
Combining Finite Element Method and
L-Systems Using Natural Information Flow

Propagation to Simulate Growing Dynamical
Systems

Jean-Philippe Bernard1, Benjamin Gilles2, and Christophe Godin1

1 Inria, Virtual Plants project-team, Université Montpellier 2, Bâtiment 5, CC
06002, 860 rue de Saint Priest, 34095 Montpellier Cedex 5, France

2 CNRS, Laboratoire d’Informatique, de Robotique et de Microélectronique de
Montpellier, Université Montpellier 2, Bâtiment 5, CC 06002, 860 rue de Saint Priest,

34095 Montpellier Cedex 5, France

Abstract. This paper shows how to solve a system of differential equa-
tions controlling the development of a dynamical system based on finite
element method and L-Systems. Our methods leads to solve a linear
system of equations by propagating the flow of information throughout
the structure of the developing system in a natural way. The method is
illustrated on the growth of a branching system whose axes bend under
their own weight.

1 Introduction

Plants are complex branching organisms that undergo continuous development
throughout their lifetime. To understand the key processes that control this
development, a new type of modeling approach, called Functional-Structural
Plant Models (FSPM) [8, 19, 17], has been developed in the last two decades.
FSPMs combine a detailed description the plant architecture (in terms of axes
or stem units) and physiological processes that participate to the branching
system development (photosynthesis, water/sugar/mineral element transport,
carbon allocation, bud growth, hormonal transport and regulation, interaction
with gravity, etc.).

To build FSPMs, L-systems [16] have emerged as a dominant paradigm to
describe both the development plant branching systems in time and to model
the different bio-physical processes of interest [14, 3]. L-systems make it possible
to model the development of a plant by specifying rules of development for the
different types of considered plant constituent in a declarative manner. At each
time step, the language engine scans the constituents of the branching structure
being computed and applies the developmental rule that corresponds to its type.
Interestingly, at no moment the modeler needs to index the plant elements. As
the rules are supposed to be local, it is sufficient in the rule specification to
access the immediate neighbor components, for example referring in the rule to
the predecessor and successor components of the current plant component.

218 J.-P. Bernard, B. Gilles, and C. Godin

The propagation of a signal from the basis of the plant to the top provides
a good example of such a principle of locality. Let a plant be represented a
bracketed string I I [I I] I [I] I. This string represents a branching
structure containing 7 components, all of type I (note that the structure contains
no indexing of the components). Two consecutive I’s represent two consecutive
segments in the same axis of the plant, while a bracket indicates a branch inserted
at the top of preceding left-hand component (Fig. 1). Then, let us imagine that
the leftmost component in the string (at the plant basis) contains a signal x = 1,
and that the signal x is set to 0 in all the other components. To propagate the
signal in time through the plant body, one needs to define a simple local rule
such as (in pseudo-code form):

I --> { if predecessor ().x == 1 then current ().x = 1
} produce I

meaning that a I symbol should be transformed over one time step in a I symbol
(produce statement) after having set its internal signal value x to 1 if the x
signal of the predecessor components in the plant was itself at set at 1. This

I

I

I

I

I
I

I

I

I

I

I

I
I

I

I

I

I

I

I
I

I

I

I

I

I

I
I

I

Fig. 1. Branch represented L-string I I [I I] I [I] I with information x = 1
(red segments) propagation to others segments (blue).

local rule makes it possible to get completely rid of indexes when transferring
information through the plant structure [13]. This specific feature of L-systems
was used in the last decade to develop computational models for which the flow of
information propagates in a natural way over the plant structure from component
to component, e.g. [1] for the transport of carbon, [15] for the transport of water,
and [10, 5] for the reaction of plants to gravity. All these algorithms use finite
difference methods (FDM) for which the plant is decomposed into a finite number
of elements and quantities of interest (water content, sugar concentration, forces,
displacements, etc.) correspond to discrete values attached to each component.
Different FDM schemes have been developed for this based either on explicit or
implicit methods [7, 9].

FDM approaches use a local Taylor expansion to approximate differential
equations and are easy to implement. However, the quality of the approximation
between grid points is generally considered poor. The Finite Element Method
is an alternative solution that uses an integral formulation. While more com-
plex to implement, the quality of a FEM approximation is often higher than in
the corresponding FDM approach [11]. In this paper, we intend to adapt the

FEM and L-Systems Using Natural Information Flow Propagation 219

FEM approach to be used in the context of L-systems and natural computing,
i.e. strictly respecting the paradigm of computational locality, and solving the
differential equation by propagating information flows throughout the structure
being computed. We illustrate and assess our generic approach on the problem
of computing the effect of gravity on growing branching systems.

2 Natural Computing of Branch Bending Using Finite
Difference Method (FDM) and L-Systems

2.1 Mechanical Model of Branch Bending

We model a branch as a set of inextensible elastic cantilever beams rigidly con-
nected to each other and forming a branching network. Each beam represents a
botanical axis and is conceptualized as a mean curve C of length L with natural
parameter s ∈ [0, L] denoting the arc-length distance of a point P (s) from the
base of the stem and a section S(s) (Fig. 2a).

Each point P (s) is associated with an orthonormal local frame R(s) =
{H(s),L(s),U(s)} (heading, left and up) similar to the Frenet’s coordinate
system [16]. We assume that vector H(s) is tangent to the rod axis and vectors
L(s) and U(s) are C0-continuous with respect to s. Since all vectors H(s) have
unit length the point P (s), s ∈ [0, L] is defined by:

P (s) = P (0) +

∫ s

0

H(u) du. (1)

Let P (s) and P (s + ds) be two infinitesimally close points on the curve C.
Then the local frame R(s + ds) can be obtained from R(s) by a rotation of
axis ∆(s) and angle θ(s). It is convenient to represent this rotation by a vector
Ω(s), called the generalized curvature, whose direction is the rotation axis ∆(s)
and whose norm is θ(s) (Fig. 2b) [10]. If the arc length ds is infinitesimal, this
rotation can be factorized as a rotation around the tangent (twist) and a rotation
around the normal (curvature) of the mean curve C at the point P (s). Starting
from an initial frame R(0), the frames R(s) can be obtained thanks to the
ordinary differential equation (2) [10]:

dsR(s) = [Ω(s)]×R(s), (2)

where [Ω(s)]× denote respectively the skew-symmetric matrix corresponding to
the cross product of Ω(s) with an other vector (Eq. (3))and R(s) denotes the
column matrix

[
H(s),L(s),U(s)

]
.

Ω × v =

Ω0

Ω1

Ω2

×
v0v1
v2

 =

 0 −Ω2 Ω1

Ω2 0 −Ω0

−Ω1 Ω0 0

v0v1
v2

 = [Ω]×v (3)

At rest, the branch geometry is characterized by its generalized curvature Ω
and defines the reference configuration. At each point P (s), the elastic deforma-
tion of the material induces internal moments M I(s) (departure from the rest

220 J.-P. Bernard, B. Gilles, and C. Godin

C
P (s)

S(s)

H(s)

L(s)

U(s)

R(s)

(a) Continuous representation of a beam:
mean curve C, section S(s) and frame
R(s).

P eq(s) Ωeq(s)

P (s)

Ω(s)

P (s)

Ω(s)

(b) Reference, calculated and equi-
librium configurations.

P (s)

f

(c) External forces.

ME(s)
F (s)

MI(s)

FR(s)

P (s)

(d) Beam’s reaction to the external
stresses.

Fig. 2. Actors of the continuous model.

configuration). We assume here for simplicity a linear constitutive law (Hooke’s
law). Classical beam theory [4] allows to compute those moments (Eq. (4)), as a
function of the difference between the reference and actual generalized curvatures
Ω and Ω:

M I(s) = R(s)C(s)R(s)T (Ω(s)−Ω(s)) = K(s) (Ω(s)−Ω(s)) , (4)

where K(s) is the stiffness matrix. Note that the Hooke matrix C(s) expressed in
the local frame R(s) is diagonal. Its coefficients are the twist rigidity CH(s) (in
the plane (L(s),U(s)), as a function of section S(s) and shear modulus G) and
the flexural rigidities CL(s) and CU (s) (respectively in the planes (U(s),H(s))
and (H(s),L(s)), as a function of section S(s) and young modulus E):

C(s) =

CH(s) · ·
· CL(s) ·
· · CU (s)

 ;

CH(s) = G

∫
S(s) u

2 + v2 dS

CL(s) = E
∫
S(s) u

2 dS

CU (s) = E
∫
S(s) v

2 dS

, (5)

where (u, v) are the coordinates in the plane (L(s),U(s)), with origin P (s).

When external forces f (such as the weight f = ρg, Fig. 2c) are applied to the
branch, external moments are induced. They result exclusively from the force

densities f([s, L]) present downstream of P (s). Denoting F (s) =
∫ L

s
f(u) du

the external force applied to segment [s, L] due to gravity, we can express the

FEM and L-Systems Using Natural Information Flow Propagation 221

external moments as a function of forces F and tangents H:

ME(s) =

∫ L

s

(P (u)− P (s))× f(u) du =

∫ L

s

H(u)× F (u) du. (6)

At equilibrium, the internal torque (induced by deformation) exactly balances
the external torque (induced by external forces) (Fig. 2d):

K(s) (Ω(s)−Ωeq(s)) +ME(s) = 0, (7)

where Ωeq denotes the generalized curvature at equilibrium:

Ωeq(s) = Ω(s) + K(s)−1ME(s). (8)

2.2 FDM Discretization and Natural Integration Using L-Systems

Let us discretize the curve C into a set of I + 1 nodes Ni of curvilinear abscissa
si, i = 0 . . . I (usually regularly spaced though not necessarily) so that N0 =
P (0) and NI = P (L). Each node is associated with its position P i, frame
Ri, external moments ME

i or accumulated downstream forces F i. If distances
dsi = ‖si+1 − si‖ are small enough, we can express (1), (2), and (6) thanks to
Taylor’s series at order 1 (Euler methods) [12].

Interestingly, point P i+1 and frame Ri+1 can be recursively expressed in
terms of the previous point P i and frame Ri, which allow us to compute these
quantities in a single pass from the basis of the curve to its tip [18].

P i+1 = P i + dsiHi, (9)

Ri+1 = Ri + dsi [Ωi]×Ri. (10)

Likewise, external moments ME
i−1 and accumulated forces F i−1 can be re-

cursively expressed in terms of ME
i and F i at the next node. Their computation

can thus be carried out in a single pass from curve tip to basis.

ME
i−1 = ME

i + dsi−1Hi × F i, (11)

F i−1 = F i +

∫ si

si−1

f(u) du. (12)

Due to large deformations, (7) is non-linear in terms of generalized curvature.
To solve it, we use an explicit iterative method, and, specifically, a relaxation
method [12] with a factor r ∈]0, 1[:

Ωt+1(s) = (1− r)Ωt(s) + r(Ω(s) + Kt(s)−1MEt
(s)), (13)

with Ω0(s) = Ω(s). The iterative process stops when the difference between two
successive solutions is smaller than a tolerance ‖Ωt+1 −Ωt‖ < ε.

The above recursive formulation makes it possible to define local L-system
rules that will propagate in two pass across the branch structure, from node to
node. The flow of computation goes as follows between two time steps:

222 J.-P. Bernard, B. Gilles, and C. Godin

Input: branch at time t
Output: branch at time t + 1
do:

L-system pass from tip to basis

computation of (11), (12), (13)
L-system pass from basis to tip

computation of (9), (10)
until convergence condition of (13) reached

Sketch of a L-system rule used for the tip-to-basis pass

N --> { ds = abs(successor ().s - current ().s)

current ().F = successor ().F + ds * successor ().f
... computation of (11) and (13)

} produce N

Sketch of a L-system rule used for the basis-to-tip pass

N --> { ds = abs(predecessor ().s - current ().s)

current ().P = predecessor ().P + ds * predecessor.H
... computation of (9), (10)

} produce N

3 Natural Computing of Branch Bending Using Finite
Element Method (FEM) and L-Systems

3.1 Computing Axis Bending by Axial Information Propagation
with FEM

In FDM and FEM, continuous model domains are approximated using informa-
tion at a finite number of discrete locations called nodesNi, i = 0, . . . , I. Whereas
in FDM, solutions are only evaluated at nodes (and not elsewhere within the
domain), in FEM the set of nodes correspond to the vertices of polygonal ele-
ments that tile the domain of interest. The solution is evaluated at each node
using an integral formulation and interpolated over the whole domain using a
basis of shape functions ϕi associated with each node Ni) [2]. Here, our aim is
to compute the generalized curvature Ω that characterizes the axis shape on the
whole domain (i.e. on the curve C). For this we decompose Ω on the set of shape
functions:

Ω(s) =

I∑
i=0

Ωiϕi(s), (14)

where Ωi is a vector. Shape functions ϕi are usually low order polynomials that
are null on all node Nj 6= Ni and have value 1 at node Ni. They are interpolating
and form a partition of unity [2]. Their support is compact and their values at
one node influences those of neighboring elements.

FEM and L-Systems Using Natural Information Flow Propagation 223

To compute valuesΩi on nodes Ni, we have to solve the linear system MX =
B defined by 15, [2]:

I∑
i=0

Ωi︸︷︷︸
=XT

i

∫
C
ϕi(s)ϕj(s) ds︸ ︷︷ ︸

=Mji

=

∫
C
Ω(s)ϕj(s) ds+

∫
C
K(s)−1ME(s)ϕj(s) ds︸ ︷︷ ︸

=BT
j

, (15)

where Mij correspond to the energy of the cross influence of nodes Nj and Ni on

the axis, Xi = ΩT
i and Bi to the energy of forces along the axis which influence

the generalized curvature Ωi of the node Ni. If the mass-matrix coefficient Mji

can be analytically computed (shape function are known) and expressed as a sum
of integrals on each element, we have to compute numerically the right hand-
side Bj . Because this term is not linear, we split up each element in several
integration areas and use midpoint method [12] to numericaly approach the
integrals (note that one may also use the Gauss points method [12]).

Properties of mass-matrix (symmetric and positive definite) allow us to use a
Cholesky decomposition [12] (product of a low triangular matrix with its trans-
pose) to solve in two data propagation through the structure thanks to forward
substitution (17) and backward substitution (18) algorithms [12].

M = LLT ,

Lij =

Mij −
∑j−1

k=0 LikLjk

Ljj
, ∀0 6 j < i 6 I

Lii =
√

Mii −
∑i−1

k=0 L2
ik, ∀0 6 i 6 I

(16)

LY = B , Y i =
Bi −

∑i−1
k=0 LikY k

Lii
,∀0 6 i 6 I (17)

LTX = Y , Xi =
Y i −

∑I
k=i+1 LkiY k

Lii
,∀I > i > 0 (18)

Cholesky decomposition (16) and forward substitution (17) algorithms can
be computed together with one pass, e.g. from basis-to-tip (resp. from tip to
basis) and the backward substitution (18) algorithm can be computed with an
a pass in the reverse direction, e.g. from tip to basis (resp. from basis to tip).

3.2 Extension to Branching Systems

We now need to extend the previous algorithm so that it can cope with branching
organizations of beams that would represent plant structures. As in a branch-
ing structure, each element has only one parent, ramifications do not influence
forward propagations (update of frames R(s) and points P (s)).

Solving the linear system MX = B is more difficult in case of ramification
than in the case of a single axis. Non-null elements Mij in the matrix M corre-
spond to branch segments between nodes Ni and Nj such that the product of
the shape functions ϕi and ϕj along these segments is non-null. Therefore, the
position of non-null elements in M depends on the indexing of the tree nodes. We

224 J.-P. Bernard, B. Gilles, and C. Godin

consider two indexing strategies: a forward and a backward strategies indexing
respectively the elements from basis to tip (matrix Mf) and from tip to basis
(matrix Mb). Using either of indexing strategies, matrices have a block structure
according to the set of nodes between two branching points (Fig. 3).

A B
C

Fig. 3. Sets of nodes corresponding to each block of matrices Mf and Mb.

Mf =

Mf
AA sym

Mf
AB Mf

BB

Mf
AC · Mf

CC

 ; Mb =

Mb
BB sym
· Mb

CC

Mb
AB Mb

AC Mb
AA

 . (19)

With the same notations, we can compute Lf and Lb the Cholesky decompo-

sition matrices of Mf = LfLfT and Mb = LbLbT respectively. Then, building the
direted acyclic graphs that correspond to data propagation in Cholesky decom-
position algorithm. It is possible to show that only the Cholesky decomposition
Lb keeps non-null coefficients at exactly the same places as those of the original
matrix Mb (Fig. 4) [6].

Lf
AA

Lf
AB Lf

BB

Lf
AC Lf

BC Lf
CC

Mf
AA

Mf
AB Mf

BB

Mf
AC Mf

BC Mf
CC

= 0

6= 0

(a) Forward indexing.

Lb
BB

Lb
BC Lb

CC

Lb
AB Lb

AC Lb
AA

Mb
BB

Mb
BC Mb

CC

Mb
AB Mb

AC Mb
AA

= 0

= 0

(b) Backward indexing.

Fig. 4. Direted acyclic graphs that correspond to data propagation in Cholesky de-
composition algorithm. With a forward indexing, Lf

BC 6= 0 whereas Mf
BC = 0 contrary

to a backward indexing where Lb
BC = 0 = Mb

BC .

FEM and L-Systems Using Natural Information Flow Propagation 225

3.3 Natural Computing Using L-System

On an axis, elements and integration domains are segments. Since a node has
influence only on its neighboring elements (possibly at order greater than 1), we
can express our model in L-systems:

– a node is represented by a module of type N,
– an element between two nodes is represented by a module of type E,
– elements E are decomposed into integration segments represented by modules

of type I.

Because two elements can be decomposed into two different number of inte-
gration segments, and a node influences always the same number of neighboring
elements, we chose to use a multiscale L-string representation [3] to carry out
the integral calculus. Thus the axis is represented at two scales: the scale of
nodes and elements and the scale of integration points. The first scale is used to
assemble the mass-matrix Mb and solve the linear system MbX = B whereas
the second scale is used to compute B.

N N NE E

I I I I I I

NEIIINEIIIN...

(a) Axis seen as multiscale L-string for
FEM model (L-string and tree graph).

E
E

I I I I I I

N N
N

(b) Each L-string module corre-
sponds to a part of the axis.

Fig. 5. Different representations of a multiscale L-string.

stored in the node Ni.
When a ramification exists, we deal with it in L-system by adding brackets

after a node N to begin a new axis having this node as a root. The L-string
NEN[EN]EN corresponds to a simple branch composed of a segment axis E di-
vided in two axis segments (Fig. 6a and 6b). Like previously, each element E is
decomposed into several integration segments I at a lower scale.

Using this data structure and storing each row of matrices from their diagonal
to their last coefficient in the corresponding node, it is possible to compute
the Cholesky decomposition and the forward substitution (and therefore all the
mechanical quantities) in a tip-to-basis pass using the following algorithm:

Input: M, B and order of shape functions n
Output: L and Y

init:

N --> { current ().Ltmp = current ().M
current ().Y tmp = current ().B

} produce N

226 J.-P. Bernard, B. Gilles, and C. Godin

N N N

N

E E

E

NEN[EN]EN

(a) L-string at elements and nodes
scale for FEM model in case of rami-
fication (L-string and tree graph).

E

E

E

N

N

N

N

(b) Each L-string module is
equivalent to a part of the
tree at elements and nodes
scale.

Fig. 6. Different representations of a ramification L-string at nodes and elements scale.

Cholesky decomposition:

N --> { current ().L0 =

√
current().Ltmp

0

for i = 1 . . . n:

current ().Li =
current().Ltmp

i

current().L0

forall k, p in { predecessors () of order k 6 i }:

p.Ltmp
i = p.Ltmp

i − current ().Lk * current ().Li

} produce N

Forward substitution:

N --> { current ().Y =
current().Y tmp

current().L0

forall i, p in { predecessors () of order i 6 n }:

p.Y tmp = p.Y tmp - current ().Li * current ().Y

} produce N

4 Results

We first tested our algorithm on a simple branching system composed of a rigid
trunk, a horizontal branch and a secondary branch borne by the former one.
The method is able to account for bending and twist, Fig. 7. Only few nodes
were needed (here, only at each end of the branch and at each of its ramification
nodes) to obtain curvature along the axis (Fig. 7d). Note that if we do not have
enough integration points (Fig. 7b), the number of nodes and integration points
are not enough to converge correctly.

To analyze this resolution issue, we compared our result to the model pre-
sented in the section 2 (green curves in Fig. 8). We present two simulations:

FEM and L-Systems Using Natural Information Flow Propagation 227

(a) Reference config-
uration.

(b) 2 points per ele-
ment.

(c) 10 points per ele-
ment.

(d) 100 points per el-
ement.

Fig. 7. Branch bending with one ramification. 1 node (red spheres) at each end and
ramification. Integration points are located on the midpoint of each brown segment
(integration areas).

– one with only two nodes (at the beginning and at the end of the axis): we
are only varying the number of integration points (blue curves in Fig. 8),

– another one where we are varying the number of nodes and where the number
of integration points per element is fixed to 10 (red curves in Fig. 8).

(a) Execution time (in seconds) as
function of integration points num-
ber (in FDM, integration points
and nodes numbers are the same).

(b) Convergence (norm of the de-
flection) as function of nodes num-
ber except for blue curve: as func-
tion of integration points number.

Fig. 8. Performances of our method on a single axis bending compared to FDM (refer-
ence mode, green curves). Two approaches are studied: nodes number fixed and increase
the points integration numbers (2 nodes, blue curves) ; increase nodes number with
fixed integration points number per element (red curves).

Fig. 8a shows us that our method is faster than a finite difference method.
In general, the execution time increases roughly linearly with the number of
integration points. Furthermore, for a given number of integration points, the
less nodes we use the faster is our method.On Fig. 8b, we observe that our
method converges more rapidly than a FDM method for a similar number of
nodes. The error (distance between the simulated and the theoretical values) is
a decreasing function of number of nodes. However, decreasing the number of
integration points does not change the convergence speed but may affect the

228 J.-P. Bernard, B. Gilles, and C. Godin

convergence itself (blue curve). A minimal density of integration points must
therefore be used to obtain correct physical results.

Our method allows to compute branch bending with different kinds of growth
rules (Fig. 9): we can play with reference curvature, material properties (density,
Young and shear modulii, . . .), order of ramifications, children number at each
ramification, sections, segment’s length. . .

(a) 3 growth steps. (b) 6 growth steps. (c) 10 growth steps.

Fig. 9. Branch bending on growing tree with 2 perspectives.

5 Conclusion

In this paper, we extended FDM to FEM integration in L-systems. For this we
had to use a multiscale approach where the plant is represented at two scales to
model both the nodes and the integration points of a FEM approach. We showed
that we could solve symmetric and definite positive linear systems thanks to a
Cholesky decomposition in L-systems, that made it possible to use the branching
structure itself to propagate the numerical integration as a flow of information
from the basis of the plant to the tip and reciprocally.

Our comparative analysis showed that our L-system FEM converges more
rapidly for our application than L-system FDM (with same model). This ap-
proach, illustrated on a mechanical problem of branch bending, can be readily
extended to the resolution of other systems involving differential equations on
branching systems.

References

1. Allen, M. and Prusinkiewicz, P. and DeJong, T. M.: Using L-systems for mod-
eling source-sink interactions, architecture and physiology of growing trees: the
L-PEACH Model. New Phyotologist 166, 869–880 (2005)

2. Bathe, K.: Finite Element Procedures. Prentice Hall (1996)
3. Boudon, F. and Pradal, C. and Cokelaer, T. and Prusinkiewicz, P., and Godin, C.:

L-Py: an L-system simulation framework for modeling plant architecture develop-
ment base on a dynamic language. Frontiers in Plant Science 3(76) (2012)

FEM and L-Systems Using Natural Information Flow Propagation 229

4. Chou, P. C. and Pagano, N. J.: Elasticity: tensor, dyadic, and engineering ap-
proaches. Courier Dover Publications (1992)

5. Costes, E. and Smith, C. and Renton, M. and Guédon, Y. and Prusinkiewicz,
P. and Godin, C.: MAppleT: simulation of apple tree development using mixed
stochastic and biomechanical models. Functional Plant Biology 35(10) (2008)

6. Featherstone, R.: Efficient Factorization of the Joint-Space Inertia Matrix for
Branched Kinematic Trees. The International Journal of Robotics Research 24(6),
487–500 (2005)

7. Federl, P. and Prusinkiewicz, P.: Solving differential equations in developmental
models of multicellular structures expressed using L-systems. Computational Sci-
ence – ICCS 2004 pp. 65–72 (2004)

8. Godin, C. and Sinoquet, H.: Functional-structural plant modelling. The New Phy-
tologist 166(3), 705–708 (2005)

9. Hemmerling, R. and Evers, J. B. and Smoleov, K. and Buck-Sorlin, G. and Kurth,
W.: Extension of the GroIMP modelling platform to allow easy specification of dif-
ferential equations describing biological processes within plant models. Computers
and Electronics in Agriculture 92(C), 1–8 (2013)

10. Jirasek, C. and Prusinkiewicz, P. and Moulia, B.: Integrating biomechanics into
developmental plant models expressed using L-systems. Plant Biomechanics 24(9),
614–624 (2000)

11. Peiró, J. and Sherwin, S.: Finite Difference, Finite Element and Finite Volume
Methods for Partial Differential Equations. Dordrecht: Springer Netherlands Hand-
book of Materials Modeling, 2415–2446 (2005)

12. Press, W. H., and Teukolsky, S. A. and Vettering, W. T. and Flannery, B. P.:
Numerical Recipes: The art of scientific computing. Cambridge University Press
(1987)

13. Prusinkiewicz, P.: Geometric modeling without coordinates and indices. IEEE
Computer society Proceedings of the IEEE Shape Modeling International., 3–4
(2002)

14. Prusinkiewicz, P.: Modeling plant growth and development. Current Opinion in
Plant Biology 7(1), 79–83 (2004)

15. Prusinkiewicz, P. and Allen, M. and Escobar-Gutierrez, A. and DeJong, T. M.:
Numerical methods for transport-resistance sink-source allocation models. Frontis
22, 123–137 (2007)

16. Prusinkiewicz, P. and Lindenmayer, A.: The algorithmic beauty of plants. Springer
(1990)

17. Prusinkiewicz, P. and Runions, A.: Computational models of plant development
and form. The New Phytologist 193(3), 549–569 (2012)

18. Taylor-Hell, J.: Incorporating biomechanics into architectural tree models. Com-
puter Graphics and Image Processing SIBGRAPI 2005. 18th Brazilian Symposium
on. IEEE (2005)

19. Vos, J. and Evers, J. B. and Buck-Sorlin, G. H. and Andrieu, B. and Chelle, M.
and de Visser, P. H. B.: Functional-structural plant modelling: a new versatile tool
in crop science. Journal of Experimental Botany 61(8), 2101–2115 (2010)

