
Classy user manual

Xin An and Abdoulaye Gamatié

October 9, 2012

1 Introduction

Classy is an abstract clock based system design and validation framework
providing:

• rapid prototyping (simulation and analysis) of system design

• design space exploration of application mappings

• on-line simulation and analysis of adaptive system design

The tool is developed by using Java, and to use it, one requires to deploy
the Java Runtime Environment, also known as Java Virtual Machine (JVM).
Finally, unzipping classy.zip and typing in a terminal: java -jar classy.jar, you
will see the welcome window (see Figure 1).

Figure 1: The welcome window of Classy

In the following sections, we firstly introduce the welcome window, including
its general input in Section 2. The principles of abstract clock modeling of
system behavior and executions are briefly described in Section 3. We then
illustrate how to use Classy to perform the above functionalities respectively.

1

2 Welcome Window

The welcome window (see Figure 1) consists of two panels. The left panel pro-
vides simply the entrances to corresponding functionalities. The user specifies
the studied system on the right panel. It consists of two parts: the application
and architecture specifications. We consider an application as a set of tasks,
and a task as a sequence of events. The user can also define the precedence re-
lations between events of different tasks e.g., data produce and consume events.
The application operates periodically. We consider the architecture as a set
of processing elements (PE). Each PE is characterized by possible processing
frequencies, and corresponding energy consumptions per idle and busy cycles
respectively.

3 Clock Modeling of System Behavior and Ex-
ecution

We briefly introduce our clock modeling of system behavior and executions.
This would help users to better understand the tool and its computing results.
We refer the users to [1] for more details.

The modeling of application behavior as described in Section 2 directly fol-
lows the application specification in the welcome window. Figure 2 illustrates an
application behavior example, which consists of tasks {t0, t1, t2}. Tasks t0, t1, t2
are modeled as sequences of events {e00, e10}, {e01, e11}, {e02, e12} respectively. The
arrows in the figure are used to represent the precedence relations between
events. For example, the arrow from event e00 to event e02 represents e00 ≺ e02.
The absence of arrow connection between two events means no precedence con-
straint between them, e.g., events e10 and e01.

t0

t1

t2

e1
0

e0
1e0

0

e2
1e2

0

e1
1

Figure 2: An application behavior bT

We consider the execution platform consisting of a set P of PEs operating
synchronously according to a reference clock and communicating via a shared
memory. We model platform behaviors through their clock activations accord-
ing to given frequency values fi of processing elements pi ∈ P, 1 ≤ i ≤ |P |.
The frequency value of the reference clock K of the platform is calculated as
LCM(f1, ..., f|P |), where LCM denotes the Least Common Multiple. More con-

2

cretely, the clock activation instants of the processing elements are modeled
within a trace by considering the inverse of frequency values 1/fi, i.e., their
period values. They are also referred to as processing element clock cycles
in our approach. Figure 3 illustrates the behavior of a platform composed of
three processors p0, p1 and p2 with frequencies f0 = 60MHz, f1 = 40MHz and
f2 = 30MHz.

0 1 2 3 4 5 6 7 8 ...
K • • • • • • • • • ...
p0 • • • • • ...
p1 • • • ...
p2 • • • ...

Figure 3: Clock trace of PEs

We model the executions of tasks on PEs by means of a ternary abstract clock
encoding. Such an abstract clock is a three-valued string over {−1, 0, 1}. The
values 1 and 0 respectively represent the active and idle instants of a processing
element executing some tasks w.r.t. the reference clock. The meaning of the
value −1 is contextual: a sequence of −1 means active at these instants if it is
preceded by 1, otherwise it denotes idle. Figure 4 shows three ternary clocks,
representing the executions of the tasks given previously in Figure 2 on the PEs
of Figure 3. In this example, tasks t0, t1 are executed on p0, while t2 on p1,
and all events require one PE cycle to process. Take the ternary clock denoted
by clk(t0/p0) (representing execution of task t0 on PE p0) as an example, the
execution of event e00 (resp. e10) starts from the very first (resp. 4th) instant of
the reference clock, and takes one clock cycle of p0.

0 1 2 3 4 5 6 7 8 9
p0 • • • • •

clk(t0/p0) 1 -1 0 -1 1 -1
clk(t1/p0) 0 -1 1 -1 0 -1 1 -1

p1 • • • •
clk(t2/p1) 1 -1 -1 0 -1 -1 1 -1 -1

Figure 4: Task schedules in terms of ternary clocks

The execution clocks represent how the tasks execute on PEs, and can be
used to generate vcd files to feed the graphical tool GTKWave to visulize the re-
sults. The execution time of an application is the maximal duration of execution
clocks. Given the scheduling clocks and energy costs per busy and idle cycles
for PEs, energy consumption can be computed easily. However, computation of
execution clocks also takes much more time. It is not recommended if the user
only wants the performance results.

3

4 Rapid Prototyping of System Design

This functionality allows the user to simulate and analyze design (or mapping)
choices. Provided the general system specification from Section 2, the user
requires to, accordingly, define his/her design choice (see Figure 5):

• mapping: choose a processing element for each task;

• processing frequencies: choose a frequency for each allocated processing
element;

• deadlines (optional): define the deadlines of tasks;

• profiling data: associate computation and communication time costs with
each event executing on its allocated resource.

Figure 5: The design analysis window

By pressing button “Analysis”, the user gets the default analysis result as
shown in Figure 6.

Further analysis options are available as seen in Figure 5:

• Task Execution and Processor Activity: generate the scheduling clocks
illustrating task execution and processor activity behaviors;

• Maximum Inter-Event Activations: regarding each defined precedence re-
lation ei− > ej , compute the maximal number of precedent event activa-
tions (i.e., ei) between ei and ej . This indicates how many ei, at most,
have been executed before its successor ej becomes active.

• GTKWave Display: generate the vcd file to feed GTKWave for display,
allowing the user to have a better vision. Figure 7 gives an example.

The user can change its design choice and then re-analysis by pressing button
”Reset” and ”Analysis”.

4

Figure 6: The default simulation output window

Figure 7: The GTKWave display of Design in Figure 5

5 Adaptive Design Simulation

This functionality provides a reactive simulation environment to enable the sim-
ulation and analysis of adaptive system designs. Classy deals with two types of
adaptive events: changing frequencies of PEs and migrating tasks among PEs.
And it takes into account a adaption penalty for each adaptive event.

As shown in Figure 8, the user needs to firstly define the initial mapping
choice and corresponding profiling data. And then, before starting the simu-
lation process, he/she also needs to define the next predicted reconfiguration
point, such that allowing the tool to react in time along the simulation process.
In Classy, a reconfiguration point is defined as end of executions of a certain
number of period.

For example, we keep the default mapping and profiling data in Figure 8,
and would like to reconfigure after the execution of 5 periods, by specifying 5 in
the text field after “Num. of Periods to schedule before reconfig.:”. By pressing
button “simulate”, the tool outputs the (temporary) analysis result (see Figure
9) for current configuration, and allows the user to adapt the system execution
by changing frequency or migrating tasks. As an example, we migrate task t2
to PE p2 with frequency 600, and once pressing button “simulate”, the tool
asks for the operation penalty (see Figure 10) before performing the scheduling
based on the newly defined configuration. This procedure continues until the
complete simulation finishes and results reported accordingly.

5

Figure 8: The adaptive design simulation

Figure 9: The adaptive design temporary result

Figure 10: The penalty definition window

6

6 Design Space Exploration (DSE)

This functionality assists the user to find out a set of Pareto-optimal design
choices w.r.t. execution time and energy consumption. It employs two explo-
ration methods: an exhaustive and an Evolutionary Algorithm (EA)-based. The
user only needs to define for each task all the profiling data, i.e., the communi-
cation and computation cycle costs on possible PEs, before choosing from the
provided DSE operations by clicking buttons “Exhaustive DSE” or “Heuristic
DSE” (see Figure 11).

Figure 11: The DSE window

In the following, we introduce these two DSE operations:

• exhaustive DSE: this functionality is achieved by exploring the design
space, i.e., mappings and frequencies, exhaustively, and finds out the
Pareto-optimal choices.

• heuristic DSE: this functionality assists the user to find a set of Pareto-
(sub)optimal solutions efficiently when the system design space is too big,
or even huge such that exhaustive exploration takes too much time and
resources that the user doest not want to afford. Classy employ the evo-
lutionary algorithm NSGA-II [2] to achieve this. This is done by combing
Classy with the jMetal framework [3], which implements a number of
multi-objective algorithms including NSGA-II. The user can define param-
eters, i.e., population size and iteration times (see Figure 12), to impose
the resulting solution size and iteration times of computations.

7 Conclusion and Perspectives

This document describes the functionalities provided by the Classy tool, and
how a user can use it. Among the possible improvements, we consider the
following ones in the near future:

• take into account infeasible solutions: some tasks probably can only run
on a subset of PEs, thus these constrains should be considered when per-
forming random adaptation and DSE;

7

Figure 12: The evolutionary algorithm parameter definition

• provide more scheduling policies/algorithms;

• deal with task adaptations, i.e., a task changing its implementation in
response to environment, this is reflected in our simulation framework by
changing the profiling data (if composed events defined properly);

• make the tool more user friendly.

8

