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Abstract

In this note, we present the main results of a series of forthcoming papers, dealing with bi-

jective generalizations of some counting formulas. New intrinsic constructions in oriented

matroids on a linearly ordered set of elements establish notably structural links between

counting regions and linear programming. We introduce fully optimal bases, which have a

simple combinatorial characterization, and strengthen the well-known optimal bases of lin-

ear programming. Our main result is that every bounded region of an ordered hyperplane

arrangement, or ordered oriented matroid, has a unique fully optimal basis, providing the

active bijection between bounded regions and uniactive internal bases. The active bijec-

tion is extended to an activity preserving mapping between all reorientations and all bases

of an ordered oriented matroid. It gives a bijective interpretation of the equality of two

expressions for the Tutte polynomial, as well as a new expression of this polynomial in

terms of beta invariants of minors. There are several refinements, such as an activity pre-

serving bijection between regions (acyclic reorientations) and no-broken-circuit subsets,

and others in terms of hyperplane arrangements, graphs, and permutations.
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1 Introduction

All constructions in this note can be expressed in terms of graphs or hyperplane
arrangements. However, the most general and natural language is provided
by oriented matroids [1].

Let M be an ordered matroid, i.e. on a linearly ordered set. By a classical
theorem of W.T. Tutte for graphs, extended to matroids by H.H. Crapo, the
Tutte polynomial of M is t(M ; x, y) =

∑

i,j bi,jx
iyj where bi,j is the number

of bases of M such that i basis elements are smallest in their fundamental
cocircuit and j non-basis elements are smallest in their fundamental circuit.
The parameters i and j for a given basis are its internal and external activities.

Let M be an ordered oriented matroid on E. An element of E is dual-active
resp. active in M if it is the smallest element of a positive cocircuit resp. circuit
of M . The dual-orientation resp. orientation activity of M is the number of
dual-active resp. active elements of M . M. Las Vergnas has shown in [15] that
t(M ; x, y) =

∑

i,j oi,j2
−i−jxiyj where oi,j is the number of subsets A of E such

that the oriented matroid −AM , obtained by reorientation of M on A, has
dual-orientation activity i and orientation activity j. This second formula con-
tains several results of the literature on counting acyclic orientations in graphs,
regions in arrangements of hyperplanes and pseudohyperplanes, acyclic reori-
entations of oriented matroids with t(M ; 2, 0) [10][12][13][14][16][17][18].

Comparing these two expressions for t(M ; x, y), we get the orientation-
basis activity formula oi,j = 2i+jbi,j for all i, j. The question arises of a bijec-
tive interpretation [15]. The problem is to define a natural 2i+j-to-1 activity
preserving correspondence between reorientations and bases.

The series of papers [6][7][8][9] gives a complete answer to the above ques-
tion. The correspondence we define, called the active correspondence, is in-
duced by an activity preserving mapping, called the active mapping, which
sends an ordered oriented matroid to one of its bases. It can be refined into
an active bijection between reorientations and subsets, and, in particular, be-
tween acyclic reorientations (regions) and subsets with no broken circuit.

There are several ways to construct the active correspondence. A first
construction, probably the most interesting one, presented in this note, re-
duces the problem to the uniactive internal case [6][8] – the bounded case,
from a geometrical point of view – by using duality, and decomposing activi-
ties [7]. A second construction is by means of inductive deletion/contraction
relations [9]. Several particular cases with specific properties have already
been published: uniform and rank-3 oriented matroids [3], graphs [4], and
supersolvable hyperplane arrangements [5].
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2 The bounded case

We first consider the case o1,0 = 2b1,0(= 2β) of the orientation-basis activity
formula. In a real hyperplane arrangement this formula is a result of T.
Zaslavsky [18], generalized to oriented matroids by M. Las Vergnas [13].

Let M be an ordered oriented matroid on E = {e1, e2, . . . , en}< with rank r.
The smallest nonloop element p of M is called the (pseudohyper)plane at infin-
ity. In this section, we assume that M is loopless and p = e1. If M is acyclic,
then it is bounded if every positive cocircuit contains p, i.e. it has orientation
activity 0 and dual-orientation activity 1. Bounded acyclic reorientations are
bounded regions in the topological representation of an oriented matroid. An
acyclic digraph is bounded if it is bipolar at the edge p, i.e. it has a unique
source and a unique sink, vertices of p.

Let B be a basis of M . For e 6∈ B, the fundamental circuit of e with respect
to B, denoted by C(B; e), is the unique circuit contained in B ∪ {e}, with e
signed +. For b ∈ B, the fundamental cocircuit of b with respect to B, denoted
by C∗(B; b), is the unique cocircuit contained in (E \ B) ∪ {b}, with b signed
+. Note that if b ∈ C(B; e) then {b, e} = C(B; e)∩C∗(B; b). A basis B of M
is internal if no element e ∈ E \B is minimal in C(B; e). An internal basis B
of M is uniactive if the minimal element of any fundamental cocircuit of b ∈ B
with respect to B is p. Hence a uniactive internal basis has external activity
0 and internal activity 1. The problem is thus to construct a natural bijection
between bounded regions (on positive side of p) and uniactive internal bases.

The (fundamental) tableau of a basis B is an n×n matrix with coefficients
in {+,−, 0}. The i-th column is C∗(B; ei) if ei ∈ B, the i-th row is −C(B; ei)
if ei 6∈ B, and coefficients are 0 everywhere else.

Definition. We say that a basis B of M is fully optimal if the first nonzero
sign of each row of its tableau is + and the first nonzero sign of each column,
except the first one, is −.

Equivalently, with B = {b1, b2, . . . , br}< and E \ B = {c1, c2, . . . , cn−r}<,
the basis B of M is fully optimal if and only if B is uniactive internal,
the covector C∗(B; b1) ◦ C∗(B; b2) ◦ · · · ◦ C∗(B; br) is positive, and the vec-
tor C(B; c1)◦C(B; c2)◦ · · ·◦C(B; cn−r) has p = e1 = b1 as its unique negative
element. Note that if M has a fully optimal basis then it is bounded acyclic.

Theorem 1. [6] A bounded acyclic ordered oriented matroid M has exactly
one fully optimal basis, denoted by α(M). The active mapping α induces a
bijection between bounded acyclic reorientations of M , on the positive side of
p, and uniactive internal bases of M .
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From uniactive internal bases to bounded acyclic reorientations, the bijec-
tion is easy to build [6] by choosing successively, with respect to the linear
ordering, the reorientation of the elements, i.e. the signs in the (unsigned)
tableau of the basis, so that the above definition is satisfied. The converse
construction can be done by means of refinements of linear programming [8].

Fully optimal bases are a strengthening of the optimal bases considered
in linear programming, and, more generally, in oriented matroid pseudolinear
programming [1]. By the Simplex Criterion, a basis is optimal in the program
(M ; p, f), with plane at infinity p and objective function f , if and only if its
tableau is such that the column p has only + signs and the row of f has only
− signs, except maybe on p. Hence, M being bounded acyclic and ordered,
and {p, f1, f2, . . . , fr−1}< being the minimal basis in the induced lexicographic
ordering, the fully optimal basis of M is an optimal basis of the pseudolinear
program (M ; p, f1). Note that α(M) contains p but not f1 since it is uniactive
internal. An optimal vertex for the program is the fundamental cocircuit of
p with respect to an optimal basis. Several optimal vertices may exist, and
several optimal bases may produce the same optimal vertex. Hence, optimal
bases of bounded regions are generally not unique.

The fully optimal basis of a given bounded region is, on the contrary, al-
ways unique. It can be computed by an algorithm consisting of a sequence of
(at most) r−1 linear programs of a generalized type. The precise construction
from [8] cannot be detailed in this note. Briefly, the fully optimal basis is equiv-
alent to an optimal flag of r flats, corresponding to successive compositions of
its fundamental cocircuits (instead of one flat in usual linear programming),
with maximality properties with respect to the r − 1 independent objective
functions {f1, f2, . . . , fr−1}< (instead of one objective function).

Fully optimal bases also have a duality property extending the duality of
linear programming [8], and a deletion/contraction construction extending the
usual LP construction by variable/constraint deletion [9].

An example of the active bijection is shown in the figure. Consider only
bounded regions. In each one is written its fully optimal uniactive internal
basis B = {p, e, f}<. The two covectors C∗(B; p) and C∗(B; p) ◦C∗(B; e) are
indicated as a bold vertex and an incident segment. The bold vertex is the
optimal vertex of a multiprogram (M ; p, f1, f2): it is the farthest from f1 in
the region, and the farthest from f2 in faces parallel to f1. The pseudoline e
is the smallest containing this vertex. And the segment, supported by f , is
obtained by a flag refinement of LP, not precisely described here, consisting,
roughly, in optimizing mobile segments around the fixed optimal vertex.
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3 The general case

Definition. The active mapping α is extended to general ordered oriented
matroids by the two following characteristic properties: 1) α(M ∗) = E\α(M),
and 2) α(M) = α(M/A) ∪ α(M(A)) where A is the union of all positive
circuits of M whose smallest element is the greatest active element of M .

In property 2), if A 6= ∅, then M(A) has a bounded acyclic dual, and M/A
has one active element less than M . Applying recursively the two properties,
in any way, to M with i dual-active elements and j active elements, we build a
well defined sequence of subsets ∅ = F ′

j ⊂ ... ⊂ F ′
0 = Fc = F ′′

0 ⊂ ... ⊂ F ′′
i = E,

where Fc is a cyclic flat of M , and the i + j minors M ′′
k = M(F ′′

k )/F ′′
k−1,

1 ≤ k ≤ i, and M ′
k = M(F ′

k−1)/F
′
k, 1 ≤ k ≤ j, are respectively bounded

acyclic or dually bounded acyclic. Thus, α(M) is well defined as the union
of the images of these minors under α, and α(M) is a basis of M . This
increasing sequence of subsets is called the active decomposing sequence of M .
The successive differences (i.e. the subsets A) form the active partition of M .
The set of 2i+j reorientations of M obtained by reorienting arbitrary parts in
the active partition is called the activity class of M . Activity classes form a
partition of the set of reorientations of M . All reorientations in an activity
class have the same image under α, and the same active decomposing sequence.

Theorem 2. [7] Let M be an ordered oriented matroid, α induces an activity
preserving bijection between activity classes of reorientations and bases of M .
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Some active decomposing sequences, preserved by α, can also be described
for bases [7]. Numerically, this decomposition extends the known formula
t(M ; x, y) =

∑

t(M/F ; x, 0) t(M(F ); 0, y), summed over cyclic flats F of M ,
implicit in [2] by an explicit bijection, and called the convolution formula in
[11]. We get the corollary below, where, by convention, β(M) = 1 if | E |= 1.

Corollary 3. [7] Let M be an ordered matroid on E.

t(M ; x, y) =
∑

(

∏

1≤k≤i β(M(F ′
k)/F

′
k−1)

) (

∏

1≤k≤j β(M(F ′′
k−1)/F

′′
k )

)

xi yj

where the sum is over all active decomposing sequences of bases of M .

The correspondence induced by α in Theorem 2 depends only on the reori-
entation class of M . The figure illustrates the correspondence between regions
and internal bases. The basis 134 (resp. 14D) is the image of two regions (on
represented side of 1), having active partition 123D+(E\123D), it is the union
of the unicative internal bases 13 (resp. 1D) of M(123D), and 4 of M/123D.

A refinement, depending this time on M , uses the classical partition of
2E into intervals [B \ Int(B), B ∪ Ext(B)] where B is a basis with internally
active elements Int(B) and externally active elements Ext(B). An interval has
cardinality 2i+j and corresponds to 2i+j reorientations. Hence, by reorienting
elements of Int(B)∪Ext(B), we get the active bijection between reorientations
and subsets. Precisely, for A ⊆ E and B = α(−AM), it is defined by ᾱM(A) =
B \ (A ∩ Int(B)) ∪ (A ∩ Ext(B)) . In particular, considering only internal
bases for which Ext(B) = ∅, the elements of intervals [B \ Int(B), B] are
exactly the no-broken-circuit subsets, and are in active bijection with acyclic
reorientations, i.e. with regions. The figure shows an example of this active
bijection, by considering fundamental grey region, and deleting elements in
brackets. Several active bijections derived from these general constructions
are listed in the following table.

structure active bijection ref.

oriented matroids activity classes of reorientations bases [6]-[9]

act. cl. of acyclic reorientations internal bases [6]-[9]

act. cl. of totally cyclic reor. external bases [6]-[9]

bounded acyclic reorientations uniactive internal bases [6]-[9]

reorientations subsets [6]-[9]

acyclic reorientations no-broken-circuit subsets [6]-[9]

hyperplane reorientations = signatures bases = simplices [6]-[9]

arrangements acyclic reorientations = regions [5]-[9]

graphs reorientations = orientations bases = spanning trees [4]-[9]

unique sink acyclic orientations internal spanning trees [4]

bipolar orientations uniactive internal spanning trees [4]

uniform o.m. bounded regions LP optimal vertices [3]

supersolvable An permutations increasing trees [4][5]

supersolvable Bn signed permutations signed increasing trees [5]
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