Phylogenetic Network Workshop 27/07/2015 - Singapore

Exploring the community of phylogenetic networks

Philippe Gambette

Université Paris-Est Marne-la-Vallée

Parts of this work done with Tushar Agarwal, Maxime Morgado & David Morrison

Outline

- Who is who in phylogenetic networks?
- Exploring the research
- Discovering software
- Finding experts
- Following the community
- Analyzing the trends
- ISIPhyNC and subclasses of phylogenetic networks

Outline

- Who is who in phylogenetic networks?
- Exploring the research
- Discovering software
- Finding experts
- Following the community
- Analyzing the trends
- ISIPhyNC and subclasses of phylogenetic networks

An interactive bibliographic database started in 2007

Based on the open source PHP+MySQL web application **BibAdmin** by Sergiu Chelcea (http://gforge.inria.fr/projects/bibadmin/), with a few changes.

Authors present in the database (size representing the number of publications, weighted by the number of coauthors on each publication)

A fresh look in 2015, with new functionalities:

Who is Who in Phylogenetic Networks

Authors Community Keywords Publications Software Browse Basket Account Contribute! About Help A Q

FIND EXPERTS

Find researchers working on a specific topic, in a given country, and find where (journals, conferences) the community publishes or meets.

EXPLORE RESEARCH

Browse publications, access keyword definitions and find trends in publications on phylogenetic network methods and methodologies.

DISCOVER SOFTWARE

Locate programs to compute, evaluate, compare or visualize phylogenetic networks, and view how these are linked with each other and input data.

FOLLOW COMMUNITY

Follow an author, publications tagged with a keyword, or the entire database using the a icon in the menu, on an author's page, or on a keyword's page.

A fresh look in 2015, with new functionalities:

Who is Who in Phylogenetic Networks

Authors Community Keywords Publications Software Browse Basket Account Contribute! About Help A Q

FIND EXPERTS

Find researchers working on a specific topic, in a given country, and find where (journals, conferences) the community publishes or meets.

EXPLORE RESEARCH

Browse publications, access keyword definitions and find trends in publications on phylogenetic network methods and methodologies.

DISCOVER SOFTWARE

Locate programs to compute, evaluate, compare or visualize phylogenetic networks, and view how these are linked with each other and input data.

FOLLOW COMMUNITY

Follow an author, publications tagged with a keyword, or the entire database using the a icon in the menu, on an author's page, or on a keyword's page.

Design & implementation by Tushar Agarwal (IIT Ropar), advised by P. Gambette & D. Morrison

Google(phylnet) or http://phylnet.univ-mlv.fr/

Outline

- Who is who in phylogenetic networks?
- Exploring the research
- Discovering software
- Finding experts
- Following the community
- Analyzing the trends
- ISIPhyNC and subclasses of phylogenetic networks

Who is Who in Phylogenetic Networks

Authors Community Keywords Publications Software Browse Basket Account Contribute! About Help A Q

Publications list

1 2

Katharina T. Huber, Vincent Moulton, Mike Steel and Taoyang Wu. Folding and unfolding phylogenetic trees and networks, 2015, 2 9

Keywords: compressed network, explicit network, MUL-stable network, NP complete, phylogenetic network, phylogeny, tree containment, tree sibling network.

Note: http://arxiv.org/abs/1506.04438.

2 1

Andrew R. Francis and Mike Steel. Which phylogenetic networks are merely trees with additional arcs? 2015. 📚 🤛 🚯

Keywords: explicit network, phylogenetic network, phylogeny, polynomial, tree-based network. Note: http://arxiv.org/abs/1502.07045.

Who is Who in Phylogenetic Networks

Authors Community Keywords Publications Software Browse Basket Account Contribute! About Help A Q

Publications list

<< < > >> Showing 1 - 30 (569 total)

1 2

2 1

Katharina T. Huber, Vincent Moulton, Mike Steel and Taoyang Wu. Folding and unfolding phylogenetic trees and networks, 2015, 2 9

Keywords: compressed network, explicit network, MUL-stable network, NP complete, phylogenetic network, phylogeny, tree containment, tree sibling network.

Note: http://arxiv.org/abs/1506.04438.

Andrew R. Francis and Mike Steel. Which phylogenetic networks are merely trees with additional arcs? 2015. 📚 🤛 🚯

Keywords: explicit network phylogenetic network, phylogeny, polynomial, tree-based network. Note: http://arxiv.org/abs/1502.07045.

Who is Who in Phylogenetic Networks

Authors Community Keywords Publications Software Browse Basket Account Contribute! About Help A Q

Publications list

1 2

Katharina T. Huber, Vincent Moulton, Mike Sheel and Taoyang Wu. Folding and unfolding phylogenetic trees and networks, 2015 🔁 🗪 🐧

Keywords: compressed network, explicit network, MUL-stable network, NP complete, phylogenetic network, phylogeny, tree containment, tree sibling network.

Note: http://arxiv.org/abs/1506.04438.

f y 8 M

Andrew R. Francis and Miles Steel. Which phylogenetic networks are merely trees with additional arcs? 2015 🖘 🕒 🐧

Keywords: explicit network, phylogenetic network, phylogeny, polynomial, tree-based network. Note: http://arxiv.org/abs/1502.07045.

f y 8 M

3 9

Misagh Kordi and Mukul S. Bansal. On the Complexity of Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees. In ISBRA15, Vol. 9096:187-198 of LNCS, springer, 2015 S

Keywords: duplication, from rooted trees, from species tree, lateral gene transfer, loss, NP complete, phylogenetic network, phylogeny, reconstruction.

Note: http://compbio.engr.uconn.edu/papers/Kordi_ISBRA2015.pdf.

11 1

12 📜

DOI

Yun Yu and Luay Nakhleh. A Distance-Based Method for Inferring Phylogenetic Networks in the Presence of Incomplete Lineage Sorting. In ISBRA15, Vol. 9096:378-389 of LNCS, springer, 2015

springer, 2015 % > 2 0

Keywords: bootstrap, explicit network, from distances, heuristic, incomplete lineage sorting, phylogenetic network, phylogeny, reconstruction.

Note: http://bioinfo.cs.rice.edu/sites/bioinfo.cs.rice.edu/files/YuNakhleh-ISBRA15.pdf.

f ¥ 8 ⊠

7 6

Misagh Kordi and Mukul S. Bansal. On the Complexity of Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees. In ISBRA15, Vol. 9096:187-198 of LNCS,

11 1

Keywords: duplication, from rooted trees, from species tree, lateral gene transfer, loss, NP complete, phylogenetic network, phylogeny, reconstruction.

Note: http://compole.engr.uconn.edu/papers/kordi_isbkAzurs.pdi.

tags

Yun Yu and Luay Nakhleh. A Distance-Based Method for Inferring Phylogenetic Networks in the Presence of Incomplete Lineage Sorting. In ISBRA15, Vol. 9096:378-389 of LNCS, springer, 2015.

12 P

Keywords: bootstrap, explicit network, from distances, heuristic, incomplete lineage sorting, phylogen etic network, phylogeny, reconstruction.

note: http://bioinio.cs.nce.edu/sites/bioinio.cs.nce.edu/illes/Tunaknlen-isbra-is.pdi.

A keyword page:

Who is Who in Phylogenetic Networks

Authors Community Keywords Publications Software Browse Basket Account Contribute! About Help A Q

Main keywords in June 2015: the tree cloud

Gambette & Véronis, 2009 - http://www.treecloud.org See also PhyloPlot (https://github.com/adamzy/PhyloPlot/) by Zheng Yu

Main keywords in June 2015: the network cloud

Gambette & Véronis, 2009 - http://www.treecloud.org

Main keywords in June 2015: the network cloud

All keywords:

```
abstract-network(88) agreement-forest(29) approximation(18) APX-hard(4) ARG(6) bayesian(4) block-realization(1)
 bootstrap(4) bound(4) branch-and-bound(1) cactus-graph(1) characterization(11) circular-split-system(13) clustering(3) coalescent(10)
 consensus(8) consistency(2) cophylogeny(1) counting(3) database(1) distance-between-networks(30) diversity(5) duplication(33)
dynamic-programming(10) enumeration(4) evaluation(25) explicit-network(191) exponential-algorithm(6) FPT(31)
from-clusters(16) from-continuous-characters(1) from-distances(45) from-gene-order(1) from-multilabeled-tree(9) from-
network(39) from-NGS-data(1) from-quartets(16) from-rooted-trees(122) from-sequences(51) from-
species-tree(46) from-splits(13) from-trees(7) from-triplets(24) from-unrooted-trees(16) galled-network(7)
galled-tree(38) generation(12) haplotype-network(2) haplotyping(1) heuristic(32) HMM(2) hybridization(52) inapproximability(5)
integer-linear-programming(3) isomorphism(3) k-reticulated(1) kernelization(2) labeling(4) lateral-gene-transfer(56) level-k-
 phylogenetic-network(30) likelihood(16) lineage-sorting(10) loss(16) MASN(4) median-network(16) MedianJoining(2) Minimal-
lateral-network(1) minimum-contradiction(2) minimum-number(33) minimum-spanning-network(2) model-selection(2) mu-distance(2)
NeighborNet(14) nested-network(2) netting(3) normal-network(9) NP-complete(33) optimal-realization(3) parsimony(39)
pedigree(1) perfect(5) phylogenetic-network(402) phylogeny(387) polynomial(70)
 population-genetics(5) Program-AdmixTools(1) Program-ALE(1) Program-Angst(2) Program-Arlequin(5) Program-Beagle(3) Program-BIMLR(1) Program-
 Bio-PhyloNetwork(4) Program-Clustistic(2) Program-CMPT(1) Program-CombineTrees(2) Program-ConsensusNetwork(1) Program-constNJ(1) Program-
 CycleKiller(3) Program-Dendroscope(14) Program-EEEP(3) Program-FastHN(1) Program-FlatNJ(1) Program-Fylogenetica(2) Program-GalledTree(1)
Program-GraphDTL(2) Program-HapBound(1) Program-HGT simul(1) Program-HiDe(1) Program-HorizStory(2) Program-Hybrid-Lambda(1) Program-HorizStory(2) Program-HorizStory(2) Program-HorizStory(3) Program-
HybridInterleave(5) Program-HybridNET(2) Program-HybridNumber(3) Program-Hybroscale(3) Program-JML(1) Program-LatTrans(5) Program-
LEV1ATHAN(1) Program-Lev1Generator(1) Program-Level2(2) Program-lingpy(1) Program-LNetwork(2) Program-Marlon(3) Program-Marlon(3) Program-Marlon(3)
Net(1) Program-McKiTscH(1) Program-Mowgli(5) Program-MowgliNNI(2) Program-MPNet(1) Program-MY-CLOSURE(1) Program-Nepal(7) Program-Nepal(7) Program-Net(1) Program-Nepal(7) Program-Nepal(8) Progr
NetGen(3) Program-NetView(1) Program-Network(5) Program-Notung(1) Program-PADRE(7) Program-Phangorn(2) Program-
PhippsNetwork(2) Program-PhyloNet(11) Program-PhyloNet-HMM(1) Program-PIRN(3) Program-Prunier(2) Program-Pyramids(3) Program-QNet(4)
Program-Quartet(1) Program-Quartet-Decomposition(1) Program-QuartetMethods(1) Program-QuartetNet(2) Program-QuartetNet(2) Program-QuartetNet(3) Program-QuartetNet(4) Program-QuartetNet(5) Program-QuartetNet(6) Program-Qu
 Program-RANGER-DTL(4) Program-RecMin(1) Program-Recodon(3) Program-RecPars(1) Program-Reticlad(2) Program-SAGE(2) Program-SAGE(1)
Program-Serial-NetEvolve(1) Program-SHRUB(3) Program-Simplistic(3) Program-Sliding-MinPD(1) Program-SNSA(2) Program-Spectronet(4) Program-Spectronet(4) Program-Spectronet(4) Program-Spectronet(4) Program-Spectronet(4) Program-Spectronet(5) Program-Spectronet(6) Program-Spectronet(6) Program-Spectronet(7) Program-Spectronet(7) Program-Spectronet(8) Pr
SplitsTree(36) Program-SPNet(5) Program-SPNDist(1) Program-SuperO(1) Program-T-REX(13) Program-TCS(8) Program-TERA(2) Program-T-REX(13) Pr
 TerminusEst(2) Program-TreeFix-DTL(1) Program-TreeMix(1) Program-Treevolve(2) Program-TripNet(2) Program-ultra-Net(1) Program-Ultranet(1) Program-Treevolve(2) Program-TripNet(3) Program-Ultra-Net(1) Program-Ultra-Net(3) Program-Ultra-Net(3) Program-Ultra-Net(3) Program-Ultra-Net(3) Program-Ultra-Net(3) Program-Ultra-Net(3) Program-Ultra-Net(3) Program-Ultra-Net(3) Program-Ultra-Net(4) Program-Ultra-Net(5) Program-Ultra-Net(6) Program-Ultra-Net(6)
WeakHierarchies(2) Program-Xscape(1) pyramid(8) quasi-median-network(3) realization(4) recombination(29) recombination-detection(4)
reconstruction(255) regular-network(7) reticulogram(10) serial-evolutionary-networks(1) simulated-annealing(4) simulation(5)
site-consistency(1) software(66) split(27) split-decomposition(13) split-network(54) SPR-distance(13) spread(2)
statistical-model(32) statistical-parsimony(3) supernetwork(4) Survey(31) tanglegram(1) time-consistent-network(12) tree-child-
network(15) tree-sibling-network(10) tripartition-distance(9) triplet-distance(3) unicyclic-network(3) visualization(30) weak-
 hierarchy(8) weakly-compatible(3)
```

```
abstract-network(88) agreement-forest(29) approximation(18) APX-hard(4) ARG(6) bayesian(4) block-realization(1)
 bootstrap(4) bound(4) branch-and-bound(1) cactus-graph(1) characterization(11) circular-split-system(13) clustering(3) coalescent(10)
 consensus(8) consistency(2) cophylogeny(1) counting(3) database(1) distance-between-networks(30) diversity(5) duplication(33)
 dynamic-programming(10) enumeration(4) evaluation(25) explicit-network(191) exponential-algorithm(6) FPT(31)
from-clusters(16) from-continuous-characters(1) from-distances(45) from-gene-order(1) from-multilabeled-tree(9)
network(39) from-NGS-data(1) from-quartets(16) from-rooted-trees(122) from-sequences(51) from-
 species-tree(46) from-splits(13) from-trees(7) from-triplets(2) from-triplets(24) from-unrooted-trees(16) galled-network(7)
 galled-tree(38) generation(12) haplotype-network(2) haplotyping(1) heuristic(32) HMM(2) hybridization(52) inapproximability(5)
 integer-linear-programming(3) isomorphism(3) k-reticulated(1) kernelization(2) labeling(4) lateral-dene-transfer(56) level-k-
 phylogenetic-network(30) likelihood(16) lineage-sorting(10) loss(16) MASN(4) median-network(16) MedianJoining(2) Minimal-
 lateral-network(1) minimum-contradiction(2) minimum-number(33) minimum-spanning-network(2) model-selection(2)
 NeighborNet(14) nested-network(2) netting(3) normal-network(9) NP-complete(33) optimal-realization(3) parsimony(39)
                                                                                              phylogenetic-network(402) phylogeny(387)
 population-genetics(5) Program-AdmixTools(1) Program-ALE(1) Program-Angst(2) Program-Arlequin(5) Program-Beagle(3) Program-BIMLR(1) Program-
 Bio-PhyloNetwork(4) Program-Clustistic(2) Program-CMPT(1) Program-CombineTrees(2) Program-ConsensusNetwork(1) Program-constNJ(1) Program-constNJ(1
 CycleKiller(3) Program-Dendroscope(14) Program-EEEP(3) Program-FastHN(1) Program-FlatNJ(1) Program-Fylogenetica(2) Program-GalledTree(1)
Program-GraphDTL(2) Program-HapBound(1) Program-HGT_simul(1) Program-HiDe(1) Program-HorizStory(2) Program-Hybrid-Lambda(1) Program-HorizStory(2) Program-HorizStory(2) Program-HorizStory(2) Program-HorizStory(2) Program-HorizStory(2) Program-HorizStory(3) Program-
 HybridInterleave(5) Program-HybridNET(2) Program-HybridNumber(3) Program-Hybroscale(3) Program-JML(1) Program-LatTrans(5) Program-
 LEV1ATHAN(1) Program-Lev1Generator(1) Program-Level2(2) Program-lingpy(1) Program-Levtwork(2) Program-MaafB(2) Program-Marion(3) Program-Mc-
Net(1) Program-MckTscH(1) Program-Mowgli(5) Program-MowgliNNI(2) Program-MPNet(1) Program-MY-CLOSURE(1) Program-Nepal(7) Program-Nepal(7) Program-Nepal(7) Program-Nepal(8) Prog
 NetGen(3) Program-NetView(1) Program-Network(5) Program-Notung(1) Program-PADRE(7) Program-Phangorn(2) Program-Network(5) Program-Notung(1) Program-Notung(1
PhippsNetwork(2) Program-PhyloNet(11) Program-PhyloNet-HMM(1) Program-PIRN(3) Program-Prunier(2) Program-Pyramids(3) Program-QNet(4)
 Program-Quartet(1) Program-Quartet-Decomposition(1) Program-QuartetMethods(1) Program-QuartetNet(2) Program-QuasiDec(1) Program-QuickCass(1)
 Program-RANGER-DTL(4) Program-RecMin(1) Program-Recodon(3) Program-RecPars(1) Program-Reticlad(2) Program-SAGE(2) Program-SAQ-Net(1)
 Program-Serial-NetEvolve(1) Program-SHRUB(3) Program-Simplistic(3) Program-Sliding-MinPD(1) Program-SNSA(2) Program-Spectronet(4) Program-S
 SplitsTree(36) Program-SPNet(5) Program-SPRDist(1) Program-SuperQ(1) Program-T-REX(13) Program-TCS(8) Program-TERA(2) Program-T-REX(13) Pr
 TerminusEst(2) Program-TreeFix-DTL(1) Program-TreeMix(1) Program-Treevolve(2) Program-TripNet(2) Program-ultra-Net(1) Program-Ultranet(1) Program-Treevolve(2) Program-TripNet(2) Program-Ultra-Net(3) Program-Ultra-Net(4) Program-Ultra-Net(4) Program-Ultra-Net(5) Program-Ultra-Net(6) Program-Ultra-Net(6)
 WeakHierarchies(2) Program-Xscape(1) pyramid(8) quasi-median-network(3) realization(4) recombination(29) recombination-detection(4)
reconstruction(255) regular-network(7) reticulogram(10) serial-evolutionary-networks(1) simulated-annealing(4) simulation(5)
 site-consistency(1) software(66) split(27) split-decomposition(13) split-network(54) SPR-distance(13) spread(2)
 statistical-model(32) statistical-parsimony(3) supernetwork(4) Survey(31) tanglegram(1) time-consistent-network(12) tree-child-
 network(15) tree-sibling-network(10) tripartition-distance(9) triplet-distance(3) unicyclic-network(3) visualization(30) weak-
 hierarchy(8) weakly-compatible(3)
```

input

software

→ missing references: ARG, pedigrees, haplotyping, etc...

```
abstract-network(88) agreement-forest(29) approximation(18) APX-hard(4) ARG(6) bayesian(4)
bootstrap(4) bound(4) branch-and-bound(1) cactus-graph(1) characterization(11) circular-split-system(13) clustering(3) coalescent(10)
                          cophylogeny(1 counting(3) database(1) distance-between-networks(3() diversity(5) duplication(33)
dynamic-programming(10) enumeration(4) evaluation(25) explicit-network(191) exponential-algorithm(6) FPT(31)
                   from-continuous-characters(1) from-distances(45) from-gene-order(1)
                                                                                                                               input
network(39) from-NGS-data(1) from-quartets(16) from-rooted-trees(122) from-sequences(51)
species-tree(46) from-splits(13) from-trees(7) from-triplets(24) from-unrooted-trees(16) galled-network(7)
galled-tree(38) generation(12) haplotype-network(2) haplotyping(1)
                                                               heuristic(32) HMM(2) hybridization(52) inapproximability(5)
                                                                       labeling(4) lateral-gene-transfer(56)
                            isomorphism(3) k-reticulated(1) kernelization(2)
phylogenetic-network(30) likelihood(16) lineage-sorting(10) loss(16) MASN(4) median-network(16) MedianJoining(2) Minimal-
                                        minimum-number(33)
                   nested-network(2) netting(3) normal-network(9) NP-complete(33)
NeighborNet(14)
                        phylogenetic-network(402)
population-genetics(5) Program-AdmixTools(1) Program-ALE(1) Program-Angst(2) Program-Arlequin(5) Program-Beagle(3) Program-BIMLR(1) Program-
Bio-PhyloNetwork(4) Program-Clustistic(2) Program-CMPT(1) Program-CombineTrees(2) Program-ConsensusNetwork(1) Program-constNJ(1) Program-
CycleKiller(3) Program-Dendroscope(14) Program-EEEP(3) Program-FastHN(1) Program-FlatNJ(1) Program-Fylogenetica(2) Program-GalledTree(1)
                                                                                                                               software
Program-GraphDTL(2) Program-HapBound(1) Program-HGT_simul(1) Program-HiDe(1) Program-HorizStory(2) Program-Hybrid-Lambda(1)
HybridInterleave(5) Program-HybridNET(2) Program-HybridNumber(3) Program-Hybroscale(3) Program-JML(1) Program-LatTrans(5) Program-
LEV1ATHAN(1) Program-Lev1Generator(1) Program-Level2(2) Program-lingpy(1) Program-LNetwork(2) Program-MaafB(2) Program-Marlon(3) Program-Mc-
Net(1) Program-McKiTscH(1) Program-Mowgli(5) Program-MowgliNNI(2) Program-MPNet(1) Program-MY-CLOSURE(1) Program-Nepal(7) Program-
NetGen(3) Program-NetTest(1) Program-NetView(1) Program-Network(5) Program-Notung(1) Program-Phangorn(2) Program-
PhippsNetwork(2) Program-PhyloNet(11) Program-PhyloNet-HMM(1) Program-PIRN(3) Program-Prunier(2) Program-Pyramids(3) Program-QNet(4)
Program-Quartet(1) Program-Quartet-Decomposition(1) Program-QuartetMethods(1) Program-QuartetNet(2) Program-QuasiDec(1) Program-QuickCass(1)
Program-RANGER-DTL(4) Program-RecMin(1) Program-Recodon(3) Program-RecPars(1) Program-Reticlad(2) Program-SAGE(2) Program-SAQ-Net(1)
Program-Serial-NetEvolve(1) Program-SHRUB(3) Program-Simplistic(3) Program-Sliding-MinPD(1) Program-SNSA(2) Program-Spectronet(4) Program-
SplitsTree(36) Program-SPNet(5) Program-SPRDist(1) Program-SuperQ(1) Program-T-REX(13) Program-TCS(8) Program-TERA(2) Program-
TerminusEst(2) Program-TreeFix-DTL(1) Program-TreeMix(1) Program-Treevolve(2) Program-TripNet(2) Program-ultra-Net(1) Program-Ultranet(1) Program-
WeakHierarchies(2) Program-Xscape(1) pyramid(8) quasi-median-network(3) realization(4) recombination(29) recombination-detection(4)
reconstruction(255) regular-network(7) reticulogram(10) serial-evolutionary-networks(1) simulated-annealing(4) simulation(5)
site-consistency(1) software(66) split(27) split-decomposition(13) split-network(54) SPR-distance(13) spread(2)
                                                                                                                               classes
statistical-model(32) statistical-parsimony(3) supernetwork(4) Survey(31) tanglegram(1) time-consistent-network(12) tree-child-
network(15 | tree-sibling-network(10) | tripartition-distance(9) | triplet-distance(3) | unicyclic-network(3) | visualization(30)
hierarchy(8) weakly-compatible(3
                           algorithmic approaches
                                                                       problems
                                                                                              algorithmic properties
```

Outline

- Who is who in phylogenetic networks?
- Exploring the research
- Discovering software
- Finding experts
- Following the community
- Analyzing the trends
- ISIPhyNC and subclasses of phylogenetic networks

Exploring the research – discovering software

Software and input data:

Show all node labels. (This may overcrowd the visualization.)

Set a threshold number of citations.

Cited 3 time(s) ▼

Go

Hover over or click on a node to see more information.

Number of nodes is 42. Number of edges is 71.

Exploring the research – discovering software

Who is Who in Phylogenetic Networks

Authors Community Keywords Publications Software Browse Basket Account Contribute! About Help A Q

Exploring the research – discovering software

Program List

Programs to compute, evaluate, compare, visualize... phylogenetic networks.

This page is automatically built from all publications tagged by Program* in the database.

Program AdmixTools

Available at http://genetics.med.harvard.edu/reich/Reich_Lab/Software_files/admixtools_v2.tar 1 publication in the database mentions Program AdmixTools

Program ALE

ALE is a C++ program which, given one or more gene trees and an ultrametric species tree, returns a reconciled gene tree annotated with duplication transfer and loss events, its likelihood, as well as optimal rates of duplication, transfer and loss. Available at https://github.com/ssolo/ALE.

1 publication in the database mentions Program ALE

Program Angst

Available at http://almlab.mit.edu/angst/ 2 publications in the database mention Program Angst

Program Arlequin

The goal of *Arlequin* is to provide the average user in population genetics with quite a large set of basic methods and statistical tests, in order to extract information on genetic and demographic features of a collection of population samples. In particular, Arlequin implements a Minimum Spanning Network algorithm to embed the set of all minimum spanning trees computed from a distance matrix of haplotypes (http://cmpg.unibe.ch/software/arlequin3/).

5 publications in the database mention Program Arlequin

Outline

- Who is who in phylogenetic networks?
- Exploring the research
- Discovering software
- Finding experts
- Following the community
- Analyzing the trends
- ISIPhyNC and subclasses of phylogenetic networks

Finding experts – In pictures!

The Community

Finding experts – Who works with whom?

Exploring the co-author graph and social network measures:

Finding experts – Who works on that keyword?

Coloring the co-author graph with respect to a keyword:

Finding experts – Who works on that keyword?

Coloring the co-author graph with respect to a keyword:

Finding experts – Where to meet/read them?

Where the community publishes:

Conferences

HENNIG-II(4) ALCOB2015(2) ALENEX12(1) APBC05(1) APBC08(1) BIBE05(2) BIOT09(1) CIBCB13(1) COCOA07(1) COCOA08(1) COCOA08(1)

Journals

ABIO(1) ACM-Transactions-on-Algorithms(1) ACOM(7) Advances-in-Applied-Mathematics(2) Advances-in-Intelligent-and-Soft-Computing(1) Advances-in-Mathematics(1) Advances-in-Research(1) African-Journal-of-Biotechnology (1) ALG(3) Algorithmica(1) Blology-and-Plotogy-and-Plotogy(1) BloCESays(1) BloCESays(1) BloInformatics(1) BloInformatics(1) BloOgy-and-Plotogy(1) DloCEB(9) BloCEB(9) Brietings-In-BloInformatics(1) CC(1) Cladistics(2) Computers-and-Holecutar-Research(1) DloCetar-Research(1) DloCetar-Research(1) DloCetar-Research(1) BloOgy-and-Evolution(1) Genome-Bloogy-and-Evolution(1) Genome-Bloogy-and-Evolution(1) Genome-Bloogy-and-Evolution(1) Incompleting (1) Incomple

Finding experts – Where do they live?

Automatic extraction of country from webpage URL:

Finding experts – Where do they live?

Automatic extraction of country from webpage URL:

Outline

- Who is who in phylogenetic networks?
- Exploring the research
- Discovering software
- Finding experts
- Following the community
- Analyzing the trends
- ISIPhyNC and subclasses of phylogenetic networks

Following the community – RSS feeds

Who is Who in Phylogenetic Networks

Authors Community Keywords Publications Software Browse Basket Account Contribute! About Help 🔊 🔾

→ whole website

Yun Yu and Luay Nakhleh. A Distance-Based Method for Inferring Phylogenetic Networks in the Presence of Incomplete Lineage Sorting. In ISBRA15, Vol. 9096:378-389 of LNCS, springer, 2015. 8 2 9

Keywords: bootstrap, explicit network, from distances, heuristic, incomplete lineage sorting, phylogenetic network, phylogeny, reconstruction.

Note: http://bioinfo.cs.rice.edu/sites/bioinfo.cs.rice.edu/files/YuNakhleh-ISBRA15.pdf.

f y 8 M

1 1

Following the community – Social networks

Who is Who in Phylogenetic Networks

Authors Community Keywords Publications Software Browse Basket Account Contribute! About Help A Q

1

Yun Yu and Luay Nakhleh. A Distance-Based Method for Inferring Phylogenetic Networks in the Presence of Incomplete Lineage Sorting. In ISBRA15, Vol. 9096:378-389 of LNCS, springer, 2015. 8 2 9 1

Keywords: bootstrap, explicit network, from distances, heuristic, incomplete lineage sorting, phylogenetic network, phylogeny, reconstruction.

Note: http://bioinfo.cs.rice.edu/sites/bioinfo.cs.rice.edu/files/YuNakhleh-ISBRA15.pdf.

f 🔰 8⁺ 🖂

1 1

→ share on social networks or by email

Following the community – Professional networks

Who is Who in Phylogenetic Networks

Authors Community Keywords Publications Software Browse Basket Account Contribute! About Help A Q

→ on Google Scholar

Publications of Luay Nakhleh 🖸 🎏 📥 🐧

Order by: Type | Year

→ download BibTeX basket

including Scopus query

Associated keywords

about the DOIs

abstract-network AIC approximation BIC bootstrap cluster-containment coalescent distance-between-networks enumeration evaluation explicit-network from-clusters from-network from-rooted-trees from-sequences from-species-tree galled-tree generation heuristic hybridization incomplete-lineage-sorting lateral-gene-transfer likelihood lineage-sorting NP-complete parsimony perfect phylogenetic-network phylogeny polynomial Program-LatTrans Program-Nepal Program-PhyloNet Program-PhyloNe

< 2015 >

1 1

Yun Yu and Luay Nakhleh. A Distance-Based Method for Inferring Phylogenetic Networks in the Presence of Incomplete Lineage Sorting. In ISBRA15, Vol. 9096:378-389 of LNCS, springer, 2015. % 2 9

Keywords: bootstrap, explicit network, from distances, heuristic, incomplete lineage sorting, phylogenetic network, phylogeny, reconstruction.

Note: http://bioinfo.cs.rice.edu/sites/bioinfo.cs.rice.edu/files/YuNakhleh-ISBRA15.pdf.

Outline

- Who is who in phylogenetic networks?
- Exploring the research
- Discovering software
- Finding experts
- Following the community
- Analyzing the trends
- ISIPhyNC and subclasses of phylogenetic networks

About 40 publications a year:

Browse publications: Article (Journal), InProceedings, InBook, Book, PhdThesis, MastersThesis, Misc

Explicit networks versus abstract networks?

• explicit phylogenetic networks

model evolution

• abstract phylogenetic networks

classify, visualize data

minimum spanning network

Analyzing the trends – A less clusterized field?

Gephi visualization of the coauthor network clustering → reflects the history

Analyzing the trends – A less clusterized field?

Number of nodes (authors) in the chosen range is 168. Number of edges is 264.

Analyzing the trends – A less clusterized field?

Number of nodes (authors) in the chosen range is 149. Number of edges is 302.

Analyzing the trends – Classifying abstracts

Factor analysis (with Lexico) of the abstracts of the journal articles with DOI in the database available on Scopus:

Analyzing the trends – Temporal evolutions

TreeCloud of the vocabulary specific to abstracts before 2010

Analyzing the trends – Temporal evolutions

TreeCloud of the vocabulary specific to abstracts of 2010-2015

Outline

- Who is who in phylogenetic networks?
- Exploring the research
- Discovering software
- Finding experts
- Following the community
- Analyzing the trends
- ISIPhyNC and subclasses of phylogenetic networks

Subclasses of phylogenetic networks

Information System on Graph Classes and their Inclusions

Information System on Graph Classes and their Inclusions

Find class

ISGCI home
The Java application
All classes
References
Smallgraphs
About ISGCI
Screenshots
News
FAQ
Contact ☑
Impressum

Database contents

1525 classes 189072 inclusions updated 2015-07-11

Latest news

2015-03-26 Added support for graph parameters.

What is ISGCI?

ISGCI is an encyclopaedia of graphclasses with an accompanying java application that helps you to research what's known about particular graph classes. You can:

- · check the relation between graph classes and get a witness for the result
- · draw clear inclusion diagrams
- · colour these diagrams according to the complexity of selected problems
- · find the P/NP boundary for a problem
- · save your diagrams as Postscript, GraphML or SVG files
- · find references on classes, inclusions and algorithms

Classic classes	Classes by definition	Problems
Meyniel P ₄ -bipartite P ₄ -reducible bipartite chordal chordal bipartite circle clique graphs cograph	All classes Chords & chordality (De)composition Directed graphs Forbidden subgraphs (Forbidden) minors Helly property Hypergraphs Intersection graphs Matrix	3-Colourability booleanwidth decomposition Clique Clique cover cliquewidth decomposition Colourability cutwidth decomposition Domination Feedback vertex set Graph isomorphism
1.000	KI COLD TO THE TOTAL STREET	Hamiltonian cycle

ISIPhyNC and subclasses of phylogenetic networks

ISIPhyNC and subclasses of phylogenetic networks

ISIPhyNC – The classes

ISIPhyNC - Class: binary nearly stable

Definition

A phylogenetic network is binary nearly stable if it is binary and it is nearly stable. [reference]

Relationships with other phylogenetic network classes

Maximum subclasses

binary tree-child [reference] (Noting that binary tree-child networks can be defined as binary phylogenetic networks whose vertices are all stable implies that binary tree-child networks are particular cases of nearly-stable networks.)

Minimum superclasses

binary

Problems

Positive results proved for this class

- Tree Containment: Solvable in O(n²) time [reference]
- Tree Containment: Solvable in O(n log n) time [reference]

ISIPhyNC – The problems

ISIPhyNC - Problem: Tree Containment

Summary

Does the input network contain the input tree on the same set of leaves? [reference]

Bibliographic references on the Who is who in phylogenetic networks

More formally

Input: A phylogenetic network N and a tree T on the same set X of taxa.

Output: YES if N contains T, NO otherwise.

Phylogenetic network classes with results on this problem

Positive results

- binary level-2: Solvable in O(n) time [reference] (Observation 1)
- binary level-3: Solvable in O(n) time [reference] (Observation 1)
- binary level-k: Solvable in O(2^k.n) time [reference] (Observation 1)
- binary nearly stable: Solvable in O(n²) time [reference]
- binary nearly stable: Solvable in O(n log n) time [reference]
- binary normal: Solvable in polynomial time [reference] (Theorem 2)
- binary stable: Solvable in O(n³) time [reference]
- binary tree-child: Solvable in polynomial time [reference] (Theorem 1)

Negative results

binary: NP-hard, reduction from Node-disjoint Paths [reference] (Theorem 3.1)

Other problems: Cluster Containment, recognition, etc.

ISIPhyNC – The properties

<u>ISIPhyNC</u> - Property: Upper bound on the number of vertices

Summary

The number of vertices is bounded by the number of leaves.

More formally

There exists a function f such that any network with n leaves has at most f(n) vertices.

Phylogenetic network classes with this property

- binary CLS: An upper bound on the number of vertices is 4n. [reference] (Lemma 4)
- <u>binary nearly stable</u>: An upper bound on the number of vertices is 26n-24. [reference] (Theorem 2 (adding the number of reticulation vertices, tree vertices, the root and the leaves))
- <u>binary normal</u>: An upper bound on the number of vertices is n²-n+2 [reference] (Theorem 5.1(2), with a multiplication by 2 to take into account the number of vertices possibly added during the "decontraction" to obtain a binary phylogenetic network)
- <u>binary regular</u>: An upper bound on the number of vertices is 2ⁿ. [reference] (Theorem 5.1(3), with a multiplication by 2 to take into account the number of vertices possibly added during the "decontraction" to obtain a binary phylogenetic network)
- binary stable: An upper bound on the number of reticulation vertices is 4(n-1). [reference] (Theorem 1)
- binary tree-child: An upper bound on the number of vertices is 5n-2. [reference] (Proof of Theorem 2)

Other properties: unbounded number of vertices, formula ... is / is not a distance metric on this class.

Binarity:

- → makes the network of subclasses more complex as every class is doubled (or more...)
- → some results need to be extended/adapted to the non-binary case

Binarity:

- → makes the network of subclasses more complex as every class is doubled (or more...)
- → some results need to be extended/adapted to the non-binary case

Example:

«level» = maximum over all blobs of the minimum number of arcs to remove to obtain a tree from the blob

Cluster-distinct property:

→ forbidden pattern:

Cluster-distinct property:

→ forbidden pattern:

Possibility 1: direct integration

is a

is a binary regular network,
i.e. a «decontracted»
regular network which is
binary

Possibility 2: stick with definition

Agreeing on names:

«Stable 1»

 \rightarrow visible vertex ν (Huson, Rupp & Scornavacca 2011): there exists a leaf / such that every path from the root to / contains v (v is a stable ancestor of I)

- → network «with the visibility property»: every reticulation vertex is visible
- → called «stable» in Gunawan, DasGupta & Zhang 2015

«Stable 2»

→ the «folding» of the multilabeled tree obtained by «unfolding» N is equal to N (Huber, Moulton, Steel & Wu 2015)

Thank you for your attention!

Looking forward to getting your feedback about:

→ « Who is Who in Phylogenetic Networks »

http://phylnet.univ-mlv.fr

 \rightarrow « ISIPhyNC »

http://phylnet.univ-mlv.fr/isiphync/