
Chapter 1
Frame-based interactive simulation of complex
deformable objects

Benjamin Gilles, François Faure, Guillaume Bousquet, and Dinesh K. Pai

Abstract We present a new type of deformable model which combines the real-
ism of physically based continuum mechanics models and the usability of frame-
based skinning methods, allowing the interactive simulation of objects with het-
erogeneous material properties and complex geometries. The degrees of freedom
are coordinate frames. In contrast with traditional skinning, frame positions are not
scripted but move in reaction to internal body forces. The deformation gradient and
its derivatives are computed at each sample point of a deformed object and used
in the equations of Lagrangian mechanics to achieve physical realism. We intro-
duce novel material-aware shape functions in place of the traditional radial basis
functions used in meshless frameworks, allowing coarse deformation functions to
efficiently resolve non-uniform stiffnesses. Complex models can thus be simulated
at high frame rates using a small number of control nodes.

1.1 Introduction

Deformable models are essential in mechanical engineering, biomechanics and
computer graphics, typically for simulating the behavior of soft objects. The classi-
cal approach is physically based deformation, typically using continuum mechan-
ics. This has the significant advantage of physical realism. Complex deformations
are generated by numerical integration of discretized differential equations. How-
ever, these methods can be expensive and difficult to use. In the popular Finite El-
ement Method (FEM) framework, the degrees of freedom of the discretized model
are the vertices of a mesh, which must be constructed for each simulation object.
A relatively fine mesh (i.e., a dense sampling of the deformation field) is required
to capture common deformations such as torsion, leading to expensive simulations.
Mesh adaptation can be difficult due to the topological constraints of the mesh.
Particle-based meshless methods have been proposed to address these problems.
While they obviate the need to maintain mesh topology, particles can not be placed
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arbitrarily. Therefore, these methods also need a dense cloud of particles not very
different from the vertices of an FEM mesh.

Another approach, from the computer graphics community, is skinning (also
known as vertex blending or skeletal subspace deformation). The deformation is
kinematically generated by manipulating “bones,” i.e., specific coordinate frames.
This method is widely used, not only for its simplicity and efficiency, but because
it provides natural and intuitive handles for controlling deformation. Skinning gen-
erates smooth deformations using a very sparse sampling of the deformation field.
Adaptation is simple since frames can be inserted easily to control local features.
These interesting features have made it the most widely used method for character
animation. However, as a consequence of its purely kinematic nature (i.e., the frame
positions need to be scripted), achieving physically realistic dynamic deformation
is a major challenge with this approach.

We present a new approach that combines the advantages of both physically
based deformation and skinning [13]. Instead of the vertices of a mesh, the de-
grees of freedom are a sparse set of coordinate frames. The equations of motion are
derived for the moving frames by applying the principles of continuum mechanics
across the volume of the deformed object, and solved using classical implicit time
integration.

In addition, we show that it is possible to simulate complex heterogeneous ob-
jects with sparse sampling using new, material-aware shape functions [10]. So far,
most of the work has focused on objects made of a single, homogeneous material.
However, many real-world objects, including biological structures, are composed
of heterogeneous material. The simulation of such complex objects using the cur-
rently available techniques requires a high resolution spatial discretization to resolve
the variations of material parameters. However, dense sampling creates numerical
conditioning problems, especially in the case of stiff material. Shape functions are
geometrically designed to achieve a certain degree of locality and smoothness, in-
dependent of the material. The resulting deformations are rather homogeneous be-
tween the nodes. Consequently, the realistic simulation of such complex objects has
remained impossible in interactive applications. Our approach is based on a simple
observation: points connected by stiff material move more similarly than connected
by compliant material. Given a deformable object to simulate and a number of con-
trol nodes corresponding to an expected computation time, optimization criteria can
be used to compute, at initialization time, a discretization of the object and the as-
sociated shape functions, in order to achieve a good realism.

Our specific contributions are the following: (1) a new approach which uni-
fies skinning and physically based deformation modeling. (2) material-aware shape
functions using a novel distance function based on compliance; (3) a method to au-
tomatically model a complex object for this method, with an arbitrary number of
sampling frames, based on surface meshes or volumetric data; (4) a system that im-
plements the above methods and shows the ability to simulate complex deformation
with a small number of dynamic degrees of freedom. The remainder of this chap-
ter is organized as follows. We first briefly review in Section 1.2 relevant previous
work, which allows us to motivate and sketch our approach with respect to the ex-
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isting ones. In Section 1.3, we present the kinematic discretization using frames,
and the interpolation function based on skinning. In Section 1.4, we derive the dif-
ferential equation which governs the dynamics of the object, investigate precision
issues and propose a strategy to optimize spatial integration. We then study in Sec-
tion 1.5 the problem of material-aware shape functions starting in one dimension
and extending to two or three dimensions, and propose a method to optimize the
distribution of nodes. We finally present results and discuss future work.

1.2 Related Work

Physically based deformable models have attracted continuous attention in Com-
puter Graphics, since the seminal work of Terzopoulos [39]. We refer the reader
to the excellent survey of [31] on this topic. Here, we briefly review the main La-
grangian models of deformable objects.

Mesh-based methods: Early works on deformable models in Computer Graphics
have focused on interconnected particles. In mass-spring systems [35], constraints
on edge length are enforced to counter stretching. Bending and shear can be con-
trolled using additional springs. More general constraints such as area or volume
conservation can be enforced using appropriate energy functions [40]. To realis-
tically model volumetric deformable objects, it is necessary to apply continuum
mechanics. The spatial derivatives of the displacement field can be computed us-
ing finite differences on a regular grid [39]. [38] studied the case of physically de-
formable NURBS surfaces for shape modeling. Finite elements [7, 14, 33, 8] allow
irregular meshes, which are generally more convenient to sample objects with arbi-
trary shapes, but may be poorly conditioned. The spatial domain is subdivided into
elements such as triangles, hexahedra or more frequently tetrahedra, in which the
displacement field is interpolated using shape functions. At each point the strain can
be computed using the spatial derivatives of the displacement field. Accurate ma-
terial models have been implemented from rheological models relating stress and
strain in hyperelastic, viscoelastic, inhomogeneous, transversely isotropic and/or
quasi-incompressible media [41]. For simplicity, linearized strain has been applied
assuming small displacements in rotated frames [29]. Precomputed deformations
modes have been used to interactively deform large structures [18, 6, 22]. Using
deformation modes rather than point-like nodes as DOFs allows to easily trade-
off accuracy for speed. A layered model combining articulated body dynamics and
a reduced basis of body deformation is presented in [12]. However, the deforma-
tion modes lack locality and pushing on one point may deform the whole object.
Models based on Cosserat points have been proposed for large deformations in thin
structures [34] and solids [30]. Since robustness problems such as inverted tetrahe-
dra [17] or hourglass deformation modes in hexahedra [30] have been addressed,
meshing remain the main issue in finite elements. To reduce computation time, em-
bedding detailed objects in coarse meshes has become popular in computer graph-
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ics [29, 37, 32]. Multi-resolution approaches have been proposed [9, 15]. In recent
work, disconnected or arbitrarily-shaped elements [19, 26] have been proposed to
alleviate the meshing difficulties.

Meshless methods: Meshless methods do not use an underlying embedding struc-
ture but unstructured control points. In computer graphics, meshless methods have
been first introduced for fluid simulation and then extended to solid mechan-
ics [28, 16]. Besides continuum mechanics-based methods, fast algorithms have
been developed for video games to simulate quasi-isometry [1, 27]. They are not
able to model real materials, being based on geometry only. In meshless methods,
each control node has a given influence that generally decreases with the distance
to it. Standard approximation or interpolation methods have been investigated for
physical simulation such as Shepard functions, radial basis functions and moving
least squares (see [11] for an extensive review). Despite the added flexibility due to
the absence of elements, sampling issues remain, since each interpolated point must
lie in the range of at least four non-coplanar nodes, as illustrated in Figure 1.1(b),
contrary to our method that explicitly use rotations in the degrees of freedom. A very
interesting meshless approach using moving frames was recently proposed to alle-
viate this limitation [25], using the generalized moving least squares (GMLS) inter-
polation. In this method, even one single neighboring node is sufficient to compute
a local displacement, as illustrated in Figure 1.1(c). Moreover, the authors introduce
a new affine (first-degree) approximation of the strain, called elaston. In contrast
with the plain (zero-degree) strain value traditionally used, this allows each integra-
tion point to capture bending and twisting in addition to the usual stretch and shear
modes. These improvements over previous methods remove all constraints on node
neighborhood and allow the simulation of objects with arbitrary topology within a
unified framework. However, a dense sampling of the objects is applied, leading to
high computation times.

(a) (b) (c) (d)

Fig. 1.1: Comparison of displacement functions. The black line encloses the area
where the displacement function is defined, based on node positions (black circles)
and associated functions (colored areas). (a) Finite Element, (b) Point-based, (c)
Frame-based with RBF kernels, (d) Frame-based with our material-based kernels.
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1.3 Frame-based deformation

In continuum media mechanics, it is necessary to numerically solve systems of dif-
ferential equations (see Section 1.4). A general procedure is to smoothly approxi-
mate continuous functions in the solid from sought values at discrete sample loca-
tions. These values are the independent degrees of freedom (i.e., the DOFs qi) which
we will call nodes. In most simulation methods (Section 1.2), nodes are points and
the deformation in the material is linearly interpolated from node displacements. In
contrast, we consider rigid frames, affine frames and quadratic frames. Nodes are
associated with shape functions, also called weights, which are combined to pro-
duce the displacement function of material points in the solid. To model deformable
objects using a small number of control nodes, we need convenient, natural deforma-
tion functions. In character animation, the blending of frame displacements has been
studied to deform a skin from an embedded articulated skeleton [21]. This method,
called skinning or vertex blending or skeletal subspace deformation, is widely used,
not only for its simplicity and efficiency, but because it provides natural and intu-
itive handles for controlling deformation. Skinning generates smooth deformations
using a very sparse sampling of the deformation field. Here, we present two differ-
ent blending techniques that we have explored for parameterizing a physically based
deformable model, and how we measure the deformation.

(a) (b)

(c)
(d)

(e) (f)

(g)

Fig. 1.2: Deformation modes obtained using two rigid frames. (a): rest shape, (b):
twisting, (c),(d): compression with linear (resp. nonlinear) shape functions, (e):
shear, (f): bending can be obtained using skinning, but (g): not using GMLS.

Linear blend skinning: The simplest and most popular blending method is lin-
ear blend skinning [24] where the displacements of control nodes qi are locally
combined according to their shape function wi. The following derivations hold for
different types of control nodes: points, rigid frames, linearly deformable (affine)
frames, and quadratic frames. Let p̄ and p be positions in the initial and de-
formed settings and u = (p− p̄) the corresponding displacement, expressed as:
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u = ∑i wi(p̄)Aip̄∗− p̄, where (p̄)∗ denotes a vector of polynomials of dimension
d in the coordinates of p̄. For point, affine or rigid, and quadratic primitives, we re-
spectively use complete polynomial bases of order n = 0, n = 1, n = 2, noted as (.)n.
In 3D, we have d = (n+ 1)(n+ 2)(n+ 3)/6 and the three first bases are: p0 = [1],
p1 = [1,x,y,z]T , p2 = [1,x,y,z,x2,y2,z2,xy,yz,zx]T . The 3× d matrix Ai(qi) rep-
resents the transformation of node i from its initial to its current position and is
straightforwardly computed based on the independent DOFs qi: for instance, the 12
DOFs of an affine primitive are directly pasted into a 3×4 matrix, while the 6 DOFs
of a rigid primitive are converted to a matrix using Rodrigues’ formula. wi(p̄) is the
shape function of node i evaluated at p̄. In linear blend skinning, weights need to
constitute a partition of unity (∑wi(p̄) = 1). To impose Dirichlet boundary condi-
tions, it is convenient to have interpolating functions at x̄i, the initial position (frame
origin) of node qi in 3d space: wi(x̄i) = 1 and w j(x̄i) = 0, ∀ j 6= i.

Dual quaternion skinning: Linear blend skinning suffers from well known vol-
ume loss artifacts when the relative displacement between nodes is large and non
linear. To remedy this, extra nodes need to be inserted. Another solution, is to use a
better blending function. For rigid frames, dual quaternion blending offers a good
approximation of the linear interpolation of screws at a reasonable computational
cost [20]. It provides a closed-form solution for more than two transforms contrary
to screw interpolation that requires an iterative treatment. Here, the relative dis-
placement of a rigid frame i is no more expressed using a 3×4 matrix Ai, but using
a 8d vector ai = [aiT

0 aiT
ε ]T where ai

0 (resp. aiT
ε ) is a unit quaternion representing

the rotation (resp. translation). Blended displacements are computed as normalized
weighted sums of dual quaternions: b′ = ∑wiai/‖∑wiai‖. Finally the blended dual
quaternion is converted [20] into a 3×4 rigid transformation matrix A to transform
material points: u = Ap̄∗− p̄.

q̄ i
q j

p̄
P

q i
q j

F

q̇ iwi
w j

f ext

Initial Deformed

q̇ j

u

Fig. 1.3: The displacement u of a deformable object is discretized using nodes
(blue). Strain is measured based on the deformation of local frames (black arrow)
computed at integration points p in the material.
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Strain Measure: As shown in Figure 1.3, the displacement is sampled at nodes,
and is interpolated within the object based on nodal displacements. To apply the
laws of continuum mechanics, we first need to measure the local deformation of the
material. Consider a material whose undeformed positions p̄(θ) are parametrized by
local, curvilinear coordinates θ (like texture coordinates). When the material under-
goes a deformation, the points are displaced to new positions p(θ) = p̄(θ)+u(θ).
At each material point, the derivatives of the position function p with respect to
the coordinates θ are the vectors of a local basis called the deformation gradient
F = dp/dθ , with reference value F̄ = dp̄/dθ , typically the identity. The local de-
formation of the material is the non-rigid part of the transformation F̄−1F between
the reference and current states (like the distortion of a checkerboard texture). The
strain, ε , is a measure of this deformation. Different strain measures have been
proposed, but all of them fit in our framework. For instance, the popular Green-
Lagrange strain tensor, which is well suited for large displacements is computed as
(FT F̄−T F̄−1F − I)/2. Its six independent terms can be compactly stored in a 6d
vector: ε(θ) = [εxx εyy εzz εxy εyz εzx]

T .

1.4 The dynamics of frame-based continuum

This section explains how to set up the classical differential equation of dynamics
for our models. An overview of the algorithm is given at the end of the Section.
As shown in the following diagram, we apply a classical hyperelastic scheme: from
the degrees of freedom q, we interpolate a displacement field based on skinning,
from which we compute the strain through spatial differentiation (Section 1.3). The
elastic response σ(ε) generates the elastic forces, and is a physical characteristic
of the material. The elastic energy of a deformed object is the work done by the
elastic forces from the undeformed state to the current state, integrated across the
whole object (Section 1.4.4): W =

∫
V

∫
ε

0 σT dε . The associated elastic forces f are
computed by differentiating the energy with respect to the DOFs (Section 1.4.1).
After time integration (Section 1.4.3), we obtain the acceleration, velocity and the
new position of each node.

Position Strain Energy

q ∂→ ε
Material→ W∫

↑ ↓ ∂

q̇
∫
← q̈ Mass← f

Velocity Acceleration Force
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1.4.1 Elastic force

The associated elastic forces f are computed by differentiating the energy with re-
spect to the DOFs. Here, we explicitly introduce the deformation gradient F in the
force computation:

f =−∂W

∂q

T

=−
∫

V

∂ε

∂q

T

σ =−
∫

V
(

∂ε

∂F
∂F
∂q

)T
σ (1.1)

This provides us with great modularity: the material module computes σ(ε), the
strain module computes ∂ε/∂F , while the interpolation module computes ∂F/∂q,
and the three can be designed and reused independently. This modularity allows us
to implement the blending of rigid, affine and quadratic primitives using diffent tech-
niques (e.g., linear blend skinning, dual quaternion skinning), and to easily combine
them with a variety of strain measures. Note that other interpolation methods, such
as FEM and particle-based methods, fit in this framework. We have implemented
the popular corotational and Green-Lagrange strains, and Hookean material laws.
Incompressibility is simply handled by measuring the change of volume, ‖F‖− 1,
and applying a scalar response using the bulk modulus. Other popular models such
as Mooney-Rivlin and Arruda-Boyce would be easy to include.

One additional differentiation provides us with the stiffness ∂ f/∂q, used in im-
plicit integration schemes and static solvers. Iterative linear solvers like the con-
jugate gradient only address the matrix through its product with a vector, which
amounts to computing the change of force δ (f) corresponding to an infinitesimal
change of position δ (q). This frees us from explicitly computing the stiffness ma-
trix, and allows us to simply compute the changes of the terms in the force expres-
sion and accumulate their contributions:

δ (f) = −
∫
V

∂ε

∂q
T ∂σ

∂ε

∂ε

∂q δ (q) −
∫
V δ ( ∂ε

∂q )
T σ

= −
∫
V ( ∂ε

∂F
∂F
∂q )

T ∂σ

∂ε
( ∂ε

∂F
∂F
∂q )δ (q) −

∫
V

(
δ ( ∂ε

∂F )
∂F
∂q + ∂ε

∂F δ ( ∂F
∂q )
)T

σ
(1.2)

The first term corresponds to the change of stress intensity. The second corresponds
to a change of direction due to non-linearity, and may be null or negligible, depend-
ing on the interpolation and strain functions. Damping forces, based on velocity, can
straightforwardly be derived in this framework and added to the elastic forces.

1.4.2 Visual and contact surfaces

Visual and contact surfaces can be attached to the deformable objects using the
skinning method presented in section 1.3. Our framework sets no restriction on the
collision detection and response methods. Any force fext applied to a point p on the
contact surface can be accumulated in the control nodes using the following relation,
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deriving from the power conservation law:

f+=
∂p
∂q

T

fext (1.3)

1.4.3 Differential equation

Lagrangian mechanical models obey the following ordinary differential equation in
generalized coordinates:

Mq̈− f(q, q̇) = fext(q, q̇) (1.4)

where M is the mass matrix, q and q̇ are the DOF value and rate vectors, q̈ denotes
the accelerations, f the internal (elastic) forces, fext the external and inertial forces.
Without loss of generality we consider Implicit Euler integration (see e.g., [5]),
which computes velocity updates by solving the following equation:(

M−hC−h2K
)

δ q̇ = h(fext +hKq̇) (1.5)

where h is the time step, K = ∂ f
∂q is the stiffness matrix, and C = ∂ f

∂ q̇ the damping
matrix, often represented using the popular Rayleigh assumption: C = αM+βK.
The matrices does not need to be explicitly computed, since the popular Conjugate
Gradient solver addresses them only through their products with vectors. The gen-
eralized mass matrix is computed by assembling the Mi j blocks related to node i
and j:

Mi j =
∫

V
ρ

∂p
∂qi

T
∂p
∂q j

, (1.6)

where ρ is the mass density. For simplicity, we lump the mass of each primitive
by neglecting the cross terms : Mi j = 0, ∀i 6= j. The resulting global mass matrix is
block diagonal and the Mii are square matrices, simplifying the time integration step
without noticeable artifacts. For affine and quadratic primitives, masses are constant
and can be pre-computed based on the voxel grid. We also pre-compute the mass of
rigid primitives and rotate them in run-time according to their current rotations.

1.4.4 Space integration

The quantities derived in the previous sections are numerically integrated across the
material using a set of function evaluations. The accuracy of this process, called cu-
bature, is described by its order, meaning that polynomial functions of lower degrees
can be integrated exactly. The following table summarizes the degrees of the differ-
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ent quantities obtained with linear shape functions for different strain measures and
primitives.

Node Strain measure u M F ε , σ f
Affine/Rigid Corotational 2 4 1 1 2
Affine/Rigid Green-Lagrange 2 4 1 2 4

Quadratic Corotational 3 6 2 2 4
Quadratic Green-Lagrange 3 6 2 4 8

Table 1.1: Polynomial degrees obtained with linear shape functions and linear blend
skinning.

Classical cubature methods such as the midpoint rule (order 1), the Simpson’s
rule (order 3) or Gauss-Legendre cubature (order 5) would require many evaluation
points to be accurate. The most representative evaluation points can be estimated
as in [4], but it requires intensive static analysis at initialization time. Fortunately,
displacements based on linear blend skinning can be easily differentiated and all
quantities can be integrated explicitly in regions of linear weights. In a region V e
centered on p̄, we express points as p̄+δ (p̄). The integration of order n of a scalar
quantity v in this region can be written as

∫
V e v = vT ∫

V e δ (p̄)n where v is a vector
containing the quantity v and its spatial derivatives up to degree n, and

∫
V e δ (p̄)n

is the integrated polynomial basis of order n over the region. The last term can be
accurately estimated at initialization time using a voxel grid, as the one shown in
Figure 1.4. This integration is exact if n is the polynomial degree of v. This for-
mulation generalizes the concept of elastons [25] where quantities of order n = 2
are explicitly integrated in cuboid regions. Here, we consider arbitrary regions, and
orders. Note that, using n = 0, the integration scheme is the classical midpoint rule:∫
V e v≈ vV e.

Fig. 1.4: In this example
15000 integration samples
are generated by rasterizing
a bunny model, and a mid-
point (zero order) integration
scheme is used. Colors rep-
resent a hue mapping of the
strain.

The method presented in section 1.5 generates as-linear-as possible shape func-
tions. However, the gradients are discontinuous at the boundaries of the influence
regions. We therefore partition the volume in regions influenced by the same set of
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nodes, and place one integration sample V e in each of them. To increase precision,
we recursively subdivide the remaining regions up to the user-defined number of
integration points. Our subdivision criterion is based on the error of a least squares
fit of the voxel weights with a linear function.

Data: Voxel map of material properties, number of control nodes
Initialization:
• Distribute the control nodes // sec. 1.5.4
• Compute the shape functions // sec. 1.5.3
• Compute the mass matrix // sec. 1.4.3
• Generate the integration samples // sec. 1.4.4
• Compute the weights of the surface vertices // sec. 1.4.2

Loop:

• Accumulate force from each integration point: // eq. 1.1

– Compute F (and its spatial derivatives);
– Compute ε (and derivatives) from F using a given strain measure;
– Compute σ (and derivatives) from ε using a given material model;
– Add integrated force to each influencing primitive;

• External forces and collision handling // eq. 1.3
• At each solver iteration: // eq. 1.5

– Accumulate force change from each integration point // eq. 1.2

Algorithm 1: Deformable model computations.

1.5 Material-aware shape functions

Building sparse frame-based physical models not only requires appropriate defor-
mation functions as discussed in the previous section, but also anisotropic shape
functions to resolve heterogeneous material as illustrated in Figure 1.1(d). In this
section, we propose a method to automatically compute such functions.

1.5.1 Compliance distance

Consider the deformation of a heterogeneous bar in one dimension, as shown in
Figure 1.5, where each point p is parameterized by one material coordinate x. Let
the endpoints p0 and p1 be the sampling points of the displacement field. At any
point, the displacement is a weighted sum of the displacements at the sampling
points: u(x) = w0(x)u0 +w1(x)u1. If the bar is heterogeneous, the deformation is
not uniform and depends on the local stiffness, as illustrated in Figure 1.5(b). We
call a shape function ideal if it encodes the exact displacement within the bar given
the displacements of the endpoints, as computed by a static solution. Choosing the
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Fig. 1.5: Shape function based on compliance distance. (a): A bar made of 3 dif-
ferent materials, in rest state, with stiffness proportional to darkness. (b): The bar
compressed by an external force. (c): The displacement across the bar. (d): The
ideal w0 shape function to encode the material stiffness. (e): The same, as a function
of the compliance distance.

static solution as the reference is somehow arbitrary, since inertial effects play a role
in dynamics simulation. However, the computation of interior positions based on
boundary positions is an ill-posed problem in dynamics, since the solution depends
on the velocities and on the time step. Moreover, for graphics, we believe that our
perception of realism is more accurate for static scenes than when the object is
moving. Using the static solution as a shape function makes sense from this point of
view, and encodes more information than a purely geometric shape function.

It is possible to derive the ideal shape functions by computing the static solution
u(x) corresponding to a compression force f applied to the endpoints. Note that this
precomputation is exact for linear materials only. For simplicity, we assume that the
bar has a unit section. At any point the local compression is ε = du

dx = f/E = fc,
where E is the Young’s modulus, and its inverse c is the compliance of the mate-
rial. Solving this differential equation provides us with: u(x) = u(x0) +

∫ x
x0

fc dx,
and since the force is constant across the bar, the shape function w0 illustrated in
Figure 1.5(d) is exactly:

w0(x) =
u(x)−u(x1)

u(x0)−u(x1)
=

∫ x1
x c dx∫ x1
x0

c dx
(1.7)

Let us define the compliance distance between two points a and b as: dc(a,b) =∫ xb
xa

c |dx|. The slope of the ideal shape function is: dw0
dx = −c/dc(p0,p1). It is pro-

portional to the local compliance c and to the inverse of the compliance distance
between the endpoints. Interestingly, the shape function is thus an affine function
of the compliance distance, as illustrated in Figure 1.5(e), and it can be computed
without solving an equation.
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1.5.2 Extension to two or three dimensions

We showed in the previous section that computing ideal shape functions in 1D ob-
jects, without performing compute-intensive static analyses as in [32], is straight-
forward based on compliance distance. Let n be the number of points where we
want to compute exact displacements to encode in shape functions. In one dimen-
sion, both the static solution and the distance field can be computed in linear time.
In two dimensions, computing the static solution for n independent points requires
the solution of a 2n× 2n equation system. The worst case time complexity of the
solution is O(n3), and direct sparse solvers can achieve it with a degree between 1.5
and 2 in practice. In contrast, the computation of an approximate distance field in
a voxel grid is O(n logn), which is much faster, but does not allow us to expect an
exact solution like in one dimension. The reason is that there is an infinity of paths
from one point to another to propagate forces across, thus the stress is not uniform
and can not be factored out of the integrals and simplified like in Equation 1.7. An-
other difference with the one-dimensional case is the number of deformation modes.
Higher-dimensional objects exhibit several stretching and shearing modes, and we
can not expect the ratio of displacement between two points to be the same in each
mode. Since a single scalar value can not encode several different ratios, there is no
ideal shape function in more than one dimension. Another limitation of this measure
is that the compliance distance is the length (compliance) of the shortest (stiffest)
path from one point to the other, independently of the other paths. Thus, two points
connected by a stiff straight sliver are at the same compliance distance as if they
were embedded in a compact block of the same material, even though they are more
rigidly bound in the latter case. Moreover, material anisotropy is not modeled using
a scalar stiffness value. Nonetheless, the compliance distance allows the computa-
tion of efficient shape functions, as shown in the following.

1.5.3 Voronoi kernel functions

In meshless frameworks, each node is associated with a kernel function which de-
fines its influence in space, as presented in Section 1.3. A wide variety of kernel
functions have been proposed in the literature, most often based on spherical, el-
lipsoidal or parallelepipedal supports. Our design departs from this, and is guided
by a set of properties that we consider desirable for the simulation of sparse de-
formable models. To correctly handle the example shown in Figure 1.1d, we need to
restrict kernel overlap, to prevent the influence of the left node from unrealistically
crossing the bone and reaching the flesh on the right. We thus need to constrain
the kernel values, while keeping them as smooth as possible. In particular, we fa-
vor as-linear-as possible shape functions with respect to the compliance distance, in
order to reproduce the theoretical solution in pure extension. A kernel value should
not vanish before reaching the neighboring nodes, otherwise there would be a rigid
layer around each node. With a sufficient number of radial basis functions, all the
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boundary conditions could be met [36]. Unfortunately, shape functions computed
with RBFs are generally global and can increase with distance, producing unreal-
istic deformations. Local RBFs have isotropic compact support, and are thus only
approximating.

Since there is no general analytical solution that can satisfy all the desired proper-
ties, we numerically compute a discrete approximate solution on the voxelized ma-
terial property map. Solving a Laplace or heat equation on the grid would require the
solution of a large equation system, and would compute nonlinear weight functions.
A Voronoi partition of the volume allows us to easily compute kernels with compact
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Fig. 1.6: Color map of the normalized shape function corresponding to the red node,
computed using two Voronoi subdivisions (left), one subdivision (top right) and five
subdivisions (bottom right).

supports, imposed values and linear decrease. This can be efficiently implemented
in voxelized materials using Dijkstra’s shortest path algorithm. Since a point on a
Voronoi frontier is at equal distance from two nodes, we set the two kernel values to
0.5 at this point, and scale the distances accordingly inside each cell. To extend the
distance function outside a cell, we generate the isosurface of kernel value 1/4 by
computing a new Voronoi surface between the 1/2 isosurface and the other nodes.
We can then recursively subdivide the intervals to generate a desired number of iso-
surfaces. The kernel values can straightforwardly be interpolated between the iso-
surfaces: for instance, the value at P1 in figure 1.6a is ( 1

2 d3/4+
3
4 d1/2)/(d3/4+d1/2),

where di is the distance to isosurface of kernel value i, on Dijkstra’s shortest path the
point belongs to. To compute values between the last isosurface and 0 (the neigh-
boring nodes), we apply a particular scheme since points beyond the neighbors,
such as P2 in the figure, should not be influenced by the node. In this case, we
linearly extrapolate the kernel function: (− 1

2 d1/4 +
1
4 d1/2)/(d1/4 +d1/2). This tech-

nique is easily generalized to compliance distance and all the desired properties
are met: it correctly generates interpolating, smooth, linear and decreasing func-
tions between nodes. The corresponding cell shapes are not necessarily convex in
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Euclidean space, which allows them to resolve complex material distributions as il-
lustrated by the compliance distance field in Figure 1.10d. Since points can be in the
range of more than two kernels, a normalization is necessary to obtain a partition
of unity and the linearity of the shape functions is not perfectly achieved, however
the functions are often close to linear as shown in the accompanying video. When
using a small number of Voronoi subdivisions, we are not guaranteed to reach all
the expected regions due to inaccurate extrapolation (see arrow tip in Figure 1.6b,
where d1 < 2d1/2). Increasing the number of isosurfaces reduces this artifact, but
can lead to unrealistically large influence regions as shown in Figure 1.6c, where
the right part is influenced by the red node due to the linear interpolation between
the right and left nodes. In practice, a small number of subdivisions are sufficient to
remove noticeable artifacts while maintaining realistic bounds. The design of more
realistic kernels in the extreme case of a very sparse discretization, large material
inhomogeneities and complex geometry, is deferred to future work.

1.5.4 Node distribution

The Voronoi computations provide us with a natural way to uniformly distribute
nodes in the space of compliance-scaled distances. We apply a standard farthest
point sampling followed by a Lloyd relaxation (iterative repositioning of nodes in
the center of their Voronoi regions) as done in [1, 25]. The uniform sampling using
the compliance distance results in higher node density in more compliant regions, al-
lowing more deformation in soft regions. Since a whole rigid object corresponds to a
single point in the compliance distance metric, all its points in Cartesian space have
the same shape function values. Interestingly, it thus undergoes a rigid displacement,
even if it is not associated to a single node. However, due to the well-known arti-
facts of linear blend skinning, it may actually undergo compression in case of large
deformations. This artifact can be easily avoided by initializing nodes in the rigid
parts, and keeping them fixed during the Lloyd relaxation. Another solution would
be to replace linear blend skinning with dual quaternion skinning [20], at the price
of more complex mechanical computations due to normalization.

1.6 Results

1.6.1 Validation

We implemented our method within the SOFA framework [3] to exploit its im-
plicit and static solvers, as well as its GPU collision detection and response [2].
To encourage its use, our software will be freely available in the upcoming re-
lease. We measured the displacement of the centerline of a 10× 4 thin plate, as
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Can’t show picture #1 because main-pics.pdf not found. Create it from main.dvi using
dvips and ps2pdf!

Can’t show picture #2 because main-pics.pdf not found. Create it from main.dvi using
dvips and ps2pdf!

Fig. 1.7: Comparison with FEM on the extension of a plate. Left: with a stiffness gra-
dient. Right: uniform stiffness and rigid part. Top: compliance distance field within
each Voronoi cell, left: 500×200 grid, right: 100×40 grid

shown in Figure 1.7. The left side is fixed, while a uniform traction is applied to
the right side. As expected, we obtain similar results using FEM and our method,
with the same material parameters. A slight over-extension occurs in dense frame
distributions, probably due to numerical issues in the voxel-wise integration of the
deformation energy. We have also compared the simulations of cantilever beams, as

Fig. 1.8: Comparison of our
models (solid colors) with
FEM (wireframe). Blue: with
two affine frames. Green: three
affine frames. Red: five affine
frames. Yellow: nine affine
frames

illustrated in Fig. 1.8. We used regularly spaced nodes along the axis, with piece-
wise linear weight functions. We apply an extension force to the beam and verify
that the force-extension law precisely matches the theoretical St. Venant-Kirchhoff
model f = ε + 3ε2/2+ ε/2, independently of the number of frames and the vol-
ume sample densities. Bending is more complex because it simultaneously involves
extension-compression and shear, especially with large displacements as shown in
the example in Figure 1.8. This confirms that accurate continuum mechanics can be
performed using our model. The behaviors converge as we increase the number of
nodes. As usual, fewer degrees of freedom result in more stiffness.

1.6.2 Performance

Computation times are difficult to compare rigorously because we use an iterative
solver based on the conjugate gradient algorithm. In the test on heterogeneous ma-
terial shown in Figure 1.7, we measured the total number of CG iterations applied to
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reach their final state with less than 1% of precision. The frame-based models con-
verged from one to three orders of magnitude faster, thanks to the reduced number of
DOFs. We used a regular FEM mesh. A more sophisticated meshing strategy taking
the stiffness into account would certainly be more efficient, unfortunately imple-
mentations of these are not easily available. Carefully designed meshes can greatly
enhance the speed of the FEM method. However, resolving geometrical details re-
quires fine meshes with a large number of DOFs, and in case of large variations of
stiffness, numerical issues considerably slow down the convergence, even using pre-
conditioning. The ability of our method to encode the stiffness in the shape functions
not only reduces the number of necessary DOFs, but also seems to reduce the con-
ditioning problems. The pre-computation times range from less than one second for
10 frames in a 100×40 voxel grid to 10 minutes for 200 frames in a 500×200 grid.
Our implementation is straightforward and there is plenty of room for optimization
and parallelization.

Table 1.2 presents frame rates achieved on a common PC (2.67Hz processor,
8GB, Nvidia 295GTx). They include all the computations, including rendering and
collision detection. The dragon and the ribbon demos are shown in the video. The
computation times strongly depend on the number of integration points, which sug-
gests that a GPU implementation of the force computations may dramatically in-
crease the speed. A faster node relaxation [23] would speed up the precomputations
in fine grids.

Model # frames # samples # vertices # voxels tini FPS
Steak 3 10 5k 67k 3s 500
Steak 10 53 5k 67k 8s 100
Steak 20 140 5k 67k 12s 40

Dragon 3 6 20k 7M 100s 300
Dragon 10 41 20k 7M 220s 150
Dragon 20 158 20k 7M 360s 27
Ribbon 5 9 4k 60k 4s 200
Knee 10 200 35k 500k 11s 10
Rat 30 230 600k 1.5M 90s 8

Table 1.2: Timings.

Corotational strain is about 1.5 times faster than Green-Lagrange strain due to
the lower degree integration. However, in our implementation, it is not as robust
because the rotation part of F is not differentiated to compute forces (eq. 1.2). Their
accuracy on static solutions is comparable in our tests. Rigid and affine primitives
exhibit similar computational time. Quadratic primitives are about 15% slower with
the same number of integration points of the same degree. We believe that the best
compromise between accuracy and performance is achieved using affine primitives:
they have more DOFs than rigid frames so can capture more deformation modes,
and they require significantly fewer integration points than quadratic primitives if we
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limit the expansion of the deformation gradient to the first order, and the integration
degree to 4 (= 30 polynomial terms). In theory, quadratic primitives would need a
second order expansion of F and an 8th order integration (= 165 polynomial terms),
which would be more costly. Affine and rigid frames require only one integration
point per region with linear shape function, providing the main deformation modes
of a rod using only two frames and one integration point (see Figure 1.2). In our
implementation, linear blend skinning of rigid frames is about five times faster than
dual quaternion skinning [13] with the same number of integration points. Dual
quaternion skinning is more accurate in large bending (no volume loss) but requires
more integration points due to the non-linear blending function and is significantly
more complex to implement.

We found that sampling integration points in the overlapping influence regions
was a suitable strategy, since it allowed a good linear approximation of the fine
grained shape function defined in the voxel grid: in our test, the average difference
was 0.05 (the shape function being defined between 0 and 1, making the approxima-
tion error less than 5%). This result also shows that the normalization of the kernel
function does not significantly change the linearity. Uniformly distributed sample
points unrealistically increase the stiffness because soft parts are assigned with a
high stiffness due to averaging in the sample region.

1.6.3 Simulations

The most appealing feature of our method is probably its ability to easily model de-
formable objects using a reduced number of control nodes. The T-shaped rubber ob-
ject shown in Figure 1.9 (Young’s modulus E = 200kPa, Poisson’s ratio ν = 0.3) ex-
hibits compression, shear, bending and torsion using only two frames, correspond-
ing to a total of 12 DOF. The same number of DOF only allows to model a single
linear tetrahedron in FEM, which can not exhibit torsion and bending! The object
automatically exhibits an asymmetric stiffness reflecting its asymmetric shape.

Figure 1.11 shows a close-up of the high speed simulation presented in Fig-
ure 1.10, which runs at haptic rates. The fat undergoes more deformation than the
flesh because it is more compliant, even though they are interpolated between the
two same control frames. The method of [32] also realistically resolves heteroge-
neous materials, but a rigid bone across several elements would result in high stiff-
nesses and generate numerical problems. In contrast, our method handles the rigid
parts straightforwardly, independently of their shape.

Our method allows the interactive simulation of complex biological systems such
as the knee joint shown in Figure 1.12. In this model, we have integrated four dif-
ferent tissues: bones, muscles, fat and ligaments. With only 10 nodes, we are able to
realistically simulate flexion and fine movements such as the motion of the patella
(knee cap) at 10 frames per second, without any prior knowledge of the kinematic
skeleton. Forces are transmitted from the quadriceps to the tibia suggesting that ac-
curate dynamic models of the anatomy, taking into account muscle actuation, could
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Fig. 1.9: An object with asymmetric stiffness automatically computed based on its
asymmetric shape.

(a) T-Bone Steak (b) Stiffness (c) Discretization (d) Distance map (e) Deformation

Fig. 1.10: The T-bone steak (a) has a rigid bone and softer muscle and fat, as seen
in the volumetric stiffness map (b). Our method can simulate it using only three
moving frames and ten integration points (c), running at 500 Hz on an ordinary PC.
The frame placement is automatically generated using a novel compliance-scaled
distance (d). Observe that when one side of the meat is pulled (e), the bone remains
rigid and the two meaty parts are correctly decoupled.

Fig. 1.11: The flesh and the fat, although interpolated between the same two control
frames, pulled at the black point, exhibit different strains due to different stiffnesses.

be built. A few modifications in the voxelization and material modules would allow
motion discontinuity between tissues in contact and a more accurate simulation of
the highly anisotropic non-linear fibrous biological tissues.
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Fig. 1.12: Interactive knee simulation using 10 nodes. Pulling the quadriceps lifts
the tibia.

Adding mechanical degrees of freedom during the simulation by inserting new
frames with custom radial-basis shape functions is dramatically simpler than editing
the mesh of an FEM model. In Figure 1.13, we show that a dynamically inserted
frame at the contact point with an object can be used to generate a local deformation.
The range of the local deformation can be tuned using the shape function of the
inserted frame. Such a high level of adaptivity in a physical model is straightforward
with our model, while it is difficult to implement using previous methods.

Fig. 1.13: More or less global deformation produced by dynamically inserting a
frame with two different weight functions.

Our method can also be used to easily simulate physically-based secondary mo-
tions from skeleton-based animation or motion capture, as illustrated in Figure 1.14.
The skin and the complete skeleton of a rat were acquired from micro-CT data. We
applied our method to automatically sample the intermediate soft tissues and the tail
with additional nodes. Optical motion capture was used to capture the movements
of the limbs, head and three bones on the back.
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Fig. 1.14: Mix of animation and simulation. Left: model subset animated using mo-
tion capture and added physical nodes. Right: result, with flesh and tail animated
using physics.

1.7 Conclusion

In this chapter, we have presented a new type of deformable model using continuum
mechanics applied to objects undergoing skinning deformation fields. Our approach
allows the creation of sparse meshless models with arbitrary constitutive laws, and
we have demonstrated it using St. Venant-Kirchhoff materials. Moreover, we have
introduced novel, anisotropic kernel functions using a new definition of distance
based on compliance, which allow the encoding of detailed stiffness maps in coarse
meshless models. We have shown that the behavior of heterogeneous objects with
complex materials and geometries can be simulated using a small number of control
nodes and small computation times. The models are robust to large displacements
and deformations.

In contrast with classical FEM and with the methods using geometrical shape
functions, our approach decouples the resolution of the material from the resolution
of the displacement function. The ability of setting an arbitrarily low number of
frames, combined with a compliance-based distribution strategy, allows fast models
to capture the most relevant deformation modes. Sampling is easier than with tradi-
tional particle-based meshless methods because there is no constraint on the number
and on the placement of the nodes. Compared with FEM, adaptivity is easier because
no volumetric mesh is used. However, due to computational time issues, the shape
functions of the dynamically inserted nodes are currently limited to analytic radial-
basis functions with local support. A faster computation of material-aware shape
functions and hardware implementations are currently under investigation.

Acknowledgements

We would like to thank Florent Falipou, Michaël Adam, Laurence Boissieux,
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