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Abstract

This study investigates a torque estimation method for muscle fatigue tracking, using stimulus-evoked electromyography
(eEMG) in the context of a function electrical stimulation (FES) rehabilitation system. Although FES is able to effectively restore
movement in spinal cord injured (SCI) individuals, its application is inevitably restricted by muscle fatigue. In addition, the sensory
feedback indicating fatigue is missing in such patients. Therefore, torque estimation is essential to provide feedback or feedforward
signal for adaptive FES control. In this work, a fatigue-inducing protocol is conducted on five SCI subjects via transcutaneous
electrodes under isometric condition, and eEMG signals are collected by surface electrodes. A myoelectrical mechanical muscle
model based on the Hammerstein structure with eEMG as model input is employed to capture muscle contraction dynamics. It
is demonstrated that the correlation between eEMG and torque is time-varying during muscle fatigue. Compared to conventional
fixed-parameter models, the adapted-parameter model shows better torque prediction performance in fatiguing muscles. It promotes
the use of a Kalman filter with forgetting factor to estimate the time-varying parameters and to track muscle fatigue. The assessment
with experimental data reveals that the identified eEMG-to-torque model properly predicts fatiguing muscle behavior. Furthermore,
the performance of the time-varying parameter estimation is efficient, suggesting that real-time tracking is feasible with a Kalman
filter and driven by eEMG sensing in the application of FES.
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FES-Induced Torque Prediction with Evoked EMG
Sensing for Muscle Fatigue Tracking

I. INTRODUCTION

A. Background

FUNCTIONAL electrical stimulation (FES) is one of the
existing solutions to partly restore lost motor function in

persons with spinal cord injury (SCI). The electrical stimulus
can artificially generate action potential on the axons of the
alpha motor neurons to drive muscle contraction in place of the
central nervous system (CNS). FES has been used in a wide
range of rehabilitation applications, including the FES-aided
support of standing, gait, grasping [1][2], drop foot correction
or tremor compensation and bladder/bowel management.

Although FES has potential advantages for the improvement
of functional restoration in SCI subjects, it has not so far
gained widespread clinical use because of its limitations, such
as rapid muscle fatigue and imprecise force/torque control. In
order to obtain the desired movement or trajectory for a certain
task, the electrical stimulation (ES) must produce strong, con-
sistent muscle force. It is well known, however, that the fatigue
resistance decreases in the paralyzed muscle after SCI [3], so
that muscle becomes fatigued more rapidly when artificially
stimulated than when excited by the CNS, because of the
way that the motor units are recruited: inverse size principle,
synchronized activation of motor units and constant order
of recruitment [4]. In addition, since SCI individuals have
also lost their sensory pathways, they cannot perceive muscle
fatigue as stimulation proceeds, which leads to movement
failures and sub-optimal FES parameter-tuning in practical
FES control. Furthermore, the physiological and mechanical
complexity—and nonlinearity—of the neuromuscular system
increases the difficulty for FES to precisely control muscle
force/torque output and to perform functional movements [5].

Some research has addressed the attenuation or delay of
FES-induced fatigue. Optimal stimulation patterns, such as N-
lets [6] or catch-like stimulation [7], were found to maximize
muscle performance and minimize fatigue. Random modu-
lation of FES parameters was proved to have no effect on
muscle fatigue [8]. Low frequency and long pulse duration
was reported to be capable of producing less fatigue with
constant frequency and intensity [9]. Despite these efforts, no
consensus was reached to date due to the complex, multi-
factorial and task-specific properties of muscle fatigue [10].
Therefore, muscle fatigue is still a major limiting factor for
the widespread application of FES.

Accurate torque/force signal is hence important to produce
the desired feedback or feedforward signals for adaptive FES
control in the presence of muscle fatigue and external distur-
bances. However, the torque/force measurement via external
sensors is not convenient at all for daily use, and generally do
not directly measure the muscle output induced by stimulation.

The implanted sensor is one possible technique [14] but
is not yet available for practical use. Thus, the inadequacy
of torque/force sensors is another problem in rehabilitation
application. This motivates the development of methods to
estimate muscle torque from quantities that can be measured
or well estimated.

B. Related Work

As described above, on one hand, muscle fatigue may
result in torque/force decline and eventually movement failure
without any sensation in SCI individuals, on the other hand,
convenient and precise sensor is not available for measuring
muscle output generated by stimulation. Therefore, it is im-
portant to estimate the FES-induced torque/force for adaptive
closed-loop FES control, considering the compensation of fa-
tigue. Several techniques have been developed for force/torque
prediction in fatiguing muscle. Some researchers developed
mathematical fatigue model from physiological knowledge or
experimental analysis. A fatigue function was introduced into
a biomechanical model to predict FES-induced shank motion
[11]. A fatigue recovery function, based on metabolic profiles,
was introduced into a musculotendon model [12]. A four-
parameter fatigue model, coupled with a mathematic isometric
force model, that predicts the fatigue induced by different
stimulation patterns under isometric contractions, was reported
in [13]. However, in the above works, the complex model
parameters remain difficult to be identified in application,
because of high nonlinearity and dynamic complexities. More-
over, the fatigue models can work only when the stimulation
scheme can be predetermined. But in practice, the stimulation
pattern is unknown in advance, so the fatigue model cannot
work.

Some other researchers proposed to use FES-evoked elec-
tromyography (eEMG) for torque/force prediction, as ES-
induced muscle contraction represents both electrical and
mechanical behavior, respectively manifested by eEMG and
torque/force. Moreover, the eEMG signal permits the non-
invasive and reliable measurement of muscle activity. Under
continuous stimulation, eEMG was found to be highly corre-
lated with FES-induced torque in different muscle conditions,
suggesting its use as a fatigue indicator [15][16]. An exponen-
tial curve was used to express this relationship in SCI patients
[17][18]. A predictive model based on eEMG instead of stimu-
lation was developed, allowing the use of eEMG as a synthetic
torque sensor [19]. One possible explanation is that eEMG
can capture most time-variations due to the effects of fatigue,
which cannot be captured by a stimulation-to-torque model.
Combining time-domain and frequency-domain variables was
suggested for better prediction of force [18]. In these works,
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a fixed relationship between eEMG and muscle force/torque
during sustained stimulation was assumed. Nevertheless, this
correlation was presented to be time-variant during different
muscle-fatigue levels [20] and during recovery process [21].
Such evidence indicates that the relationship between eEMG
and muscle force/torque is not constant but time-varying, and
also implies the limitations of previous force/torque prediction
strategies based on fixed-parameter models. [21] suggested an
adaptive tuning of the parameters of eEMG for predicting the
stimulated force. However, they did not propose a feasible and
effective method to do this.

The present work aims to develop an online estimation
method of FES-induced torque based on eEMG, in presence
of muscle fatigue and external disturbances. This paper is
organized as follows. The relevant experiment is introduced
in Section II. The muscle modeling is presented in Section
III. The proposed estimation method, Kalman filter (KF) with
forgetting factor, is presented in Sections IV. In Section V,
we show the estimation results with the ordinary least squares
method and the KF technique. Discussions and conclusions
can be found in Sections VI and VII, respectively.

II. EXPERIMENTAL METHODS

A. Experimental set-up

The experiments were conducted on five SCI subjects (see
TABLE I) in the PROPARA rehabilitation center, Montpellier,
France. All subjects were classified according to the American
Spinal Injury Association (ASIA) classification as ASIA A,
where no motor or sensory function is preserved. The experi-
mental set-up is depicted in Fig. 1. This study was approved
by the ethical committee of France and all subjects signed
informed consent forms.

TABLE I
PATIENT CONFIGURATIONS

Test Age Weight Height Level Months
Subject (years) (kg) (cm) of injury* post injury

S1 39 50 169 T6 3
S2 22 54 172 C7 30
S3 26 64 192 T6 36
S4 32 61.5 177 C5 8
S5 48 76 177 T6 18

* Level of injury corresponds to the injured location in vertebral segments.
T6 means the 6th thoracic (chest) vertebra while C represents cervical (neck)
vertebra.

Fig. 1. Experimental set-up for electrical stimulation and ankle torque
measurement.

The subjects were seated on the chair with the ankle at
90o, while the ankle joint center was aligned with the axis

of a calibrated dynamometer (Biodex 3, Shirley corp., NY,
USA). The shank was adjusted horizontal to the ground with
the knee joint around 40o. The foot was strapped to the pedal
to transmit ankle torque to the dynamometer and to allow
the optimal recording of isometric ankle torque. Electrical
current pulses were delivered to the right triceps surae muscle
group via surface electrodes (10cm × 3cm) to cause muscle
contractions and ankle joint motion. One electrode was placed
5cm beneath the popliteal cavity and the other beneath the
insertion point of the medial and lateral gastrocnemius on
the Achilles tendon. The muscle group was stimulated with
amplitude modulation at a constant frequency (30Hz) and
constant pulse-width (450μs), under isometric conditions, by
a portable stimulator (Cefar physio 4, Cefar Medical, Lund,
Sweden).

EEMG activity of soleus in triceps surae muscle group
was recorded, amplified (gain 1000) and sampled at 4KHz by
an acquisition system (Biopac MP100, Biopac Systems Inc.,
Santa Barbara, CA, USA). Two bipolar AgCl EMG electrodes
were positioned over the muscle belly in the direction of
muscle fiber with 20mm interelectrode spacing. The reference
electrode was placed on the patella of another leg. The skin
under the electrodes was shaved to minimize the impedance.
Isometric ankle plantar-flexion torque was measured using the
dynamometer (Biodex 3), sampled at 2KHz, and interfaced
with the acquisition system (Biopac MP100).

B. Experimental Protocol

For each subject, the experiment consists of three test
sessions: a fatigue-inducing test, a fatigue-recovery test and
a random test, as shown in Fig. 2. The maximum stimulation
amplitude was found for each subject at the beginning, by
gradually increasing stimulation amplitude until torque satu-
ration. The fatigue-inducing test includes several sequences
(named as fatigue1-fatigue5). Each sequence contains five
trapezoidal trains with each trapezoidal train consisting of 4s
stimulation (1s ramp-up, 2s plateau and 1s ramp-down) and
2s rest. The stimulation amplitude during plateau is chosen
at 50% of the maximum stimulation amplitude with constant
stimulation frequency 30Hz and constant stimulation pulse
width 450μs. In order to induce muscle fatigue, three such
stimulation sequences were applied to subjects S1 and S2, four
sequences to S3, and five sequences to S4 and S5. In fatigue-
recovery test, one train (indicated by pre, postA, ..., postE and
recovery1, ... recovery3) at maximum stimulation amplitude
was delivered to the muscle just before and after each fatigue-
inducing sequence. After the stimulation train postE, the same
stimulation train was applied after every 5 minutes, up to 15
minutes. At the end, a sequence including several stimulation
trains was applied. In this case, the stimulation amplitude of
each train was increased from zero to a randomly determined
value below the maximum value, and then symmetrically
decreased, during 2 minutes in total.

C. Torque and eEMG Data Processing

During electrically elicited contractions, the detected surface
EMG signal is contaminated by stimulation artifacts due to the
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Fig. 2. Schematic representation of the experimental sessions.

stimulation current which is recorded by the EMG amplifier.
For the preparation of model identification and torque predic-
tion based on eEMG, the measured eEMG and torque were
processed in the following steps. An example of the processed
results is illustrated in Fig. 3.

1) The blanking window method [22] is used to remove
stimulation artifacts from the raw eEMG signal and
extract muscle response (Mwave).

2) A lowpass filter is applied to measured ankle torque (6th-
order, cutoff frequency 100Hz) and measured eEMG
(6th-order, cutoff frequency 300Hz).

3) The filtered eEMG signal is divided into epochs with
each epoch containing one Mwave, and the mean ab-
solute value (MAV) of eEMG is calculated every five
epochs. The average torque is calculated within the same
time window.

4) The MAV and average torque are normalized with
respect to their maximum values.

The normalized MAV and normalized torque are prepared
to be the system input and output for model identification.
For convenience, from now on, the eEMG used in calculation
means the MAV of eEMG.

III. CONTRACTION DYNAMICS MODEL OF ELECTRICALLY

STIMULATED MUSCLE

A. Model Structure

The discrete-time Hammerstein structure was used to model
the muscle contraction dynamics as shown in Fig. 4. This
model consists of a nonlinear static subsystem followed by
a linear dynamic subsystem. It is popularly used to represent
highly nonlinear systems, and particularly useful for modeling
biomechanical systems, such as stretch reflex EMG signal
[23] and electrically-stimulated muscles, relating stimulation
to muscle force under isometric conditions [24]. It has been
shown to extend to dynamic conditions [25], which is essential
for developing stable adaptive controllers for applications in
FES. In this study, the eEMG and FES-induced ankle torque
are system input u(t) and output y(t), respectively.

The nonlinear static function maps the system input u(t), to
the intermediate variable h(t), which represents the activation
level of the stimulated muscle. It is traditionally modeled by
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Fig. 3. An example of processed eEMG and torque. The raw eEMG
signal and Mwave are zoomed in (0.5s ∼ 1.1s) to show the details. The
Mwave is overwhelmed by stimulation artifacts seen from the raw eEMG
signal. Blanking window was applied to remove artifacts so that Mwave was
effectively extracted.

Fig. 4. Muscle model structure. The present work focuses on the contraction
dynamics model contained in the rectangle within the dashed line. The
memoryless nonlinearity is modeled by an nth-order polynomial function.
The linear dynamics is chosen as an ARX model.

an nth-order polynomial of u(t) [23] as follows:

h(t) =
n∑

i=1

γiu
i(t) (1)

where γi is a model coefficient.
The linear time-variant system is described by an au-

toregressive model with exogenous input (ARX), which has
been shown experimentally to yield good prediction of output
torque/force in isometric situations [26]. It can be described
as

A(z)y(t) = B(z)h(t) + e(t) (2)

with transfer function G(z) = B(z)/A(z) and

A(z) = 1 + a1z
−1 + a2z

−2 + · · · + alz
−l

B(z) = b1z
−1 + b2z

−2 + · · · + bmz−m (3)
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where z−1 is the backward shift operator which makes
z−1y(t) = y(t − 1). In (2), y(t) is the system output at time
t, e(t) is zero mean and Gaussian white noise affecting the
system. The h(t) is the output of nonlinear element, and the
input of linear element as seen in Fig. 4.

Substituting (1) and (3) into (2) and expanding, the output
of a polynomial Hammerstein model (PHM) at a given time t
can be parameterized as:

y(t, θ) =
l∑

i=1

aiy(t − i) +
m∑

i=1

n∑
j=1

μij(u(t − i))j (4)

where μij = biγj , θ = [a1, · · · , al, μ11, · · · , μmn]T is a
parameter vector containing the model coefficients. The size
of θ depends on model complexity. Therefore, the selection
of model order (l, m, n) is a key step in the estimation
of the unknown parameters in θ. We chose to model the
recruitment curve of the muscle as a 3rd-order polynomial of
instantaneous eEMG, (n = 3), as in [24]. Linear model order
determination was determined by comparing the Rissanen’s
minimum description length (MDL) [27][28] obtained for
different model orders, since the MDL principle provides a
criterion for tradeoff between the simplicity of the model and
the model’s applicability to the data. Model-order parameters
ranging from 2 ≤ l ≤ 6, and from 2 ≤ m ≤ 6 were
considered. Finally, model order (l = 3, m = 4) was chosen
with relatively less MDL value and a simpler model as shown
in Fig. 5. The stimulated muscle model has l+m×n unknown
parameters in all. The elements of θ as well as the eEMG-to-
torque features are time-varying due to the effects of fatigue
and the associated biochemistry. At a given time t, the model
estimates are predicted using (4) by assuming the system
is stationary, or slowly time-varying, during the prediction
horizon.
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the selected model order (3, 4).

The computation of past torque y(t − i) in (4) has two
possible versions: (i) past measured torque ym(t − i) and (ii)
past predicted torque ŷp(t − i). For model identification, the
former approach is preferred, as measured torque is favorable
for model fitting. For torque prediction, both can be employed,
while from a practical point of view, the former is inappropri-
ate, since measured torque is not available. Accordingly, the

corresponding predicted output ŷ(t) based on identified model
has two versions, ŷm(t) and ŷp(t), which can be computed as
a function of past measured eEMG, past measured torque or
past predicted torque in this way:

ŷm(t) =func[u(t− 1), u(t − 2), ...u(t − m),
ym(t − 1), ym(t − 2), ...ym(t − l)]

(5)

ŷp(t) =func[u(t− 1), u(t − 2), ...u(t − m),
ŷp(t − 1), ŷp(t − 2), ...ŷp(t − l)]

(6)

In this work, all model identification work was based on (5),
while torque prediction is based on (6), that is, the process was
only driven by eEMG information. When torque measurement
is not available, the second approach as shown in (6) makes
it possible to use eEMG as a synthetic torque sensor. In this
case, we can initialize the predicted torque at zero when no
stimulation is delivered to the muscle.

B. State-Space Model Representation

State-space form is basically required for the implementa-
tion of KF. Considering a PHM (l, m, n) as in (4), its state-
space form can be compactly written as:

1) process equation

xk = f(xk−1, uk−1) = Axk−1 +
n∑

i=1

Bi[uk−1]i (7)

2) measurement equation

yk = Cxk (8)

where the subscript k indicates the current time step. In (7),
the current state vector xk =

[
x1,k, x2,k, · · · , xq,k

]T
, q =

max{l, m}, and uk−1 is the previous model input. A ∈ R
q×q

relates the previous state xk−1 to the current state xk. Bi ∈
R

q×1 relates the previous model input [uk−1]i to the current
state xk. They can be represented as following:

A =

⎡
⎢⎢⎢⎢⎢⎣

a1 1 0 · · · 0 0
a2 0 1 · · · 0 0
...

...
...

. . .
...

...
aq−1 0 0 · · · 0 1
aq 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦ , Bi =

⎡
⎢⎢⎢⎢⎢⎣

μ1,i

μ2,i

...
μq−1,i

μq,i

⎤
⎥⎥⎥⎥⎥⎦ .

The yk in (8) is the measurement of system output. C ∈
R

1×q relates the current state xk to the current measurement
yk with the following expression:

C =
[
1 0 · · · 0 0

]
.

Note that, in practice matrices A,Bi and C might change
with each time step or measurement, but here we assume they
are constant for simplifying the expression.
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IV. IDENTIFICATION USING KALMAN FILTER WITH

FORGETTING FACTOR

Recursive estimates are important when parameter identifi-
cation is needed in real-time, such as when the information is
used in adaptive control or real-time diagnosis. The KF is an
efficient recursive filter that estimates the internal states and
parameters of a discrete-time system from a series of noisy
measurements. Online estimation of the states in x and of the
model parameters in θ is investigated simultaneously in this
work. Model parameters to be identified are the coefficients
relating to both the past measured torque and the past mea-
sured eEMG in (4). A KF for state and parameter estimation
is performed by regarding the unknown model parameters
as elements of the state vector. In this way, the basic KF
algorithm does not need to be modified, except that the state
vector x will be augmented with the unknown parameters
in θ. That is, at step k, the meta-state vector wk has the
expression wk = [xk; θk]. The parameters in θ are assumed
to be locally time-invariant or slowly varying compared to the
process. Accordingly, the augmented system is described by

wk = F(wk−1, uk−1) (9)

yk = Hwk (10)

where

F(wk−1, uk−1) =
[
f(xk−1, uk−1)

θk−1

]
,

H = [C 01×[l+m∗n]].

The recursive estimation of the state-space model with KF
consists of two phases, prediction and correction. The main
equations are given by:

1) prediction phase:

ŵ−
k = F(ŵk−1, uk−1) (11)

P−
k = DkPk−1DT

k + Qk−1 (12)

2) correction phase:

Kk = P−
k HT

k (HkP−
k HT

k + Rk)−1 (13)

ŵk = ŵ−
k + Kk(yk − Hkŵ−

k ) (14)

Pk = (I − KkHk)P−
k (15)

In the prediction phase, at step k, the a priori estimate of
the state ŵ−

k , is given by the a posteriori state at the previous
step, ŵk−1, as shown in (11). The estimate error covariance
at step k, Pk is propagated according to (12), wherein Qk is a
diagonal matrix containing the process noise covariance at step
k, and Dk is the process Jacobian with respect to the variables
involved at step k, with each element D [i,j] computed by:

D[i,j] =
∂F[i]

∂w[j]
(ŵk−1, uk−1)

In the correction phase, the updated state is computed in
(14). The updated estimate error covariance is given by (15).
Kk in (13) is Kalman gain at step k, wherein Rk is a scalar
measurement noise covariance at step k.

Although the KF is an effective way of estimating the
state and parameters of a discrete-time controlled process,
its performance in estimating the time-varying parameters is
degraded by the fact that it refers to the entire history of
past measurements [29]. This is particularly troublesome since
the activity of stimulated muscles may vary, with prolonged
or repetitive stimulation leading to different muscle states. In
order to track the time-varying muscle condition, a forgetting
factor λ is deliberately introduced as proposed in [29] and
[30]. Consequently, equation (12) and (13) can be rewritten as

P−
k = DkPk−1DT

k /λ (16)

Kk = P−
k HT

k (HkP−
k HT

k + λ)−1 (17)

Choosing forgetting factor λ ∈ [0, 1] depends on how
much we hope the filter to forget the past measurements. The
forgetting factor is closer to 1, the filter will forget fewer past
measurements. A tradeoff between the smoothness of tracking
and lag in detecting the changes in model parameters should
be considered when forgetting factor is introduced to a KF.
Usually λ ∈ [0.9, 1] is suitable for most application.

V. RESULTS

A. Muscle Fatigue and Recovery Process

The data from fatigue-recovery tests were used to to observe
the relationship between torque and MAV of eEMG during
intermittent stimulation and recovery. The data during stim-
ulation plateau was used for analysis. The data were firstly
treated as the processing step (1) (2) described in section II.
C. Then the average torque, MAV and standard deviations
were computed simultaneously. The results are depicted in
Fig. 6. The torque of ankle plantar flexion gradually declined
after each fatigue-inducing sequence, to reach around 90% of
initial torque in all subjects. After 5 minutes rest, the average
torque recovered less than 5% and then remained at the same
level in all subjects. Except in subject S1, the torque recovered
after 10 minutes rest. As a whole, torque transition in fatigue
generally showed a similar tendency in all subjects. The reason
for the limited recovery may be that long-term stimulation in
an intermittent pattern produced chronic fatigue. The MAV of
eEMG represented different transitions among these subjects
as depicted in Fig. 6 (b). Although the same tendency can
be found in subjects S3 and S5, different tendencies are
found among the 5 subjects. The results in S3, S5 show a
simple decline of MAV due to fatigue, S4 shows potentiation
phenomenon, while S1, S2 represent somewhat combined
characteristics of potentiation and fatigue. Here, we do not
focus on the understanding of the different characteristics.
However, we were able to confirm that the eEMG-to-torque
relationship was not constant as most prior works assumed,
but gradually varying, in this intermittent fatigue protocol.

B. Model Identification and Validation Using the Ordinary
Least Squares (OLS) Method

The torque was predicted based on past measured torque
and past predicted torque as described in section III. A, using
random test data. OLS method was performed for model
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Fig. 6. (a) Average torque and (b) MAV of eEMG in all subjects during
the fatigue-recovery process. The results were represented as mean±standard
deviation.

identification. Fig. 7 illustrates the prediction result in subject
S5. The data during 97s of random stimulation were separated
into two parts at 68s. The model parameters in (4) were
identified using the data before 68s. Then torque prediction
was calculated using two different methods, as expressed in
(5) and (6) respectively, with the data before and after 68s. It
means that the torque prediction after 68s is driven only by
eEMG. The corresponding prediction errors, root-mean-square
(RMS) error, are also shown in this figure. From the result of
the random stimulation test, we can confirm the feasibility
of model identification and its prediction performance. For
the next step, we need to investigate this in different muscle
fatigue states to verify the model predictability.

The torque prediction was conducted using the OLS method
with the fatigue-inducing data in 5 subjects. Two different
models, the fixed-parameter model and the adapted-parameter
model, were tested. The fixed-parameter model can be ex-
plained as follows: the model parameters were identified with
the data of the first sequence(fatigue1), and were then cross-
validated for all the remaining sequences (fatigue2-fatigue5).
The prediction errors are shown in TABLE II. We found that
with the fixed-parameter model, the prediction error became
higher and higher as the muscle was more and more fatigued.
We then supposed that if the model was identified again with
the data in the latest sequence, the prediction could be im-
proved. Therefore, the second method, the adapted-parameter
model, was proposed. In this approach, the latest data of the
past were used to re-identify the model. That is, the torque
prediction of fatigue3 was based on the model parameters
obtained from fatigue2, and so on. The prediction errors with
the adapted-parameter model in all subjects are compared in
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Fig. 7. The measured and predicted torque obtained by eEMG-to-torque
model in random test. The vertical dotted line is shown to separate the data
into two parts. The model was identified by OLS method using the data in
the left part. (1) The torque was predicted based on the past measured eEMG
and past measured torque. (2) The torque was predicted based on the past
measured eEMG and past predicted torque, and the predicted torque was
initialized at 0.

TABLE II
SUMMARY OF THE PREDICTION ERROR OBTAINED WITH FIXED OR

ADAPTED EEMG-TO-TORQUE MODEL

Subject Model Average RMS Error
F1 F2 F3 F4 F5

S1
Fixed 0.0381 0.1009 0.2037 / /

Adapted / / 0.1272 / /

S2 Fixed 0.0642 0.0767 0.1559 / /
Adapted / / 0.1298 / /

S3 Fixed 0.0253 0.0467 0.0639 0.0572 /
Adapted / / 0.0345 0.0254 /

S4 Fixed 0.0511 0.0520 0.0575 0.0702 0.0631
Adapted / / 0.0480 0.0447 0.0438

S5
Fixed 0.0594 0.0641 0.0591 0.0597 0.0715

Adapted / / 0.0457 0.0447 0.0476

* F1-F5 respectively denotes the trial fatigue1-fatigue5 of fatigue-inducing
test session.

TABLE II. For example, for fatigue3 of subject S3, the RMS
error with the adapted model is 0.0345, as compared to 0.0639
with the fixed model. The average prediction of the adapted
model was superior by 16.7-50.8% compared to the fixed
model for all subjects.

In Fig. 8, the predictions with the two methods (fixed and
adapted model) and in different fatigue conditions are shown
for subject S3. Fatigue3 is not plotted in this figure, as there
was only a small difference between fatigue3 and fatigue4.
Obviously, FES-generated torque declined with the same stim-
ulation as a result of muscle fatigue. The fixed model could be
still used for torque prediction. However, in comparison with
fatigue1 and fatigue2, the prediction of fatigue4 became less
precise based on the fixed model, whereas the adapted model
contributed to improve torque prediction accuracy, as the
dashdotted black line shown. Therefore, we can conclude that
the muscle model parameters are time-varying and gradually
change with the effect of fatigue, suggesting that online model
estimation can improve torque prediction in fatiguing muscles.
This finding gave us the idea of using a Kalman filter for online
estimation to track muscle fatigue.
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Fig. 8. The measured and predicted torque obtained by eEMG-to-torque
model in fatigue-inducing protocol in subject S3. The solid blue lines indicate
the measured torques. The dotted red lines represent the corresponding
predicted torques based on fixed model which was identified using the data of
fatigue1. The dashdotted black line represents the torque prediction of fatigue4
based on adapted model which was identified using the data of fatigue3. All
the torques were normalized by the maximum measured torque of fatigue1.

C. Model Estimation and validation with a Kalman Filter

In this part, the time-varying parameter estimation per-
formed by the KF was evaluated in simulations and with
experimental data. The outlines of the muscle model and
KF were described previously. For a PHM (l, m, n) model,
we need to estimate the r = max(l, m) + (l + m × n)
dimensional meta-state. The max(l, m) parameters relate to
the internal states, the rest relate to the past torque and the past
eEMG. The elements of the meta-state vector were initialized
as ŵi(0) = 0, i = 1, 2 · · · , r. The initial output estimate ŷ0

was designated as zero. The estimate error covariance was
initialized as P0 = I, where I is an identity matrix.

1) Time-Variant Parameter Tracking in Simulation: In sim-
ulation, invariant parameter tracking was evaluated first with
the KF to investigate the stability of the muscle model.
Secondly, since muscle behavior represents time-varying prop-
erties due to muscle fatigue, in order to investigate the filter’s
robustness to the time-varying fatigue phenomenon, we slowly
changed the model parameters at different instants to imitate
changes in muscle condition. The advantage of simulation is
that the true parameters are known to be compared with the
estimated ones. The simulation model order was chosen as
l = 2, m = 2, n = 1 to reduce model complexity, as it is dif-
ficult to know how the model output changes when too many
parameters change. Thus, four parameters, a1, a2, μ11, μ21,
were estimated via the KF algorithm in simulation. At the
beginning, all the parameters were kept constant. After 33s or
50s, they were changed linearly (a1 and μ21) or in steps (a2

and μ11). The pseudorandom binary sequence (PRBS), which
is commonly used in muscle identification [25], was chosen as
model input. Model input, output and the a posteriori estimate
of the output are shown in Fig. 9.

The corresponding parameter estimates of the model are de-
picted in Fig. 10. The solid lines indicate the true parameters,
while the dotted lines indicate parameter estimates. All the
parameters converge steadily after 5s when the parameters are
static. After 33s or 50s, the model parameters gradually vary,
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Fig. 9. Data set for model estimation. Data are generated by simulation
using a PHM (2, 2, 1). A KF with forgetting factor 0.97 was used to estimate
the model.

and the estimates track the changes well, which implies that
the estimation method is suitable for time-variant parameter
tracking in the muscle contraction model.
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Fig. 10. Convergence and tracking of model parameter estimates for both
static and time-variant parameters. Solid lines indicate true parameters. Dotted
lines indicate parameter estimates. All the initial estimates were set at zero.

2) Fatigue Tracking Based on Experimental Data: In the
model identification described in section V. B, the adapted-
parameter model was proved to be able to improve torque
prediction, but identification was performed without automatic
tracking function. In this section, the identification and valida-
tion of time-varying parameters are considered and performed
automatically using the KF. The model order is chosen at
(3, 4, 3) as described above. The data from successive series
of fatigue-inducing tests were concatenated for estimation.
During 100s of intermittent stimulation, the torque of each
subject decreased to a different level, because of different
muscle fatigue levels. The time-varying relationship between
eEMG and torque was revealed in Fig. 6.
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Fatigue Dynamics: The estimation of the muscle contraction
process can be used to explore the dynamics of fatigue
phenomena. The PHM (3, 4, 3) of the contraction dynamics
was fitted to the measured torque collected in the fatigue-
inducing test session. A Kalman filter with forgetting factor
(λ = 0.997) was used for model estimation. The locations
of these poles in subject S1 and S3 are indicated in Fig. 11.
The unit circle is also plotted in this figure. All the poles are
located within the unit circle, which is of significance in en-
suring the model stability under our stimulation protocol. The
arrows denote the direction of movement of the z-plane poles.
The time-varying property of the poles may also interpret
the resulting time-varying model parameters. Moreover, the
locations and movements of the z-plane poles in all subjects
present similar characteristics, suggesting that it is possible
to assess muscle fatigue dynamics from such information. In
general, the damping ratio increases when the muscle is highly
fatigued. This matches our intuition concerning the effect of
muscle fatigue.

Fig. 11. The changes in the contraction dynamics of muscle behavior due
to fatigue during intermittent stimulation in subjects S1(left) and S3 (right).
The arrows denote the direction of ”movement” of the z-plane pole. The plot
color was changed every 16s to show the time transition.
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Fig. 12. Measured and estimated torque at time instant t0. For evaluating
prediction performance, the prediction errors for prediction horizons t1, t2,
and t3 (6s, 18s and 30s respectively) are measured. A KF with forgetting
factor 0.997 was used to estimate the model.

Torque Prediction Performance: To investigate the torque
prediction performance in time, different prediction horizons,
6s, 18s and 30s, were tested. The idea is illustrated in Fig.
12, which features the estimated model at time instant t0. The
torque predictions were computed using (4) and only driven by
the eEMG, considering a static system within the prediction

TABLE III
PREDICTION FILTER PERFORMANCE WITH EXPERIMENTAL DATA

Subject Average error Prediction horizon
6s 18s 30s

S1 RMS 0.0638 0.0974 0.1282
Peak 0.1616 0.2990 0.3414

S2
RMS 0.0763 0.0925 0.1110
Peak 0.2466 0.3402 0.4230

S3 RMS 0.0278 0.0314 0.0366
Peak 0.0743 0.0962 0.1146

S4 RMS 0.0524 0.0534 0.0556
Peak 0.1208 0.1523 0.1697

S5 RMS 0.0387 0.0418 0.0437
Peak 0.1036 0.1360 0.1510

horizon. At every torque sample for a given prediction horizon,
the RMS error and peak error were evaluated. The prediction
errors in all subjects are quantified in Table III. Eighteen
seconds was considered to be an appropriate prediction hori-
zon, as it provided a tradeoff between sufficient interval for
measurement update in KF and satisfactory prediction perfor-
mance. The prediction errors for the 18s prediction horizon in
subject S3 are plotted in Fig. 13. The solid blue line indicates
RMS error, while the dotted black line indicates peak error.
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Fig. 13. RMS and peak prediction error of the 18s horizon in subject3.

Predictive Performance in Sensing Failure: In order to
evaluate tracking robustness in the event of interruption in
recording or failure, torque prediction was integrated into the
fatigue tracking task. Any event such as a missing torque
measurement or disturbance, was assumed to result in tracking
failure. Fig. 14 reveals fatigue tracking performance in subject
S3 when muscle torque declined to 76% of the maximum
torque during the 100s-stimulation. Assuming measurement
was not available from time instant t0 to t1, the estimated
model at t0 was used to predict torque until instant t1. When
prediction was executed, the model was only driven by the
eEMG, while the online model estimation was suspended. To
evaluate prediction performance in different muscle fatigue
states, this process was repeated until the end of stimulation,
where the measurement update in KF was switched off for 18s.
The prediction tracks the measured torque well, suggesting
that if torque measurement is unavailable or unreliable, the
predicted torque based on eEMG can be used to bridge such
gaps for the prolonged application of FES.

The estimated parameters are depicted in Fig. 15. The upper
plot shows the parameters relating to the parameters of the
past torque, while the parameters relating to the parameters
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Fig. 14. Fatigue tracking based on eEMG-to-torque model and Kalman filter in subject S3. The model estimated at instant t0 was used to predict the torque
from instant t0 to t1, while the online identification and state estimation are switched off for 18s (with green background color). This process is repeated
until the end of stimulation. The blue solid line indicates the measured torque, while the red dotted lines indicate the predicted torque.

of the 3rd power of past eEMG are shown in the lower plot.
It is obvious that the parameters gradually vary, representing
varying myoelectrical mechanical correlation during muscle
fatigue. Whereas the proposed muscle model and KF algorithm
with forgetting factor provide good prediction performance, as
shown in Fig. 14.

VI. DISCUSSION

Stimulus-evoked EMG has been previously proposed for the
prediction of the mechanical response of muscles in FES re-
habilitation systems [18][19]. These prediction methods were
based on the hypothesis of a fixed eEMG-to-torque model
during ES. [20] and [21] found that the relationship varied
under different muscle conditions. However, they did not
propose a feasible, effective method for torque prediction. The
time-varying property of myoelectrical and mechanical muscle
behavior is shown in Fig. 6. It implies the limitations of the
torque prediction method based on the fixed eEMG-to-torque
model and increases the difficulties of torque estimation. The
present work proposes the use of the Hammerstein structure to
represent the muscle contraction model with eEMG as input,
where model estimation is performed by a Kalmen filter for
fatigue tracking.

The prediction result presented in Fig. 12 reveals good
performance of the predictive filter, successively acquiring the
mechanical behavior of the muscle under FES. In addition,
the error values given in Table III indicate that neither RMS
error nor peak error increases significantly when the prediction
horizon is extended. It indicates that the proposed eEMG-
to-torque model properly fits muscle behavior. If prediction
quality diminishes when an expanded prediction horizon is
selected, this is probably due to the variations of muscle fa-
tigue levels during the horizon. This can occur when prolonged
or repetitive stimulation is delivered to the muscle. In this
application, 18s prediction horizon is considered as the optimal
choice.

The muscle contraction dynamics model has been described
in a previous work [19], in continuous stimulation, with
the recursive least squares method used for identification.
However, there was no significant consideration of different

fatigue conditions in intermittent stimulation, as illustrated in
Fig. 14. In this study, the proposed estimation method was
validated for ankle torque prediction and fatigue tracking using
eEMG under isometric condition, it would be promising to
verify it in dynamic conditions by introducing a torque-joint
angle function to the proposed muscle model as in [25].

In this work, we did not consider the effect of day-to-day
changes, but as the online identification is able to identify
parameters for different subjects, that implies that this method
itself can identify the differences of day-to-day changes if we
do not care about how the parameters change with the vari-
ances of experimental set-up, for example, electrode position.
Of course, it is important to investigate the effect of different
experimental set-up. In this case, we may introduce a tuning
function to offset the day-to-day variances.

VII. CONCLUSION

The objective of this work was to develop an estimation
method of ankle torque which can be used to track FES-
induced muscle fatigue using eEMG during isometric con-
dition. In this work, we confirmed that muscle contraction
model parameters were time-varying during intermittent stim-
ulation in 5 SCI subjects. An estimation method of FES-
induced torque based on eEMG was evaluated in its pre-
diction performance. A time-varying eEMG-to-torque model
was employed to represent the myoelectrical and mechanical
behavior of stimulated muscles, where the model parameters
were estimated by a KF with forgetting factor. The results of
the proposed method for the fatigue tracking task represent
a feasible and effective torque prediction performance in
isometric condition in all subjects. In terms of improvements
in fatigue tracking, when the measurement of torque sensor
suffers from external disturbances or recording interruption,
the proposed method can bridge these problems and provide
sufficiently accurate fatigue tracking only on eEMG measure-
ment. Therefore, we conclude that the proposed estimation
method can contribute to precise torque prediction in pres-
ence of muscle fatigue. The predicted torque can be further
used for adaptive closed-loop FES control, considering the
compensation of fatigue and external disturbances. Future
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Fig. 15. Model parameters represent time-varying properties during different muscle fatigue states.

work will be extended to adaptive FES control for muscle
fatigue compensation in SCI patients. We will endeavor to
further improve the identification by means of multiple eEMG
measurements. By introducing a joint dynamics model and
joint angle sensors along with the proposed method, we will
work on FES close-loop control based on eEMG sensing
without the use of torque sensors.

REFERENCES

[1] R. J. Triolo and K. Bogie, ”Lower Extremity Applications of Functional
Neuromuscular Stimulation After Spinal Cord Injury”, Topics in Spinal
Cord Injury Rehabilitation, vol. 5, no. 1, pp. 44-65, 1999.

[2] S. Mangold, T. Keller1, A. Curt and V. Dietz, ”Transcutaneous functional
electrical stimulation for grasping in subjects with cervical spinal cord
injury”, Spinal Cord, vol. 43, pp. 1-13, 2005.

[3] C. A. Pelletier, and A. L. Hicks, ”Muslce Fatigue Characeristics in
Paralyzed Muscle after Spinal Cord Injury”, Spinal Cord, vol. 49, pp.
125-130, 2011.

[4] S. A. Blnder-Macleo and L. Snyder-Mackler, ”Muscle Fatigue: Clinical
Implications for Fatigue Assessment and Neuromuscular Electrical Stim-
ulation”, Physical Therapy, vol. 73, no. 12, pp. 902-910, 1993.

[5] L. W. Chou and S. A. Binder-Macleod, ”The Effects of Stimulation
Frequency and Fatigue on the Force-Intensity Relationship for Human
Skeletal Muscle”, Clinical Neurophysiology, vol. 118, pp. 1387-1396,
2007.

[6] Z. Z. Karu, W. K. Durfee, and A. M. Barzilai, ”Reducing Muscle Fatigue
in FES Applications by Stimulating with N-Let Pulse Trains”, IEEE
Transactions on Biomedical Engineering, vol. 42, no. 8, pp. 809-817,
1995.

[7] Y. Shimada, H. Ito, et al., ”Reduction of Muscle Fatigue by Catchlike-
Inducing Intermittent Electrical Stimulation in Rat Skeletal Muscle”,
Biomedical Research, vol. 27, no. 4, pp. 183-189, 2006.

[8] G. M. Graham, T. A. Thrasher, and M. R. Popovic, ”The Effect of
Random Modulation of Functional Electrical Stimulation Parameters on
Muscle Fatigue”, IEEE Transactions on Neural Systems and Rehabilita-
tion Engineering, vol. 14, no. 1, pp. 38-45, 2006.

[9] T. Kesar and S. Binder-Macleod, ”Effect of Frequency and Pulse Duration
on Human Muscle Fatigue During Repetitive Electrical Stimulation”,
Experimental Physiology, vol. 91, no. 6, pp. 967-976, 2006.

[10] D. W. Russ, K. Vandenborne, S. A. Binder-Macleod, ”Factors in Fatigue
During Intermittent Electrical Stimulation of Human Skeletal Muscle”,
Journal of Applied Physiology, vol. 93, pp. 469-478, 2002.

[11] R. Riener, J. Quintern and G. Schmidt, ”Biomechanical Model of
the Human Knee Evaluated by Neuromuscular Stimulation”, Journal of
Biomechanics, vol. 29, pp. 1157-1167, 1996.

[12] J. Mizrahi, D. Seelenfreund, et al., ”Predicted and Measured Muscle
Forces After Recoveries of Differing Durations Following Fatigue in
Functional Electrical Stimulation”, Artificial Organs, vol. 21, pp. 236-
239, 1997.

[13] J. Ding, A. S. Wexler, and S. A. Binder-Macleod, ”A Predictive Model
of Fatigue in Human Skeletal Muscles”, Journal of Applied Physiology,
vol. 89, pp. 1322-1332, 2000.

[14] J. A. Hoffer, ”Closed-Loop, Implanted-Sensor, Functional Electrical
Stimulation System for Partial Restoration of Motor Functions”, United
Stated Patent 4750499 , vol. 19, 1988.

[15] N. C. Chesler and W. K. Durfee, ”Suface EMG as a Fatigue Indicator
During FES-induced Isometric Muscle Contractions”, Journal of Elec-
tromyography and Kinesiology, vol. 7, pp. 27-37, 1997.

[16] A. Erfanian, H. J. Chizeck, and R. M. Hashemi, ”Excitation-Contraction
Fatigue During Sustained Electrical Stimulation of Paralyzed Muscle”,
in 18th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, Amsterdam, Netherlands, pp. 1460-1461,
1996.

[17] J. Mizrahi, M. levy, H. Ring, E. Isakov, and A. Liberson, ”EMG as an
indicator of fatigue in isometrically FES-activated paralyzed muscles”,
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 2, pp. 57-65, 1994.

[18] D. Tepavac and L. Schwirtlich, ”Detection and Prediction of FES-
Induced Fatigue”, Journal of Electromyography and Kinesiology, vol. 7,
pp. 39-50, 1997.

[19] A. Erfanian, H. J. Chizeck, and R. M. Hashemi, ”Using Evoked EMG
as a Synthetic Force Sensor of Isometric Electrically Stimulated Muscle”,
IEEE Transaction on Biomedical Engineering, vol. 45, pp. 188-202, 1998.

[20] J. Mizrahi, E. Isakov and Z. Suzak, ”Myoelectric and Force Characteris-
tics in Transcutanteous Isometric FES”, Basic and Applied Myology, vol.
4, pp. 147-154, 1994.

[21] N. Y. Yu and S. H. Chang, ”Mechanical and Electromyographic Re-
sponse to Stimulated Contractions in Paralyzed Tibialis Anterior Post
Fatiguing Stimulations”, in 13th International Conference on Biomedical
Engineering, Singapore, pp. 1667-1671, 2009.

[22] C. Frigo, M. Ferrarin, W. Frasson, E. Pavan and R. Thorsen, ”EMG
Signals Detection and Processing for On-Line Control of Functional
Electrical Stimulation”, Journal of Electromyography and Kinesiology,
vol. 10, pp. 351-360, 2000.

[23] E. J. Dempsey and D. T. Westwick, ”Identification of Hammerstein Mod-
els With Cubic Spline Nonlinearities”, IEEE Transaction on Biomedical
Engineering, vol. 51, pp. 237-245, 2004.



IEEE/ASME TRANSACTION ON MECHATRONICS 11

[24] T. L. Chia, P. Chow and H. J. Chizeck, ”Recursive Parameter Identifi-
caiton of Constrained Systems: An Applicaiton to Electrically Stimulated
Muscle”, IEEE Transaction on Biomedical Engineering, vol. 38, pp. 429-
442, 1991.

[25] W. Farahat and H. Herr, ”A Method Identification of Electrically
Stimulated Muscle”, in 27th Annual Conference of the IEEE Engineering
in Medicine and Biology Society, Shanghai, China, pp. 6225-6228, 2005.

[26] L. A. Bernotas, P. E. Crago, and H.J. Chizeck, ”A Discrete-Time Model
of Electrically Stimulated Muscle”, IEEE Transaction on Biomedical
Engineering, vol. BME-33, pp. 829-838, 1986.

[27] J. Rissanen, ”Modeling by Shortest Data Description”, Automatica, vol.
14, pp. 465 C 471, 1978.

[28] J. Rissanen, ”A Universal Prior for Integers and Estimation by Minimum
Description Length”, The Annals of Statistics, vol. 11, pp. 416 C 431,
1983.

[29] G. A. Mack and V. K. Jain, ”Speech Parameter Estimation by Time-
weighted-Error Kalman Filter”, IEEE Transaction on Acoustics, Speech
and Signal Processing, vol. ASSP-31, pp. 1300-1303, 1983.

[30] D. Y. Feng, L. Y. Min, et al., ”Unscented Kalman Filter for Time Varying
Spectral Analysis of Earthquake Ground Motions”, Applied Mathematical
Modeling, vol. 33, pp. 398-412, 2009.

PLACE
PHOTO
HERE

Qin Zhang received the M.S. degree in Robotics
from Huazhong University of Science and Tech-
nology, Wuhan, China, in 2003. From 2003 until
2008, she was a lecturer of Computer Science and
Technology at Wuhan Institute of Technology. She is
currently a PhD student with Robotics, LIRMM, IN-
RIA/University Montpellier 2, Montpellier, France.
Her research interests include the application of my-
oelectric signal, system identification, and functional
neuromuscular stimulation.

PLACE
PHOTO
HERE

Mitsuhiro Hayashibe received the B.S. degree in
mechano-aerospace engineering from Tokyo Insti-
tute of Technology in 1999. M.S. and Ph.D. de-
grees from University of Tokyo, graduate school
of engineering in 2001 and 2005 respectively. He
was a Research Associate at Jikei University School
of Medicine, Research Center for Medical Sciences
from 2001 to 2006, and a Postdoctoral Fellow at IN-
RIA Sophia-Antipolis and LIRMM, DEMAR project
from 2007. Since 2008, he has been a researcher
with INRIA and LIRMM, Computational Medicine

and Neurosciences, DEMAR project. His research interests include modeling
and identification of neuromuscular dynamics and biomechanics. He received
Best Paper Award from Journal of Japanese Society for Computer-aided
Surgery and CAS Young Investigator Award, Gold Prize from Hitachi Medical
Systems. He is a member of Engineering in Medicine and Biology Society,
IEEE.

PLACE
PHOTO
HERE

Philippe Fraisse Philippe Fraisse received M.Sc
degree in Electrical Engineering from Ecole Nor-
male Superieure de Cachan in 1988. He received
Ph.D. degree in Automatic Control in 1994. He
is currently Professor at the University of Mont-
pellier, France. He is the head of robotics depart-
ment (LIRMM) and co-chair of French National
Workgroup (GDR Robotique) working on Humanoid
Robotics (GT7). He is also member of JRL-France
scientific board (Japanese-French joint Laboratory
for Robotics, AIST-JRL) and member of IEEE.

His research interests include modeling and control applied to robotic and
rehabilitation fields, including humanoid robotics, robotics for rehabilitation.

PLACE
PHOTO
HERE

David Guiraud obtained M.Sc degree at Ecole Cen-
trale de Paris in 1990, Ph.D in biomedical Eng. in
1993. He founded DEMAR team at INRIA Sophia-
Antipolis Mediterranee and LIRMM in 2004 after
being involved in different European Projects at the
school of Medicine of Montpellier and INSERM lab.
He obtained the bronze medal from CNRS in 2005
in the Communication and Information Technology
section. Now he is senior researcher at INRIA. He
is a life member of IFESS (International Functional
Electrical Stimulation Society) and member of IEEE

EMB society. He obtained an award from french academie des Sciences
in 2010 about the fruitful collaboration between information technology,
medicine and and transfer towards industry and clinics.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


