory, we have performed 11 trials
with QP12 to study the effect of different values of γ on the
stability and the optimal control vector u∗.

1) Effect of γ on the Lyapunov function dynamics: For all
cases, the constraint in (40) ensures the closed-loop stability,
as predicted by the theory, because the constraint guarantees
that V̇ (q) ≤ −ρΨ (q) ≤ 0. Furthermore, since Qtg ⊂ Qfree,
Qtg is asymptotically stable, as shown in Fig. 5a. Since the
convergence rate is determined exclusively by the equality
constraint in (40), the Lyapunov function dynamics is very
similar for all values of γ, as expected.

The Ψ(q) function used in the equality constraint in (40)
has a strong correlation with V (q) and reinforce the idea that
Ψ influences the decrease of V .

2) Effect of γ on the control input sparseness: As shown
in Section III-B, the parameter γ defines the density of the
control vector; therefore, the control vector is densest with
γ = 0.0, as the solution is equivalent to the one based on
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Figure 6: QP12: Average number of active joints along the
motion with 0 ≤ γ ≤ 0.99 and umax = 0.6 rad/s.

the Jacobian matrix pseudoinverse, and sparse with γ = 0.99.
Fig. 6 shows the average number of active joints during the
whole motion for each value of γ. The number of active joints
decreases almost linearly for γ ∈ [0.1, 0.99]. When compared
with the controller based on the pseudoinverse, QP12 with
γ = 0.1 provides a solution that uses, in average, 6 actuators
instead of 18 actuators for the pseudo-inverse. The number
of active joints, when γ = 0.1, is higher than the sparsest
solution for this problem, which theoretically requires only
two active joints, but the sparsest solution can be obtained
when γ = 0.99.

Fig. 7 shows the number of active joints along the motion
for QP12 (for γ = 0, which corresponds to a dense solution,
and γ = 0.99, which corresponds to a sparse one) and PINV.
When γ = 0 the behaviors of QP12 and PINV are very similar
as both provide a dense control vector u∗. On the contrary,
γ = 0.99 provides a sparse control vector u∗ with just one
or two active joints, which are in this case the pitch and roll
joints of the right ankle.

Last, Fig. 8 presents side-by-side the effect of γ on the
smoothness and sparseness of the control inputs: the greater
the value of γ, the more sparse and abrupt are the control
inputs. Conversely, the smaller the value of γ, the more dense
and smooth are the control inputs. A joint is considered inac-
tive if its velocity is below a threshold of 0.001rad/s. In order
to prevent chattering when the robot stabilizes, which may
cause vibrations in the robot structure, we used an adaptive
value for γ, namely γ = (2γfar/π) arctan (100‖∇V (q)‖),
such that only very close to a stable region γ → 0 but γ ≈ γfar

elsewhere. Therefore, since the system achieves the stable
region aproximately after 400 ms, more joints are active after
that moment because γ tends to be much smaller than γfar.

VI. CONCLUSION

The last couple of decades have seen an increasing de-
mand for complex robots, such as humanoids and mobile
manipulators, which are highly redundant with respect to most
tasks. A popular way of dealing with such complexity is to
use convex programming subject to constraints, more par-
ticularly quadratic programming, thanks to its computational
efficiency. However, proving closed-loop stability is usually
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Figure 7: Number of active joints vs. time with QP12 (γ = 0
and γ = 0.99) and pseudo-inverse (PINV).

hard for arbitrary objective functions, therefore one of our
main contributions is an optimization-based control law that
ensures closed-loop stability by design, which can be achieved
by imposing suitable constraints based on Lyapunov function
derivatives, namely Lyapunov constraints. This property is
very important as we guarantee that the closed-loop system
is stable for any objective function without having to provide
additional mathematical proofs. In addition, we have proposed
a pseudo-analytical solution to solve an objective function
composed of a convex combination of quadratic and l1-norm
objective functions (QP12), which provides useful properties
in kinematic control, such as the control vector sparseness, by
using only one parameter. The QP12 algorithm is suitable for
real-time applications and outperforms the compared state-of-
the-art quadratic optimization solvers in term of computational
time. In addition to providing guidelines on how to design
suitable Lyapunov constraints with different convergence pro-
files, we also presented a simple way to impose limits on joint
velocities by properly defining those Lyapunov constraints. It
is important to highlight that although QP12 has a pseudo-
analytic solution, it admits only one specific equality con-
straint. Despite this limitation, QP12 is a particular case of
our much more general formulation, which is stable by design
and includes both equality and inequality constraints, but at
the expense of using a convex optimization solver.

We validated our method by controlling the center of mass
of the humanoid robot HOAP3, in real-time. The results
showed that, by properly adjusting just one parameter, our
controller yielded a solution as dense as the one provided
by the classic kinematic controller based on the Jacobian
pseudoinverse (γ = 0). On the other hand, when γ = 0.99,
the controller yielded the sparsest solution possible for this
particular task.

These properties could be very useful for controlling re-
dundant robots in different ways. For instance, in physical
human-robot interaction, it could be convenient for the human
operator to interact with a robot that performs sparse motions



12

Time (ms)
0 200 400 600 800 1000 1200

u
(r

a
d
/
s)

-0.5

0

0.5

1

1.5

2

2.5

Time (ms)
0 200 400 600 800 1000 1200

N
u
m

b
er

o
f
a
ct

iv
e

jo
in

ts

0

5

10

15

20

(a) γfar = 0

Time (ms)
0 200 400 600 800 1000 1200

u
(r

a
d
/
s)

-0.5

0

0.5

1

1.5

2

2.5

Time (ms)
0 200 400 600 800 1000 1200

N
u
m

b
er

o
f
a
ct

iv
e

jo
in

ts

0

5

10

15

20

(b) γfar = 0.3

Time (ms)
0 200 400 600 800 1000 1200

u
(r

a
d
/
s)

-0.5

0

0.5

1

1.5

2

2.5

Time (ms)
0 200 400 600 800 1000 1200

N
u
m

b
er

o
f
a
ct

iv
e

jo
in

ts

0

5

10

15

20

(c) γfar = 0.7
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Figure 8: The effect of γ = (2γfar/π) arctan (100‖∇V (q)‖)
on the smoothness and sparseness of the control inputs: the
greater the value of γ, the more sparse and abrupt are the
control inputs. On the left, the control inputs; on the right, the
number of active joints for different values of γ. When very
close to a stable region, γ → 0, otherwise γ ≈ γfar.

because dense motions may be harder to predict. On the
other hand, industrial applications usually require a trade-off
between sparse and dense solutions or dense solutions only.

Even though we have proposed an optimization-based con-
troller, we have not explicitly tackled multiple objectives
in this paper. More specifically, differently from usual ap-
proaches, our objective function is not directly related to
the task. Instead, it quantifies how good is a control input
at a particular configuration according to a relevant metric.
Therefore, since the information related to the task must be
encoded in the Lyapunov constraint, multiple objectives could

be encoded as a weighted Lyapunov function.
Finally, although information regarding robot dynamics is

not explicitly considered in our current formulation, some
dynamics information can be used by enforcing appropriate
constraints. However, when dealing with severe dynamics,
usually torque control inputs must be considered instead of
velocity control inputs, which is one of our main assumptions.
Hence, our method in the present state would not be the most
appropriate for those cases. Nonetheless, with appropriate
modifications, the overall idea of stability by design can be
applied to dynamics and this topic will be explored in future
works.
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