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Extended Abstract

Introduction. Linearity and contiguity are graph parameters introduced to obtain e�cient
codings of neighborhoods in graphs, by decomposing each neighborhood as a union of p
intervals chosen in one or several orders on the vertices [1]. Indeed, storing an order of the
vertices as well as a pair of pointers for each of the p intervals of this order (one pointer for
the beginning of the interval and one for the end), with �xed p, allows to store the graph in
O(n) space (instead of O(n+m) with adjacency lists) and access the neighborhood of any
vertex v in O(d) time (instead of O(n) with adjacency matrices), where d is the degree of v.

More formally, a closed p-interval-model of a graph G = (V,E) is a linear order σ on
V such that ∀v ∈ V,∃(I1, . . . , Ip) ∈ (2V )p such that ∀i ∈

∫
1, p, Ii is an interval of σ and

N [x] =
⋃

1≤i≤p Ii. The closed contiguity of G, denoted by cont(G), is the minimum integer
p such that there exists a closed p-interval-model of G. A closed p-line-model of a graph
G = (V,E) is a tuple (σ1, . . . , σp) of linear orders on V such that ∀v ∈ V,∃(I1, . . . , Ip) ∈ (2V )p

such that ∀i ∈
∫

1, p, Ii is an interval of σi and N [x] =
⋃

1≤i≤p Ii. The closed linearity of
G, denoted by lin(G), is the minimum p such that there exists a closed p-line-model of G.

Not much is known about these parameters, which cannot be bounded by a constant
even in very restricted graph classes, like interval or permutation graphs [1]. We focus here
on the contiguity and linearity of cographs (graphs without induced P4 subgraphs), whose
very constrained structure can be represented by their cotree, a rooted tree with two kinds
of nodes labeled by P and S, giving a tight upper bound for the asymptotic contiguity of
cographs and an upper bound for their linearity. To this aim, we �rst establish a min-max
theorem on the link between the rank of rooted trees and their decompositions into paths.

A min-max theorem on the rank of a tree. The rank [2, 3] of a tree T is the
maximal height of a complete binary tree obtained from T by edge contractions, that is
rank(T ) = max{h(T ′) | T ′ complete binary tree, minor of T}.

A path partition of a tree T is a partition {P1, . . . , Pk} of V (T ) such that for any i,
the subgraph T [Pi] of T induced by Pi is a path, as shown in Figure 1(a). The partition

tree of a path partition P, denoted by Tp(P) and illustrated in Figure 1(b), is the tree
whose nodes are Pi's and where the node of Tp(P) corresponding to Pi is the parent of the
node corresponding to Pj i� some node of Pi is the parent in T of the root of Pj . The
height of a path partition P of a tree T , denoted by h(P), is the height h(Tp(P)) of its
partition tree. The path-height of T is the minimal height of a path partition of T , that is
ph(T ) = min{h(P) | P path partition of T}.

(a) (b)

Figure 1: A tree T and a path partition P = {P1, P2, P3, P4, P5, P6} of T (a), as well as the
partition tree of P (b).
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Lemma 1 For a rooted complete binary tree T , rank(T ) = ph(T ) = h(T ).

Theorem 2 For any rooted tree T , we have rank(T ) = ph(T ).

Upper bounds for contiguity and linearity of cographs. We now combine the
results of the previous section with a decomposition of the cotree of the input cograph into
paths, in order to obtain a constructive proof that the contiguity of any cograph is at most
O(log n). This decomposition is obtained recursively, using a root-path decomposition of
the cotree, thanks to the Caterpillar Composition Lemma below.

A root-path decomposition (see Fig. 2) of a rooted tree T is a set {T1, . . . , Tp} of disjoint
subtrees of T , with p ≥ 2, such that every leaf of T belongs to some Ti, with i ∈ [1..p], and
the sets of parents in T of the roots of Ti's is a path containing the root of T .

Figure 2: The root-path decomposition {T1, . . . , Tp} of a rooted tree T .

Lemma 3 (Caterpillar Composition Lemma) Given a cograph G = (V,E) and a root-

path decomposition {Ti}1≤i≤p of its cotree, where Xi is the set of leaves of Ti, cont(G) ≤
2 + max

i∈[1..p]
cont(G[Xi]).

Lemma 4 Given a rooted tree T such that rank(T ) = k ≥ 1, there exists a root-path

decomposition {T1, . . . , Tp} of T such that for each i ∈ [1..p], rank(Ti) ≤ k − 1.

Lemma 5 Let G be a cograph and T its cotree. We have cont(G) ≤ 2 rank(T ) + 1.

Theorem 6 The closed contiguity of a cograph is at most logarithmic in its number of

vertices, or more formally, if G = (V,E) is a cograph, then cont(G) ≤ 2 log2 |V |+ 1.

Lower bounds for contiguity and linearity of cographs. Finally, we focus on
cographs whose cotrees are complete binary trees, and obtain a tight lower bound for their
asymptotic contiguity as well as a lower bound for their asymptotic linearity.

Theorem 7 Let G be a cograph whose cotree is a complete binary tree. Then, cont(G) =
Ω(log n) and lin(G) = Ω(logn/ log log n).
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