
Algorithmica
DOI 10.1007/s00453-013-9745-8

Practical and Efficient Circle Graph Recognition

Emeric Gioan · Christophe Paul · Marc Tedder ·
Derek Corneil

Received: 22 December 2011 / Accepted: 9 January 2013
© Springer Science+Business Media New York 2013

Abstract Circle graphs are the intersection graphs of chords in a circle. This paper
presents the first sub-quadratic recognition algorithm for the class of circle graphs.
Our algorithm is O(n + m) times the inverse Ackermann function, α(n + m), whose
value is smaller than 4 for any practical graph. The algorithm is based on a new in-
cremental Lexicographic Breadth-First Search characterization of circle graphs, and
a new efficient data-structure for circle graphs, both developed in the paper. The al-
gorithm is an extension of a Split Decomposition algorithm with the same running
time developed by the authors in a companion paper.

Keywords Graphs · Algorithms · Split decomposition · Circle graphs

Financial support of E. Gioan and C. Paul was received from the French ANR project
ANR-O6-BLAN-0148-01: Graph Decomposition and Algorithms (GRAAL). Financial support of
M. Tedder and D. Corneil was received from Canada’s Natural Sciences and Engineering Research
Council (NSERC).

E. Gioan · C. Paul (B)
CNRS, LIRMM, Université Montpellier 2, Montpellier, France
e-mail: christophe.paul@lirmm.fr

E. Gioan
e-mail: emeric.gioan@lirmm.fr

M. Tedder · D. Corneil
Department of Computer Science, University of Toronto, Toronto, Canada

M. Tedder
e-mail: mtedder@cs.toronto.edu

D. Corneil
e-mail: dgc@cs.toronto.edu

mailto:christophe.paul@lirmm.fr
mailto:emeric.gioan@lirmm.fr
mailto:mtedder@cs.toronto.edu
mailto:dgc@cs.toronto.edu

Algorithmica

1 Introduction

A chord diagram can be defined as a circle inscribed by a set of chords. A graph is a
circle graph if it is the intersection graph of a chord diagram: the vertices correspond
to the chords, and two vertices are adjacent if and only if their chords intersect. Com-
binatorially, chord diagrams are defined by double occurence circular words. Circle
graphs were first introduced in the early 1970s, under the name alternance graphs,
as a means of sorting permutations using stacks [10]. The polynomial time recogni-
tion of circle graphs was posed as an open problem by Golumbic in the first edition
of his book [16]. The question received considerable attention afterwards and was
eventually settled independently by Naji [19], Bouchet [1], and Gabor et al. [11].

Bouchet’s O(n5) algorithm is based on a characterization of circle graphs in terms
of local complementation, a concept originated in his work on isotropic systems [2],
of which the recently introduced rank-width and vertex-minor theories are exten-
sions [12, 20]. It is conjectured that circle graphs are related to rank-width and vertex-
minors as planar graphs are related to tree-width and graph-minors: just as large tree-
width implies the existence of a large grid as a graph-minor, it is conjectured that
large rank-width implies the existence of a large circle graph vertex-minor [21]. The
conjecture has already been verified for line-graphs [21].

Both Naji’s O(n7) algorithm and Gabor et al.’s O(n3) algorithm are based on
split decomposition, introduced by Cunningham [7]. A split is a bipartition (A,B)

(with |A|, |B| > 1) of a graph’s vertices, where there are subsets (called the frontiers)
A′ ⊆ A and B ′ ⊆ B such that no edges exist between A and B other than those be-
tween A′ and B ′, and every possible edge exists between A′ and B ′. Intuitively, split
decomposition finds a split and recursively decomposes its parts. A graph is called
prime if it does not contain a split. It is known that a graph is a circle graph if and only
if its prime split decomposition components are circle graphs [11]. This property is
used by Bouchet, Naji, and Gabor et al. to reduce the recognition of circle graphs to
the recognition of prime circle graphs. The latter problem is made somewhat easier
by the fact that prime circle graphs have unique chord diagrams (up to reflection) [1]
(see also [6]).

The algorithm of Gabor et al. was improved by Spinrad in 1994 to run in time
O(n2) [23]. A key component is an O(n2) prime testing procedure he developed with
Ma [18]. A linear time prime testing procedure now exists in the form of Dahlhaus’
split decomposition algorithm [8]; however, a faster circle graph recognition algo-
rithm has not followed. In fact, the complexity bottleneck in Spinrad’s algorithm
is not computing the split decomposition, but rather his procedure to construct the
unique chord diagram for prime circle graphs.

This paper presents the first sub-quadratic circle graph recognition algorithm. Our
algorithm runs in time O(n + m)α(n + m), where α is the inverse Ackermann func-
tion [3, 24]. We point out that this function is so slowly growing that it is bounded by
4 for all practical purposes.1

1Let us mention that several definitions exist for this function, either with two variables, including some
variants, or with one variable. For simplicity, we choose to use the version with one variable. This makes
no practical difference since all of them could be used in our complexity bound, and they are all essentially

Algorithmica

We overcome Spinrad’s bottleneck in two ways: we use the recent reformulation of
split decomposition in terms of graph-labelled trees (GLTs) [13, 14], and we derive a
new characterization of circle graphs in terms of Lexicographic Breadth-First Search
(LBFS) [22]. The key technical concept we deal with is that of consecutiveness in a
chord diagram (Sect. 3), a property that can be efficiently preserved under a certain
GLT transformation (Sect. 3.1). On one hand, this concept provides a new property
for chord diagrams of the components in the split decomposition of a circle graph
(Sect. 3.2). On the other hand, it provides a new property for prime circle graphs with
respect to an LBFS ordering (Sect. 3.3). Finally, these results allow us to characterize
how a prime circle graph can be built incrementally, according to an LBFS ordering
(Sect. 3.4).

This treatment of prime circle graphs can be integrated with the incremental split
decomposition algorithm from the companion paper [15], whose running time is
O(n + m)α(n + m). That algorithm operates in the GLT setting, computing the split
decomposition incrementally, only it adds vertices according to an LBFS ordering.
Throughout that process, our proposed circle graph recognition algorithm maintains
chord diagrams for all prime components in the split decomposition so long as pos-
sible. We do so by applying the new results mentioned above for prime circle graphs
in an incremental LBFS setting. A new data-structure for chord diagrams is devel-
oped in the paper so that these results can be efficiently implemented (Sect. 5). In
particular, our new data-structure is what enables the efficiency of the GLT transfor-
mations that preserve consecutiveness. Our results represent substantial progress on
a long-standing open problem.

2 Preliminaries

2.1 Basic Definitions and Terminology

All graphs in this document are simple, undirected, and connected. The set of vertices
in the graph G is denoted V (G) (or V when the context is clear). The subgraph of
G induced on the set of vertices S is signified by G[S]. We let NG(x), or simply
N(x), denote the set of neighbors of x, and if S is a set of vertices, then N(S) =
(
⋃

x∈S N(x)) \ S. A vertex is universal to a set of vertices S if it is adjacent to every
vertex in S. A vertex is universal in a graph if it is adjacent to every other vertex in
the graph. A clique is a graph in which every pair of vertices is adjacent. We require
in this paper that cliques have at least three vertices. A star is a graph with at least
three vertices in which one vertex, called its centre, is universal, and no other edges
exist. Cliques and stars are called degenerate with respect to split decomposition
as every non-trivial bipartition of their vertices forms a split. Given two connected
graphs G and G′, each having at least two vertices, and given two vertices q ∈ V (G)

constant. As an example, the two variable function considered in [3] satisfies α(k,n) ≤ 4 for all integer k

and for all n ≤ 2..
.2

︸︷︷︸
17 times

.

Algorithmica

and q ′ ∈ V (G′), the join between G and G′ with respect to q and q ′, denoted by
(G,q) ⊗ (G′, q ′), is the graph formed from G and G′ as follows: all possible edges
are added between NG(q) and NG′(q ′), and then q and q ′ are deleted. In this case,
observe that (V (G) \ {q},V (G′) \ {q ′}) is a split of the graph (G,q) ⊗ (G′, q ′).

The graph G+ (x,N(x)) is formed by adding the vertex x to the graph G adjacent
to the subset N(x) of vertices, its neighborhood; when N(x) is clear from the context
we simply write G + x. The graph G − x is formed from G by removing x and all
its incident edges.

To avoid confusion with graphs, the edges of a tree are called tree-edges. If T is a
tree, then |T | represents the number of its vertices. The non-leaf vertices of a tree are
called its nodes. The tree-edges not incident to leaves are internal tree-edges.

2.2 The Split-Tree of a Graph

The split decomposition and the related split-tree play a central role in the circle graph
recognition problem. This subsection essentially recalls definitions from [13, 14] and
from [15]. Here, we will give only the material required in the present paper. More
involved definitions and details are given in [15]. Let us mention that the graph-
labelled tree structure defined below can be easily related to other representations
used for the split decomposition, e.g. [5, 7].

Definition 2.1 [13, 14] A graph-labelled tree (GLT) is a pair (T ,F), where T is
a tree and F a set of graphs, such that each node u of T is labelled by the graph
G(u) ∈ F , and there exists a bijection ρu between the edges of T incident to u and
the vertices of G(u). (See Fig. 1.)

When we refer to a node u in a GLT (T ,F), we usually mean the node itself,
although we may sometimes use the notation u as a shorthand for its label G(u) ∈F ,
the meaning being clear from context; for instance, notation will be simplified by
saying V (u) = V (G(u)). The vertices in V (u) are called marker vertices, and the
edges between them in G(u) are called label-edges. For a label-edge e = uv we may
say that u and v are the (marker) vertices of e. For the internal tree-edge e = uv,

Fig. 1 On the left: a graph-labelled tree (T ,F); on the right: its accessibility graph Gr(T ,F). For
the pictured marker vertex q , we have L(q) = {1,2,3,4,5,6,7}. The leaves accessible from q are
{1,3,4,7,14,15}, and we have A(q) = {1,3,4,7}

Algorithmica

we say the marker vertices ρu(e) and ρv(e) are the extremities of e. For convenience,
we may say that a tree-edge and its extremities are incident. Furthermore, ρv(e) is
the opposite of ρu(e) (and vice versa). A leaf is also considered an extremity of its
incident tree-edge, and its opposite is the other extremity of that tree-edge (marker
vertex or leaf). Sometimes a marker vertex will simply be said to be opposite a leaf
or another marker vertex, the meaning in this case being that implied above. If q is
a marker vertex such that ρu(e) = q , then we let L(q) denote the set of leaves of the
tree not containing u in the forest T − e; see Fig. 1 where L(q) = {1,2,3,4,5,6,7}.
Extending this notion to leaves, the set L(�) for the leaf � is equal to all leaves in T

different from �. The central notion for GLTs with respect to split decomposition is
that of accessibility:

Definition 2.2 [13, 14] Let (T ,F) be a GLT. Two marker vertices q and q ′ are ac-
cessible from one another if there is a sequence Π of marker vertices q, . . . , q ′ such
that:

1. every two consecutive elements of Π are either the vertices of a label-edge or the
extremities of a tree-edge;

2. the edges thus defined alternate between tree-edges and label-edges.

Two leaves are accessible from one another if their opposite marker vertices are
accessible; similarly for a leaf and marker vertex being accessible from one another;
see Fig. 1 where the leaves accessible from q include both 3 and 15 but neither 2 nor
11. By convention, a leaf or marker vertex is accessible from itself.

Note that, obviously, if two leaves or marker vertices are accessible from one an-
other, then the sequence Π with the required properties is unique, and the set of
tree-edges in Π forms a path in the tree T . If q is a marker vertex, then we let A(q)

denote the set of leaves in L(q) accessible from q; see Fig. 1. The set A(�) is similarly
defined for a leaf �.

Definition 2.3 [13, 14] Let (T ,F) be a GLT. Then its accessibility graph, denoted
Gr(T ,F), is the graph whose vertices are the leaves of T , with an edge between
two distinct vertices if and only if the corresponding leaves are accessible from one
another. Conversely, we may say that (T ,F) is a GLT of Gr(T ,F).

Accessibility allows us to view GLTs as encoding graphs; an example appears in
Fig. 1. The following remarks directly follow from Definition 2.3:

Remark 2.4 A graph G is connected if and only if every label in a GLT of G is
connected.

Remark 2.5 Let (T ,F) be a GLT, with Gr(T ,F) connected. For every marker vertex
q in (T ,F), A(q) is non-empty.

Remark 2.6 Let e be an internal tree-edge of a GLT (T ,F), with Gr(T ,F) con-
nected, and let p and q be the two extremities of e. Then the bipartition (L(p),L(q))

is a split of Gr(T ,F). Moreover A(q) and A(p) are the frontiers of that split.

Algorithmica

Fig. 2 Example of the node-join and node-split

Remark 2.7 Let (T ,F) be a GLT, with Gr(T ,F) connected. For every graph label
G(u) in F , there exists a subset L of leaves of T such that G(u) is isomorphic to the
subgraph of Gr(T ,F) induced by L. Note that L can be built by choosing, for every
vertex q of G(u), an element of A(q).

Let e = uu′ be an internal tree-edge of a GLT (T ,F), and let q ∈ V (u) and q ′ ∈
V (u′) be the extremities of e. The node-join of u and u′ is the following operation:
contract the tree-edge e, yielding a new node v labelled by the join between G(u) and
G(u′) with respect to q and q ′. Every other tree-edge and their pairs of extremities
are preserved. The node-split is the inverse of the node-join. Both operations are
illustrated in Fig. 2. A key property to observe is that the node-join operation and the
node-split operation preserve the accessibility graph of the GLT.

To end this subsection, we recall the main result of split decomposition theory [7],
which we restate below in terms of GLTs, as in [13, 14]:

Theorem 2.8 [7, 13, 14] For any connected graph G, there exists a unique graph-
labelled tree (T ,F) whose labels are either prime or degenerate, having a minimal
number of nodes, and such that Gr(T ,F) = G.

Definition 2.9 The unique graph-labelled tree guaranteed by Theorem 2.8 is called
the split-tree for G, and is denoted ST (G).

For example, the GLT in Fig. 1 is the split-tree for the accessibility graph pictured
there. The split-tree of a graph G could be thought as a representation of the set of
splits: it is known that every split either corresponds to a tree-edge of the split-tree
or to the tree-edge resulting from a node-split of some degenerate-node (for more
details, the reader should refer to the companion paper [15]).

2.3 Lexicographic Breadth-First Search

Lexicographic Breadth-First Search (LBFS) was developed by Rose, Tarjan, and
Lueker for the recognition of chordal graphs [22], and has since become a standard
tool in algorithmic graph theory [4]. It appears here as Algorithm 1.

By an LBFS ordering of the graph G (or its set of vertices V (G)), we mean
any ordering σ produced by Algorithm 1 when the input is G. We write x <σ y

Algorithmica

Algorithm 1: Lexicographic Breadth-First Search
Input: A graph G with n vertices.
Output: An ordering σ of V (G) defined by a mapping σ : V (G) → {1, . . . , n}.
foreach x ∈ V (G) do label(x) ← ε (the empty-string) ;
for i = 1 to n do

pick an unnumbered vertex x with lexicographically largest label;
σ(x) ← i ; // assign x the number i

foreach unnumbered vertex y ∈ N(x) do append n − i + 1 to label(y);
end for

if σ(x) < σ(y). Notice that the first vertex in any LBFS ordering is arbitrary. This is
because all vertices start out with the empty string label. More generally, the vertex
with the lexicographically largest label may not be unique. As another example, if x

is numbered first, meaning it is the first vertex in the LBFS ordering, then every ver-
tex in N(x) will share the lexicographically largest label at the time the second vertex
is numbered. In other words, any vertex in N(x) can follow x in an LBFS ordering.
Interestingly, LBFS orderings can be characterized as follows:

Lemma 2.10 [9, 16] An ordering σ of a graph G is an LBFS ordering if and only if
for any triple of vertices a <σ b <σ c with ac ∈ E(G), ab /∈ E(G), there is a vertex
d <σ a such that db ∈ E(G), dc /∈ E(G).

For a subset S of V (G), we denote σ [S] as the restriction of σ to S: that is, for
x, y ∈ S, x <σ [S] y if and only if x <σ y. A prefix of σ is a subset S such that x <σ y

and y ∈ S implies that x ∈ S.
The following remarks are obvious and well-known observations:

Remark 2.11 If σ is an LBFS ordering of a graph G, and x is a universal vertex in
G, then σ [V (G) − {x}] is an LBFS ordering of G − x.

Remark 2.12 Let S be a prefix of any LBFS ordering σ of a graph G. Then σ [S] is
an LBFS ordering of G[S].

Our circle graph recognition algorithm is based on special properties of good ver-
tices and on the hereditary property of LBFS orderings with respect to the label
graphs of a GLT (and thus of the split-tree).

Definition 2.13 A vertex x ∈ V (G) is good for the graph G if there is an LBFS
ordering of G in which x appears last.

Definition 2.14 (Definition 3.5 in [15]) Let u be a node of a GLT (T ,F) and let σ be
an LBFS ordering of G = Gr(T ,F). For any marker vertex p, let xp be the earliest
vertex of A(p) in σ . Define σu to be the ordering of G(u) such that for q, r ∈ V (u),
q <σu r if xq <σ xr .

Algorithmica

Lemma 2.15 (Lemma 3.6 in [15]) Let σ be an LBFS ordering of graph G =
Gr(T ,F), and let u be a node in (T ,F). Then σu is an LBFS ordering of G(u).

2.4 Circle Graphs

We will work with circle graphs using a variant of the double occurrence words men-
tioned in the introduction. A word over an alphabet Σ is a sequence of letters of Σ . If
S is a word over Σ , then Sr denotes the reversed sequence of letters. The concatena-
tion of two words A and B is denoted AB . A circular word C over an alphabet Σ is a
circular sequence of letters of Σ ; they can be represented by a word S by considering
that the first letter of S follows its last letter. That is: if S is the concatenation AB of
the words A and B , then BA represents the same circular word C as S = AB , and we
denote this by C ∼ AB ∼ BA. A factor of a word (respectively of a circular word),
over Σ is a sequence of consecutive letters in this word (respectively in a word repre-
senting this circular word). Formally, we may sometimes make the abuse to consider
a factor of a given (circular) word as a set of letters, and conversely, as soon as this
set of letters forms a factor in this (circular) word. If the sequence S of elements of Σ

defines a circular word C, then the reversed sequence Sr defines the reflection of C,
denoted Cr .

We define formally the chord diagrams mentioned in the introduction using cir-
cular words. For a set V , called a set of chords, a chord diagram on V is a circular
word on the alphabet V = ⋃

v∈V {v1, v2} where every letter appears exactly once. The
elements of V are called endpoints, and, for every chord v ∈ V , the letters v1 and
v2 of V are called the endpoints of v. Geometrically, a chord diagram can be rep-
resented as a circle inscribed by a set of chords (see Fig. 3). Now, if C is a chord
diagram on V , then the simple chord diagram induced by C is the circular word C̄ on
V obtained by replacing the endpoints appearing in C by the corresponding chords
of V (or equivalently, removing the subscripts from the endpoints). If a and b are
two endpoints of the chord diagram C ∼ AaBbA′, with A,B,A′ words on V , then
we define the factor C(a, b) = B . Based on this, it follows that C(b, a) = A′A, and
similarly Cr(a, b) = ArA′r and Cr(b, a) = Br .

The chord diagram C encodes the graph G = (V ,E) as follows: the chords of
C correspond to the vertices V , two of which are adjacent if and only if their cor-
responding chords intersect. Using the notation from above, vertices x and y are
adjacent if and only if the factor C(x1, x2) contains either y1 or y2 but not both. The
circle graphs are the graphs that can be encoded by chord diagrams in this way. We

Fig. 3 A chord diagram C

drawn on a circle (on the left)
and the corresponding circle
graph G (on the right). By
convention we read the
sequences clockwise from
figures. We have
C(a2, f2) = h1e1b2a1d1 and
C(f2, a2) = e2g1f1h2g2c1d2b1c2

Algorithmica

Fig. 4 A simple chord diagram for a clique; a simple chord diagram for a star

say that C is a chord diagram for G, or that C encodes G. The above definitions
are naturally extended to simple chord diagrams. Notice that if C is a chord diagram
for G, then Cr is a chord diagram for G as well. An example appears in Fig. 3.

If L ⊆ V (G), then C[L] is the chord diagram formed by removing from C all
chords corresponding to vertices not in L.

Remark 2.16 If C is a chord diagram for G, and L ⊆ V (G), then C[L] is a chord
diagram for G[L].

Simple chord diagrams are in general not uniquely determined by the graph they
encode, as demonstrated by the example of cliques and stars (depicted in Fig. 4).
A chord diagram C of a clique G is of the form C ∼ AA, where A is any permutation
of its vertices. If G is a star with centre vertex c, a chord diagram C is of the form
C ∼ cAcAr , where A is any permutation of the non-centre vertices of the star. In
both cases, one can transpose any two chords (distinct from the centre, in the case of
a star). On the contrary, it is known that if a circle graph is prime (i.e. has no split)
then it has a unique simple chord diagram (up to reflection), and that the converse is
true provided the graph has more than four vertices [1] (see also [6]).

The concept of join between two graphs G and G′ with respect to two vertices
q ∈ V (G) and q ′ ∈ V (G′) was defined in Sect. 2.1. A similar join operation directly
applies to chord diagrams. It will be thoroughly used in our incremental split-tree
construction of circle graphs.

Definition 2.17 Let C and C′ be chord diagrams on V and V ′, respectively, and let
q belong to V and q ′ belong to V ′. We define a circle-join operation between C and
C′ with respect to q and q ′ as follows

(C,q)
 (C′, q ′) ∼ C(q1, q2)C
′(q ′

1, q
′
2)C(q2, q1)C

′(q ′
2, q

′
1)

Observe that the circle-join is not commutative. We may use the notation
(C,q)
̂ (C′, q ′) instead of (C′, q ′)
 (C,q). By construction, the resulting se-
quences of letters define chord diagrams on the set of chords (V \ {q}) ∪ (V ′ \ {q ′}).
An illustration of this construction and of the obvious remark below is given in Fig. 5.

Remark 2.18 Let C and C′ be chord diagrams of G and G′, respectively, and let q

belong to V (G) and q belong to V (G′). The chord diagrams (C,q)
 (C′, q ′) and
(C,q)
̂ (C′, q ′) encode the graph H = (G,q) ⊗ (G′, q ′).

Algorithmica

Fig. 5 A circle-join (C,q)
(C′, q ′), and the corresponding node-join between graphs G and G′ encoded
by C and C′ respectively (Remark 2.18)

Assume that G′ and C′ are as in Remark 2.18. Let us also remark that, as C′r is
a chord diagram of G′, both (C,q)
 (C′r , q ′) and (C,q)
̂ (C′r , q ′) are also chord
diagrams of the same graph H . Finally, Remark 2.18 also allows us to obtain the
following well-known result, restated in terms of graph-labelled trees:

Corollary 2.19 Let (T ,F) be a GLT. The accessibility graph Gr(T ,F) is a circle
graph if and only if for every node u in T , the label G(u) is a circle graph.

Proof Notice that by recursively performing node-joins, any GLT can be reduced to
a single node labelled by its accessibility graph. Thus, by Remark 2.18, if every label
in the GLT is a circle graph, then so is its accessibility graph. For the converse, notice
that every label in a GLT is isomorphic to an induced subgraph of its accessibility
graph (Remark 2.7). Since every induced subgraph of a circle graph is also a circle
graph (Remark 2.16), if G is a circle graph, so is every label in a GLT having G as
its accessibility graph. �

3 Consecutiveness and LBFS Incremental Characterization

The key technical concept for this paper is given by the definition below of consec-
utiveness. Sections 3.1, 3.2 and 3.3 that follow are independent from each other and
provide general properties of circle graphs with respect to consecutiveness. Their re-
sults will be merged in Sect. 3.4 with the incremental construction of the split-tree
from [15] to get the main theorem of this section.

Definition 3.1 Let C be a chord diagram on a set V of chords. If a set of endpoints
Se ⊆ V is a factor of C (i.e. appears consecutively), then the first and last endpoint in
this factor are called bookends for Se.

Definition 3.2 A set of chords S ⊆ V is consecutive in C if C contains a set of
endpoints Se ⊆ V as a factor such that |Se ∩ {x1, x2}| = 1 for all x ∈ S, and Se ∩
{x1, x2} = ∅ for all x /∈ S. In this case, Se certifies the consecutiveness of S, and
a vertex x ∈ S is a bookend for S if one of its endpoints is a bookend for Se. The
definition naturally extends to a simple chord diagram C̄ by considering any chord
diagram C whose underlying simple chord diagram is C̄.

Algorithmica

Observe that if S is a consecutive set of at least two chords, then two distinct
chords of S are bookends. On the chord diagram C depicted in Fig. 5, the consec-
utiveness of the subset of chords S = {b, c, d} is certified by Se = {c1, d2, b1}; the
bookends of Se are c1 and b1, meaning b and c are bookends for S.

3.1 Circle-Join Property

Lemma 3.3 below will be crucial (in Sect. 3.4) for maintaining chord diagrams during
the vertex insertions constructing the split-tree in the companion paper [15]. It is
illustrated in Fig. 6 below.

Lemma 3.3 Let C and C′ be chord diagrams on the sets of chords V and V ′ re-
spectively. Let S ⊂ V and S′ ⊂ V ′ be sets of chords such that 1 <| S |<| V | and
1 <| S′ |<| V ′ |. Assume that S and S′ are consecutive in their respective chord di-
agrams. If q is a bookend of S, and q ′ is a bookend of S′, then the set of chords
(S \ {q})∪ (S′ \ {q ′}) is consecutive in (at least) one of the following chord diagrams,
with bookends being those of S and S′ other than q and q ′:

(C,q)
 (C′, q ′), (C,q)
̂ (C′, q ′), (C,q)
 (C′r , q ′), (C,q)
̂ (C′r , q ′).

Proof Assume that the consecutiveness of S in C is certified by the set Se of end-
points and, without loss of generality, let q1 be the endpoint of q in Se. Let r1 denote
the other bookend of Se with chord r distinct from q . Similarly assume that the con-
secutiveness of S′ in C′ is certified by the set S′

e of endpoints, and without loss of
generality let q ′

1 be the endpoint of q ′ in S′
e. Let r ′

1 denote the other bookend of S′
e

with chord r ′ distinct from q ′. Observe that either Se is a factor of (but not equal to)
q1C(q1, q2) or of C(q2, q1)q1. Assume the former. Observe also that either S′

e is a
factor of (but not equal to) q ′

1C
′(q ′

1, q
′
2) or of C′(q ′

2, q
′
1)q

′
1. Assume the former. We

complete the proof under these two assumptions, the other cases are similar.
Let a and b be the first and last endpoints of C(q1, q2). Observe that a ∈ Se and

b /∈ Se and thus b is not an endpoint of r . Let a′ and b′ be the first and last endpoints

Fig. 6 A consecutivity preserving circle-join requiring a reflection (Lemma 3.3 with S = {q, a, b}
and S′ = {q ′, f, e, g}). Here C′r is the reflection of C′ from Fig. 5. The resulting chord diagram is
(C,q)
 (C′r , q ′), where {a, b,f, e, g} is consecutive with inherited bookends a and g

Algorithmica

of C′(q ′
1, q

′
2). Observe that a′ ∈ S′

e and b′ /∈ S′
e and thus b′ is not an endpoint of r ′. By

construction, a and a′ appear consecutively on (C,q)
 (C′r , q ′). Then (S \ {q}) ∪
(S′ \ {q ′}) is consecutive and has bookends r1 and r ′

1. �

3.2 Split-Tree Property

This subsection shows how a consecutive set of chords/vertices in a chord diagram C

of a circle graph G induces a consecutive set of chords/vertices of the chord diagram
of the circle graph G(u) for any node u of the split-tree ST (G). The proof relies on
the following result, which can be found in an equivalent form as Proposition 9 in [6].

Proposition 3.4 (Proposition 9 in [6]) Let C be a chord diagram for the circle
graph G. Let q and r be the extremities of a tree-edge in ST (G). Then C can be
partitioned into four factors C ∼ A1B1A2B2 such that A1 ∪ A2 = ⋃

x∈L(q){x1, x2}
and B1 ∪ B2 = ⋃

y∈L(r){y1, y2}.

Together with Remark 2.6, the above proposition yields the following:

Corollary 3.5 Let q and r be the extremities of a tree-edge in ST (G). Let C ∼
A1B1A2B2 be a chord diagram for the circle graph G such that A1 ∪ A2 =⋃

x∈L(q){x1, x2} and B1 ∪ B2 = ⋃
y∈L(r){y1, y2}. Consider an arbitrary leaf l in

ST (G). Then l is in A(q) if and only if it has one endpoint in A1 and the other
in A2.

Proof By Remark 2.6, A(q) and A(r) are the frontiers of the split (L(q),L(r)) in G.
In other words, every leaf of A(r) is adjacent in G to every leaf of A(q). Equivalently,
these pairs of leaves correspond to intersecting pairs of chords l, l′ such that l ∈
A1 ∪ A2 and l′ ∈ B1 ∪ B2. Observe that this holds if and only if l (respectively l′) has
one endpoint in A1 (respectively B1) and the other in A2 (respectively B2). �

If u is a node of ST (G), then applying Proposition 3.4 on every tree-edge incident
to u, we obtain:

Corollary 3.6 Let C be a chord diagram encoding the circle graph G. If u is a
node of degree k in ST (G), then C’s endpoints can be partitioned into 2k factors
C ∼ A1A2 . . .A2k−1A2k such that for every q in V (u), there exists a distinct pair
Ai,Aj such that

Ai ∪ Aj =
⋃

x∈L(q)

{x1, x2}.

From Corollary 3.6, given a circle graph with chord diagram C and a node u in its
split-tree, we can define the simple chord diagram C̄[u] of u induced by C as follows:
for each q ∈ V (u), remove the factors Ai and Aj corresponding to L(q) and replace
them with q .

Algorithmica

Corollary 3.7 Let C be a chord diagram encoding the circle graph G, and let u be
a node in ST (G). Assume that S is a consecutive set of chords in C. Let

S[u] = {q ∈ V (u) | L(q) ∩ S �= ∅}.
Then S[u] is consecutive in C̄[u]. Moreover if x in L(q) is a bookend for S, then q is
a bookend for S[u].

Proof Assume that C ∼ A1A2 . . .A2k−1A2k , as defined in Corollary 3.6. Without
loss of generality, assume that the consecutiveness of S is certified by a factor con-
tained in Ai . . .Aj , with 1 � i < j � 2k. As S is consecutive, observe that every Ah,
i � h � j , corresponds to a distinct marker vertex qh of u. This clearly implies that
S[u] is consecutive in C̄[u]. Moreover, as the bookends of S belong to Ai and Aj ,
then the bookends of S[u] are the corresponding marker vertices qi and qj . �

One can observe that by definition of C̄[u], Corollary 3.7 implies that if S is con-
secutive in C, then S ∩L is consecutive in C[L], where L is any set of vertices/chords
obtained by selecting one accessible leaf in A(q) for every marker vertex q of u.

3.3 LBFS Property

The next theorem is a new structural property of circle graphs. It will be used in
Sect. 3.4 to characterize vertex insertion leading to prime circle graphs.

Theorem 3.8 Let G be a prime circle graph. If x ∈ V (G) is a good vertex of G, then
G has a chord diagram in which N(x) is consecutive.

Proof Let C be a chord diagram of G. As G is prime, we know that C is unique up
to reflection [1, 6]. Assume for contradiction that N(x) is not consecutive in C. Let
σ be an LBFS ordering of G in which x is the last vertex. Let z denote the first vertex
in σ . Either one endpoint of z appears in C(x1, x2) and the other in C(x2, x1), or the
two endpoints appear in one of C(x1, x2) and C(x2, x1). Without loss of generality,
suppose that C(x1, x2) contains at most one of z’s endpoints.

Since N(x) is not consecutive in C, at least one vertex/chord has its two endpoints
in C(x1, x2). Amongst all such vertices, let y be the one occurring earliest in σ .
Observe that by construction, y �= z. Let By be the set of vertices occurring before y

in σ ; and let Ay be the set of vertices with the same label as y (including y) at the
step y is numbered by Algorithm 1.

By the choice of y, every neighbor v of y such that v <σ y has only one of its
endpoints in C(x1, x2). Therefore N(y) ∩ By ⊆ N(x) ∩ By . It follows that at the
step y is numbered we have label(x) = label(y), implying x ∈ Ay . As x is good,
we have (By,Ay) is a bipartition of V (G). By construction, Ay contains at least two
vertices (i.e. x and y). So if |By | � 2, the bipartition (By,Ay) defines a split of G,
contradicting that G is prime. It follows that By = {z} and z is a universal vertex
in G; note that y is the second vertex in σ .

The same argument as above can be applied to C(x2, x1). There must be a vertex
y′ both of whose endpoints reside in C(x2, x1), and without loss of generality, we can

Algorithmica

assume y′ is the earliest such vertex appearing in σ . Observe that y′ �= z and y′ �= y,
by construction. Define By′ and Ay′ similar to By and Ay above. Then following the
same argument as above, N(y′) ∩ By′ ⊆ N(x) ∩ By′ . Thus x ∈ Ay′ . But now both
parts of the bipartition (By′ ,Ay′) have size at least two (recall that y, z ∈ By′). It
follows that (By′ ,Ay′) is a split, contradicting G being prime. �

3.4 Good Vertex Insertion in Circle Graphs

We now present an LBFS incremental characterization of prime circle graphs. That
is, assume that adding a new vertex x to a circle graph G yields a prime graph G+ x.
We answer the following question: which properties of ST (G) are required for G+x

to be a circle graph as well? We use the results from the three previous subsections
and the incremental characterization of the split decomposition in [15].

We first need some definitions from [15]. Let G be an arbitrary (connected) graph
and consider some subset S ⊆ V (G). Let (T ,F) be a GLT such that Gr(T ,F) =
G. We stamp the marker vertices of (T ,F) with respect to S as follows. If q is a
marker vertex opposite a leaf l ∈ S, (respectively l �∈ S) we say that q is perfect
(respectively empty). Let q be a marker vertex not opposite a leaf. Then q is perfect if
S ∩ L(q) = A(q); empty if S ∩ L(q) = ∅; and mixed otherwise. Let P(u) denote the
set of perfect marker vertices of the node u, and let MP(u) denote the set of mixed or
perfect (i.e. non-empty) marker vertices of the node u in ST (G): i.e. MP(u) = {q ∈
V (u) | S ∩ L(q) �= ∅}.

Lemma 3.9 Let G = (V ,E) be a circle graph and let C be a chord diagram of G

in which the set S ⊆ V is consecutive. If q is a mixed marker vertex of the node u in
ST (G) marked with respect to S, then L(q) contains a leaf � that is a bookend of S.

Proof By Corollary 3.6, there is a pair of factors Ai and Aj in C such that y ∈ L(q)

if and only if y1, y2 ∈ Ai ∪ Aj . Let Se be a set of endpoints certifying that S is
consecutive in C. Since q ∈ MP(u), we know L(q) ∩ S �= ∅. Therefore Se ∩ Ai �= ∅
or Se ∩ Aj �= ∅ (or both). Assume without loss of generality that Se ∩ Ai �= ∅.

If Ai does not contain a bookend of Se, this implies that Ai ⊂ Se. Therefore every
chord with one endpoint in Ai has its other endpoint in Aj , by definition of Se being
consecutive. By Corollary 3.5, A(q) is the set of chords with exactly one endpoint in
Ai . It follows that Aj cannot be a subset of Se: if it were, then Ai ∪ Aj ⊆ Se, and
so there would be a chord with both its endpoints in Se, a contradiction by definition
of Se being consecutive. We also can not have Aj ∩ Se = ∅: if so, we would have
(Ai ∪Aj)∩Se = Ai , then by Corollary 3.5 and the consecutiveness of S, L(q)∩S =
A(q) which implies that q is perfect, a contradiction. Thus, Aj ∩Se �= ∅ but Aj �⊆ Se.
It follows that Aj contains a bookend of Se. �

We extract the following result for arbitrary graphs from [15]:

Theorem 3.10 (Theorem 4.21 in [15]) A graph G + x is a prime graph if and only
if ST (G) marked with respect to N(x) satisfies the following:

Algorithmica

Fig. 7 States—P for “perfect”,
M for “mixed” and E for
“empty”—assigned to marker
vertices with respect to the
shaded leaves representing
N(x). This split-tree satisfies
Theorem 3.10

1. Every marker vertex not opposite a leaf is mixed.
2. Let w be a degenerate node. If w is a star node, the centre of which is perfect, then

w has no empty marker vertex and at most one other perfect marker vertex; and
in all other cases, w has at most one empty marker vertex and at most one perfect
marker vertex.

See Fig. 7 for an example satisfying the conditions of Theorem 3.10.

Theorem 3.11 Let G + x be a prime graph such that x is a good vertex and G

is a circle graph. Then G + x is a circle graph if and only if for every node u in
ST (G), marked with respect to N(x), G(u) has a chord diagram in which MP(u) is
consecutive, with the mixed marker vertices being bookends.

Proof Necessity: If G + x is a circle graph, it has a chord diagram C′. By The-
orem 3.8, N(x) is consecutive in C′. Therefore N(x) is consecutive in the chord
diagram C = C′[V (G)] of G. Let u be a node of ST (G), which by assumption is
marked with respect to N(x). By the definition of MP(u) (preceding Lemma 3.9)
and of N(x)[u] (inside Corollary 3.7), we have MP(u) = N(x)[u] = {q ∈ V (u) |
L(q) ∩ N(x) �= ∅}. So, according to Corollary 3.7, MP(u) is consecutive in C[u],
a chord diagram of G(u). By Lemma 3.9, if q is a mixed marker vertex of u, then
L(q) contains a leaf that is a bookend of S, which implies, by Corollary 3.7, that q is
a bookend of MP(u).

Sufficiency: By assumption, ST (G) satisfies the following property: (A) for every
node u, G(u) has a chord diagram Cu in which MP(u) is consecutive with mixed
marker vertices being bookends. By Theorem 3.10, the extremities of every internal
tree-edge of the split-tree ST (G) are mixed. Hence ST (G) also satisfies the following
property: (B) for every internal tree-edge e = uu′, the extremities q ∈ V (u) and q ′ ∈
V (u′) of e are bookends of MP(u) and MP(u′) respectively.

Also, one can observe that the internal tree-edges of ST (G) form a path. Indeed,
because a consecutive set of chords has two distinct bookends, each node u has at
most two mixed marker vertices, and hence it has at most two neighbors in ST (G).

By definition of perfect marker vertices, ST (G) also satisfies the following prop-
erty: (C) N(x) is the set of leaves whose opposite marker vertices belong to P(u) for
some node u. For a node v in a GLT obtained by a series of node-joins from ST (G),
let us extend the previous definitions and denote P(v) to be the set of marker ver-
tices of v opposite a leaf belonging to N(x), and MP(v) this set together with mixed
marker vertices, defined as extremities of internal edges.

Algorithmica

Fig. 8 Example of insertion of x. The letters P, E, M stand for perfect, empty, mixed, respectively. The
involved consecutivity preserving circle-join is the one illustrated in Fig. 6

We now prove that G has a chord diagram C in which N(x) is consecutive, by in-
duction on the number of nodes of a GLT of G satisfying properties (A), (B) and (C).
This would obviously imply that G + x is a circle graph. If such a GLT has a unique
node u, then N(x) is the set of leaves opposite marker vertices in MP(u) = P(u),
and the result trivially holds with C isomorphic to Cu. Assume that the result holds
for every such GLT with k nodes, and consider a GLT with k + 1 nodes satisfying
properties (A), (B) and (C). Let e = uu′ be an internal tree-edge with extremities q

and q ′ and let Cu, Cu′ be two respective chord diagrams witnessing the consecutive-
ness of MP(u) and MP(u′). By Lemma 3.3, the set (MP(u) \ {q}) ∪ (MP(u′) \ {q ′})
is consecutive, inheriting its bookends from MP(u) and MP(u′), in (at least) one of
the following chord diagrams:

(Cu, q)
 (Cu′ , q ′), (Cu, q)
̂ (Cu′ , q ′),

(Cu, q)
 (Cr
u′ , q ′), (Cu, q)
̂ (Cr

u′ , q ′).

That chord diagram encodes the graph G(v) resulting from the join between G(u)

and G(u′) with respect to q and q ′, by Remark 2.18. This yields a new GLT for G

(recall the definition of node-join) with k nodes. By definition, MP(v) = (MP(u) \
{q}) ∪ (MP(u′) \ {q ′}), which is consecutive in this chord diagram of G(v), with
mixed marker vertices being bookends. Hence properties (A) and (B) are satisfied
by this GLT. And we have also P(v) = P(u) ∪ P(u′). Hence property (C) is also
satisfied by this GLT.

We already proved that ST (G) satisfies properties (A), (B) and (C), hence the
result. �

Figure 8 provides an example of the insertion of a vertex x to a circle graph G,
where N(x) = {a, b, e, f, g} and G is described by the chord diagrams in Figs. 5
and 6.

The construction applied in the proof of sufficiency for Theorem 3.11 is the basis
of our circle graph recognition algorithm. Recall that successive circle-joins were
applied to a path of labels in the split-tree, and each of these circle-joins preserved
consecutiveness and bookends. The next section shows how that construction is used
to recognize circle graphs.

Algorithmica

4 Circle Graph Recognition Algorithm

We now have the material to present our circle graph recognition algorithm. It relies
on the split decomposition algorithm of [15] and inserts the vertices one at a time
according to an LBFS ordering σ = x1 < · · · < xn. Implementation details from it
that are needed for this paper will be introduced as required in the sections that follow.
The reader should refer to [15] for complete implementation details.

For circle graph recognition, we will additionally need to maintain, at each prime
node, a chord diagram. This is not required for degenerate nodes as their (poten-
tially many) chord diagrams all have the same generic structure (see Fig. 4). What-
ever chord diagrams for degenerate nodes are required by the algorithm will be con-
structed as needed.

We first briefly describe how the split decomposition algorithm of [15] updates
the split-tree of a graph under a vertex insertion. Based on this, we outline the vertex
insertion test for circle graph recognition and prove its correctness. The data-structure
and complexity issues are postponed to Sect. 5.

4.1 Incremental Modification of the Split-Tree

This subsection summarizes the general algorithm from [15]. The next subsection
details specific cases and features of that algorithm that will be modified for the pur-
poses of recognizing circle graphs.

We say that a node u in a GLT (marked with respect to some set of leaves S) is
hybrid if every marker vertex q ∈ V (u) is either perfect or empty, and its opposite
is mixed. A fully-mixed subtree T ′ of a GLT (T ,F) is a subtree of T such that: it
contains at least one tree-edge; the two extremities of all its tree-edges are mixed;
and it is maximal for inclusion with respect to these properties. For a degenerate
node u, we denote:

P ∗(u) = {q ∈ V (u) | q perfect and not the centre of a star},
E∗(u) = {q ∈ V (u) | q empty, or q perfect and the centre of a star}.

Theorem 4.1 (Theorem 4.14 in [15]) Let ST (G) = (T ,F) be marked with respect
to a subset S of leaves. Then exactly one of the following conditions holds:

1. ST (G) contains a clique node u whose marker vertices are all perfect, and this
node is unique;

2. ST (G) contains a star node u whose marker vertices are all empty except the
centre, which is perfect, and this node is unique;

3. ST (G) contains a unique hybrid node u and this node is prime;
4. ST (G) contains a unique hybrid node u and this node is degenerate;
5. ST (G) contains a tree-edge e whose extremities are both perfect and this edge is

unique;
6. ST (G) contains a tree-edge e with one extremity perfect and the other empty and

this edge is unique;
7. ST (G) contains a unique fully-mixed subtree T .

Algorithmica

Now, for a new vertex x, and letting S = N(x), the way ST (G) has to be modified
to obtain ST (G + x) can be described as follows.

• If one of cases 1, 2 and 3 of Theorem 4.1 holds, then ST (G + x) is obtained by
adding to u a marker vertex q adjacent in G(u) to precisely P(u) and making the
leaf x the opposite of q .

• If case 4 of Theorem 4.1 holds, then ST (G + x) is obtained in two steps:

1. performing the node-split corresponding to (P ∗(u),E∗(u)), thus creating a
tree-edge e, the extremities of which are perfect or empty;

2. subdividing e with a new ternary node v adjacent to x and e’s extremities, such
that v is a clique if both extremities of e are perfect, and otherwise v is a star
whose centre is the opposite of e’s empty extremity.

• If case 5 of Theorem 4.1 holds, then ST (G + x) is obtained by subdividing e with
a new clique node adjacent to e’s extremities and x.

• If case 6 of Theorem 4.1 holds, then ST (G + x) is obtained by subdividing e with
a new star node adjacent to e’s extremities and x, such that the centre of the star is
opposite e’s empty extremity.

• If case 7 of Theorem 4.1 holds, then ST (G + x) is obtained in three steps:

1. [cleaning step] performing, for every degenerate node u of T the node-splits
defined by (P ∗(u),V (u) \ P ∗(u)) and/or (E∗(u),V (u) \ E∗(u)) as soon as
they are splits of G(u). The resulting GLT is denoted c�(ST (G)), for cleaned
split-tree.

2. [contraction step] contracting, by a series of node-joins, the fully-mixed subtree
of c�(ST (G)) into a single node u;

3. [insertion step] adding to node u a marker vertex qx , adjacent in G(u) to pre-
cisely P(u), and making qx opposite x. The resulting node u is prime.

This combinatorial characterization of ST (G + x) from ST (G) is valid with no
assumption on x. The split decomposition algorithm in [15] applies this characteri-
zation but inserts vertices with respect to an LBFS ordering because doing so allows
its efficient implementation.

4.2 Incremental Circle Graph Recognition Algorithm

Here we describe how to refine the general construction described in Sect. 4.1 for
the purposes of recognizing circle graphs. Let us repeat again that, while inserting
vertices according to an LBFS ordering, we maintain the split-tree of the input graph
as in [15] and with each prime node we associate a chord diagram. Let G be a circle
graph, and for a new vertex x, let S = N(x). We consider how the changes to ST (G)

in arriving at ST (G + x) necessitate updates to the chord diagrams being maintained
at prime nodes.

• If one of cases 1, 2, 4, 5 or 6 of Theorem 4.1 holds, then the changes to ST (G)

amount to updating a degenerate node or creating a new degenerate node. By
Corollary 2.19, this has no impact on the circle graph recognition problem. These
modifications will therefore be handled by the split decomposition algorithm as
described in [15].

Algorithmica

• Case 3 of Theorem 4.1 amounts to updating a prime node ux by attaching a new
leaf to it. In other words, adding a new vertex to the prime circle graph G(ux)

yields a new prime graph. We need to check whether this new prime graph is a
circle graph as well. As the vertex insertion ordering is an LBFS ordering, the
necessary and sufficient condition is that the neighborhood of the new vertex is
consecutive in the chord diagram of G(ux) (Theorem 3.11 and Lemma 2.15).

• The core of the circle graph recognition algorithm resides in case 7 of Theo-
rem 4.1. When ST (G) contains a fully-mixed subtree, a new prime node is built in
ST (G + x) from existing nodes of ST (G).

The first step in case 7, namely the cleaning step, works as in the split-tree
algorithm of [15]. It produces the GLT cl(ST (G)), the fully-mixed tree that will
be transformed, in the second step, into a single node by means of all possible
node-join operations. If ux is the result of the above node-joins, then let G(ux)+x

be the prime graph obtained in the third step by adding a vertex (corresponding
to x) to G(ux) with neighborhood P(ux).

Notice the similarity between the node-joins in the second step and the construc-
tion in the proof of sufficiency of Theorem 3.11. In order to apply that theorem,
we make the following observation:

the fully-mixed subtree of cl(ST (G)), as considered in [15], corresponds
canonically to ST (G(ux)), as considered in Sect. 3.4 for G = G(ux).

We bring this to the attention of the reader because the implementation in [15]
does not explicitly compute G(ux) nor ST (G(ux)). Instead, by the equivalence
above, they exist implicitly as the fully-mixed portion of cl(ST (G)). We choose
to ignore this technicality in what follows, instead using ST (G(ux)) to refer to
the fully-mixed portion of cl(ST (G)). We will take for granted that we have
a data-structure encoding of ST (G(ux)) by virtue of the data-structure encod-
ing of cl(ST (G)) guaranteed by [15]. This equivalence will be recalled later as
cl(ST (G)) � ST (G(ux)). The advantage of working with ST (G(ux)) is that it
allows for the direct application of Theorem 3.11.

We apply Theorem 3.11 as follows. Prior to the node-joins in the second step,
we test whether its conditions are satisfied for ST (G(ux)). This can be done one
node at a time. (In case of failure, the graph G(ux) + x is not a circle graph,
and thus neither is G + x.) More precisely, for each node u containing a mixed
marker vertex, we test whether G(u) has a chord diagram Cu in which MP(u) is
consecutive with mixed marker vertices being bookends. If the test does not fail,
then we proceed as follows.

During the contraction step, in addition to a series of node-joins made by algo-
rithm [15] to contract the fully-mixed subtree, we perform a corresponding series
of circle-joins, just as in the proof of sufficiency of Theorem 3.11. For two nodes u

and v to be joined to form the new node w, we need to perform the circle-join that
preserves the consecutiveness and bookends of MP(u) and MP(v) (Lemma 3.3).

Finally, for the third step in case 7, the two endpoints representing a chord c

have to be inserted in the chord diagram Cux of the node ux resulting from the
contraction step. This new chord corresponds to x and has to cross the chords
of P(ux). The result is a chord diagram for the new prime node labelled with
G(ux) + x.

Algorithmica

The vertex insertion procedure for circle graphs that is informally outlined above is
captured more precisely as Algorithm 2. The correctness of Algorithm 2 follows from
the above discussion, but we prove it more formally in Theorem 4.2 below. We point
out that the implementation of this algorithm has to be thought of as complementary
to the implementation from [15]. Thus, in order to lighten Algorithm 2, we consider
that a node, whose label is a circle graph, may be directly labelled by a chord diagram
of this circle graph.

Theorem 4.2 Given the split-tree ST (G) of a circle graph, equipped with a chord
diagram at every prime node, and given a good vertex x of G + x, Algorithm 2 tests
whether G + x is a circle graph. If so, it returns ST (G + x), equipped with a chord
diagram at every prime node.

Proof Let σ be an LBFS ordering of G + x in which x is good. The algorithm fol-
lows the vertex incremental construction of the split-tree proved in [15]. So if G + x

is a circle graph, then the returned GLT is its split-tree ST (G + x). To prove the
correctness of the recognition test, we focus on case 7, the other cases are straight-
forward. Let us consider the GLT (T ′,F ′) obtained from ST (G) by contracting the
fully-mixed subtree of c�(ST (G)) into a single node ux labelled by a graph G(ux).
Observe that ST (G + x) is obtained from (T ′,F ′) by: (1) attaching x as a leaf ad-
jacent to node ux ; and (2) adding a new marker vertex qx , opposite to leaf x and
adjacent to S = P(ux) in G(ux). It is proved in [15], that the resulting node u′ and
thereby the graph G(u′) = G(ux) + qx is prime.

As G is a circle graph, G(ux) is also a circle graph, by Corollary 2.19. Likewise,
it is clear from Corollary 2.19 that G + x is a circle graph if and only if G(u′) is
a circle graph. Also, by Lemma 2.15, σu′ is an LBFS ordering of G(u′) and thus
qx is a good vertex of G(u′). We apply Theorem 3.11 to G(ux) (a circle graph),
G(u′) = G(ux) + qx (a prime graph), and qx (a good vertex vertex). By doing so, we
conclude that G(u′) is prime if and only if for every node v′ of ST (G(ux)) marked
with respect to S, Gv′ has a chord diagram in which MP(v′) is consecutive with mixed
marker vertices being bookends. Now observe that, by construction, ST (G(ux)) is
isomorphic to the fully-mixed subtree Tm of c�(ST (G)). We can thereby conclude
that G + x is a circle graph if and only if for every node v of Tm, G(v) has a chord
diagram in which MP(v) is consecutive with mixed marker vertices being bookends.
Algorithm 2 precisely performs all these tests.

Now assume that G + x is a circle graph. So as above, for every node v of the
fully-mixed subtree of c�(ST (G)), there exists a chord diagram Cv in which MP(v)

is consecutive with mixed marker vertices being bookends. By Lemma 3.3, for every
tree-edge e = vw of Tm with extremities qv ∈ V (v) and qw ∈ V (w), there is a circle-
join of Cv and Cw with respect to qv and qw that preserves the consecutiveness and
bookends. So eventually Algorithm 2 builds a chord diagram Cux of node ux (to
which Tm is contracted) such that MP(ux) = P(ux) is consecutive. Adding the chord
qx , corresponding to the marker vertex opposite x, yields a chord diagram of G(u′)
(which is prime). Therefore every prime node of ST (G+x) is equipped with a chord
diagram. �

Algorithmica

Algorithm 2: Vertex insertion
Input: A graph G, a vertex x /∈ V (G) which is the last vertex in an LBFS ordering

of G + x, and the split-tree ST (G) = (T ,F) equipped with chord diagrams
on prime nodes.

Output: The split-tree ST (G + x) equipped with chord diagrams on prime nodes, if
G + x is a circle graph.

1 Determine which case of Theorem 4.1 applies based on algorithm [15];

2 if case 1, 2, 4, 5 or 6 of Theorem 4.1 applies then
update ST (G) according to the algorithm [15], as described in Sect. 4.1;

3 if case 3 of Theorem 4.1 applies (let ux be the unique hybrid prime node) then

4 if MP(ux) is consecutive in the chord diagram Cux of ux (Theorem 3.11) then
let S be the factor of the chord diagram Cux certifying the consecutiveness
of MP(ux);

5 insert in Cu a chord c with endpoints c1 and c2 such that Cux (c1, c2) = S;
add a leaf x adjacent to ux opposite the marker vertex corresponding to
chord c;

else return G + x is not a circle graph;

6 if case 7 of Theorem 4.1 applies then
compute c�(ST (G)) according to the algorithm [15] as described in Sect. 4.1;
foreach tree-edge uv of the fully-mixed subtree of c�(ST (G))� ST (G(ux))

the extremities of which are qu and qv (they are mixed) do
7 if u, (respectively v) is degenerate then

if G(u) (respectively G(v)) has a chord diagram in which MP(u) is
consecutive with mixed marker vertices being bookends then

build such a chord diagram Cu, respectively Cv

else return G + x is not a circle graph;
8 if MP(u) is consecutive in Cu with mixed marker vertices being bookends

and MP(v) is consecutive in Cv with mixed marker vertices being bookends
(Theorem 3.11) then

9 perform a circle-join between Cu and Cv with respect to qu and qv that
preserves consecutiveness and bookends (Lemma 3.3);
consider that u and v are replaced with a single node whose chord
diagram is the above resulting one;

else return G + x is not a circle graph;
end foreach

let Cux be the chord diagram of the node ux resulting from the series of
circle-joins;
let S be the factor of the chord diagram Cux certifying the consecutiveness of
P (ux);

10 insert in Cux a chord c with endpoints c1 and c2 such that Cux (c1, c2) = S;
add a leaf x adjacent to ux opposite the marker vertex corresponding to chord c;

Algorithmica

Remark 4.3 At two places in Algorithm 2 there seem to be possible choices, all
leading to a final chord diagram: at line 7 to build a chord diagram of a degenerate
node, whose existence (but not unicity) is guaranteed by assumption, and at line 8 to
perform a circle-join, whose existence (but not unicity) is guaranteed by Lemma 3.3.
In fact, since we obtain a chord diagram of a prime circle graph, known to be unique
up to reflection, we know that, each time, there is a unique possible choice up to
reflection.

5 Data-structure, Implementation and Running Time

The incremental split-tree algorithm from [15] can be implemented as described
therein; it runs in time O(n + m)α(n + m). We mention that linear time LBFS im-
plementations appear in [22] (see also [16]) and [17], and either of these can be
used as part of the implementation for [15]. Thus, it remains to implement the rou-
tines involved in Algorithm 2: consecutiveness test on prime and degenerate nodes;
construction of chord diagrams for degenerate nodes; circle-join operations preserv-
ing consecutiveness; and finally, chord insertion. To that aim, we first describe the
data-structure used to maintain a chord diagram at each prime node of the split-tree
throughout its construction. We then describe how Algorithm 2 can be implemented
in order to obtain the O(n + m)α(n + m) time complexity for the circle graph recog-
nition problem.

5.1 Chord Diagram Data-Structure

We introduce a new data structure for chord diagrams, namely consistent symmet-
ric cycles, see below. At first glance it would seem that the usual and natural data-
structure for chord diagrams would be a circular doubly-linked list; unfortunately,
this choice would not allow the performance we require. In particular, under such a
data-structure each endpoint would be represented by a node with two pointers, say
prev and next, pointing to the endpoint’s counter-clockwise and clockwise neighbors,
respectively, in the chord diagram. This would allow consecutive sets of endpoints
to be efficiently located and circle-joins to be efficiently performed. The problem is
that our circle graph recognition algorithm sometimes performs circle joins using the
reflection of a chord diagram. In a circular, doubly-linked list, this would require up-
dating all the prev pointers to become next pointers and vice versa. That proves too
costly. To achieve the desired running time for circle graph recognition, circle-joins
must be performed in constant time.

One constant-time circle-join alternative using circular, doubly-linked lists would
be to simply reinterpret prev as next and vice versa without actually reassigning point-
ers. But this becomes a problem when the circle-join is performed between one chord
diagram, say C, and the reflection of another, say C′r . In that case, pairs of next point-
ers will end up pointing to each other and pairs of prev pointers will end up pointing
to each other. Figure 6 provides one example of a circle-join where this would hap-
pen. In that case, the traditional procedure for traversing a circular, doubly-linked list
would no longer work. Some of the next and prev pointers need to be interpreted as

Algorithmica

normal (those from C) while the other ones need to be interpreted as the opposite
(those from C′r). The data structure we propose below for chord diagrams general-
izes the circular, doubly-linked list to allow for this duality.

Definition 5.1 A symmetric cycle is the digraph C obtained from a cycle by replacing
every edge with a pair of opposite arcs. Every vertex y of a symmetric cycle is thereby
associated with two out-neighbors, namely +C(y) and −C(y).

Definition 5.2 Let C be a symmetric cycle on the vertex set V = ⋃
v∈V {v1, v2}. Then

each v1, v2 are said to be matched, and C is said to be consistent if for every pair
y1 and y2 of matched vertices, +C(y1) and +C(y2) belong to the same connected
component of C − {y1, y2}.

Our data-structure for a chord diagram on V implements in the natural way a
consistent symmetric cycle (CSC) on V = ⋃

v∈V {v1, v2}. That is, for a chord y ∈ V ,
the two endpoints y1 and y2 are matched with pointers from each one to the other.
Pointers are also maintained between y and those endpoints. Observe that a CSC for
chord diagram C is simultaneously a CSC for chord diagram Cr . One can distinguish
a chord diagram and its reflection by specifying a direction. That is, precisely: chord
diagrams up to reflection are encoded by CSCs, and chord diagrams are encoded by
CSCs together with the choice of a direction. In what follows, we assume that this
precision is implicit and we will just talk about CSCs as encoding chord diagrams.
This data-structure is illustrated in Fig. 9. Observe that searching a CSC in a given
direction is achieved in linear time by a depth-first search (DFS).

Let y1 and y2 be the endpoints of chord y of the chord diagram C. Let +C(y1, y2)

denote the sequence of endpoints (other than y1 and y2) encountered while starting
a DFS on C from y1 with pointer +C(y1) and stopping at +C(y2). The sequences
−C(y1, y2), +C(y2, y1) and −C(y2, y1) are defined similarly. Observe that the se-
quence +C(y1, y2) is the reversal of +C(y2, y1). The following observation estab-
lishes the links between the CSC representation of a chord diagram C and its repre-
sentation by a circular word.

Fig. 9 Example encoding of a circle graph by a CSC. Arrows represent pointers. The +/− pointer types
in the CSC structure are distinguished by two types of dashed arrows. The consistency rule for these
pointers is illustrated on the right

Algorithmica

Observation 5.3 If y1 and y2 are the endpoints of chord y in a chord diagram C,
then exactly one of the following holds:

1. +C(y1, y2) = C(y1, y2) (and thus +C(y2, y1) = Cr(y1, y2), −C(y1, y2) =
Cr(y2, y1) and −C(y2, y1) = C(y2, y1))

2. +C(y1, y2) = Cr(y2, y1) (and thus +C(y2, y1) = C(y2, y1), −C(y1, y2) =
C(y1, y2) and −C(y2, y1) = Cr(y1, y2))

For the sake of implementation, this data-structure for circle graphs completes the
data-structure used in [15] to represent the split-tree ST (G) of a graph G.

5.2 Implementation with CSCs

This section uses CSCs to implement the routines involved in Algorithm 2 and eval-
uates their costs. The computation of the perfect/empty/mixed states for marker ver-
tices of nodes is handled in the algorithm from [15] (here at line 1 in Algorithm 2).
Notably, the set of non-empty marker vertices MP(u) is also computed by [15], and
assumed to be known for every involved node u. It is also important to remind the
reader that a CSC simultaneously encodes a chord diagram C and its reflection Cr .
This will be crucial for the efficiency of the implementation of Algorithm 2.

5.2.1 Testing Consecutiveness in a CSC

There are three different times during Algorithm 2 when we need to test whether G(u)

has a chord diagram Cu in which the chords of MP(u) are consecutive with mixed
marker vertices being bookends (lines 4, 7 and 8). We also have to build such a chord
diagram if the node is degenerate (line 7 in Algorithm 2). Recall that a prime label
is already equipped with its chord diagram. We argue below that, if u is a degenerate
node, then this test can be performed (and a chord diagram can be built) in constant
time; and otherwise, this test can be performed in O(|MP(u)|).

The case of degenerate nodes follows directly from Theorem 3.10, satisfied by
ST (G(ux)).

Lemma 5.4 Let ST (G) be marked with respect to N(x) with x a good vertex of
G + x. If u is a degenerate node of the fully-mixed subtree of c�(ST (G)) �
ST (G(ux)), then testing if there exists a CSC for a chord diagram Cu of G(u) in
which MP(u) is consecutive with mixed marker vertices being bookends, and, if so
computing it, requires constant time.

Proof Assume there exists a chord diagram Cu in which MP(u) is consecutive with
mixed marker vertices being bookends. Therefore MP(u) contains at most two mixed
marker vertices. Applying Theorem 3.10 to ST (G(ux)), we see that u has at most
two non-mixed marker vertices. Hence, u contains at most four marker vertices. The
number of possible chord diagrams is thereby bounded by a constant (there are at
most 8 chord endpoints to arrange). Thus, the construction of an appropriate chord
diagram Cu, or the test that no appropriate chord diagram exists, can be done in

Algorithmica

constant time. Let us recall that chord diagrams of degenerate nodes have the form
demonstrated in Fig. 4. �

We now consider the case of a prime node u. Recall that the set MP(u) is given,
as well as a chord diagram Cu of G(u) (in fact unique up to reflection).

Lemma 5.5 Let ST (G) be marked with respect to N(x) with x a good vertex of
G + x. If u is a prime node, then testing if MP(u) is consecutive with mixed marker
vertices being bookends in the chord diagram Cu of G(u) requires O(|MP(u)|) time.

Proof Recall that MP(u) can be assumed to have been computed by the split algo-
rithm of [15]. Consider some marker vertex q ∈ MP(u). If Se is a set of endpoints
certifying that MP(u) is consecutive in Cu, then q1 ∈ Se or q2 ∈ Se but not both.
Moreover, Se is of the form S−

e q1S
+
e or S−

e q2S
+
e with S−

e and S+
e being possibly

empty words. So, to test the consecutiveness of MP(u), it suffices to test the exis-
tence of these sets S−

e and S+
e of endpoints. To that aim, proceed as follows: search

Cu from q1 in one direction, say using the pointer −Cu(q1), as long as the encountered
endpoint corresponds to a marker vertex q ′ of MP(u) and the other endpoint of q ′ has
not yet been discovered. Using the pointers between the endpoints of each chord, it
can be determined in constant time if the other endpoint has already been discov-
ered. Perform the same search in the other direction, i.e. with the pointer +Cu(q1). If
S−

e q1S
+
e isn’t located in this, then perform the same search, but this time starting at

q2. With these searches, the existence of Se can be determined in O(|MP(u)|) time
with DFS. Once this test has been performed, testing if non-bookend elements of S

are non-mixed has the same cost O(|MP(u)|). �

5.2.2 Circle-Joins Preserving Consecutiveness (with CSCs)

We want to prove that we can identify—in constant time—which of the four possible
circle-joins of Lemma 3.3 preserves consecutiveness and bookends (line 9 in Algo-
rithm 2). Recall that some of the constructions from Lemma 3.3 use the reflection of
the chord diagram. Our use of consistent symmetric cycles and their property of being
invariant under reflection (Sect. 5.1) is important in this regard: it means that no addi-
tional work is required to compute the reflection of a chord diagram in implementing
the circle-joins of Lemma 3.3.

Lemma 5.6 Let Cu and Cv be two chord diagrams, respectively, on the set of chords
V (u) and V (v). Let Su ⊆ V (u) and Sv ⊆ V (v) be consecutive sets of chords in Cu

and Cv , respectively. Given the CSCs for Cu and Cv , the bookends q and q ′ of Su,
and the bookends r and r ′ of Sv , one can build in constant time a CSC for a chord
diagram C on (V (u) \ {q}) ∪ (V (v) \ {r}) satisfying the conclusion of Lemma 3.3,
which we recall as

1. C results from a circle-join
 or
̂ of Cu and Cv or Cr
v with respect to q and r ,

2. S = (Su \ {q}) ∪ (Sv \ {r}) is consecutive in C,
3. S has bookends q ′ and r ′.

Algorithmica

Proof We will address the following case (the others are similar): Cu(q1, q
′
1) and

Cv(r1, r
′
1) respectively certify the consecutiveness of Su in Cu and of Sv in Cv ;

Cu(q1, q
′
1) and Cv(r1, r

′
1) are, respectively, strictly contained in Cu(q1, q2) and

Cv(r1, r2); Cu(q1, q2) = +Cu(q1, q2) and Cv(r1, r2) = +Cv (r1, r2). By Observa-
tion 5.3, we have

(Cu, q)
 (Cv, r) ∼ +Cu(q1, q2) +Cv (r1, r2) −Cu (q2, q1) −Cv (r2, r1)

(Cu, q)
̂ (Cv, r) ∼ +Cu(q1, q2) −Cv (r2, r1) −Cu (q2, q1) +Cv (r1, r2)

(Cu, q)
 (Cr
v, r) ∼ +Cu(q1, q2) −Cv (r1, r2) −Cu (q2, q1) +Cv (r2, r1)

(Cu, q)
̂ (Cr
v, r) ∼ +Cu(q1, q2) +Cv (r2, r1) −Cu (q2, q1) −Cv (r1, r2)

By Lemma 3.3, one of the four chord diagrams above preserves consecu-
tiveness and bookends. Under the assumptions above, S is consecutive in C =
(Cu, q)
̂ (Cr

v, r), with bookends r ′ and q ′. The CSC for C is obtained from those
for Cu and Cv by reassigning a constant number of pointers. For example, assuming
the following (the other cases are similar):

−Cu(q1) = au and +Cu (au) = q1; +Cu(q1) = bu and −Cu (bu) = q1;
+Cu(q2) = cu and +Cu (cu) = q2; −Cu(q2) = du and +Cu (du) = q2;
−Cv (r1) = av and +Cv (av) = r1; −Cv (r1) = bv and −Cv (bv) = r1;
−Cv (r2) = cv and +Cv (cv) = r2; −Cv (r2) = dv and +Cv (dv) = r2;

then we perform the following updates:

+C(bv) = bu and −C (bu) = bv; +C(cu) = av and +C (av) = cu;
+C(dv) = du and +C (du) = dv; +C(au) = cv and +C (cv) = au.

It is not difficult to check that the above pointer reassignments preserve the consis-
tency property. Regarding the running time, observe that only a constant number of
pointer reassignments are required. Moreover, given the bookends q1, q

′
1, r1, r

′
1, their

other endpoints q2, q
′
2, r2, r

′
2, respectively, can be accessed in constant time using the

pointers between the endpoints of each chord. And to decide in constant time which
of the possible circle-joins we need to perform, it suffices to store a constant size
table describing every possible case, along with the required circle-join operation for
that case. �

5.2.3 Chord Insertion in a CSC

To complete the implementation of Algorithm 2, it remains to describe how a new
chord c can be inserted in a CSC. This task occurs at lines 5 and 10. In both cases
the resulting chord diagram C corresponds to a prime graph. Moreover, thanks to the
previous steps, the neighborhood of the vertex represented by c is consecutive in C.

Algorithmica

Lemma 5.7 Given a CSC for a chord diagram C and the bookends of a consecutive
set Se of endpoints in C, the insertion of a new chord c intersecting exactly the chords
with an endpoint in Se requires constant time.

Proof Let b and b′ be the bookends of Se and let a /∈ Se and a′ /∈ Se be the end-
points neighboring b and b′, respectively. It suffices to reassign a constant number
of pointers towards the endpoints c1 and c2 of the new chord c. For example, if
+C(a) = b and +C(b) = a, then set +C(a) = c1 and +C(b) = c1; and if −C(b′) = a

and +C(a′) = b′, then set −C(b′) = c2 and +C(a′) = c2. The other cases are sym-
metric. Following that, we need to initialize the pointers of c1 and c2 in a consistent
way: for example +C(c1) = b and +C(c2) = b′. �

5.3 The Running Time

As already described, compared to the LBFS incremental split decomposition algo-
rithm of [15], the circle graph recognition problem must only handle the consecu-
tiveness test of Algorithm 2 and the maintenance of CSCs for the chord diagrams
of prime nodes. So if we prove that, at each vertex insertion, these tasks can be per-
formed in time linear in the cost of the split-tree modifications, then we could con-
clude that the circle graph recognition problem can be solved as efficiently as the split
decomposition algorithm. Regarding the latter, [15] proved the following:

Theorem 5.8 (Theorem 6.21 in [15]) The split-tree ST (G) of a graph G = (V ,E)

with n vertices and m edges can be built incrementally according to an LBFS order-
ing in time O(n + m)α(n + m), where α is the inverse Ackermann function.

For an LBFS ordering σ = x1 < · · · < xn of a graph G, let Gi be the subgraph of
G induced by Vi = {x1, . . . , xi}. Let insertion-cost(xi, ST (Gi−1)) denote the
complexity of the LBFS incremental split decomposition algorithm [15] to compute
ST (Gi) from ST (Gi−1) marked with Ni(xi) = N(xi)∩Vi−1. From Theorem 5.8 we
have:

n∑

i=1

insertion-cost(xi, ST (Gi−1)) ∈ O(n + m)α(n + m)

Theorem 5.9 The circle graph recognition test can be performed in time O(n +
m)α(n + m) on any graph on n vertices and m edges.

Proof Let σ = x1 < · · · < xn be an LBFS ordering of the graph G. Assume that
ST (Gi−1), marked with respect to Ni(xi), is equipped with a CSC at every prime
node. We prove that computing ST (Gi) and the CSCs of its prime nodes (if Gi is a
circle graph) requires O(insertion-cost (xi, ST (Gi−1))).

First, observe that in cases 1, 2, 4, 5, and 6 of Theorem 4.1 (line 2 in Algorithm 2)
the prime nodes of ST (Gi−1) are not affected by xi ’s insertion. So none of the CSCs
stored at prime nodes are affected, and thus no extra work is required for the circle
graph recognition problem.

Algorithmica

Now assume that case 3 of Theorem 4.1 holds (line 3 in Algorithm 2). Let ux

denote the unique prime hybrid node of ST (Gi−1). We need to insert a chord c in
the CSC for the chord diagram Cux of G(ux) which exactly intersects the chords in
MP(ux). As ux is the only prime node affected by xi ’s insertion (Theorem 3.11),
Gi is a circle graph if and only if MP(ux) is consecutive in Cux . As ST (Gi−1) is
marked with respect to Ni(xi) (i.e. MP(ux) is identified by the split-tree algorithm),
testing the consecutiveness of MP(ux) requires O(|MP(ux)|) time, by Lemma 5.5.
Moreover by Lemma 5.7, inserting the chord c only takes constant time. The to-
tal amount of time spent to update the CSC for Cux is clearly O(insertion-
cost(xi, ST (Gi−1))), since MP(ux) has been computed by the split decomposition
tree algorithm (at this step i).

Finally, assume that case 7 of Theorem 4.1 holds (line 6 in Algorithm 2). Let
ux denote the node resulting from the contraction of the fully-mixed subtree Tm

of c�(ST (Gi−1)) � ST (G(ux)). We need to compute a CSC for the chord dia-
gram Cux of G(ux) such that MP(ux) is consecutive and then insert a new chord,
say cx , exactly intersecting MP(ux). Again, by Theorem 3.11, this is possible (i.e.
Gi is a circle graph) if and only if every node v of Tm has a chord diagram in
which MP(v) is consecutive with mixed marker vertices being bookends. This prop-
erty of MP(v) can be tested and built in constant time if v is a degenerate node
of c�(ST (Gi−1)) (Lemma 5.4), and can be tested in O(|MP(v)|) time if v is a
prime node of Tm (by Lemma 5.5). The sum of these costs over involved nodes v

is O(insertion-cost(xi, ST (Gi−1))) since MP(v) is computed by the split de-
composition algorithm [15] for each v. Moreover, by Lemma 5.6, with a constant time
extra cost, a circle-join preserving consecutiveness and bookends can be performed
in parallel to every node-join operation required to contract Tm into ux that is per-
formed by the split decomposition algorithm [15], with total cost O(insertion-
cost(xi, ST (Gi−1))). Finally as in the previous case, we eventually insert the new
chord cx in the CSC for the resulting chord diagram Cux . By Lemma 5.7, this also
requires constant time since MP(ux) is known. In total, the amount of time spent to
built the CSC of the new prime node is O(insertion-cost(xi , ST (Gi−1))). �

6 Concluding Remarks

This paper presents the first subquadratic circle graph recognition algorithm. It also
develops a new characterization of circle graphs in terms of LBFS (upon which the
algorithm is based). The algorithm operates incrementally, extending the incremen-
tal split decomposition algorithm from the companion paper [15]. The two operate
in parallel. As each new vertex is inserted, the circle graph recognition algorithm
inspects properties of the split-tree to determine if the resulting graph will remain
a circle graph. If it does, the split-tree is updated to account for the new vertex. The
running time for the entire process is O(n+m)α(n+m), where α is the inverse Ack-
ermann function, which is essentially constant for all practical graphs. It is important
to note that this α factor is due to the split decomposition algorithm; the circle portion
is consistent with linear time. Thus, a linear time implementation of the split decom-
position portion would result in a linear time circle graph recognition algorithm.

Algorithmica

Eliminating the dependence on the incremental split decomposition portion may
prove difficult. Recall that split decomposition reduces the problem of recognizing
circle graphs to that of recognizing prime circle graphs. But since prime graphs can-
not be further decomposed, simply knowing the split decomposition a priori does not
help. Therefore bypassing the incremental split decomposition portion above may
necessarily mean bypassing split decomposition altogether. In this way, it is necessary
to fully explore the implications of the new LBFS characterization. Being specified
in terms of LBFS end vertices, it appears uniquely suited to the incremental setting
of this paper. It remains to be seen if it can be applied to some benefit in the “offline”
setting. Linear time circle graph recognition via the LBFS characterization could still
be a possibility with such an approach.

But there may yet be additional applications of the incremental split decompo-
sition algorithm coupled with the LBFS characterization. One possibility for explo-
ration is rank-width determination. Its connection with circle graphs was noted in the
introduction. However, there are also connections with split decomposition. For ex-
ample, distance-hereditary graphs—the family of graphs without prime subgraphs—
are precisely the graphs with rank-width 1. An algorithm to determine the split de-
composition of distance-hereditary graphs appeared in [13, 14] using a restricted
version of the algorithm presented in our companion paper. It would be interesting
to investigate what LBFS and split decomposition can together reveal about other
graphs of bounded rank-width. Similarly, could LBFS and split decomposition yield
fast simple recognition algorithms for permutation graphs (strictly contained in circle
graphs) as well as parity graphs and Meyniel graphs? Both families strictly contain
distance-hereditary graphs.

References

1. Bouchet, A.: Reducing prime graphs and recognizing circle graphs. Combinatorica 7, 243–254 (1987)
2. Bouchet, A.: Graphic presentations of isotropic systems. J. Comb. Theory, Ser. B 45, 58–76 (1988)
3. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms. McGraw-Hill, New

York (2001)
4. Corneil, D.G.: Lexicographic breadth first search—a survey. In: International Workshop on Graph

Theoretical Concepts in Computer Science (WG). Lecture Notes in Computer Science, vol. 3353, pp.
1–19 (2004)

5. Courcelle, B.: The monadic second-order logic of graphs XVI: canonical graph decomposition. Log.
Methods Comput. Sci. 2(2), 1–46 (2006)

6. Courcelle, B.: Circle graphs and monadic second-order logic. J. Appl. Log. 6(3), 416–442 (2008)
7. Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebr. Discrete Methods 3, 214–

228 (1982)
8. Dahlhaus, E.: Parallel algorithms for hierarchical clustering and applications to split decomposition

and parity graph recognition. J. Algorithms 36(2), 205–240 (2000)
9. Dragan, F., Nicolai, F., Brandstädt, A.: LexBFS-orderings and powers of graphs. In: International

Workshop on Graph Theoretical Concepts in Computer Science (WG). Lecture Notes in Computer
Science, vol. 1197, pp. 166–180 (1996)

10. Even, S., Itai, A.: Queues, stacks and graphs. In: Theory of Machines and Computations, pp. 71–86
(1971)

11. Gabor, C.P., Hsu, W.L., Suppovit, K.J.: Recognizing circle graphs in polynomial time. J. ACM 36,
435–473 (1989)

12. Geelen, J., Oum, S.-I.: Circle graph obstructions under pivoting. J. Graph Theory 61(1), 1–11 (2009)

Algorithmica

13. Gioan, E., Paul, C.: Dynamic distance hereditary graphs using split decomposition. In: International
Symposium on Algorithms and Computation (ISAAC). Lecture Notes in Computer Science, vol.
4835, pp. 41–51 (2007)

14. Gioan, E., Paul, C.: Split decomposition and graph-labelled trees: characterizations and fully-dynamic
algorithms for totally decomposable graphs. Discrete Appl. Math. 160(6), 708–733 (2012)

15. Gioan, E., Paul, C., Tedder, M., Corneil, D.: Practical and efficient split decomposition via graph-
labelled trees. Algorithmica (2013). doi:10.1007/s00453-013-9752-9

16. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Elsevier, Amsterdam
(2004)

17. Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applica-
tions to transitive orientation, interval graph recognition and consecutive ones testing. Theor. Comput.
Sci. 234(1–2), 59–84 (2000)

18. Ma, T.-H., Spinrad, J.: An O(n2) algorithm for undirected split decomposition. J. Algorithms 16,
145–160 (1994)

19. Naji, W.: Reconnaissance des graphes de cordes. Discrete Math. 54, 329–337 (1985)
20. Oum, S.-I.: Rank-width and vertex minors. J. Comb. Theory, Ser. B 95(1), 79–100 (2005)
21. Oum, S.-I.: Excluding a bipartite circle graph from line graphs. J. Graph Theory 60(3), 183–203

(2009)
22. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J.

Comput. 5(2), 266–283 (1976)
23. Spinrad, J.: Recognition of circle graphs. J. Algorithms 16, 264–282 (1994)
24. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22(2), 146–160 (1975)

http://dx.doi.org/10.1007/s00453-013-9752-9

	Practical and Efﬁcient Circle Graph Recognition
	Abstract
	Introduction
	Preliminaries
	Basic Deﬁnitions and Terminology
	The Split-Tree of a Graph
	Lexicographic Breadth-First Search
	Circle Graphs

	Consecutiveness and LBFS Incremental Characterization
	Circle-Join Property
	Split-Tree Property
	LBFS Property
	Good Vertex Insertion in Circle Graphs

	Circle Graph Recognition Algorithm
	Incremental Modiﬁcation of the Split-Tree
	Incremental Circle Graph Recognition Algorithm

	Data-structure, Implementation and Running Time
	Chord Diagram Data-Structure
	Implementation with CSCs
	Testing Consecutiveness in a CSC
	Circle-Joins Preserving Consecutiveness (with CSCs)
	Chord Insertion in a CSC

	The Running Time

	Concluding Remarks
	References

