From BLAS routines to finite field exact linear algebra solutions

Pascal Giorgi

Laboratoire de l'Informatique du Parallélisme (Arenaire team) ENS Lyon - CNRS - INRIA - UCBL France

Main goals

Solve Linear Algebra problems exactly using BLAS routines

Implementation in LinBox library

- Focus on finite fields
- Use matrix multiplication and BLAS routines as kernel
- Fast exact linear algebra routines (triangular solver, LSP factorization)

Finite field computations via BLAS routines

Main idea [Dumas-Gautier-Pernet 02]

Convert data from finite field to double Direct call to BLAS Convert back the result

- Only one reduction
- Certify data hold over **53** bits
- Use division-free BLAS routines only

Illustration with matrix multiplication

• $(\mathbf{m} \text{ by } \mathbf{k} \text{ matrix}) \times (\mathbf{k} \text{ by } \mathbf{n} \text{ matrix}) \text{ over } \mathbf{GF}(\mathbf{p}).$

certificate: $\mathbf{k}(\mathbf{p-1})^2 < 2^{53}$

• Performances with $\mathbf{m} = \mathbf{n} = \mathbf{k}$ and $\mathbf{p} = \mathbf{19}$:

• Even better with Strassen-Winograd algorithm [Dumas-Gautier-Pernet 02]

Our extension to a triangular solver with matrix r.h.s.

Problem:

• Certificate is $\mathbf{p^k} < \mathbf{2^{53}}$ instead of $\mathbf{kp^2} < \mathbf{2^{53}}$ for matrix multiplication Direct call to BLAS only is too restrictive (only small matrices)

Solution:

- Use a block recursive algorithm
- Decrease matrix size until certification
- Use BLAS-based matrix multiplication routine to reconstruct the solution

Block recursive algorithm

- Solve $\mathbf{AX} = \mathbf{B}$ over $\mathbf{GF}(\mathbf{p})$
- While no certification

$$\begin{array}{c|c} A_1 & A_2 \\ \hline & A_3 \end{array} \times \begin{array}{c|c} X_1 & & \\ \hline & X_2 & & \\ \hline & & B_2 & & \\ \hline \end{array}$$

$$\begin{cases} \text{ solve } \mathbf{A_3X_2} = \mathbf{B_2} & \text{ recursive call} \\ \mathbf{B_1} \leftarrow \mathbf{B_1} - \mathbf{A_2X_2} & \text{ BLAS-based MM} \\ \text{ solve } \mathbf{A_1X_1} = \mathbf{B_1} & \text{ recursive call} \end{cases}$$

• Now, how to solve small (certified) linear systems?

Solving a certified triangular linear system

• Certified as soon as $(p-1)p^{m-1} < 2^{53}$ (m = row dimension of small system AX = B)

• Let $\mathbf{A} = \mathbf{U}\mathbf{D}$ over $\mathbf{GF}(\mathbf{p})$ with \mathbf{D} a diagonal matrix and \mathbf{U} a unit upper triangular matrix

Solve $\mathbf{UY} = \mathbf{B}$ using the dtrsm BLAS routine

• Return $\mathbf{X} = \mathbf{D}^{-1}\mathbf{Y}$ over $\mathbf{GF}(\mathbf{p})$

Performances over $\mathbf{GF}(19)$ on Intel Itanium

In summary, we have just seen

• BLAS-based matrix multiplication

• BLAS-based triangular solver with matrix r.h.s.

Now, let us see

• LSP factorization

What is LSP factorization?

- LSP matrix factorization [Bini-Pan 94]
 - ${f L}$ lower triangular matrix with ${f 1}$ on the main diagonal
 - ${f S}$ reduces to an u.t. matrix with nonzero diagonal entries when zero rows deleted
 - **P** permutation matrix
- Exemple over GF(7):

$$\begin{bmatrix} 1 & 3 & 5 & 2 & 4 & 6 \\ 3 & 2 & 1 & 6 & 5 & 4 \\ 3 & 3 & 6 & 0 & 1 & 2 \\ 5 & 3 & 3 & 6 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 & 1 \\ 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \times \begin{bmatrix} 3 & 1 & 5 & 6 & 2 & 4 \\ 2 & 1 & 3 & 5 & 4 \\ 1 & 1 & 5 & 3 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

LSP factorization via matrix multiplication

- Recursive algorithm [Ibarra-Moran-Hui 82]:
- Partition $\mathbf{A} = \begin{bmatrix} \mathbf{A_1} \\ \mathbf{A_2} \end{bmatrix}$ and factor $\mathbf{A_1} = \mathbf{L_1}\mathbf{S_1}\mathbf{P_1}$
- Partition $S_1 = [S_1' B]$ and $A_2P_1^{-1} = [C D]$
- Solve $GS'_1 = C$ and factor $D GB = L_2S_2P_2$
- Reconstruct with formula:

Our implementation

- Solve $GS'_1 = C$ by using BLAS-based triangular solver
- ullet Compute ullet ullet D ullet Bby using BLAS-based matrix multiplication
- \bullet Performances over $\mathbf{GF}(\mathbf{19})$ on Intel Itanium:

In summary, we have just seen

- BLAS-based matrix multiplication
- BLAS-based triangular solver with matrix r.h.s.
- BLAS-based LSP factorization

Now, let us see

• Availability in LinBox and application to minimal matrix polynomial

Integration in LinBox library

- FFLAS package [Dumas-Gautier-Pernet 02]
- Fast BLAS-based triangular solver (BLAS-like interface)

- Fast BLAS-based LSP factorization
- \bullet Genericity over the domain $\mathbf{GF}(\mathbf{p})$ and dense matrices (with BLAS-like storage)

Features of our LinBox implementation routines

- Easier to implement higher level algorithms based on matrix multiplication
- Speeding up matrix multiplication \Longrightarrow faster routines

• Example: computation of minimal matrix polynomial

Minimal matrix polynomial $\Pi_{\mathbf{A}}(\mathbf{x})$ of a square matrix \mathbf{A}

• Important algorithm in LinBox (Krylov/Lanczos approach)

Two main steps of the algorithm:

- Compute the first terms of UV, UAV, UA²V, ...
- Deduce $\Pi_A(\mathbf{x})$ by computing a matrix approximant of $\begin{bmatrix} \sum_i (UA^iV)\mathbf{x}^i & 0 \\ 0 & I \end{bmatrix}$ [Turner's PhD Thesis 02]

Matrix approximant algorithm

- Beckermann-Labahn's algorithm via matrix multiplication [Giorgi-Jeannerod-Villard 03]
- Iterative algorithm which computes approximant $\mathbf{M}(\mathbf{x})$ s.t.

$$\mathbf{M}(\mathbf{x})\mathbf{F}(\mathbf{x}) = \mathbf{O}(\mathbf{x}^{\sigma})$$
 in σ steps

- Main operations involved at step k
 - k calls to matrix multiplication
 - 1 call to **LSP** factorization
 - k calls to triangular system solving
- We have used our LinBox BLAS-based routines to implement this algorithm

First performances over $\mathbf{GF}(\mathbf{19})$ on Intel Itanium

Conclusion and future work

- Significant improvement for some linear algebra problems over $\mathbf{GF}(\mathbf{p})$
- Implementation in LinBox library [www.linalg.org]
- Extension to sparse matrices
- Extension to other algorithms using matrix multiplication