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Abstract—This paper introduces effective numerical methods should be equivalent to the need for safe motion in humanoid
for the planning and fast replanning of safe motions to enste  ropotics today. This complexity limits the reactive cafiéibs
the safety, balance and integrity of humanoid robots over te ot compytation, as well as the motion constraint validityidg
whole motion duration. Our safe methods do not depend nor ’ . .
are connected to any type of modelling or constraints. To pla movement. Moreover, _most of the tlme the control loop in
safe motions, certain constraints have to be satisfied over acharge of the humanoid robot’'s equilibrium compensates the
continuous interval of time. Classical methods revert to tine-grid ~ trajectory motion errors. A safe motion planning framework
discretization, which can be risky for the robot. We introduce with the ability to produce a movement while satisfying the
a hybrid method for planning safe motions, which combines 513006 constraint would in theory allow balanced open-

a classical unsafe method with a verification step that chesk | IKi | ti it Idi th bustne$
constraint violation and computes excess using interval atysis. 00p walking. In practice, it would Improve the robustiness o

When the robot meets unexpected situations, it has to replan the humanoid controller. Actually, the stability margintofs
a new motion, which is often too time-consuming. Hence, we controller could be used exclusively for external distuntes
introduce a new method for rapidly replanning safe motions,i.e., or unmodeled dynamics. This is of interest to complex raboti

in less than 2s CPU time. It computes off-line feasible sub&e gy stams pecause of the need to improve efficiency, accuracy
in the vicinity of safe motions and finds on-line a solution in

these subsets without actually computing again the nonlirs and safety. . .
constraints. Our methods are validated using the HOAP-3 robt, To plan a safe motion, one has to check that the constraints
where the motions are run without any balance controller. that characterize a robot's safety, balance and integri¢y a
Index Terms—Humanoid robots, Discretization, Inequality indeed satisfied over the whole motion duration. However,
constraint, Feasible subset, Interval analysis because of strong nonlinearity in some constraints, thienapt

motions are usually obtained at the price of long computatio
times. As a consequence, the sought-after optimal motions
l. INTRODUCTION are often generated off-line and then used as joint referenc
The planning okafemotions that ensure the safety, balancgajectories. Some planning methods can yield resultefsit
and integrity of humanoid robots has seldom been invegtijatthey often use simplified or reduced models, e.g. Kajitars-ca
despite recent achievements in motion planning methods-table model [7], Kajita’s resolved momentum method [8]
Humanoid robots are complex systems in which the geometsie Goswami’s angular momentum balance [9]. Then, they
and dynamic 3D models are highly nonlinear, which may havewve to check a posteriori using simulation software that
constituted a severe obstacle to the development of methefissed-loop control can indeed ensure that the constramts
capable of planning such safe motions. In this paper, Vigint values or torque limits, feasible inverse kinematiasd
introduce efficient methods for planning and fast replagnirequilibrium are satisfied when implemented on the robot. In
safe motions for humanoid robots. In fact, motion planningie sequel, we will focus on motion planning approaches that
for humanoid robots covers a broad range of issues, suchuge complete whole-body models, and consider equality and
the aspects of the digital actors’ locomotion [1], generati inequality constraint satisfaction a priori. To deal witther
of kicking motions [2], computation of manipulator robotsequality or inequality constraints, available plannermsdiéme-
trajectory [3] and smoothing of pre-calculated motions. [4frid discretization. We showed, in previous works, that the
As a result, the availability of a safe motion planning methoclassical time discretization approach is hazardous since
would have a significant impact in humanoid robotics as dénsures constraint validity only for the considered tinsant,
would provide the conditions for challenging new applica without any information about constraint validity betwe®m
for humanoid robots involved as coworkers [5], [6] or segvintime-grid instants. Hence, we propose a new method for safe
as assistive robots in the home. Meanwhile, industry is cufiscretization that relies on a time-interval discrefi@atand
rently investing in more complex structures, such as two-atuses interval analysis to compute constraint extrema eer t
robots (Motoman) that share the same environment as huntiafie intervals, thereby ensuring constraint validity oviee
workers, in order to improve process efficiency and quality whole motion duration [10], [11]. In this paper, we introg@uc
mass production. The complexity of two-arm robots suggesta iterative hybrid method for planning safe motions, which
that in the next decade, industrial needs for safe motigaquires scalable computation time similar to that reglivg
. . _ classical unsafe motion planning methods. It computestfieas
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process is then redone until no violation occurs. A propmsit  The paper is organized as follows. Section Il reviews the
is given which proves that the hybrid method converges motion planning problem. Section Il presents the first dent

a conservative and safe solution. Experiments show that doution of the paper; namely, the adaptive hybrid safe motion
hybrid approach converges after only a few iterations. tieor planning method. Section IV introduces the second contribu
to validate our hybrid safe motion planning method, we buition of the paper; namely, our method for fast replanning of
a database of computed safe motions, which was used onshé& motions. We illustrate our approach with the replagnin
HOAP-3 robot to track a moving target, while in an openf kicking motions. We conclude the paper by underlining
loop, i.e., without any balance control.  Finally, it musthe advantages and drawbacks of our safe motion planning
be noted that our method for planning safe motions is nfstamework and emphasize the prospective developments for
bound nor connected to a given model or constraint. It iscur method.

generic method, that may be used with reduced models as well,

provided the model used is valid, i.e. derive an appropriate II. MOTION PLANNING

modelling of the robots and the environment. Simpler, yétiva , . )
models may lead to faster planning. In this section we describe the full-body model used for the

Since safe motions are computed off-line, they cannot fpbot under study. We give the optimality criterion and the

to all the situations the robot will encounter while in on€duality and inequality constraints that must be satisfigd b

line use. Thus, we propose as a second contribution a f{i Sought-after motion.
replanning method which computes a new safe motion from
a previously optimal one in a very short CPU time (lesa. Modeling of motion constraints

than 2s). The idea of fast replanning motions is not new. : . . .
. . . - . We consider humanoid robots as arborescent chains, with
Nishiwaki, et al, replanned motions using the mixture of-pre

. . n degrees of freedom (dof). Since we focus on the lower
designed patterns [12], Tak, et al, [13] designed a methgd t of the HOAP-3 humanoid robot, assuming the upper part

that balances dynamical motions, Yamane and Nakamura [ f%bd, we plan the trajectories for th; — 12 legs joints
) i = :

combined motions from a database of motions generated us| : : s :
. ; N L Y consider the motion safe if it ensures, during the whole
kinematics only, then used "dynamics filters” to correctabb . . . o S
motion duration, that joints positioqy, velocity ¢; and torque

physical consistency, and Kagami et al. [15] relied on ambntr remain within accentable bounds. i.e
loop process to adapt the motion. The above techniquesedernﬁ P e
results with no guarantee, and still rely on closed-loopticin VIVt € [0,T] (¢ < a(t) < @)

to ensure constraint satisfaction a posteriori. Neveeglone ’ ’ - -
may combine our guaranteed discretization approach with th A < @t) < @) AL <Tut) <Tv) (1)
above replanning techniques: any underlying time-grid di§ ot the robot does not slide, i.e.

cretization used to deal with a nonlinear inequality caaistr

that must be satisfied over a given time or space interval, may ~ Vt € [0,7] Fx(t)* + Fy (t)* < p2F5 ()%, (2)

be replaced by our guaranteed discretization.

Our new replanning method is safe. It uses an inner apprd&here“ is the Coulomb friction parameter arfdthe co_ntact
imation, i.e., a subset of feasible motions computed of-in force, and that the robot keeps balance, i.e. the motionskeep

the vicinity of an optimal motion. In a previous work [11], weth® ZMP [18] within the base of support, i.e.

showed how to compute this feasible subset as a box. In thi —_—
paper, we improve OSI' method and show how to obtain a larger te[0,T] (ZMP, < ZMPy(t) < ZMP,)

inner approximation. To overcome unpredicted situations, N(ZMPy < ZMPy(t) < ZMPy). (3)
e e o ot 5% (1)t hen aterein e oloning set of e
o . . .constraints:

it is no longer necessary to solve the nonlinear mequah%y

constraints, replanning can then be done very rapidly. is th Vi, Wt € [0,T] gi(q(t),q(t),d(t)) <0 (4)
paper, we apply our planning and fast replanning methods to

the kicking motion. In the case of soccer robots [16], thithes ) )

most important motion since it allows the robot to make ago:ﬁ' The motion planning problem

Usually, kicking motion is computed off-line [17], and thus The motion planning problem is to find the set of optimal
does not take into account the robot's current position er tfoint trajectories (t), g(t), ¢(t) [to simplify notations, we
direction of the goal. Nevertheless, these pre-computgdrg assume thaf(t) also describgj(t) andg(t).] that solves the
motions allow the robot to react quickly to the situationeev problem:

if the kicking sometimes leads to an inaccurate ball trajsct
We show how to make the kicking motion more accurate by
using our off-line safe motion planning and fast replanning
processes. Moreover, in order to demonstrate the effextase

of our replanning method we plan and replan a variety @fhere.J denotes the cost (or objective) functiop, the set
kicking motions that we evaluate experimentally using thef inequality constraint functions, ane; the set of equality
HOAP-3 robot. constraint functions.

minimizes  J(q(t))
subjectto Vi, Vt € [0,T] gi(g(t)) <0 (5)
and Vi V7 e{rn,....,m} hj(@r)=0



1) Cost function: The choice of the cost functiosi(¢(¢t)) following constrained optimization problem:
for motion planning must take into account the robot’s feagu
and t_he desired .appllcatlon. Some au'Fhors minimize motion subjectto Vi, vt e [0,T] g:(X,t) <0 )
duration [19] or jerk [3] for robot manipulators. In [2], the ,

. o and Vi, Vre{mn,...,} hi(X,7)=0
energy consumption taking into account actuators parasiete
(friction, etc.) is considered for humanoid robots. Biakmdly Note that the inequality constraint must be satisfied over th
inspired cost functions can also be considered; for examplehole time duration.
the minimum torque change [20]. In this paper we considered
as criterion the motion duration in Sections Il and 1ll, ahd t C. The classical method for solving SIP

energy consumption in Section IV. . ) T ]
Most classical constrained optimization algorithms, sash

2) Inequality constraint functionsThe physical limits of . .
the system are defined through the set of the inequal’ OPT [25] or FSQP [26] use a finite number of discrete

. : ,cgnstraints, hence require the discretization of contiisuo
constraintsg; (q(t)) as shown previously. Hence, the rObOt?unctions [22], [27]. Discretization usually consists atkin
integrity and balance are ensured if these inequality caimss ' ) y 9

- . S up the functions values over several time points taken on a
are sat|sf|eFi over the yvhole mpnon duration, i¥. £ [0, T]j grid. This leads to the replacement of the inequality ceatists
3) Equality constraint functionsThe set of the equality i, Equation (8) by:

constraint functions:;(¢(t)) allows the definition of motion

minimize  J(X)

waypoints. These functions usually correspond to conggai ViVt € T gi(X,t,) <0 )
on some of the system state variables at given time instants whereT = {t1, ..., tp—1,tm}
7 € {0,..., 7}, such as the beginning or the end of a motiorsgnsequently, the continuous set of inequality functiog)s (

4) The Semi-Infinite Programming problems and B-splin&s,vt € [0,7] ¢;(X,t) becomes a discrete on&i, Vi, €
parametrization: Problem (5) is an optimal control problemT ¢,(X,¢;) where the constraints are only considered for
also called an Infinite Programming problem since it aims w@iscrete values taken on the time-gfiid Some methods run
find the continuous trajectories that satisfy a set of comtirs  several optimization processes and modify the §riah order
inequality functions. Both the trajectories and the inditpa to get better results [22]. In fact, the optimal value deend
functions can be decomposed into infinite sets of value. Bm the number of time points considered [28].
the best of our knowledge, there are no algorithms able to

deal with an Infinite Programming problem, so we have to 0.08 arw
transform it into a Semi-Infinite Programming (SIP) problem =N
[21]. SIP is an optimization problem with a finite number 0.06
of variables to optimize and a set of continuous constraint 0.04
functions that is equivalent to an infinite number of diseret
constraints to satisfy [22]. To do so, one usually uses & join 0.02
trajectory parametrization [23]: 0
-0.0
q(t) = f(X,1) (6) %f\ 'S /\
-0.04) v, X
where X is a vector of parameters. We choose to com- L - - 53 -
pute joint trajectories with B-spline functions [24]. Thus ' ' ' ’
we define a motion via the parameter vect® = Fig 1. Representation of a constraint function (the ZMPingagittal plane),
[T,p11,P1.2,--- ,pNijS] where N, is the number of basis- obtained with a motion planning method using time-grid digization.

functions,T" is motion duration angy, ; the coefficients of the
weighted sum of the B-spline functions. The joint trajegtor We used this classical method of discretization with a sagit
qx(t) is computed as follows: tal 2D model of the HOAP-3 robot, and found out that it en-
sures constraint satisfaction only for the time instarisreon
N, the time-grid (see Figure 1) [10], as was already mentioned i
Vke{l,...,N;} q(t) = Zp,w- X Bj(t) (7) [29]. Furthermore, no information is given regarding coaisit
j=1 satisfaction between two points on the time-grid. Themfor
the constraints can be violated during the motion. To be
Joint velocity and acceleration are obtained by diffeintyg able to compare our safe planning method and this classical
(7). In this paper, we use nine uniform clamped B-splinegay of discretization, we run the motion planning process
basis functions. We gather the three first and the threedast ¢ several times using the classical discretization apprdach
mon basis-functions to obtain initial and final joint velgci several time-grid size. The outcomes are gathered on Table |
and acceleration equal to zero and get the basis functi@is [t highlights the fact that some time-grid sizes may produce
hence we consideN, = 5 optimization B-splines parametershazardous motions. To find an appropriate time-grid siee, i.
per joint trajectory. Our motion planning problem boils dowthat ensures the robot’s safety, one usually performs akver
to finding a parameter vectdX that is the solution of the trials while increasing grid size, until one finds a satitfag



motion. Summing up the trial running times, a satisfactof$. Guaranteed Discretization
motion is obtained in 22 CPU minutes (the checking processthe guaranteed discretization process ensures the yadidit

time excluded). the inequality constraints over the whole motion duratib®j ]

Remark 1:In the sequel, all CPU times were obtained op 1] py computing the minimum and the maximum values
the following hardware and software. CPU : Intel Core 2 Dugy the set of functions;(X,¢) at a given intervak € [{].

E4400 2GHZ, Bus Speed: SQOMHZ, L2 Cache: 2MB, I\/_Iemg\n upper bound for the maximum value masx;(g:(X,t))
ory: Z_GB. at 667MHz, OS: Linux Ubuntg 8.04. Constraine¢k given by Suplg;](X,[t])) and alower bound for the
optimization problems were solved using IPOPT softwat@inimum value mincr (9:(X, ) is given by Inf[g;] (X, [])).
package. Interval arithmetics related software was writte  Therefore, the upper bounds of(X,t): max g; are easily

C++ and compiled using gcc-4.1 obtained by computing the upper bound of the inclusion
function [¢;](X, [¢t]) for a time interval[t].
TABLE | ing thi ddi o h the irii
CRITERION (MOTION DURATION), COMPUTATION TIME, AND NUMBER OF Using this guaranteed discretization approach, the inggua
VIOLATED CONSTRAINTS OBTAINED FOR DIFFERENT TIMEGRID SIZES ~ constraint functions in (8) are replaced by:
["grid size | criterion(s) | CPU time | violation | Vi, V[t] € IT  Sup[g],(X,[t])) <0 (10)

7 0.3601 499's 17 _

13 03896 | 1mn 24s 14 With IT = {[t]1, [tl2], ..., [tlk—1, [t]x} @and [t],, = [tn—1,tn].

31 0.3914 1mn 05s 14 In practice, the bounds thus derived may be too coarse

61 03925 | 2mn 34s 6 because of over-approximations in interval computatidve (t

121 0.3943 4mn 47s 2 . .

301 04010 | 13mn 21 s 0 wrapping and dependence effects). Still, there are several

601 0.4169 24mn 9s 0 techniques that can be used to obtain tighter enclosures by

using, for instance, Taylor series expansion or some global
optimization techniques [31]. In the sequel, we use a hizect
process which decomposes an interval igtesubintervals to
compute the minimal and maximal values of the constraint

Before introducing our method for planning safe motiondunctions.
we will introduce interval analysis and a guaranteed distae

tion approach, the two main ingredients of our technique. C. A Direct Method for Safe Motion Planning

The guaranteed discretization approach is used to plan a
A. Interval Analysis motion for the HOAP-3 robot using a sagittal 2D model [32].
] o The enclosures, which are a conservative computation of the
Interval analysis was initially developed to account foe thextrema, are the values returned to the optimization ahyori
quantification errors introducc_ad by the floating ppint reépregy doing so, the algorithm will be able to produce an optimal
sentation of real numbers with computers, and it was theg| tion that satisfies all the constraints over whole nmmtio
extended to validated numerics [30], [31]. A real intervay  ation.
[a] = [g; a] is a connected and closed subsetiof with  \ve made several trials while increasing grid size. Table I
a = Inf([a]) anda = Sup([a]). The set of all real intervals of go\ys that the criterion value reached with our safe method
R is denoted bylR. Real arithmetic operations are extendel |oyer, hence better that the criterion value reached By th
to intervals. Consider an operatorc {+, -, <} and k] ¢jassical method (Table 1). It shows however that the CPU
and P] two intervals. Then:[a] o [b] = [infuca)ve] ©  time required to obtain the result is clearly prohibitivee Will
Uy SUBea)vefn) % ° vl. _introduce a hybrid method for planning safe motions within
Consider a functionn : R™ ~— R" ; the range of this 3 cpy time similar to the ones required by classical unsafe

IIl. SAFE MOTION PLANNING

function over an mteryal vector [a_] is given byz([a]) = methods.
{m(u) | u € [a]}. The interval functiorjm] : IR"* —— IR"?
is an inclusion function form if V[a] € IR™, m([a]) C TABLE I
[m]([a]) An inClUSion fUnCtion Ofm can be Obtained by re- CRITERION, COMPUTATION TIME, AND NUMBER OF VIOLATED
L ) ’ - CONSTRAINTS AS OBTAINED FOR DIFFERENT CHOICES FOR THE
placing each occurrence of a real variable by the correspgnd TIME-INTERVAL VECTOR k AND THE BISECTION ORDERDb.

interval and each standard function by its interval coyasr

The resulting function is cal_led thle natural_inclusion flioue. O —

The performanpes of the inclusion function depend on the VR 03933 28n 36mn

formal expression ofn [30]. 6 | 16 0.3950 | 32h 19mn
SIP problems have already been solved with constraint

satisfaction and global optimization methods based omiate

analysis ([31], and the references therein). These methods ) ) )

usually rely on branch-and-prune methods, whose complexiR- A Hybrid Method for Safe Motion Planning

grows exponentially w.r.t. the dimension of the parameter The main idea to reduce CPU time is to use guaranteed

vector, hence would require too long a computation time wheliscretization as seldom as possible. Therefore, our isléa i

used for motion planning with humanoid robots. develop an iterative process which uses classical digat@in

[ & [ b [ criterion (s) [ CPU time |




Algorithm 1 Hybrid Safe Motion Planning
1 X = Xnit, =1, Vi, k Vik1 = 0, n i
2: repeat
3. Use time-grid discretization and solve SIP with inequal-
ity constraintvi, Vi, € T g:(X,tx) < —vigr
4.  Check constraint satisfaction for the computed feasible
motion: compute violation excess .

5. if (34, k,r such asu, i # 0) then

6: Vikor+1 ‘= Vikr + Hikr

7 r=r+1

8: endif

9: unt" /’L’L'.,k.,’l‘ = O [ .65 0.1 6.15 0.2 8.25 0.3 .35 0.4

10: return X which characterizes a safe motion.

Fig. 2. Hybrid method for safe motion planning: first iteoatir = 1

sagittal ZHP(L)

processes to solve the SIP problem, i.e. an unsafe methdd, an
then uses guaranteed discretization to check that the afigqu — r —
constraints are satisfied.

For an iterationr, we modify the inequality constraints of

Eqg. (9) by:

Vi,V € T gi(X,tk) < —Vikr (11)
and solve the SIP problem with a classical discretization. K
Using the computed parameter vectdr we compute the

constraint violation magnitude; ;.. for each constraint, using
guaranteed discretization.

pik,r = max(0, Sup([gli (X, [tr—1,t])),
Sup([gli (X, [tk: tk+1])))  (12)
If we detect a constraint violatiord{, &, such asyu;  , #

0), we penalize the constraint function over the correspoydiE. Convergence of the hybrid method
time points, as follows:

Fig. 3. Hybrid method for safe motion planning: second tierar = 2

We will now analyze the convergence properties of the
Vikr+1 = Vikr T Wik (13) hybrid method and show that it converges to a conservative

and redo the optimization process again until no violatiosPlution. Let us consider the time griti= {t1, ..., tar—1,ta }
occurs. This algorithm is shown on Algorithm 1 and i$enoteX* € R" the actual solution vector of (8), and let us
summarized on Figures 2 and 3. define, for all; andk the scalan;, as follows

Figures 2 and 3 show the time history of the ZMP in
the sagittal plane for the first two iterations. On Figure 2, if (3¢ € [ty_1, tx41], such thatg;(X*,¢) = 0)
a constraint violation is detected and the excess magnitude then v, = —gi(X*, 1), (14)
computed; on Figure 3, a penalization is introduced, which else v}, =0.
further lowers the constraint limit. Eventually, no viatat '
occurs and the constraint function remains within feasible fact, v, is non null only when the inequality constraint
values. For the ZMP constraint in the sagittal plane, only(.,t) is active on[t_1, t,.1]. Then, it is easy to prove that
two iterations were needed, but other constraints needed mX* is also a solution of
than two iterations. Table Il shows the CPU time of the

successive optimization processes. The total CPU time i§ Minimize J(X)
H . *
(41.4 + 33.8 + 7.6 + 8.4 + 4 x 380 = 1611.2s), nearly 27 subjectto Vi,Vk € T gi(X,tx) < —vfy (15)
minutes. and Vj,V7 € {r,...,m} h;j(X,7)=0.
TABLE Il B . P . B
CPUTIME OF THE HYBRID METHOD FOR MOTION PLANNING (15) is a constrained optimization problem where the inequa
(TIME OF THE CHECKING PROCESS 1880s.) ity constraints involves;, .

r | CPU time (s)| maximal violation magnitude total CPU time (s)

1 41.4s 5.4 % 421.4 TABLE IV

2 33.8s 0.25% 835.2 COMPARISON OF THECPUTIMES FOR THE METHODS PRESENTED

3 7.6s le=® % 1222.8

4 8.4s no violation 1611.2 methods || classical unsafel direct safe| hybrid safe

CPU time 22mn 28h 36mn 27mn
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DenoteX, the solution vector of Lean on the right foot (d)

minimize J(X)
subject to Vi,Vk € T ¢;(X,tx) < —Vigr (16)
and Vj,vr e {r,...,7} h;(X,7)=0

where the inequality constraints now involve, ., computed
via (13).
Proposition 1 (Convergence to a conservative solutidi): Make right (c)
exists7 such that
o Vr>7, Vi, Vk ik, =0, ie. the time grid discretiza-
tion yields a safe motion, Fig. 5. Heuristic to choose the next step.
. Vi, Vk Vi k7 = E:ig i k,r Z V;,k'
. X is a conservative solution of (8), i.X is a feasible
solution of (8) andF(X;) > F(X*).
Proof: From (13),Vr v; k., > vk r—1. Hence, it exists
r1 such that; ;. ., > v7,. Consequently, the feasible solution
vector of (16) forr = r, is also a feasible solution vector of [

(15). ThenVi, ¥k, Vr > 7 i pr = O. n

Go straight
making right (b)

F. Computation time
. . . Fig. 6. Experimental validation of the motion computed witte hybrid
Table IV shows the CPU times required by the classmaﬁtion p|amﬁng method. P Y

unsafe method, the direct safe method and the hybrid safe
method for motion planning. The classical method uses atime

grid discretization and produces a result in 22 minutes, but

can provoke constraint violations that may be hazardous Qdersﬁan@mg,ﬂt}h? tfﬁll\f/:dsqdls avte_ulablte at |_eeexpltﬂh|£edlorg.
robot integrity and balance. The direct safe motion pIagniA empnasizes that the hybrid motion pianning method essure

method uses a guaranteed discretization of time, but requi"he validity .Of the constralnt, since the robot tracks titgea
nd keeps its balance without any balance controller.

prohibitive CPU time. Our hybrid method produces safe mé" Remark 2: Unfortunately, we considered only 24 motions

tions while requiring only 27 minutes. It ensures the rabot’ . "~ " . ) 7 .
safety at the price of a CPU time only 20% longer than a\?{'th initial and final static postures. By considering dynam
unsafe method, which we consider acceptable motion transition we might get smoother navigations, asedon

in [33].

G. Experimental validation )
H. Conclusion

In this section, we introduce an iterative hybrid method
for planning safe motions, which requires CPU time of the
same order of magnitude as for classical unsafe methods. For
the HOAP-3 robot, we find that the required CPU time is
only 20% longer, which is very acceptable. Then, by using a
tracking experiment without any balance controller, wevpro
(@) 5em, 0° (b) 5¢m,30° () Ocm,30°  (d) Ocm, 0° that our hybrid motion planning method is able to generate

safe motions.

Fig. 4. Set of the four posture when the robot leans on itsfteft, define
by the parametersif feet distanceq: step direction).
IV. FAST REPLANNING OF SAFE MOTIONS

To validate our hybrid motion planning method, we creat®- Replanning a kicking motion

a database of motions, to allow the robot to track a movingIn the above sections, we showed how to plan safe motions.
target. First, we define a posture using three paramédtefedt We will now address fast replanning of such safe motions. Let
distance in the frontal plary, : step size in the sagittal plan,us use the hybrid method introduced in the previous section
« : step direction). We choose four postures, with- 2cm  to plan a safe kicking motion. The objective is to kick a
as presented in Figure 4. We define a step as a motion whidl located atz = 1cm. The impact point height is taken
allows switching from one posture to another. We establishah h = 3cm, as shown in Figure 7, and we assume that
simple heuristic algorithm (cf. Figure 5) to choose the ¢ep the impact occurs at mid-time. Hence, the planned motion is
to track the position of the target. This algorithm computeserely characterized by the position, ) of the foot at the
the directiond of the target and chooses the best step toid-duration time instant. The planned safe motion is deglic
keep the target in front of the robot. Figure 6 shows then Figure 8(a): The impact occurs at the desired position
results of the experiment with the HOAP-3 robot. For a bettér = 1cm, h = 3cm). Now, what happens if the ball is not



at the expected position or has a wrong size ? Figure 8(b)
shows the kicking motion obtained when the motion planned
for x = 1cm is run while the ball is at positiom = 3cm. In
fact, the foot hits the ball at an impact point which is higher . |
than expected. As a consequence, the energy transmitted to

the ball may be insufficient to reach the desired goal. Figure _
9 shows the outcome when the kicking motion planned for () oy at expected position () Ball at unexpected position
(z = 1cm, h = 3cm) is used with a ball smaller than expected,

hence would have required a lower impact point, and whiéfg- 8 A kicking motion planned for a ball at position= 1cm, is used
. " . . with a ball at expected and unexpected positions.

is also located at a bad position, i.e.= 3cm instead of

x = 1lcm. Here the robot’'s foot goes over the ball and the

robot falls. For a better understanding, the full video isoal
available at ieeexplore.ieee.org.

To improve and adapt the kicking motion, one solution ma_
be to solve the new constrained optimization problem to ge
erate a new optimal motion with the new equality constrai
corresponding to the actual ball location, ie.= 3cm, or
size. However, such an approach is often time-consuming.
One can use a control loop process to modify the motigmy. 9. A kicking motion planned for a ball at positian= 1cm and impact
[12], [13], [14], [15], but those methods are based on simp_l@inth = 3cm, is used with a smaller ball that would have required a lower
model (such as cart-table) and focus mainly on the balanceBfact point, and which is at an unexpected position. Thetrddlls.
the robot without considering all the constraints, suchhes t
joint position or torque limits. Such approaches are of seur

unsafe, hence risky for robot’s integrity. B. Computation of the Feasible Subset

We will now introduce a method which modifies the previ- L d &K th h . h
ous optimal kicking motion in a safe way, i.e., while ensgrin et us denoteX the parameter vector characterizing the

constraint satisfaction, but at the price of only a veryb@BU optimal safe motion obtalned_ using our hybrid method._To
time. i.e.. less than 2 seconds. Our idea consists of renyacmake the robot able to adapt its motion to as many situations
the set of inequality constrainté ¢ [0,7], g(X,t) < 0, as poss[ble,we have to compute an inner approx_lm@_(q;m)f
which is inherent to a given robot, by a set of bounds on tllige feasible set, r_nls_large as pF’SS'b'e"_ that conta_lns thma_ipt
parameter vector, i.e., bX € [X], where[X] is an inner vector X and satisfies all the inequality constraint functions.
approximation, i e. asubset of the feasible set of e— Recent studies addressed the computation of feasiblesiats u

Here we consider only inner approximations that are given 49“’5"' a:(naly5|s f(()jr the de5|gcrj1 of parallel or rs]erlalhrfa(?g-,_bl
axis-aligned boxes. In our approach, inequality constsaimat ])k') n atl:t, We do not nee . to f:omp}u_te the V\{”? € kefaS| €
can be nonlinear and time-consuming to evaluate are mergfy> Put only an inner apprc_JX|ma_1t|0n o it We wil fook for a
replaced by bounds on the parameter vector. By doing S bsetX] that will be contained in the feasible set. To obtain
on-line adaptation, i.e., on-line replanning will consigtan a box [X] as large as possible, we follow two steps: in the

optimization process with bounds only on the parameters, ngrSt step, we compute a feasible subet that can b_e Very
equality constraints/, and possibly a cost functios’: small, and in the second step, we expand the feasible subset

[X] to obtain a larger one.

minimizes J'(X) 1) First step: Computation of a feasible subset:
subject to X € [X] a7 a) Principle: We start by computing the interval vector
and Vk h;ﬂ(f{) =0 [W] as a weighted interval vector that will allow us to ignore

. or give emphasis to some components of the actual feasible
where 1/ (X) is the new set of equality constraints thaset. In this paper, we propose to comp{¥&] by using the
characterizes the actual position of the ball, re= 3cm, distance between the optimal vecirand the first constraint
or the actual impact point. It now remains to compute thgolation along each direction, as depicted on Figure 10.
feasible subsefX]. Hence, we can write a first guess for the feasible subset as:

[X] =X + [W] (18)

Note that0 € [W]. Then, we prune the inconsistent parts of
[X] by solving the following constrained optimization problem
for scalard

maximize 6 € R
such that Vj, VX € [X], Vt € [0,T] g;(X,t) <0
where [X] =X +§ x [W]
and 0<6<1
Fig. 7. Representation of the parameter/f) of a kicking motion. (19)




b) Algorithm: The principle of the algorithm is to start X+6,|W]

from 6 = 5o = 1, and then to reduce it until the bdX] = Taw
X + drinar X [W] no longer contains inconsistent vectors. \ : \"
Figure 10 shows the principle of our algorithm for computing 7——

the feasible subsefX]. Using a branching algorithm with /
consistency tests as implemented in the ALIAS toolbox [35] K
we solve the following problem for boj|:

find [z] C [X]
where [X] = X 4 0;[W] (20)
such asdj, 3t € [t] Sudgl,([z],t) >0 X 40, W

wherek is initially taken ask = 0. If the algorithm finds a
solution, i.e., a boXz] # 0, it stops andj is updated. New
Or+1 Is chosen such that: —_—

S Feasibl 5 ol
[Z] n (X+5k+1[W]) —0 (21) easible parameter set X2+5AW1

Problem (20) is solved again with nefy.; until it admits _ _ o .
. : . .Fig. 10. Example of a feasible set and of its inner approonat the
no solution. When the latter occurs, an inner approxmatup,gﬁsible sub-seftX]

for the feasible set, i.e., a feasible subset, has been found
Eventually, the feasible subset is given by:

[X] = 5( + 6final [W] (22)

X+\60[WJ Expansion is possible
\\ X,
2) Second step: Expansion of the feasible subset: N _

a) Principle: On Figure 11, we can see that the subse /,a ;

[X] is not as large as possible, and it could be extended ¢[;] —
X" or X; directions. Thus, we focus on an expansion ste|
to obtain an extended feasible subp¥t.

b) Formulation: Let us denote bymn, the index of X
vector components. Let us introdud® , o € {-1,1}, a
vector of same dimension & which contains null intervals
except for then!” component, which contains intervat1, 0]
for o = — (negative direction) of0, 1] for o = + (positive
direction). We can expand subs@X] in o direction on the % - 4
m*" component, by solving the following problem:

X+6 W]
p

maximize p,, € Rt
with  [X]' = [X] + pm x ES,
andVvi, vX € [X], Vt € [0,T] ¢:(X,t) <0 Fig. 11. Example of the expansion process. The final sUb&ptely on the
(23) order of the expansion.

When p,,, is found, the expanded inner subset is taken as
[X] < [X]'. The whole expansion process implies expanding
all the parameters and directions. However, we have to &0@s Application to kicking motion
the order of parameter expansion as it will impact the final

; ; +
rgsult: Indeed, F|gure 11 shows thgt It we ex@“‘? on Xy . motion. Here, we detail the replanning results for the case
direction, we will reduce the magnitude of following podsib (@ = lcm, h = 3cm)

expansion toX, direction (and vice-versa). Therefore we 1) Choice of the parameters to adap©bviously, it is

have to rank the parameters for expansion regarding: not necessary to adapt all motion parameters. Since, we are
« the sensitivity of the foot's location with respect tonterested in collision location along the x-axis, we adagy
parameters. We have to emphasize the parameters fgtjoint trajectories that impact motion in the sagittame:
will bring the greater modification to the foot's position.name|y, the knees, hips pitch, and ankles pitch. Collision
« the sensitivity of the constraint functions with respect tgccurs at motion half-duration, thus we will only change the
parameters. To get a feasible subset as large as possipleg B-spline parameters. Last, to proceed with the exioans
we have to emphasize the parameters for which constrajii rank the parameters according to the sensitivity caiteri
functions are less sensitive. stated in the previous section. We choose to expand the
To sum up, we have to rank first the parameters that maximizasible sub-set starting from the parameter of the flyig le
the variation of the foot’s position without leading to ctmaint  ankle, knee and hip, and then the supporting leg hip, knee and
violation. finally ankle.

We apply now our fast safe replanning method to a kicking



2) Feasible SubsetFigure 12 depicts the results of our(x = 3cm, h = 3cm). Figures 15 depicts the time-history of
computation. We can see that the expansion process isieéfecthe range of the feasible left foot velocity, the time-higtof
and can indeed enlarge the feasible subset. The width of the planned and of the replanned left foot velocities, dyrin
feasible sub-set depends on the B-spline parameter under abe kicking motion. In fact, when replanning foot motion by
sideration, but it is interesting to see that the parametnde modifying the third Bsplines parameters only, the velesitof
changed within an interval of 7 to 14 degrees without makirthe robot’s joints remain unchanged at mid-duration, aiiat jo
the robot fall, since our method ensures that no constraintvialues are only slightly modified. Consequently, the flyiogtf
violated. Figure 13 shows the set of impact positidnsh) velocity remains almost the same for any replanned motion.
that can be attained by the feasible set of motion paramet@usr fast replanning process far = 3cm vyields a kicking
taken in[X]. Let us assume we have initially planned a safotion for the ball that is as good as the one originally p&hn
motion for h = 3cm andxz = 1cm. Then, if we target an for 2 = 1cm. In contrast, when the latter is used when the ball
impact ath = 3cm, our replanning method can yield adapte atz = 3cm, ball motion has poorer performance.
kicking motions for balls located at € [—1; 5]cm.

support ankle == | =)
support knee : :
support hip —
flying hip
fling knee
flying ankle _
15 -10 -5 0 5 10

i Fig. 14. Replanned kicking motion. See also full video atigxore.ieee.org.
Value of the feasible sub-set around the 9 P g ae E

optimal vector (°)

Fig. 12. Results of the computation of the feasible sub¥ . green values . Velocity of the right foot V(t)
represent the feasible subset components prior to the sigmaprocess. The
red values represent the components after the expansicegzo

range of velocity ——
planmotion ~ ——
re-plan motion  ——

X (cm)

[ 0.5 1 1.5 2 2.5

Fig. 15. Representation of the feasible time history of teaity of the
foot.

2 3 hom) 6 This emphasizes the effectiveness of our method, which

is capable of producing new motions adapted to unpredicted

Fig. 13. Representation of the feasible set of impact mositiz, h) for ~environment, in a very brief CPU time.
motions in the feasible subsgX]. The green values are before the expansion
process, the red values are after the expansion process.

~

E. Experimental evaluation

To demonstrate the effectiveness of our fast replanning
method we investigate the replanning issue of a variety of
kicking motions. Starting from the optimal motions planned

We choose to replan the optimal motion to make thfer three different cases (distance to tee= 1cm ; kicking
robot kick a ball ath = 3cm high and located at positionimpact point height: =1, 2 and 3 cm), we compute from these
z = 3cm. Thus, we proceed with the optimization of theptimal solutions, the feasible sets of new impact posstituat
problem presented in Equation(17) but with the followingan be re-planned using the fast approach. The feasibletsubs
equality constraints: in the vicinity of the optimal motion computed for the impact

S point (x = 1cm, h = 3cm) is already given in Figure 13, and
find X € [X], such that (24) the ones around the impact points € 1cm, ~ = 1cm) and
h(X,T/2) = 3em andz(X, T/2) = 3em (z = lcm, h = 2cm) are gathered in Figure 16. Then, using
Our implementation of the optimization algorithm took 1.5these sets, we study the possibility to replan kicking nmsio
of CPU time to find solutionX. The replanned motion is using our fast method for twenty five new ball locations and
depicted on Figure 14, with the impact at the desired pasitiampact heights, combining =1, 2, 3, 4, 5 cm and =1, 2,

D. Replanned motion



3, 4, 5 cm, from the three originally planned motions. It mus
be noted also that this experimental evaluation of the nieth
explores a large portion of the kicking motion’s workspaae f
the HOAP-3 robot, i.e. the geometrical space reachable dy t

robot’s flying foot. Fourteen out of the twenty five new impac;
points are included in at least one feasible subset, hente ca
is feasible if it is contained in at least one feasible subEa¢
maximum CPU time required for each fast replanning was
less than 2 s. Figure 18 shows the replanned kicking motio
. h . Fig. 19. Synchronized still images of the optimal motion {er = 1cm,
keeping balance. For a better understanding, the full video, — |y (above) and the replanned one far 5cm, b — 3cm) (below)
also available at ieeexplore.ieee.org. Figure 19 showsathte as obtained from the former. Fast replanning process allamge variations
a large variation of the robot's foot motion while ensurin@f feasible motions, i.e., motions that ensure the robot's
robot's balance and integrity. Here again, all experimenes Safety and integrity. Thus, replanning boils down to sajvin
done without any closed-loop balance controller. In sunymagn optimization problem with only bounds on parameters,
kicking motions and we were able to replan appropriate and
oy oy safe kicking motions when the ball changed size and location
in less than 2s CPU time. This is a very promising result

be successfully replanned using our fast appro&aure 17 Fig. 18. Replanned kicking motion for (= 2cm, h = 2cm) as obtained

for (x = 2cm, h = 2cm) as obtained from the optimal motion

replanned motion for a kicking motion at & 5¢cm, b = 3cm)  of foot location.

these experimental results are strong evidence that oumaaetand a set of new equality constraints. Nonlinear inequality
, since one can now consider performing replanning on-lin@ an

shows the twenty five impact points (ball locationimpact from the optimal motion computed for: (= 1cm, h = 3cm). See Fig. 9.

computed for £ = 1cm, h = 3cm): the robot now hits the ball,

as obtained from an optimal kicking motion computed for

can be easily extended and applied to the fast replanningé@nstraints are no longer used, therefore replanning can be
extend our replanning approach to arbitrary motions such as

height), and the three feasible subsets used : an impact poin | . L :
: : H H
that is smaller than expected, in an appropriate manneewhil !
(x = 1cm, h = 1cm). It is clear that our approach allows
arbitrary motions such as walking. done very rapidly. We applied our approach to a variety of
walking.

Lo
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o _ _ _ Planning motion for robots while ensuring their balance,

n:gﬁgr?é @R:eplr;i‘fr;faio{‘cg)tggﬁf)e?;'g'z S:etlscams’ zoinglé‘n‘fl‘)‘"z‘i'g:]‘i)fpt'ma' integrity and safety requires that some constraints befeati
for the whole motion duration, i.e., over a continuous inaér

of time. Classical motion planning approaches usually nteve

to time-grid discretization. We emphasize the fact thathsuc

approaches can be risky for robots since they cannot detect
any constraint violation that may occur between two time-
grid points. To address this shortcoming, we have introduce

a hybrid method for planning safe motions. Our method is

an iterative algorithm that combines a classical unsaféatet

with a verification step that checks constraint violatiord an
computes excess via interval analysis. This method regjuire

o . ‘ L CPU times fairly similar to those of classical methods. To

° : 2 e s s 7 validate our approach, we built a database of such safe mo-

tions, then evaluated the database on a ball tracking expati

Fig. 17. Representation of the twenty five impact pointsdfoldots) and where the HOAP-3 robot successfully followed a moving ball

the three feasible sets as computed around the optimal msotio= 1cm, \yithout using any balance controller.

h = 1cm) (red color), £ = 1cm, h = 2cm) (blue color), and# = 1cm, . .

h = 3cm) (green color). Safe motions are computed off-line and they are usually
fitted only to a finite set of situations. If a robot meets an
unexpected situation, a new motion must be replanned. The

) latter procedure used with thorough models is usually too

F. Conclusion time-consuming to be used on-line, even with unsafe methods

In the vicinity of each safe motion computed using ouFherefore, we introduced a new method for replanning safe
hybrid method, our fast replanning method computes a subsitions rapidly, i.e., in less than 2s CPU time.

x(cm)
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We used our fast replanning method to replan a varietys]
of safe kicking motions for a HOAP-3 robot. Starting from
three safe kicking motions already available in the datbas
we were able to successfully replan new safe ones to kick balje]
of several sizes that were at a fairly large distance from the
originally planned locations. Experimental evaluatiores/ey
strong evidence that our replanning approach can be exdendg]
to arbitrary movements such as walking.

The planning and fast replanning methods proposed in this
paper are available as a C++ toolbox (on website safemotiong] ——, “Resolved momentum control: Humanoid motion plarmibased
sourceforge.net). They were validated while planning ori
for the lower body part of an HOAP-3 robot, using a 12-d0f[9]
model.

If an impact model is available, our safe planning methods
may easily be extended and used for planning safe moti S
with impact. It suffices to consider three phases: the two
continuous motions before and after the impact, and the
discrete event at the impact instant where the start of t 8]
motion after the impact may be obtained from an impact model
and the end of the motion prior to the impact, as suggested
in [36]. Furthermore, our safe methods can also be used Wit
simpler, yet valid, models; they may yield results fasted an
eventually be used on-line.

In the near future, we will use and evaluate these methdd&
for planning full-body motions, using models with a largeri4]
number of dof. Future work will address the presence of
uncertainty in the considered models. One way to addr
such an issue is to implement an n-dimensional interval
discretization within our hybrid method. We will have to
use the guaranteed discretization approach on any unter %]
variable, in addition to motion duration. Guaranteed Taylo
series may also be investigated to reduce computation time.
Our replanning method computes feasible inner subsets
axis-aligned boxes. We plan to develop an automatic way to
rank the parameters during the expansion stage. For irestanc
sensitivity functions of the balance constraint functioayne
used, and one may expand first those parameters which have gait” IEEE trans. Bio-Med Engvol. BME-16, pp. 1-6, 1969.
less impact on balance constraint. We will also investiglage [19] A. Piazzi and A. Visioli, “Global minimum-time trajesty planning of
possibility of using an alternative representation of seting
ellipsoids or zonotopes for instance, to increase the difieeo [20]
computed subsets, hence improving adaptation capasilitie
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