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Abstract

The fully optimal basis of a bounded acyclic oriented matroid on a linearly ordered
set has been defined and studied by the present authors in a series of papers, dealing
with graphs, hyperplane arrangements, and oriented matroids (in order of increas-
ing generality). This notion provides a bijection between bipolar orientations and
uniactive internal spanning trees in a graph resp. bounded regions and uniactive
internal bases in a hyperplane arrangement or an oriented matroid (in the sense of
Tutte activities). This bijection is the basic case of a general activity preserving bi-
jection between reorientations and subsets of an oriented matroid, called the active
bijection, providing bijective versions of various classical enumerative results.

Fully optimal bases can be considered as a strenghtening of optimal bases from
linear programming, with a simple combinatorial definition. Our first construction
used this purely combinatorial characterization, providing directly an algorithm to
compute in fact the reverse bijection. A new definition uses a direct construction
in terms of a linear programming. The fully optimal basis optimizes a sequence of
nested faces with respect to a sequence of objective functions (whereas an optimal
basis in the usual sense optimizes one vertex with respect to one objective function).
This note presents this construction in terms of graphs and linear algebra.
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1 Introduction

The active bijection in graphs, hyperplane arrangements and oriented ma-
troids on a linearly ordered set is the subject of several papers by the present
authors, e.g. [1]...[5]. It defines an activity preserving correspondence between
orientations and spanning trees of a graph resp. reorientations and bases of
an oriented matroid, with various related bijections and characterizations.

The active bijection can be seen as a far reaching generalization of the
well-known bijection between permutations and increasing trees (a particular
case obtained from complete graphs [1] or the Coxeter arrangement An [2]).

In general, it provides bijective interpretations of the equality of two ex-
pressions of the Tutte polynomial, one in terms of base activities [9], the other
in terms of orientation activities [7], which contains various enumerative re-
sults from the literature, such as counting regions or acyclic orientations, e.g.
[8][10][6]. See [1][4] for further references. See [3] for a short survey of its
general bijective and enumerative properties.

The basic case of the whole construction is that of a bipolar digraph, or
of a bounded region in a hyperplane arrangement or an oriented matroid. It
has been proved in [1][4] by combinatorial means that such a structure has a
unique so-called fully optimal basis, bijectively associated with the structure.
We present here a direct construction of the fully optimal basis, by means of
elaborations on linear programming, to be detailed in a forthcoming paper [5].

2 Preliminaries

This note is written in terms of usual linear algebra and graph theory. Still,
everything generalizes to oriented matroid theory.

2.1 Hyperplane Arrangements

Here, a (hyperplane) arrangement is a finite set H = h1, ..., hn of linear forms
in a real vector space V .

With any element x of V is associated a sequence of signs S = (s1, ..., sn),
called the covector of x, where si ∈ {+,−, 0} is the sign of hi(x). We may
abuse notations and denote also S for the set of hi ∈ H with hi(x) 6= 0, and
hi for the set of x ∈ V with hi(x) = 0. We call this set hi an hyperplane of H .
If there exists x ∈ V whose covector has only + signs, then we say that the
arrangement has a feasible region, which is the set of x whose covector has no
negative sign. A basis of H is a maximal subset of H of linearly independent
forms. All bases have same cardinal r.

Let B be a basis of H . For b ∈ B, we denote C∗(B; b) the covector of (an
element of the line) ∩b′∈B\bb

′ where b has a sign +. For e 6∈ B, we denote



C(B; e) the sequence of signs (s1, ..., sn) defined by b ∈ C(B; e) if and only if
e ∈ C∗(B; b), and e and b have same sign in one sequence of signs if and only
if they have opposite signs in the other.

We will choose a distinguished element p ∈ H as hyperplane at infinity.
The feasible region of H is bounded if all its elements x 6= 0 satisfy p(x) > 0.

2.2 Graphs

For geometrical purpose, directed graphs can be considered as hyperplane
arrangements. Let G be a connected directed graph with set of vertices
{v0, ..., vr}. With an edge (vi, vj) is associated the linear form xj − xi in
the real vector space V of dimension r + 1, defining the arrangement H(G).

It is folklore that: H(G) has a feasible region if and only if G is acyclic, a
basis of H(G) is associated with (the set of edges of) a spanning tree of G.

Let B be a spanning tree of G. For b ∈ B, C∗(B; b) is the cocycle joining
the two components of B \ {b}. And for e 6∈ B, C(B; e) is the unique cycle
contained in B ∪ {e}. Signs are given accordingly with the orientation of G.

Also, it is a reformulation of a result in [1] that H(G) has a bounded
feasible region w.r.t. p if and only if G is bipolar w.r.t. p, i.e. G has a unique
source and a unique sink which are the extremities of p.

2.3 Linear Programming

A linear program P is a finite set of affine inequalities of type h̄i(x) ≥ ti for x

in a vector space V̄ , together with a linear form f on V̄ . An optimum of P is
a vertex of V̄ satisfying all inequalities in P and maximizing f . Classically, if
the inequalities define a bounded affine region, then there is an optimum.

An arrangement H with hyperplane at infinity p and a chosen f ∈ H

defines a linear program P = (H ; p, f) by considering a hyperplane V̄ parallel
to p, the inequalities h(x) ≥ 0 for x ∈ V̄ and h ∈ H \ {p, f}, and the linear
form f as the objective function to be maximized. Of course H \ f has a
feasible bounded region if and only if P defines a bouded affine region.

As a slight formal generalization, we need to define a linear program
(H ; p, f) for a linear form f 6∈ H in the same space, to this aim we consider
in fact the arrangement obtained by adding f to H .

The Simplex Criterion provides a classical combinatorial characterization:
a line of H gives an optimum of (H ; p, f) if and only if it is ∩b∈B\pb for a basis
B of H \ f with p ∈ B, C∗(B; p) \ f is positive, and C(B; f) \ p is positive.

2.4 The Fully Optimal Basis

For H a linearly ordered arrangement, resp. G a graph on a linearly ordered set
of edges, with minimal element p, a fully optimal basis is a basis B such that:



• for all b ∈ B \ p, the signs of b and min(C∗(B; b)) are opposite in C∗(B; b)

• for all e 6∈ B, the signs of e and min(C(B; e)) are opposite in C(B; e).

The main theorem in [4] (see also [1] in the case of graphs) states that if
H defines a bounded feasible region, resp. if G is bipolar, w.r.t. the minimal
element p, then it has a unique fully optimal basis, denoted α(H), resp. α(G).

Moreover, the mapping α is a bijection between all reorientations of H that
define feasible bounded regions (reorienting is reversing some linear forms),
resp. all bipolar reorientations of G, w.r.t. p with fixed orientation, and all
bases, resp. all spanning trees, with internal activity 1 and external activity 0.

If B is the fully optimal basis of H , a direct consequence [4] of the Simplex
Criterion is that ∩b∈B\pb is an optimum of (H ; p, f) for the objective function
f being the second element in the minimal basis of H . Hence, computing
the fully optimal basis is in fact a more general problem than computing an
optimal basis in linear programming.

3 Computation of the fully optimal basis

Here, we present an algorithm to compute the fully optimal basis of a bounded
region in an ordered hyperplane arrangement. It relies on two elaborations
of linear programming, described in the general setting of oriented matroids
in [5]. The first one, multiobjective programming, consists in optimizing with
respect to a sequence objective functions. The second one, flag programming,
consists in optimizing successive nested faces of successive dimensions.

Let H be a linearly ordered arrangement with a bounded feasible region.

(0) Compute the lexicographically minimal basis {p, f1, . . . , fr−1}< of H .

(1) Compute the vertex unique optimum of the multiobjective program over
H w.r.t. the hyperplane at infinity p1 = p and sequence of objective functions
{f1, f2, . . . , fr−1}<. Into details, we first compute the set of optima F1 of the
linear program (H ; p1, f1), they belong to a hyperplane parallel to f1. Then
we compute the set of optima F2 of the linear program (H ; p1, f2) restricted
to F1. And so on, until we get a unique vertex v1.

(i ≥ 2) We define a multiobjective program at level i as follows. The
hyperplanes of the arrangement Hi are the intersections of pi−1 with the hy-
perplanes of Hi−1 containing vi−1. The feasible region and the linear forms of
Hi are induced by those of Hi−1. Note that faces in Hi correspond to faces in
Hi−1 containing vi−1, hence the flag programming elaboration. Let pi be the
intersection of pi−1 with the smallest hyperplane at level i−1 containing vi−1.
Then the vertex vi at level i is the unique optimum of the multiobjective pro-
gram over Hi w.r.t. the hyperplane at infinity pi and the sequence of objective
functions intersections of pi−1 with the objective functions at level i − 1.



For i ≥ 2, let bi be the smallest hyperplane of H containing v1, v2, . . . , vi−1

(by construction such a hyperplane exists, note that bi in H induces pi in Hi).
Then the fully optimal basis of H is α(H) = {b1 = p, b2, . . . , br}.

Remarks.

• Levels i ≥ 2 have important differences with level 1: the objective functions
do not necessarily belong to the hyperplane arrangement (and some are useless
because of dependencies), and the feasible region is not necessarily bounded.

• Since linear programming can be solved in polynomial time with numerical
methods, the fully optimal basis can be computed in polynomial time.

• Some specific properties are available for graphs, for instance C∗(B; p) (cor-
responding in general to v1) is the lexicographically smallest directed cocycle.

Example. Arrows indicate increas-
ing directions. Consider the gray
region. The vertices 3∩4 and 3∩
5∩6 are optima w.r.t. f1 = 2, and
v1 = 3 ∩ 5 ∩ 6 is optimum among
the two w.r.t. f2 = 4, implying
b2 = 3. Note that this vertex is
also optimum for region 135. Tak-
ing intersections with p1 = 1, we
have that v2 = 1 ∩ 6 is optimum
w.r.t. f2 = 4, implying b3 = 6.
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