(Nearly-)Tight Bounds on the Linearity and Contiguity of Cographs

Christophe Crespelle ${ }^{1}$ and Philippe Gambette ${ }^{2}$
${ }^{1}$ Université Claude Bernard Lyon 1, DNET/INRIA, LIP UMR CNRS 5668, ENS de Lyon, Université de Lyon, France
${ }^{2}$ Université Paris-Est, LIGM UMR CNRS 8049, Université Paris-Est Marne-la-Vallée, 5 boulevard Descartes, 77420 Champs-sur-Marne, France.

Extended Abstract

Introduction. Linearity and contiguity are graph parameters introduced to obtain efficient codings of neighborhoods in graphs, by decomposing each neighborhood as a union of p intervals chosen in one or several orders on the vertices [1]. Indeed, storing an order of the vertices as well as a pair of pointers for each of the p intervals of this order (one pointer for the beginning of the interval and one for the end), with fixed p, allows to store the graph in $O(n)$ space (instead of $O(n+m)$ with adjacency lists) and access the neighborhood of any vertex v in $O(d)$ time (instead of $O(n)$ with adjacency matrices), where d is the degree of v.

More formally, a closed p-interval-model of a graph $G=(V, E)$ is a linear order σ on V such that $\forall v \in V, \exists\left(I_{1}, \ldots, I_{p}\right) \in\left(2^{V}\right)^{p}$ such that $\forall i \in \int 1, p, I_{i}$ is an interval of σ and $N[x]=\bigcup_{1 \leq i \leq p} I_{i}$. The closed contiguity of G, denoted by $\operatorname{cont}(G)$, is the minimum integer p such that there exists a closed p-interval-model of G. A closed p-line-model of a graph $G=(V, E)$ is a tuple $\left(\sigma_{1}, \ldots, \sigma_{p}\right)$ of linear orders on V such that $\forall v \in V, \exists\left(I_{1}, \ldots, I_{p}\right) \in\left(2^{V}\right)^{p}$ such that $\forall i \in \int 1, p, I_{i}$ is an interval of σ_{i} and $N[x]=\bigcup_{1 \leq i \leq p} I_{i}$. The closed linearity of G, denoted by $\operatorname{lin}(G)$, is the minimum p such that there exists a closed p-line-model of G.

Not much is known about these parameters, which cannot be bounded by a constant even in very restricted graph classes, like interval or permutation graphs [1]. We focus here on the contiguity and linearity of cographs (graphs without induced P_{4} subgraphs), whose very constrained structure can be represented by their cotree, a rooted tree with two kinds of nodes labeled by P and S, giving a tight upper bound for the asymptotic contiguity of cographs and an upper bound for their linearity. To this aim, we first establish a min-max theorem on the link between the rank of rooted trees and their decompositions into paths.

A min-max theorem on the rank of a tree. The rank [2, 3] of a tree T is the maximal height of a complete binary tree obtained from T by edge contractions, that is $\operatorname{rank}(T)=\max \left\{h\left(T^{\prime}\right) \mid T^{\prime}\right.$ complete binary tree, minor of $\left.T\right\}$.

A path partition of a tree T is a partition $\left\{P_{1}, \ldots, P_{k}\right\}$ of $V(T)$ such that for any i, the subgraph $T\left[P_{i}\right]$ of T induced by P_{i} is a path, as shown in Figure 1(a). The partition tree of a path partition \mathcal{P}, denoted by $T_{p}(\mathcal{P})$ and illustrated in Figure $1(\mathrm{~b})$, is the tree whose nodes are P_{i} 's and where the node of $T_{p}(\mathcal{P})$ corresponding to P_{i} is the parent of the node corresponding to P_{j} iff some node of P_{i} is the parent in T of the root of P_{j}. The height of a path partition \mathcal{P} of a tree T, denoted by $h(\mathcal{P})$, is the height $h\left(T_{p}(\mathcal{P})\right)$ of its partition tree. The path-height of T is the minimal height of a path partition of T, that is $p h(T)=\min \{h(\mathcal{P}) \mid \mathcal{P}$ path partition of $T\}$.

Figure 1: A tree T and a path partition $\mathcal{P}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right\}$ of T (a), as well as the partition tree of $\mathcal{P}(\mathrm{b})$.

Lemma 1 For a rooted complete binary tree $T, \operatorname{rank}(T)=p h(T)=h(T)$.
Theorem 2 For any rooted tree T, we have $\operatorname{rank}(T)=p h(T)$.
Upper bounds for contiguity and linearity of cographs. We now combine the results of the previous section with a decomposition of the cotree of the input cograph into paths, in order to obtain a constructive proof that the contiguity of any cograph is at most $O(\log n)$. This decomposition is obtained recursively, using a root-path decomposition of the cotree, thanks to the Caterpillar Composition Lemma below.

A root-path decomposition (see Fig. 2) of a rooted tree T is a set $\left\{T_{1}, \ldots, T_{p}\right\}$ of disjoint subtrees of T, with $p \geq 2$, such that every leaf of T belongs to some T_{i}, with $i \in[1 . . p]$, and the sets of parents in T of the roots of T_{i} 's is a path containing the root of T.

Figure 2: The root-path decomposition $\left\{T_{1}, \ldots, T_{p}\right\}$ of a rooted tree T.

Lemma 3 (Caterpillar Composition Lemma) Given a cograph $G=(V, E)$ and a rootpath decomposition $\left\{T_{i}\right\}_{1 \leq i \leq p}$ of its cotree, where X_{i} is the set of leaves of T_{i}, $\operatorname{cont}(G) \leq$ $2+\max _{i \in[1 . . p]} \operatorname{cont}\left(G\left[X_{i}\right]\right)$.

Lemma 4 Given a rooted tree T such that $\operatorname{rank}(T)=k \geq 1$, there exists a root-path decomposition $\left\{T_{1}, \ldots, T_{p}\right\}$ of T such that for each $i \in[1 . . p], \operatorname{rank}\left(T_{i}\right) \leq k-1$.

Lemma 5 Let G be a cograph and T its cotree. We have $\operatorname{cont}(G) \leq 2 \operatorname{rank}(T)+1$.
Theorem 6 The closed contiguity of a cograph is at most logarithmic in its number of vertices, or more formally, if $G=(V, E)$ is a cograph, then $\operatorname{cont}(G) \leq 2 \log _{2}|V|+1$.

Lower bounds for contiguity and linearity of cographs. Finally, we focus on cographs whose cotrees are complete binary trees, and obtain a tight lower bound for their asymptotic contiguity as well as a lower bound for their asymptotic linearity.

Theorem 7 Let G be a cograph whose cotree is a complete binary tree. Then, cont $(G)=$ $\Omega(\log n)$ and $\operatorname{lin}(G)=\Omega(\log n / \log \log n)$.

References

[1] C. Crespelle, P. Gambette. Efficient Neighbourhood Encoding for Interval Graphs and Permutation Graphs and $O(n)$ Breadth-First Search. IWOCA’09, LNCS 5874:146157, 2009
[2] A. Ehrenfeucht, D. Haussler. Learning Decision Trees from Random Examples. Information and Computation 81(3):231-246, 1989.
[3] R. Gavaldà, D. Thérien Algebraic Characterizations of Small Classes of Boolean Functions. STACS'03, LNCS 2607:331-342, 2003.

