
Bone Motion Analysis From Dynamic MRI: Ac-
quisition and Tracking

INTRODUCTION

Periacetabular osteotomy is an accepted surgical procedure to reorient the ac-
etabulum in patients with hip symptoms of mechanical overload, impingement
or femoral head instability. For both diagnosis and surgical planning, an ac-
curate estimate of hip joint bone motion is required. Orthopedists can use
animated 3D models, prior to joint surgery, to evaluate their task and generally
to reduce the overall time of the surgical operation. The long-term objective
of our ongoing project is to model, analyze and visualize human joint motion
in-vivo and non-invasively.

In order to deduce kinematical properties of the musculoskeletal system,
techniques have been developed to measure internal motion of organs. The use
of bone screws or implantable markers [1] provides a gold standard of bone
motion measurement, although it is a very invasive approach. Optical motion
capture consisting in recording markers trajectories attached to the skin leads to
inaccuracy in the estimation of the position of internal organs because of fat/skin
sliding artifacts [2]. Nowadays, medical imaging technology has reached a level
where it is possible to capture internal motion with different modalities (CT,
MRI, US). Several authors have reported kinematic studies of joints with se-
quential MRI acquisition techniques to evaluate the joint under passive motion,
meaning the joint is stationary during acquisition [3][4]. It has a limited util-
ity in application to biomechanics. This was demonstrated by Brossmann et
al. [5] who reported the importance of acquiring joint motion actively, due to
the existence of statistically significant variations between acquiring actively or
passively. However, the problem of acquiring volumetric image data in real-time
with MRI during active motion remains to be solved due to inherent trade-off in
the MR imaging technique between Signal-to-Noise Ratio (SNR), spatial resolu-
tion and temporal resolution. Quick et al [6] published results on the use of the
trueFISP (or b-FFE, FIESTA) imaging sequence for real-time imaging of active
motion of the hand, ankle, knee and elbow (matrix 135 X 256, 6 frames/s) on
a single slice. Bone motion tracking in 2D dynamic images, which are incom-
plete from a spatial point of view, is equivalent to a 2D/3D rigid registration
between dynamic images and the static MRI volume used to reconstruct 3D
models. Various registration methods have been proposed in the literature [7].
2D/3D multimodal rigid registration has been investigated for intra-operative
navigation using mainly X-rays and CT data. Tomazevic et al. [8] presented a
technique based on bone surface matching; Zöllei et al. [9], a method based on
mutual information optimization.

This paper presents the selection of the best dynamic imaging protocol avail-
able to our group and the adaptation of the technique to the joint motion
extraction problem. We introduce a new technique to track bone motion auto-
matically from real-time dynamic MRI based on the combination of temporal
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information of dynamic MRI and spatial information of static MRI by 2D/3D
registration. Bone motion tracking in sequential MRI is used as a gold standard
bone position measurement. Subsequently, we present how we optimized both
the tracking method and the acquisition protocol to overcome the trade-off in
acquisition time and tracking accuracy.

REAL-TIME DYNAMIC IMAGES ACQUISITION

In-vitro Study

The acquisition was performed with a 1.5T Intera MRI system (Philips Medical
Systems, Best NL). In a first step, the b-FFE (balanced Fast Field Echo, Philips
Medical Systems, Best NL) imaging sequence (aka. trueFISP) [10] was quanti-
tatively compared to four other sequences, including Turbo Spin Echo (TSE),
RF-spoiled FFE (T1-FFE) and a Field Echo, Echo Planar Imaging (FE-EPI)
sequence (Fig. 1). In order to quantify sequence performance, a phantom con-
sisting of tubes of Gd-DTPA (Schering AG, Germany) at varying concentrations
was used. Using this phantom, measurements of SNR could be made for a range
of physiological T2/T1 values. The b-FFE sequence was found to outperform all
other ultra-fast MR sequences available on the scanner in terms of SNR divided
by the acquisition time, SNRt. The SNR and CNR (between muscle and fat)
was optimal at a flip angle of 90 degrees for b-FFE sequence. Partial Fourier
acquisition in the read-out direction was possible without significant reduction
in image quality. This enabled the scan time to be reduced by 30%.

Figure 1: Plot showing the relative performance of different ultra-fast sequences
in terms of SNR divided by frame acquisition time (SNRt) for the oil tube
phantom . These were balanced fast field echo (BFFE), turbo spin echo (TSE)
with centric and linear k-space trajectories, Echo planar imaging (EPI) and T1
weighted Fast Field Echo (T1FFE)
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In-vivo Study

The imaging protocol was developed and optimized with reference to the lim-
itations of the tracking algorithm. First, the trade off in image quality with
FOV and matrix was investigated qualitatively on healthy volunteers in order
to achieve the optimum resolution, contrast and frame acquisition time. As
scan duration was proportional to the number of phase encoding steps, the
number of steps was kept at <100 at the shortest repetition time possible (TR
3.5ms). It was found that reducing the FOV and hence the phase encode matrix,
maintaining an in-plane resolution of 2mm, was not an effective way to reduce
frame acquisition time, due to the need to use fold-over suppression to avoid
aliasing in the phase encode direction. A parallel imaging technique, SENSE
(Philips Medical Systems, Best NL), was found to reduce the scan time by a
factor of 2 without significant reduction in image quality. A reference scan is
acquired prior to the SENSE MR sequence to measure the sensitivity profile of
the phased-array coil. The same reference scan is used for all the images of the
dynamic series.

A positioning device was developed that facilitated reproducible abductive
motion in both sequential and dynamic modes. A study was run with six healthy
volunteers to optimize and evaluate the robustness of the registration-MRI pro-
tocol combination without the introduction of motion artifacts. Ethics approval
was obtained from the local ethics committee for the study protocol. In a first
45 minutes-session, a complete static image data set of the pelvis and femur
was acquired with a 2D multi-slice spin echo acquisition (TR/TE 578/18ms,
FOV/matrix 400mm/512x512 and slice thickness 2mm to 10mm). In the sec-
ond scan session, the joint was stepped successively in abduction, and at a range
of positions two scans were run. A 3D sequential acquisition at high spatial res-
olution (fast gradient echo sequence with radial reconstruction: FFE, TR/TE
6.4/3.1ms, Flip angle 15 degrees, FOV/matrix 500mm/410x512, slice thickness
2mm) was run to localize the hip position (gold standard) and secondly the
optimized 2D dynamic protocol was run (seven imaging planes, gradient echo
sequence with balanced gradients: bFFE, TR/TE 3.5/1.1ms, Flip angle 80 de-
grees, pixel size 2 x 2mm, slice thickness 10mm, partial Fourier reduction factor
of 0.65 in read direction). Acquisition times for these two scans were respec-
tively 2min and 2sec. The slice positions of the dynamic slices were required to
be adjusted to intersect appropriate bony landmarks on each volunteer: three
axial (slices 1,4 and 5 in Fig. 5), a parasagittal (slice 3), an oblique (slice 2)
and two coronal images (slices 6 and 7) were acquired. These planes were set
initially and maintained throughout the sequential motion protocol.

BONE MOTION TRACKING

Mathematical Definitions

Prior to tracking, the femur and the pelvis are automatically segmented and
reconstructed from the static image data (three volumes rigidly registered in the
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static coordinate system W s) using a deformable model-based method presented
in [11] (see Fig. 2). We use a 3D simulation method based on bone-to-bone
collision detection (see [12] for more details) to determine a fixed hip joint center
of rotation C. Standard orthogonal coordinate systems of the femur (Sf) and
the pelvis (Sp) are centered on C and oriented using anatomical landmarks [13]
(see Fig.2). Let M f = M(Sf→Ws) (resp. Mp = M(Sp→Ws)) be the corresponding
homogeneous transformation matrices.

Figure 2: Results of the automatic femur segmentation on a sample slice, re-
constructed 3D models and standard coordinate system of the pelvis.

The bone tracking problem is equivalent to rigidly registering at each instant
t the 3D static volume where bony regions have been segmented and the 2D dy-
namic planes. A registration problem can often be stated as a functional energy
minimization. The energy, calculated with a similarity metric [14], measures
how good the matching is. Let θf

t (resp. θp
t ) be the six registration parame-

ters for translations and rotations of the femur (resp. the pelvis). Dynamic
plane relative positions are defined from the acquisition parameters as a set of
N (number of planes) coordinate systems P i (i ∈ [0.., N ]) in the dynamic acqui-
sition system W d corresponding to the homogeneous matrices Oi = M (Pi→Wd).
We define a transformation φf : <2Xℵ → <3 (resp. φp : <2Xℵ → <3) that
maps a point of the plane z=0 in P i to a point in Ws for the femur (resp. the
pelvis) such as (method A):

φf
θf
t
(x, y, i) = M f .Q

f
t.Oi.[x, y, 0, 1]T and φp

θp
t
(x, y, i) = Mp.Qp

t .Oi.[x, y, 0, 1]T

(1)
It means that the point [x, y] of the plane i is successively expressed in

the dynamic acquisition system (multiplication by Oi), in the standard bone
system (multiplication by Qf

t or Qp
t ) and finally, in the static acquisition system

(multiplication by Mf or Mp). Qf
t = M(Wd→Sf ) (resp. Qp

t = M(Wd→Sp))
is defined by θf

t (resp. θp
t ) using unit quaternions formulation for rotations

[15]. It represents the position of the femur (pelvis) in W d and contains all
the parameters to be optimized. φ can be expressed in different ways. For
instance, we can use the relative position between the femur and the pelvis
such as Qrel

t = Qp
t (Qf

t)−1 (method B). In this case, θrel
t (defining Qrel

t ) are the
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registration parameters. The conversion of Qrel
t into standard hip joint angles

(according to [13]) gives normalized flexion, adduction and internal rotation
angles which are medically relevant angles. Another way to represent φ is to
use the variation of the relative transformations between the femur and the
pelvis from one frame to the next one: Qdiff

t = (Qrel
t−1)

−1Qrel
t (method C).

The similarity metric aims at measuring the degree of alignment between
the reference dataset (static MRI volume) and the transformed dataset (dy-
namic MRI images). In case of MR images, no similarity metric has proven
to be superior especially when using different acquisition protocols with differ-
ent tissues/intensity transfer functions. Roche et al. showed the importance
of choosing an appropriate metric [16]. We have implemented three standard
similarity metrics [14]: normalized cross-correlation (NCC), absolute differences
(AD) and mutual information (MI). In addition, we use a metric we call ”model
matching” (MM) that measures, independent of the static volume, the align-
ment of the reconstructed model and the edges of the dynamic images. Also,
NCC, AD and MM are applied to the gradient vector images and are denoted
by GNCC, GAD and GMM. Grey-scale values in the static volume are trilin-
early interpolation at floating positions defined by the transformed dynamic
images. The similarity is performed in the bone neighborhood where the mo-
tion is purely rigid. In other words, soft tissues that deform significantly are
ignored. Considering a bone model reconstructed from the static MRI volume,
we define a mask (subset of the static volume) where locations are inside the
model or at a distance, determined empirically, of 5mm from its surface (see
Fig. 3). The mask is automatically generated using the ICP (Iterative Closest
Point) algorithm.

Figure 3: A dynamic slice (left) with its corresponding interpolated image in
the static volume and masked images (bottom).
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Registration Procedure

The hip bone tracking problem to be resolved is to find, at each instant t and
for each bone, the solution parameters θ∗t that minimize the similarity mea-
surement between the static volume and the transformed dynamic images. We
can use either method A, B or C to define the rigid transformation. Given an
optimization method Ψ and a solution search space Θ, the solution parameters
are the parameters minimizing the similarity ∆:

θ∗t = argmin(θt∈Θ|Ψ)∆(φθt(Dr,t), Sr) (2)

A coarse initialization is done manually. We use the amoeba optimizer, which
is an implementation of the Nelder-Mead method [17] derived from simplex
algorithm, as it is parameterizable (the number of iterations and the scale used
when a parameter is modified can be set) and relatively robust in presence of
local solutions. The three transformation parameters for rotations are the angle
of the unit quaternion q defining Qt and two orthogonal components used to
modify the vectorial part of q. Figure 4 shows an overview of the tracking
process.

Figure 4: Tracking method scheme.

Tracking bones in a real-time sequences, yields to the question of the ini-
tialization: how to provide an accurate initialization for a particular frame t,
knowing bones position in the preceding ones? The pelvis remains nearly im-
mobile during movement implying that the user initialization for the first frame
is suitable for the others. As a first step, we use method A to track the pelvis as
it is independent to the position of the femur. To initialize the femur, we make
the assumption that the movement is uniform. We tested two different initial-
izations that led to comparable results: the spherical quaternion interpolation
(so-called Slerp [15]) for Qrel

t using frames t−1 and t−2 with an interpolation pa-
rameter equals to 2, and the use of the variation of relative transformation such
as Qdiff

t = Qdiff
t−1. The tracking is done using method C as it is more convenient

for the optimization. More precisely, if the motion of the femur with regards to
the pelvis is planar, which is roughly correct, only one optimization parameter
(quaternion angle Ω) defining Qdiff

t is modified. Obviously, for frames 0 and 1,
where we cannot use method C formulation as it depends on t−2 frame, we use
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method B (optimization of the relative transformation between the pelvis and
the femur) which does not depend on previous frames. For frame 0, the femur
is initialized manually and subsequently tracked. Resulting solution parameters
are used to initialize the femur for frame 1.

RESULTS

Tracking in Sequential MRI

3D sequential acquisition gives a gold standard of bone positioning as it provides
high spatial resolution. Because of acquisition time constraints, the sequential
acquisition protocol (fast) is different to the initial static acquisition protocol.
Bones tracking is done in two steps. First, bones positions are initialized for
the first frame t = 0 assuming that there is no translation of the hip joint
center (HJC) and using GMM metric which is computationally fast. At t = 0,
the subject is in a neutral position (near zero position) and we have a good
confidence that the HJC (estimated with method [12]) is correct as zero position
is the reference for this calculation. It is corroborated by visual inspection of the
alignment between bones contours in sequential MRI and 3D models. Second,
the sequential volume at t = 0 is used as the reference (static) volume to track
bones in the other frames, with AD metric. AD metric is accurate in this case
because contrasts are the same. Translation parameters of the relative position
between the pelvis and the femur represent the translation of the estimated HJC.
Over 46 different positions (36 abductions, 5 flexions and 5 internal/external
rotations) and 6 different subjects, the average translation is 0.53mm (standard
deviation = 0.4mm, maximum = 2.4mm). It shows that the error in estimating
the HJC (cumulated with possible translation of the real HJC) is minor.

Optimization and Validation of the Method

To measure the goodness of the tracking in dynamic MRI and hence to validate
it, we compared, for a fixed subject position, pelvis/femur relative positions
tracked in dynamic MRI with the ones tracked in sequential acquisition. The
difference provides, similarly to [16], errors in rotation and translation. By
minimizing these errors, we optimized tracking parameters. We determined em-
pirically the parameters of the amoeba optimization procedure: scale of 1mm for
translations, scales of 0.05mm and 0.05rad for rotations (defined with quater-
nions) and 200 iterations. We compared the seven different similarity metrics
that we have implemented, keeping the same initial conditions (seven imaging
planes, same initialization and same optimization parameters). For the mutual
information metric, we estimated probability densities by using the joint his-
togram with 1000 random samples and 32 intensity bins in the range of 0-255.
We found that normalized cross-correlation based on gradient vector images
performs the best tracking in terms of accuracy: mean error in translation =
1.8mm (standard deviation = 1mm), mean error in rotation = 1.3 degrees (stan-
dard deviation = 0.7 degrees). Also it was found to be the most robust metric
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(the variation of the similarity around the solution was the sharpest).
In order to speed up the dynamic acquisition time, it is important to select

the smallest number of planes and the smallest resolution that still preserve a
acceptable accuracy (3 degrees of error in rotation). We measured the accuracy
of the tracking (with the same tracking parameters) for all combinations of three
planes from the initial configuration of seven imaging planes (see Fig.5).

Figure 5: Dynamic imaging planes configuration.

For the tested abductive motion, optimal planes pass near the HJC and are
approximately orthogonal (planes number 2, 5 and 6 of Fig. 5). The mean
error in translation is 2.4mm (standard deviation = 1mm) and the mean error
in rotation is 2.1 degrees (standard deviation = 1.1 degrees). With this configu-
ration, we simulated different resolutions by gaussian filtering and subsampling
dynamic grey-scale images. A resolution of 4x4mm was found to be the limit:
mean error in translation = 3.3mm (standard deviation = 1.7mm), mean error
in rotation = 3.3 degrees (standard deviation = 1.5 degrees).

Application on Real-time Dynamic MRI

We applied our method on real-time dynamic sequences (with motion artifacts)
and obtained visually satisfactory results. The dynamic protocol was a fast
gradient echo sequence with balanced gradients (bFFE, TR/TE 3.5/1.1ms, Flip
angle 80 degrees, pixel size 4.7 x 2.6mm, partial Fourier reduction factor of 0.65
in read direction, SENSE acceleration factor of 2, frame rate = 6.7 frames/s).
This protocol provides sufficient morphological data for bone tracking to be
carried out. For the optimization we used the parameters: GNCC metric, 200
iterations, 1 mm for the translation scale, 0.05 mm and 0.05 rad for rotation
scales. Figure 6 shows normalized femur/pelvis relative motion along time. In
case of a free abductive motion, with no positioning device, it was difficult to
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constrain the femur to remain in the coronal plane. Hence we used four planes
by adding another coronal plane parallel to the previous one (See Fig. 7).
Given a frame rate of 6.7 frames/s, the acquisition time for the four slices is
0.6s. Motion-related misalignment between the various slices was minimized by
performing relatively slow movements (i.e. an abduction/adduction in 20s). It
leaded to insignificant misalignments with regards to the image resolution.

Figure 6: Normalized hip joint rotation for a sample acquisition.

CONCLUSION AND FUTURE WORK

We present an automatic and optimized method to track bone motion from
multi-slice dynamic MRI which was not previously available. This offers an
accurate and non-invasive technique for the active kinematical analysis of human
joints.

The dynamic MRI protocol and the tracking algorithm were developed jointly
in order to optimize both accuracy and frame rate. b-FFE was found to be
the optimal dynamic sequence in terms of SNRt with use of a high flip an-
gle. The combination of a large FOV (450x500mm) at a resolution of 2.6mm
x 4.7mm (matrix 96x192) with use of the SENSE parallel-imaging technique
and partial Fourier acquisition gives a frame acquisition time of 0.15s. This
protocol provides sufficient morphological data for bone tracking to be carried
out. Normalized cross-correlation based on gradient images gives the most ac-
curate tracking and is the more robust metric. We optimized the number of
acquisition planes to three along with the definition of their optimal position
and orientation. We found that decreasing resolution down to 4x4mm could
improve acquisition speed preserving an acceptable tracking error (3 degrees in
terms of relative pelvis/femur rotation). We validated the technique quantita-
tively and on real-time dynamic cases.

Considering the inaccuracy of translation parameters (3mm), we find diffi-
cult, using real-time dynamic MRI, to validate and assess the displacement of
the hip joint center determined with the functional method based on collision
detection described in [12]. This inaccuracy biases the calculation of joint ro-
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Figure 7: 3D representation of the bones and the 4 dynamic acquisition planes,
and corresponding MR images with tracked bones (in white) at t=0, t=10 and
t=17

tation although we found an acceptable error (∼3 degrees). This error is also
affected by the error of tracking in the gold standard sequential MRI for bone
positioning and possible also due to displacement of the subject between the
two successive acquisitions. Also, rotational error cumulates both femur and
pelvis tracking errors.

We plan to improve the technique in terms of computational speed by using
the multi-resolution approach in the optimization procedure and test the method
on various movements like flexion/extension or internal/external rotation. We
believe that SENSE factors higher than 2, which improves the acquisition time,
is not suitable for bone tracking due to the increase of image artifacts. This
work has been applied to measure bone/skin markers relative position in or-
der to improve bone position estimation in optical motion capture (correction
of skin sliding artifacts). This modality is complementary to dynamic MRI as
movements are not restricted by the tunnel of the scanner, although we can
record only external motion. A possible application is the reduction of skin/fat
sliding artifacts in optical motion capture. The next step is to measure and es-
timate soft-tissue deformation in dynamic MRI and to validate the deformation
model, in the same way that we have carried out for bones, by using sequential
MRI. Due to significant differences between stepped motions and real-time mo-
tions (as shown in [5]) dynamic acquisition is necessary to analyze joint behavior
properly. The benefits of dynamic MRI are clear in that joints are mobile and
the pathology relates to the relative motion of the joint components. Moreover,
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real-time dynamic MRI does not require an MRI-compatible positioning device
with a method of producing repeatable motion, which is the case for cine-MRI.
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