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Abstract. We investigate the computation of mappings from a set S™
to itself with in situ programs, that is using no extra variables than the
input, and performing modifications of one component at a time. We
consider several types of mappings and obtain effective computation and
decomposition methods, together with upper bounds on the program
length (number of assignments). Our technique is combinatorial and al-
gebraic (graph coloration, partition ordering, modular arithmetics).

For general mappings, we build a program with maximal length
5n — 4, or 2n — 1 for bijective mappings. The length is reducible to
4n — 3 when |S| is a power of 2. This is the main combinatorial result
of the paper, which can be stated equivalently in terms of multistage
interconnection networks as: any mapping of {0,1}" can be performed
by a routing in a double n-dimensional Benes network. Moreover, the
maximal length is 2n — 1 for linear mappings when S is any field, or
a quotient of an Euclidean domain (e.g. Z/sZ). In this case the assign-
ments are also linear, thereby particularly efficient from the algorithmic
viewpoint.

The in situ trait of the programs constructed here applies to op-
timization of program and chip design with respect to the number of
variables, since no extra writing memory is used. In a non formal way,
our approach is to perform an arbitrary transformation of objects by suc-
cessive elementary local transformations inside these objects only with
respect to their successive states.

Keywords: mapping computation, boolean mapping, linear mapping,
memory optimization, processor optimization, program design, circuit
design, multistage interconnection network, butterfly, rearrangeability.

1 Introduction

The mathematical definition of a mapping F : S™ — S™ can be thought
of as the parallel computation of n assignment mappings S™ — S per-
forming the mapping F, either by modifying at the same time the n
component variables, or mapping the n input component variables onto
n separate output component variables. If one wants to compute sequen-
tially the mapping £ by modifying the components one by one and using



2 S. Burckel, E. Gioan, E. Thomé

no other memory than the input variables whose final values owerwite the
initial values, one necessarily needs to transform the n mappings S™ — S
in a suitable way. We call in situ computation this way of computing a
mapping, and we prove that it is always possible with a number of as-
signments linear with respect to n and a small factor depending on the
mapping type. The impact of these results should be both practical and
theoretical.

To be formal and to avoid confusions, let us already state a definition.
For the ease of the exposition, we fix for the whole paper a finite set S of
cardinal s = | S|, a strictly positive integer n and a mapping E : S — S™.

Definition 1.1. An in situ program II of a mapping E : S™ — S™ is
a finite sequence (f(l),i(l)), (f(z),i@)), e (f(m),i(m)) of assignments
where f#) : 8" — § and i) € {1,...,n}, such that every transformation
X = (z1,...,zn) — E(X) is computed by the sequence of successive
modifications

X = (=, ...,$i<k)_1,f(k)(X),xi<k)+17 ey T, k=1,2,...m

where f*) modifies only the i(*) —th component of X. In other words,
every assignment ( f (k). i(k)) of an in situ program performs the elementary
operation

Tik) = f(k)(ajl,...,xn).

The length of II is the number m. The signature of II is the sequence
i @ m),

All in situ programs considered throughout this paper operate on
consecutive components, traversing the list of all indices, possibly several
times in forward or backward order. Thus program signatures will all be
of type: 1,2,....,n — 1,n,n—1,...,2,1,2,..n — 1, n,.... For ease of expo-
sition, we shorten the above notations the following way: the mappings
S™ — S corresponding to assignments in the several traversals will be sim-
ply distinguished by different letters, e.g. f; denotes the mapping affecting
the variable z; on the first traversal, g; the one affecting x; on the sec-
ond traversal, and so on, providing an in situ program denoted f1, fo, ...,
frn-1, fasGn-1, - g2, g1, .... For instance, a program fi, f2, g1 on S? repre-
sents the sequence of operations: x1 := fi(x1,x2),x2 := fo(x1,22), 21 :=
g1(w1, 2).

As a preliminary example, consider the mapping E : {0,1}% — {0,1}?
defined by E(x1,x9) = (2, x1) consisting in the exchange of two boolean
variables. A basic program computing E is: 2’ := x1, 21 := x9, 19 := 2.
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An in situ program fi, fa, g1 of E avoids the use of the extra variable 2/,
with fi(z1,22) = fa(z1, 22) = g1(21, 22) = 21 © 2.

Our results can be seen as a far reaching generalization of this classical
computational trick. The motivations for this work will now be detailed.
They are of three types : technological, combinatorial and algorithmic.

First, a permanent challenge in computer science consists in increasing
the performances of computations and the speed of processors. A com-
puter decomposes a computation in elementary operations on elementary
objects. For instance, a 32 bits processor can only perform operations
on 32 bits, and any transformation of a data structure must be decom-
posed in successive operations on 32 bits. Then, as shown in the above
example on the exchange of the contents of two registers, the usual so-
lution to ensure the completeness of the computation is to make copies
from the initial data. But this solution can generate some memory errors
when the structures are too large, or at least decrease the performances
of the computations. Indeed, such operations involving several registers
in a micro-processor, through a compiler or an electronic circuit, will have
to make copies of some registers in the cache memory or in RAM, with
a loss of speed, or to duplicate signals in the chip design itself, with an
extra power consumption.

On the contrary, the theoretical solution provided by in situ com-
putation would avoid the technological problems alluded to, and hence
increase the performance. We point out that theoretical and combina-
torial approaches such as ours are found fruitful in the context of chip
design in many electronic oriented publications, see for instance [10] for
further references. A short note on our methods intended for an electronic
specialist audience has already been published [4]. Further research in this
direction (also related to algorithmic questions, see below) would be to
develop applications in software (compilers) and hardware (chip design).

From the combinatorial viewpoint, the assignments, which are map-
pings S™ — S, can be considered under various formalisms. For example,
in multistage interconnection networks, an assignment is regarded as a
set of edges in a bipartite graph between S™ and S™ where an edge cor-
responds to the modification of the concerned component.

Multistage interconnection networks have been an active research area
over the past forty years. All the results of the paper can be translated in
this context, since making successive modifications of consecutive com-
ponents of X € S™ is equivalent to routing a butterfly network (i.e. a
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suitably ordered hypercube) when S = {0,1}, or a generalized butter-
fly network with greater degree for an arbitrary finite set S (see Section
2). In the boolean case, the existence of an in situ program with 2n — 1
assignments for a bijective mapping is equivalent to the well known [2]
rearrangeability of the Benes network (i.e. of two opposite butterflies),
that is: routing a Benes network can perform any permutation of the input
vertices to the output vertices. Rearrangeability is a powerful tool in net-
work theory. And we mention that butterfly-type structures also appear
naturally in recursive computation, for example in the implementation of
the well-known FFT algorithm [7], see [9].

First, we state such a rearrangeability result extended to an arbitrary
finite set S (see Theorem 3.1, which is presumably not new). Next, we
address the problem of routing a general arbitrary mapping instead of
a permutation, which is a non-trivial and new extension. A general re-
sult is obtained involving 5n — 4 mappings (see Corollary 3.2). Then, the
main combinatorial result of the paper, on boolean mappings (see Theo-
rem 4.1), proposes a more involved answer to this problem. An equivalent
statement is the following: any mapping of {0, 1}" is performed by a rout-
ing in a double n-dimensional Benes network.

From the algorithmic viewpoint, building assignments whose number
is linear in n to perform a mapping of S™ to itself is satisfying in the
following sense. If the input data is an arbitrary mapping F : S — S"
with |S| = s, given as a table of n x s™ values, then the output data is a
linear number of mappings S™ — S whose total size is a constant times
the size of the input data. This means that the in situ program of F has
the same size as the definition of E by its components, up to a multiplica-
tive constant. This complexity bound is essentially of theoretical interest,
since in terms of effective technological applications, it may be difficult
to deal with tables of n x s™ values for large n. Hence, it is interesting to
deal with an input data given by algebraic expressions of restricted size,
like polynomials of bounded degree for instance, and compare the com-
plexity of the assignments in the output data with the input one. This
general question (also related to the number of gates in a chip design) is
motivating for further research (examples are given in [4]).

Here, we prove that, in the linear case, i.e. if the input is given by
polynomials with degree at most 1, with respect to any suitable algebraic
structure for S (e.g. any field, or Z/sZ), then the assignments are in
number 2n — 1 and overall are also linear (see Theorem 5.1). Hence, we
still obtain a program whose size is proportional to the restricted size of
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the input mapping. This result generalizes to a large extent the result in
[6] obtained for linear mappings on the binary field.

We will also discuss the complexity of the algorithms that build the
in situ programs, which is not the same complexity problem. In the linear
case, the decomposition method takes O(n?) steps.

This paper is organized as follows. Section 2 investigates the link be-
tween in situ programs (as defined by definition 1.1) and multistage inter-
connection networks. Subsequent sections of the paper give reformulations
of the presented results in both settings. In Section 3, we prove that every
bijective, resp. general, mapping E on S™ is computed by a sequence of
2n — 1, resp. bn — 4, assignments. In Section 4, we improve the bound
5n — 4 to 4n — 3 in the case S = {0,1}. In Section 5, we consider a set
S with an algebraic suitable ring structure. We prove that every linear
mapping E on S" is computed by a sequence of 2n — 1 linear assignments.

2 Multistage interconnection networks

A multistage interconnection network, or MIN for short, is a directed
graph whose set of vertices is a finite number of copies ST, S%,..., S} of
S", called columns, and whose edges join elements of S!* towards some
elements of S?; for 1 < ¢ < k. Then routing a MIN is specifying one
outgoing edge from each vertex of S} for 1 <4 < k. A mapping E of 5"
is performed by a routing of a MIN if for each element X € ST there is
a directed path using specified edges from X to E(X) € S}'. The gluing
of two MINs M, M’ is the MIN M|M’ obtained by identifying the last

column of M and the first column of M.

Xg Xo Xq Xg=Fy(X) Xy =f(X) Xz =f{(X) X;=0fX) X4=04(X)
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Figure 1.

The assignment network A; is the MIN with two columns whose edges
join (z1,...,xy) to (x1,...,2-1,€,Tit1,...,Ty) for an arbitrary e € S.
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Hence each vertex has degree s =| S |. With notations of Definition 1.1,
given an assignment (f (k). i(k)) in an in situ program, we naturally define
a routing of A, by specifying the edge between X = (z1,...,2,) and
(@1, ey Ty g (X)), Ti(k) 415 - Tn). Hence, the modifications made by
the assignments of the program are represented by this routing in the
columns of this MIN. Denote RY the MIN A1]As| .. A, and BY the
MIN A,|...|A2|A;. The usual butterfly, also called indirect binary cube,
stands here as B,(f). The Benes network is the network obtained from
Rg) |BT(L2) by replacing the two consecutive assignment networks A, by a
single one. Note that this last reduction is not part of the usual definition,
however it is more convenient here since two successive assignments on
a same component can always be replaced with a single one. Note also
that the historical definition of a Bene§ network [2] is not in terms of
butterflies, but that ours is topologically equivalent thanks to classical
results (see [1] and [3] for instance), and hence they are equivalent in
terms of mappings performed.

From the above definitions, an in situ program of signature ;). . . ., (™)
corresponds to a routing in A, |...|A;m). Figure 1 gives an example for
the Benes network, with corresponding in situ program fi, fa2, f3, 92, 91
(with shortened notation). Routing this network is exactly specifying
these mappings.

3 Bijective and general mappings on finite sets

The classical property of the Benes network is that it is rearrangeable, that
is for any permutation of {0,1}", there exists a routing performing the
permutation (note that a routing performs a permutation when it defines
disjoint directed paths). This result corresponds to the particular case
S = {0, 1} of the next theorem, providing the rearrangeability property
for a Benes-type network with out-degree generalized from 2 to s. This
generalization is presumably not new but the authors did not find such a
statement in the literature.

Theorem 3.1. Let E be a bijective mapping on S™. There exists an in
situ program for E of length 2n—1 and signature 1...n...1. Equivalently,
Rﬁf)yB,(f) has a routing performing E.

Proof. Observe that one can permute the ordering of the variables in the
above statement and obtain in situ programs with other signatures. We
build such an in situ program f,, fn—1,.-., fo, fi,92,--.,9n-1,9n for E
by induction on n. For n = 1, it is obvious since X := F(X) is computed
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by the program z; := fi(x1) with f; = E. Assume n > 1. Let G =
(X,Y, A) be the bipartite multi-edges graph defined by: X =Y = §"~1,
and (z,y) € X x Y is in A with label (z,,y,) € S?, if and only if
E(z, ) = (Y, Yn)-

Since F is bijective, any vertex of G has exactly degree s = |S|. Then
the edges of G are colorable with the s elements of S (see [8]). Now, define
s mappings E°, B, ...  E*~! on $"~! and two mappings f,, g, from S”
to S as follow. For each color i € S and every edge (z,y) with color ¢ and
label (2,,,y,), define: E%(z) =y, fn(z,2,) =14, and g,(y,i) = Yn.

So, after the first step of the program and until the step before last, the
component x, equals a color i. Any mapping E’ being bijective on S"~ ! is

computed by induction in 2(n—1)—1steps: fi_,, ..., fi, fi, g4, ..., g% _4.
Now, define for every i € Sand x € S 1: f,,_1(z,i) = f2_|(2), ..., fi(x,4) =
i), ga(,i) = go(x), ..., gn—1(w,1) = g _;(z). After the step before last,
we have x = y. And after the last step, we have x, = y,. O

Observe that the computational complexity of our decomposition al-
gorithm for building an in situ program for a bijective mapping E on
{0,1}™ given by a table of t = n.2" boolean entries is in DT IM E(t.log(t)).
Indeed, defining Ey, F/y takes n.2" steps. Then, each E; is decomposed in
Ej, E;1 in (n — 1).2"! steps, and so on... The total number of steps is
bounded by n.2" +2.(n—1).2" 1 44.(n—2).2" 2+ ...+ 271121 < 2702

Corollary 3.1. If IT is an in situ program of a bijection E on {0,1}",
then the reversed sequence of assignments is an in situ program of the
inverse bijection E1.

Proof. First, we show that operations in the program II are necessarily
of the form x; := z; + h(z1,..,%i-1, Ti+1, ..., Tn). One can assume with-

out loss of generality that ¢ = 1. Let =1 := f(z1,...,2,) be an opera-
tion of II. Denote h(za,...,x,) = f(0,29,...,2,). We necessarily have
f(L,zg,...,xy) = 14+h(ze, ..., x,). Otherwise two different vectors would

map to the same image. This yields f(z1,...,2,) = z1+h(z2,...,Ty,). As
a consequence, performing the operations in reverse order will compute
the inverse bijection £~ O

Now, in order to build a program for a general mapping E on S", for
which different vectors may have same images, we will use a special kind
of mappings on S™, that can be computed with n assignments.

Definition 3.1. Denote [s"] the interval of integers [0, ...,s"™ — 1]. The
index of a vector (x1, 23, ..., x,) is the integer x1 + s.29 4 - - -+ 5" L2, of
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[s"]. For every i € [s"], denote by X; the vector of index i. The distance of
two vectors X, Xp is the integer A(X,, Xp) = |b—al. A mapping I on S™ is
distance-compatible if for every z,y € S™, A(I(x),1(y)) < A(z,y), which
is equivalent to A(I(X,), [(Xat1)) < 1 for every a with 0 < a < s — 1.

Proposition 3.1. Every distance-compatible mapping I on S™ is com-
puted by an in situ program pi,p2,...,pn. Hence, for I(z1,...,z,) =
(Y1,---,Yn) and for each i = 1,2,...,0: pi(Y1, -+ s Yio1sTiy- -y Tn) = Ys-

Proof. Since each component is modified one time, necessarily each func-
tion p; must give its correct final value to each component z;. It remains to
prove that this unique possible method is correct, that is the mappings p;
are well defined by the property above (note that this definition is partial,
but sufficient for computing the image of any x). Assume that p1,...,p;
are well defined. Assume that, after step 7, two different vectors x, 2" are
given the same image by the process whereas their final expected images
I(z) and I(z') were different. The components x;, j > 4, of z and 2’ have
not been modified yet. Hence, they are equal and we deduce A(z, ) < s'.
On the other hand, the components y;, j < i, of I(x) and I(2') are equal
but I(x) # I(2'). Hence A(I(x),I(x")) > s* a contradiction. So p;1 is
also well defined by the property above. O

Definition 3.2. We call partition-sequence of S™ a sequence
P=(Py,P,...,P)

of subsets of S™ such that the non-empty ones form a partition of S™.
Then, we denote by Ip the mapping on S™ which maps Xg,..., Xgn_1
respectively to

| Pol |P1] | Pr|

X0, X0s X1y Xty Xy ooy X

Observe that Ip is well defined since the sum of sizes of the subsets equals
s, and that Ip depends only on the sizes of the subsets and their ordering.
Observe also that if no subset is empty, then Ip is distance-compatible
since, by construction, A(I(X,), I(Xa41)) < 1 for every a.

Let E be a mapping on S”, and P = (P, Py, ..., Px) be a partition-
sequence of S™ whose underlying partition of S™ is given by the inverse
images of E: if P, # (), then P, = E~!(y;) for some y; € S™. Then, a
P-factorisation of E is a triple of mappings (F,I,G) on S™ where: G is
bijective and maps P; to I~!(X;); I is the mapping Ip; and F maps X;
to y; and is arbitrarily completed to be bijective. By construction

E=Folod.
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Using this construction with no empty subset in the sequence P, we
obtain the following theorem, which significantly improves the result of
[5] where boolean mappings on {0, 1}" are computed in n? steps.

Theorem 3.2. For every finite set S, every mapping E on S™ is com-

puted by an in situ program of szgnature 1. d...n...1...n and
length 5n — 4. Equivalently, R ]B(S | Ry, 8)\B S)IR(S has a routmg per-
forming E.

Proof. Consider any P-factorisation (F,I,G) of E with no empty sub-
set in the sequence P. Then the mapping [ is distance compatible. By
Theorem 3.1, G (resp. F') can be computed by a program of signature
1...n...1 (resp. n...1...n). By Proposition 3.1, I is computed by a
program of signature 1...n. By composition and contracting two succes-
sive assignments of the same variable in one, F is computed by a sequence
of 5n — 4 assignments of signature 1...n...1...n...1...n. O

Remark. To end this section, let us remark that, due to the fact that
successive assignments operate on consecutive components, successive as-
signements of type S”" — S can be grouped in assignments of fewer vari-
ables on a larger base set S™ defining successive mappings S™" — S™:

fnm7"'7fn(m 1 +17"'7fm7' 'f21f17927"'7gm7"'7gn.(m—1)+17"'>gnm'

fn fl Gn
Hence, for instance, the case S = {0,1}" can be reduced to the case
S ={0,1}. This is a particular case of the register integrability property
described in [4].

4 General mappings on the boolean set

In this section, we will fix S = {0, 1}. The more involved method for gen-
eral boolean mappings is a refinement of the method for general mappings
on finite sets and provides a smaller number of assignments. It is valid
when S = {0,1}, and, by extension, when S = {0,1}™. We still use a
P-factorisation (F,I,G) but the sequence P will possibly contain empty
sets, and will be suitably ordered with respect to the sizes of its elements,
in order to satisfy some boolean arithmetic properties. So doing, the in-
termediate mapping I = Ip will have the property that its composition
with the first n steps of the in situ program of the bijection F' can also
be computed with n assignments.
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Lemma 4.1. FEvery sequence of 2" non negative integers whose sum is
2" can be ordered in a block-sequence [vg,v1,...,ven_1] such that, for
every i = 0...n, the sum of values in consecutive blocks of size 2¢ is a
multiple of 2¢, that is, for all 0 < j < 277°:

Y u =027

§2i<l<(j41)28

Proof. The ordering is built inductively. Begin at level ¢ = 0 with 2"
blocks of size 1 having each value in the sequence. At level i + 1, form
consecutive pairs of blocks [B, B'] that have values v,v" of same parity
and define the value of this new block to be (v + v’)/2. Each new level
doubles the size of blocks and divides their number by 2. The construction
is valid since the sum of values of blocks at level i is 2", O

Example. We illustrate below the process described in the proof of
Lemma 4.1 (n = 4 and each block has its value as an exponent):

[41%, 1, (11, [ I [t gt (313, 1
4, 0] [1,1)! ,[171]1,[171]17[3,3]3,[0 0}0 [0,0]°, [0 0]°
[4,0,0,0]%,[1,1,3,3]%,[1,1,1,1]',]0,0,0 0]
[4,0,0,0,1 1,1,1]4,[1,1,3,3,0,0,0 0]
[4,0,0,0,1,1,1,1,1,1,3,3,0,0,0,0]*

Definition 4.1. For a vector (z1,...,x,), we call prefiz of order k, resp.
suffiz of order k, the vector (x1,...,xx), resp. (Tk,...,%y). A mapping I
of {0,1}" is called suffiz-compatible if, for every 1 < k < n, if two vectors
X, X’ have same suffixes of order k, then their images I(X), I(X’) also
have same suffixes of order k.

Lemma 4.2. Let P = (Py, P1,. .., Pan_1) be a partition-sequence of {0,1}"
such that [|Py|, | Py, ..., |Pan—1]] is a block-sequence. Then the mapping Ip
on {0,1}™ is suffix-compatible.

Proof. The sketch of the proof is the following. First, define the j-th block
of level i of {0,1}" as the set of vectors with index j2¢ <1 < (j + 1)2°
Observe that the inverse image by Ip of a block is a union of consectutive
blocks of same level. The result follows.

Let us now detail the proof. For 0 < i < n and j € [2"7], define the
j-th block at level i of {0,1}" as

Vij={X;: 1€ 525, (j+1)2" —1]}.
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(i) First, we prove that, for every i,j as above, there exists k, k' €

[277%], such that
i) = U Vi
k<I<E’

Let us call interval of {0, 1}" the set of vectors X for [ belonging to an
interval of [2"]. First, notice that the inverse image by Ip of an interval of
{0,1}™ is an interval of {0, 1}". By definition of Ip, we have \I;l(vi,j)] =
> jai<i<(j+1)2i V- Remark that I5'(Vi,;) may be empty, when v; = 0 for
all I € [j2¢,(j + 1)2%]. Since [vg,...,ven_1] is a block sequence, we have
> jai<i<(j+1)2i vt =0 mod 2!, Hence, |I]§1(Vg7j)‘ =0 mod 2°.

For a fixed i, we prove the result by induction on j. If j = 0 then
‘1—131(‘/;70)‘ = k.2! for some k € [2"7]. If I5'(Vi) is not empty, then it
is an interval of {0, 1}" containing (0, ...,0) by definition of Ip. Since this
interval has a size k.2" multiple of 2°, it is of the form (Jy<;), Vi,-

If the property is true for all [ with 0 <[ < j, then I;l (U0<l<j Viy) =
Uo<i<j Via- Since ‘IISI(VZ-J)‘ = k.2¢ for some k € [2"7%], we must have

—1 —1
Ip (Uogzgj Vii) = Uoglgjf+k Vi, hence Ip™ (Vi ;) = Uj’<l§j’+k’ Vi

(ii) Now, we prove the Lemma itself.

Assume a = (ay,...,a,) and b = (b1, ...,b,) have same suffix of order
1. For all [ > ¢ we have a; = b;. Let ¢ € 8™ be defined by ¢, = a, =
bp,...,¢; = a; = bj,cpy_1 = 0,...,c1 = 0. Let ¢(z) denote the index of
vector x. We have ¢(c) = 0 mod 2i~!, that is ¢(c) = 52! for some
j € 2", And ¢(a) and #(b) belong to the same interval [j.2¢71 (j +
1).2¢=1 —1] whose elements have same components for [ > i. That is a and
b belong to V;_1 ;. By (i), the inverse images of intervals of type Vi_jj
by Ip are unions of such consecutive intervals. Hence the image of an
interval V;_1 ; by I, is an interval contained in an interval V;_; ; for some
k € [27~*1]. Hence Ip(a) and Ip(b) have same components [ > i. O

Proposition 4.1. Let I be a suffiz-compatible mapping. Let B be a bijec-
tive mapping on {0,1}" computed by a program by, ..., b,. The mapping
Bol is computed by a program p1,pa, ..., pn. Hence, for Bol(z1,...,xy,) =
Y155 Yn) DiY1s - Yin1, Ty« o+ Tn) = Yie

Proof. Just as for Proposition 3.1, assume that pq, ..., p; are well defined
by the necessary property above, and that, after step ¢, two different
vectors x,x’ are given the same image by the process whereas their final
expected images y = Bo I(z) and ¥ = B o I(2') were different (hence
I(xz) # I(2')). By construction, y,y have a same prefix P of order i
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and z, 2z’ have a same suffix Q of order ¢ + 1. Moreover, since I is suffix-
compatible, the vectors I(z),I(z') also have a same suffix R of order
i + 1. Let B; be the mapping computed by bq,...,b;. We obtain that
Bi(I(z)) = B;(I(z")) = (P,R). Since B; is necessarily bijective, then
I(xz) = I(2'): a contradiction. O

Now, given a mapping E of S™, using a P-factorisation of E for a
sequence P whose sequence of cardinalities is a block-sequence, we can
improve the result of Section 3.

Theorem 4.1. Every mapping E on {0,1}" is computed by an in situ
program of length 4n—3 and signature 1...n...1...n...1. Equivalently,
the gluing of two Benes networks has a routing performing E.

Proof. Let (F,I,G) be a P-factorisation of F for a sequence P = (Py, Py, . ..
Pyn_y) such that [|Pyl,|Pil,...,|Pen_1|] is a block-sequence (it exists
thanks to Lemma 4.1). By Theorem 3.1, G (resp. F') can be computed
by a program of signature 1...n...1 (resp. 1...n...1). By Lemma 4.2,
the mapping I = Ip on {0, 1}" is suffix-compatible. Call B the mapping
computed by the n first assignments b1, ..., b, of the program of F. By
Proposition 4.1, B o[ is also computed by a program of signature 1...n.
Then, by composition and contracting two successive assignments of the
same variable in one, F is computed by a sequence of 4n — 3 assignments
of signature 1...n...1...n...1. O

reduced in one

G Fol
Figure 2.

Example. Figure 2 gives an example for the construction of this section.
The elements of {0,1}® are grouped by the bijection G at column 6,
accordingly with the block sequence [1,3,2,2] induced by E~!. Then, at
column 9 all elements with same final image have been given a same image
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by BoI. At last, the second part of the bijection F' allows to finalize the
mapping F.

Remark. Finally, to illustrate the importance of block-sequences and of
S = {0, 1} for this section, let us give two small significant examples.

First, consider the partition-sequence P = ({00},{10,01},{11}) of
{0,1}? whose sequence of cardinalities (1,2, 1,0) is not a block-sequence.
The mapping Ip is not suffix-compatible, since Ip(01) = 10 and Ip(11) =
01 have distinct x5 coordinate whereas 01 and 11 have same x5 coordinate.

Second, the result of Lemma 4.1 building a block-sequence does not
generalize to arbitrary S. For instance, with s = 3, and the integer values
1,2,2,4 whose sum equal 32, one cannot find [a, b, ¢] within these values
such that a + b+ c = 0[3].

5 Linear mappings on suitable ring powers

This last section takes advantage of the structure provided by linear map-
pings S™ — S™. The results of Section 3 show that O(n) assignments are
sufficient to compute such a mapping. Here, we achieve a stronger result:
the number of required mappings is bounded by 2n — 1, and all inter-
mediary assignments are linear. In [6], a similar result is obtained in the
particular case of linear boolean mappings.

Here, S only needs to be a (non-necessarily finite) quotient of an Eu-
clidean domain R by an ideal I. Classical examples for S are: any field
(the result of this paragraph for S being a field is easier, since most techni-
calities can be skipped), the rings Z/sZ, or K[z]/(P) for some polynomial
P with coefficients in a field K. In the sequel, S is assumed to satisfy this
property; R and I are defined accordingly, and S* denotes the invertible
elements of S.

Lemma 5.1. Let z1,...,x, be coprime elements of R. Let ig € [1...n].
There exists multipliers A1, ..., A, such that N\jy =1, and ), \jz; € S*.

Proof. This a consequence of the Chinese Remainder Theorem. We treat
the case where the ideal I is generated by a prime power p”. If z;, is itself
coprime to p, the result holds with A\; = 6;0. Otherwise, the integers z;
being coprime, there exists an integer i1 (p) such that T, (p) I8 coprime to

(»)

p. Therefore z;, +z;, () is coprime to p, hence we may set \; = 5;0 +5::1 .
O
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Theorem 5.1. Ewvery linear mapping E on S™ is computed by an in situ
program of length 2n — 1 and signature 1,2,...,n,n — 1,...,1 made of lin-
ear assignments. Furthermore, if E is bijective, then the inverse mapping
E~! is computed by the in situ program defined by the sequence of as-
signments in reversed order together with the following transformation:

Proof. The proof proceeds by induction. Let M be a matrix representing
a mapping which leaves the first £ — 1 variables unchanged (we initially
have k = 1 for the starting matrix). Hence the first k£ — 1 rows of M equal
those of the identity matrix. We explore the possibility of rewriting M
as a product LpM'R;., where the first k rows of M’ match those of the
identity matrix.

Let g be the greatest common divisor of (arbitrary representatives in
R of) the coeflicients of column & in M. A favorable situation is when my, j,
is in ¢S™*. Should this not be the case, let us see how we can transform
the matrix to reach this situation unconditionally. Assume then for a
moment that myy ¢ ¢S*. Lemma 5.1 gives multipliers Ay, ..., A, such
that >, Apmys € ¢S*, with the additional constraint that A\; = 1. Let
us now denote by 7' the n x n matrix defined by ¢; ; = 5? for i # k, and
tr; = Aj. Clearly T is an invertible assignment matrix, and the product
T « M has a coefficient at position (k, k) which is in gS*.

Now assume my j, € gS*. Let G be the diagonal matrix having Gy, =
g as the only diagonal entry not equal to 1. Let M” = MG~' (M" has
coefficients in R because g is the g.c.d. of column k). We have m%k €

S*. We form an assignment matrix U defined by wu;; = (55 for ¢ # k,
and ug; = m’,;j. The matrix U is an invertible assignment matrix (its
determinant is my ;). The k first rows of the matrix M’ = M" « Ut
match the k first rows of I,,, and we have M = T—! x M’ x (UG). Our
goal is therefore reached with L, = T~ ! and Ry, = UG.

Repeating the procedure, our input matrix is rewritten as a product
LiLy...L, 1R, ... Ry, where all matrices are assignment matrices. No
left multiplier L,, is needed for the last step. Finally, the determinant of
M is invertible if and only if all the matrices Ry are invertible, hence the
reversibility for bijective mappings. O

We digress briefly on the computational complexity of building the in
situ programs for the linear mappings considered here. The matrix oper-
ations performed here all have complexity O(n?) because of the special
shape of the assignment matrices. Therefore, the overall computational
complexity of the decomposition is O(n?).
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The procedure above can be illustrated by a small example. Assume

we want to decompose the mapping in Z/127Z given by the matrix

u (1)

Our first step is the left multiplication, which gives

(a)=(5)

Then, the common divisor 2 can be set aside, and the matrix U appears:

1-1 M — —11\/20 _( 10\/(-=11\/20
0 1 U 34/\01 S\ =37 01/\01
M — 11 10\ /—-21\ (11 10\/101
~\01 —-37 01) \0o1/)\97 01
This corresponds to the following sequence of assignments:

z1 := 10z1 + x9; To = 911 + Tx9; T =11 + 9.
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