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Abstract

The main goal of this paper is to present a force control strategy based on the Virtual Envi-

ronment concept. This concept is a way to increase the robustness of force control schemes with

respect to a variation of the environment characteristics. We first propose this approach, then we

analyze it, and finally we adapt it to a classical external force control scheme. Experimental results

with a DELTA fast parallel robot are presented to prove the efficiency of this method.
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1 INTRODUCTION

When servoing robots with force control schemes, we usually face partly unknown systems: in fact,

the manipulator is in contact with an environment whose characteristics are not well defined and may

change. Since the environment exerts a direct influence over the controlled system, every modification

of this environment modifies the whole system behavior.

Many researchers have been working on this problem and many practical tests have been performed

that prove the efficiency of simple control laws based on an integral controller : they lead to a zero

steady-state error in force. However, such an approach, as well as many others studied in [1], [2], [3], [4],

present a very bad robustness with respect to a variation of the environment characteristics. It is

obviously always feasible to tune a gain for a particular experimental setup; unfortunately a robot is

dedicated to work in various situations: a robust force control law is then definitely necessary. Many

robust solutions have been proposed by research workers such [5], [6], [7], [8], which need either the

knowledge of the dynamic model of the system (robot and environment) or an identification of this one.

The original solution that we propose and present in this paper considers only the knowledge of the

upper boundaries of the environment stiffness and the static gain of the dynamic model of the robot.

First of all, we analyze the behavior of a linear monodimensional robot in contact with an environ-

ment, controlled by a force integral controller. In this simple case we emphasize the reasons that lead

to the bad robustness. We then introduce the Virtual Environment concept, and analyze it on a basic

control scheme. This scheme is then adapted to be used for robots by using an external force control

scheme [9]. Experimentations with a DELTA robot are finally presented and the results are compared

to those of the classical external position/force control law, proving the efficiency of this method.

2 VIRTUAL ENVIRONMENT CONTROL LOOP

The dynamic response of the force control loop for a manipulator depends on the controller, the actuator

dynamics and the environment stiffness. However, an intensive industrial use could not change the

controller gains at each step of the task which is performed if one of these parameters were modified. The

parameter which can likely change during an experimentation period is the stiffness of the environment.

Thus, we focus this study on reducing the influence of the stiffness by using a new method called Virtual

Environment.

2.1 Principle

Let us consider the basic compliant contact case along the X axis by using a monodimensional linear

robot (cf. figure (1)). M is the equivalent (robot + environment) mass of the compliant contact, D

the equivalent damping parameter, Ke the equivalent stiffness parameter, X0 the initial environment

position, X the current robot position, Fc the force exerted by the robot and F the force reacting from

the environment.
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Figure 1: Monodimensional study case

In this linear case, we can express the differential equation of the system as:

MẌ + DẊ = Fc − F (1)

where F can be written:

F = Ke∆X (2)

with ∆X = (X −X0). Let us assume that X0 = 0. Then, the transfer function of equation (1) can be

pictured as follows (s is the Laplace parameter):

- i
−+
6

- 1
Ms+D

- 1
s

-Ke
-Fc FẊ X

Figure 2: Monodimensional transfer function case

Equation (1) and figure (2) obviously show that any variation of the environment stiffness Ke will

change the system behavior, the other parameters being constant. Therefore, we propose a solution

to reduce the influence of the stiffness in order to obtain an invariant time response whatever the

environment parameters, by adding a virtual stiffness Kv (cf. figure (3)). We choose to insert in the

environment a virtual spring with a stiffness Kv higher than the real environment stiffness Ke.
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Figure 3: Basic monodimensional virtual environment

This solution can be expressed as:

MẌ + DẊ = Fc − F ∗ (3)

The resultant force F ∗ is due to the acting of the stiffnesses defined by the following equation:
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F ∗ = F + Fv = F + Kv∆X (4)

The virtual force Fv stems from the robot manipulator displacement and from the environment

position (∆X = X − X0) multiplied by the stiffness coefficient Kv. If Kv is much larger than Ke, we

obtain the expected goal. Indeed, the effect of the variation of the environment stiffness Ke is reduced

with respect to the total stiffness K∗ = Kv + Ke. However, to verify equation (3), the virtual force

vector Fv has to be substracted from the force control vector Fc. This operation must be carried out

between the physical world (cf. figure (4) part 1) and the virtual world (cf. figure (4) part 2) built by

the computer. Section (2.2) will explain how to do that.
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Figure 4: Monodimensional transfer function case with virtual environment

The force vector F ∗ becomes the new quantity to consider. However, the initial force vector F

remains always the main variable to control. Also, we have to estimate the desired force value F ∗d in

order to obtain the force value F equal to the initial desired value Fd. The simple solution we propose

is to use the following relation:

F ∗

F ∗d
=

F

Fd
(5)

In this case if the control loop on F uses an integral gain (which is the most common case), the limit

of equation (5) can be written as:

lim
t→∞

F ∗

F ∗d
= 1 (6)

Equation (5) can be rewritten as follows:

F ∗d = Fd
F ∗

F
(7)

which, using equation (4) and figure (4) leads to:

F ∗d =

 Fd

(
1 + Kv(X−X0)

F

)
, if F 6= 0, X > X0(contact)

Fd, if F = 0, X ≤ X0(nocontact)

 (8)

4



We can now verify the validity of our assumption described by equation (5). To do this, let us rewrite

and sample equation (8) by using the relations (2) and (4). After some mathematical manipulations,

we obtain the following equation:

∆Xdn+1 = A +
B

∆Xdn

(9)

with ∆Xdn = Xdn−X0 (at sampling time n), Xdn = Fdn

Ke
, A = KvX0

Kv+Ke
+ Fd

Ke
and B = − Kv

Ke(Ke+Kv)Fd.

From this equation, when n tends to infinity one gets two solutions:

∆X1 =
Fd

Ke
, ∆X2 =

KvX0

Ke + Kv
(10)

Solution ∆X2 does not belong to the set defined by the first term of equation (8) whose boundary

is defined by X > X0. Therefore, it remains ∆X1 which enables to reach the expected solution Fd:

F = Ke∆X1 = Fd.

2.2 Implementation architecture

The method introduced in section (2.1) and illustrated by figure (4) needs some adjustments to be

implemented on a real system. The controller deals with the computation of the virtual force whereas this

force has to be substracted from the physical world variable Fc. Therefore, we propose to evaluate the

behavior of the scheme of figure (5) which should be equivalent to that of figure (3) in order to maintain

the robustness properties expressed equation (4). Figure (5) shows that the external force/control loop

architecture has been chosen [9]. The additional virtual force architecture has to be analyzed in order

to verify equation (3). To implement the virtual loop on the monodimensional external control law, we

insert a gain Kα within the feedback of the virtual force loop (cf. figure (5)).
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Figure 5: Monodimensional control loop

Figure (5) shows that it exists Kα = f(Kv,Kp) such that equation (3) is verified and the virtual

environment approach is validated.

However, for a multi-dimensional real robot Kp and Kv are no longer the only gains between the

Cartesian space and the contact force space. Additional non-linear gains stemming for instance from

the Inverse Kinematics Model, the amplifiers, or the actuators should be taken into account but are

generally unknown or cannot be modeled. Therefore we will analyze the behavior of the control scheme
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represented in figure 5 for Kα unknown. The conclusions of this analysis would be similar for a multi-

dimensional real robot.

From figure (5), we can derive the following equation:

F ∗(s)
F ∗d (s)

=
1

As3 + Bs2 + Cs + 1
(11)

with: ∣∣∣∣∣∣∣∣∣
A = M

(Ke+Kv)Ki

B = D
(Ke+Kv)Ki

C = Ke+Kp(1+KαKv)
(Ke+Kv)Ki

∣∣∣∣∣∣∣∣∣ (12)

The main goal of the virtual force control loop is to reduce the influence of the variation of Ke on

the time response. To evaluate this influence on the monodimensional external control loop, we now

study the sensitivity of C, because it is the only term in equation (12) that contains Kα:

C =
Ke + Kp(1 + KαKv)

(Ke + Kv)Ki
(13)

The error can expressed as:

∆C =
Kv(1−KpKα)−Kp

(Ke + Kv)2Ki
∆Ke (14)

The relative error of term C can be written as:∣∣∣∣∆C

C

∣∣∣∣ =
∣∣∣∣Kv(1−KpKα)−Kp

Ke + Kp(1 + KαKv)
∆Ke

Ke + Kv

∣∣∣∣ =
∣∣∣∣H ∆Ke

Ke + Kv

∣∣∣∣ (15)

From equation (15), we obtain the following result:

l = lim
Kα→∞

|H| = 1 (16)

which shows that if Kα is large enough, it has no more influence on the time response of the system.

Only Ke influences the behavior of the system. This influence can be reduced by choosing Kv much

larger than Ke, as stated in section 2.1.

Figure (6) represents the variation of |H| as a function of Kα with |H| = 0 for Kα = K0 = Kv−Kp

KvKp
:

Figure (6) shows the limit l when the gain Kα is superior to K0. This case gives an information

about the implementation of the virtual force control loop: the value of Kα has to be much greater than

K0 in order to limit the relative error |∆C
C |.

Kα >> K0 (17)

This result is important to define a useful robust algorithm of the external force control for a robot

manipulator without any information about the dynamic model of the robot and the environment.
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Figure 6: Variation of |H| versus Kα

3 IMPLEMENTATION ISSUE

3.1 External position/force control scheme

Figure (7) presents the external position/force control scheme of a multi-joint manipulator as described

in [9], [10]. The selection matrix S which selects position or force control for such or such component is

diagonal and composed of 0’s and 1’s. FCL is the Force Control Law, PCL is the Position Control Law.

The force control law we are using is an integral law.
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Figure 7: External force control scheme

3.2 External position/force control scheme with the virtual force loop

The external position/force control law with the virtual force loop is defined as in figure (8). The

coefficients of the diagonal matrix Kv are defined greater than the estimated upper bounds of the

coefficients of the diagonal matrix Ke along the directions where the manipulator exerts the efforts.

The components of the diagonal matrix Kα are computed by using the result obtained in equation

(17). A bounded estimation of the static gain of the manipulator for a given position in contact with
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Figure 8: External virtual force control scheme

the environment allows us to determine the components of Kα, each of them verifying an equation of

type (17).

4 EXPERIMENTAL RESULTS

The experimental setup is a fast DELTA parallel robot manipulator (cf. figure (9.a)). A six-axis force

sensor is mounted on the end-effector plate.

(a) (b)

Figure 9: The Delta robot and experimental environment

The force sensor is in contact along the z axis with an aluminum plate which is fixed at one end (cf.

figure 9.b). We have identified 4 different stiffnesses along this plate in order to validate the virtual loop

(cf. figure (10). The set of identified stiffnesses is the following: Kez
= [1, 2, 4, 12]N/mm. All trials are

performed with the force sensor already in contact with the plate (Fz = 2N) in order to avoid the shock
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disturbance upon contacting.

The desired force component Fdz = 50N is applied as a step. The PCL is a PID controller. The

FCL uses an integral term tuned to obtain the best response time with the maximally flat response

for the stiffness component Kez
= 4N/mm. The sampling rate of the controller is Te = 0, 5ms. The

coefficients of the PCL and FCL are maintained constant during the trials.

The four types of lines in figure (10) (solid, dotted, etc.) correspond to the four different stiffnesses.

We use the same rules in figures (11), (12),(13),(14).

Figure 10: Indentification of the stiffnesses

The result of the first experimentations with the classical external force control law are presented in

figure (11). We observe a different time response for each stiffness.

Figure 11: Classical external position/force control loop with different stiffness values.

We have implemented the virtual control loop on the DELTA robot controller according to the
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scheme of figure (5). The matrix component Kvz
= 30N/mm. We have chosen the matrix Kα = I, in

order to respect the constraint equation (17). The experimentation results with the virtual control loop

added on the external force control law are presented in figure (12).

Figure 12: External position/force control loop with virtual loop and different stiffness values

We observe on these curves some identical time responses versus the variation of the environment

stiffness. The relative error of the stiffness variation with the classical external control law is: ∆Ke

Ke
= 11.

It is getting: ∆Ke

Ke+Kv
= 0, 35 with the virtual control loop. The virtual desired force component F ∗dz

(figure (13)) is computed in real time according to equation (8). These different curves show the

adaptation of the final value of F ∗ versus the environment stiffness.

Figure 13: Virtual desired force F ∗d
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The velocities of the end-effector with the classical force control law (cf. figure (14.b) and virtual

environment loop (cf. figure (14.a) are very different. The maximum velocity (cf. figure (14.a) obtained

with Ke = 1N/mm is higher than the maximun velocity with the classical external control law. This

is due to the fact that the virtual environment tends to keep the response time constant whatever the

environment stiffness value. This advantage could become a major drawback if the difference between

Ke and Kv is too large in comparison to the maximum capabilities of the actuators. A risk of actuator

saturation is then possible.

(a) (b)

Figure 14: Velocities of the end-effector of the DELTA robot

5 CONCLUSIONS

We have presented in this paper one of the main problems we encounter in robot force control: the

unknown environment. We proposed a solution to increase the robustness of the force control schemes:

the virtual environment control loop, which can easily be implemented on an industrial robot with an

open controller, since no precise knowledge of the robot and environment parameters (dynamics, am-

plifier gains, stiffness, etc.) is needed. We have described, in the case of a basic virtual environment,

this method and shown its advantages and limitations. We chose to implement it with the external

position/force control law that is often presented as a very convenient solution. Very interesting results

have been obtained with a fast parallel DELTA robot which prove the efficiency of the virtual environ-

ment approach. We believe that this method could be pertinently used for some medical applications

(echography, skin harvesting, etc.), where variations of the stiffness are for instance due to the elasticity

of the skin.
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