
CHAPTER 2
Finite Field Arithmetic

The efficient implementation of finite field arithmetic is an important prerequisite in
elliptic curve systems because curve operations are performed using arithmetic op-
erations in the underlying field. §2.1 provides an informal introduction to the theory
of finite fields. Three kinds of fields that are especially amenable for the efficient
implementation of elliptic curve systems are prime fields, binary fields, and optimal
extension fields. Efficient algorithms for software implementation of addition, subtrac-
tion, multiplication and inversion in these fields are discussed at length in §2.2, §2.3,
and §2.4, respectively. Hardware implementation is considered in §5.2 and chapter
notes and references are provided in §2.5.

2.1 Introduction to finite fields

Fields are abstractions of familiar number systems (such as the rational numbers Q, the
real numbers R, and the complex numbers C) and their essential properties. They con-
sist of a set F together with two operations, addition (denoted by +) and multiplication
(denoted by ·), that satisfy the usual arithmetic properties:

(i) (F,+) is an abelian group with (additive) identity denoted by 0.

(ii) (F \ {0}, ·) is an abelian group with (multiplicative) identity denoted by 1.

(iii) The distributive law holds: (a +b) · c = a · c +b · c for all a,b,c ∈ F.

If the set F is finite, then the field is said to be finite.
This section presents basic facts about finite fields. Other properties will be presented

throughout the book as needed.
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Field operations

A field F is equipped with two operations, addition and multiplication. Subtraction of
field elements is defined in terms of addition: for a,b ∈ F, a − b = a + (−b) where
−b is the unique element in F such that b + (−b) = 0 (−b is called the negative of b).
Similarly, division of field elements is defined in terms of multiplication: for a,b ∈ F
with b 	= 0, a/b = a · b−1 where b−1 is the unique element in F such that b · b−1 = 1.
(b−1 is called the inverse of b.)

Existence and uniqueness

The order of a finite field is the number of elements in the field. There exists a finite
field F of order q if and only if q is a prime power, i.e., q = pm where p is a prime
number called the characteristic of F, and m is a positive integer. If m = 1, then F is
called a prime field. If m ≥ 2, then F is called an extension field. For any prime power
q, there is essentially only one finite field of order q; informally, this means that any
two finite fields of order q are structurally the same except that the labeling used to
represent the field elements may be different (cf. Example 2.3). We say that any two
finite fields of order q are isomorphic and denote such a field by Fq .

Prime fields

Let p be a prime number. The integers modulo p, consisting of the integers
{0,1,2, . . . , p − 1} with addition and multiplication performed modulo p, is a finite
field of order p. We shall denote this field by Fp and call p the modulus of Fp. For any
integer a, a mod p shall denote the unique integer remainder r , 0 ≤ r ≤ p−1, obtained
upon dividing a by p; this operation is called reduction modulo p.

Example 2.1 (prime field F29) The elements of F29 are {0,1,2, . . . ,28}. The following
are some examples of arithmetic operations in F29.

(i) Addition: 17+20 = 8 since 37 mod 29 = 8.

(ii) Subtraction: 17−20 = 26 since −3 mod 29 = 26.

(iii) Multiplication: 17 ·20 = 21 since 340 mod 29 = 21.

(iv) Inversion: 17−1 = 12 since 17 ·12 mod 29 = 1.

Binary fields

Finite fields of order 2m are called binary fields or characteristic-two finite fields. One
way to construct F2m is to use a polynomial basis representation. Here, the elements
of F2m are the binary polynomials (polynomials whose coefficients are in the field
F2 = {0,1}) of degree at most m −1:

F2m = {am−1zm−1 +am−2zm−2 +·· ·+a2z2 +a1z +a0 : ai ∈ {0,1}}.
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An irreducible binary polynomial f (z) of degree m is chosen (such a polynomial exists
for any m and can be efficiently found; see §A.1). Irreducibility of f (z) means that
f (z) cannot be factored as a product of binary polynomials each of degree less than
m. Addition of field elements is the usual addition of polynomials, with coefficient
arithmetic performed modulo 2. Multiplication of field elements is performed modulo
the reduction polynomial f (z). For any binary polynomial a(z), a(z) mod f (z) shall
denote the unique remainder polynomial r(z) of degree less than m obtained upon long
division of a(z) by f (z); this operation is called reduction modulo f (z).

Example 2.2 (binary field F24) The elements of F24 are the 16 binary polynomials of
degree at most 3:

0 z2 z3 z3 + z2

1 z2 +1 z3 +1 z3 + z2 +1
z z2 + z z3 + z z3 + z2 + z
z +1 z2 + z +1 z3 + z +1 z3 + z2 + z +1.

The following are some examples of arithmetic operations in F24 with reduction
polynomial f (z) = z4 + z +1.

(i) Addition: (z3 + z2 +1)+ (z2 + z +1) = z3 + z.

(ii) Subtraction: (z3 + z2 +1)− (z2 + z +1) = z3 + z. (Note that since −1 = 1 in F2,
we have −a = a for all a ∈ F2m .)

(iii) Multiplication: (z3 + z2 +1) · (z2 + z +1) = z2 +1 since

(z3 + z2 +1) · (z2 + z +1) = z5 + z +1

and
(z5 + z +1) mod (z4 + z +1) = z2 +1.

(iv) Inversion: (z3 + z2 +1)−1 = z2 since (z3 + z2 +1) · z2 mod (z4 + z +1) = 1.

Example 2.3 (isomorphic fields) There are three irreducible binary polynomials of de-
gree 4, namely f1(z) = z4 + z +1, f2(z) = z4 + z3 +1 and f3(z) = z4 + z3 + z2 + z +1.
Each of these reduction polynomials can be used to construct the field F24 ; let’s call
the resulting fields K1, K2 and K3. The field elements of K1, K2 and K3 are the same
16 binary polynomials of degree at most 3. Superficially, these fields appear to be dif-
ferent, e.g., z3 · z = z + 1 in K1, z3 · z = z3 + 1 in K2, and z3 · z = z3 + z2 + z + 1 in
K3. However, all fields of a given order are isomorphic—that is, the differences are
only in the labeling of the elements. An isomorphism between K1 and K2 may be con-
structed by finding c ∈ K2 such that f1(c) ≡ 0 (mod f2) and then extending z �→ c
to an isomorphism ϕ : K1 → K2; the choices for c are z2 + z, z2 + z + 1, z3 + z2, and
z3 + z2 +1.
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Extension fields

The polynomial basis representation for binary fields can be generalized to all exten-
sion fields as follows. Let p be a prime and m ≥ 2. Let Fp[z] denote the set of all
polynomials in the variable z with coefficients from Fp. Let f (z), the reduction poly-
nomial, be an irreducible polynomial of degree m in Fp[z]—such a polynomial exists
for any p and m and can be efficiently found (see §A.1). Irreducibility of f (z) means
that f (z) cannot be factored as a product of polynomials in Fp[z] each of degree less
than m. The elements of Fpm are the polynomials in Fp[z] of degree at most m −1:

Fpm = {am−1zm−1 +am−2zm−2 +·· ·+a2z2 +a1z +a0 : ai ∈ Fp}.
Addition of field elements is the usual addition of polynomials, with coefficient arith-
metic performed in Fp. Multiplication of field elements is performed modulo the
polynomial f (z).

Example 2.4 (an extension field) Let p = 251 and m = 5. The polynomial f (z) = z5 +
z4 +12z3 +9z2 +7 is irreducible in F251[z] and thus can serve as reduction polynomial
for the construction of F2515 , the finite field of order 2515. The elements of F2515 are
the polynomials in F251[z] of degree at most 4.

The following are some examples of arithmetic operations in F2515 . Let a = 123z4 +
76z2 +7z +4 and b = 196z4 +12z3 +225z2 +76.

(i) Addition: a +b = 68z4 +12z3 +50z2 +7z +80.

(ii) Subtraction: a −b = 178z4 +239z3 +102z2 +7z +179.

(iii) Multiplication: a ·b = 117z4 +151z3 +117z2 +182z +217.

(iv) Inversion: a−1 = 109z4 +111z3 +250z2 +98z +85.

Subfields of a finite field

A subset k of a field K is a subfield of K if k is itself a field with respect to the
operations of K . In this instance, K is said to be an extension field of k. The subfields
of a finite field can be easily characterized. A finite field Fpm has precisely one subfield
of order pl for each positive divisor l of m; the elements of this subfield are the elements
a ∈ Fpm satisfying a pl = a. Conversely, every subfield of Fpm has order pl for some
positive divisor l of m.

Bases of a finite field

The finite field Fqn can be viewed as a vector space over its subfield Fq . Here, vectors
are elements of Fqn , scalars are elements of Fq , vector addition is the addition operation
in Fqn , and scalar multiplication is the multiplication in Fqn of Fq -elements with Fqn -
elements. The vector space has dimension n and has many bases.
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If B = {b1,b2, . . . ,bn} is a basis, then a ∈ Fqn can be uniquely represented by an n-
tuple (a1,a2, . . . ,an) of Fq -elements where a = a1b1 +a2b2 +·· ·+anbn . For example,
in the polynomial basis representation of the field Fpm described above, Fpm is an m-
dimensional vector space over Fp and {zm−1, zm−2, . . . , z2, z,1} is a basis for Fpm over
Fp.

Multiplicative group of a finite field

The nonzero elements of a finite field Fq , denoted F∗
q , form a cyclic group under

multiplication. Hence there exist elements b ∈ F∗
q called generators such that

F∗
q = {bi : 0 ≤ i ≤ q −2}.

The order of a ∈ F∗
q is the smallest positive integer t such that at = 1. Since F∗

q is a
cyclic group, it follows that t is a divisor of q −1.

2.2 Prime field arithmetic

This section presents algorithms for performing arithmetic in the prime field Fp. Algo-
rithms for arbitrary primes p are presented in §2.2.1–§2.2.5. The reduction step can be
accelerated considerably when the modulus p has a special form. Efficient reduction
algorithms for the NIST primes such as p = 2192 −264 −1 are considered in §2.2.6.

The algorithms presented here are well suited for software implementation. We as-
sume that the implementation platform has a W -bit architecture where W is a multiple
of 8. Workstations are commonly 64- or 32-bit architectures. Low-power or inexpen-
sive components may have smaller W , for example, some embedded systems are 16-bit
and smartcards may have W = 8. The bits of a W -bit word U are numbered from 0 to
W −1, with the rightmost bit of U designated as bit 0.

The elements of Fp are the integers from 0 to p − 1. Let m = �log2 p� be the
bitlength of p, and t = �m/W� be its wordlength. Figure 2.1 illustrates the case
where the binary representation of a field element a is stored in an array A = (A[t −
1], . . . , A[2], A[1], A[0]) of t W -bit words, where the rightmost bit of A[0] is the least
significant bit.

A[t −1] · · · A[2] A[1] A[0]
Figure 2.1. Representation of a ∈ Fp as an array A of W -bit words. As an integer,
a = 2(t−1)W A[t −1]+ · · ·+22W A[2]+2W A[1]+ A[0].

Hardware characteristics may favour approaches different from those of the al-
gorithms and field element representation presented here. §5.1.1 examines possible
bottlenecks in multiplication due to constraints on hardware integer multipliers and
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the cost of propagating carries. §5.1.2 briefly discusses the use of floating-point hard-
ware commonly found on workstations, which can give substantial improvement in
multiplication times (and uses a different field element representation). Similarly,
single-instruction multiple-data (SIMD) registers on some processors can be employed;
see §5.1.3. Selected timings for field operations appear in §5.1.5.

2.2.1 Addition and subtraction

Algorithms for field addition and subtraction are given in terms of corresponding al-
gorithms for multi-word integers. The following notation and terminology is used. An
assignment of the form “(ε, z)←w” for an integer w is understood to mean

z ←w mod 2W , and

ε←0 if w ∈ [0,2W ), otherwise ε←1.

If w = x + y +ε′ for x, y ∈ [0,2W ) and ε′ ∈ {0,1}, then w = ε2W + z and ε is called the
carry bit from single-word addition (with ε = 1 if and only if z < x +ε′). Algorithm 2.5
performs addition of multi-word integers.

Algorithm 2.5 Multiprecision addition

INPUT: Integers a,b ∈ [0,2Wt ).
OUTPUT: (ε,c) where c = a +b mod 2Wt and ε is the carry bit.

1. (ε,C[0])← A[0]+ B[0].
2. For i from 1 to t −1 do

2.1 (ε,C[i ])← A[i ]+ B[i ]+ ε.
3. Return(ε,c).

On processors that handle the carry as part of the instruction set, there need not
be any explicit check for carry. Multi-word subtraction (Algorithm 2.6) is similar to
addition, with the carry bit often called a “borrow” in this context.

Algorithm 2.6 Multiprecision subtraction

INPUT: Integers a,b ∈ [0,2Wt ).
OUTPUT: (ε,c) where c = a −b mod 2Wt and ε is the borrow.

1. (ε,C[0])← A[0]− B[0].
2. For i from 1 to t −1 do

2.1 (ε,C[i ])← A[i ]− B[i ]− ε.
3. Return(ε,c).
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Modular addition ((x + y) mod p) and subtraction ((x − y) mod p) are adapted di-
rectly from the corresponding algorithms above, with an additional step for reduction
modulo p.

Algorithm 2.7 Addition in Fp

INPUT: Modulus p, and integers a,b ∈ [0, p −1].
OUTPUT: c = (a +b) mod p.

1. Use Algorithm 2.5 to obtain (ε,c) where c = a + b mod 2Wt and ε is the carry
bit.

2. If ε = 1, then subtract p from c = (C[t −1], . . . ,C[2],C[1],C[0]);
Else if c ≥ p then c←c − p.

3. Return(c).

Algorithm 2.8 Subtraction in Fp

INPUT: Modulus p, and integers a,b ∈ [0, p −1].
OUTPUT: c = (a −b) mod p.

1. Use Algorithm 2.6 to obtain (ε,c) where c = a −b mod 2Wt and ε is the borrow.
2. If ε = 1, then add p to c = (C[t −1], . . . ,C[2],C[1],C[0]).
3. Return(c).

2.2.2 Integer multiplication

Field multiplication of a,b ∈ Fp can be accomplished by first multiplying a and b as
integers, and then reducing the result modulo p. Algorithms 2.9 and 2.10 are elemen-
tary integer multiplication routines which illustrate basic operand scanning and product
scanning methods, respectively. In both algorithms, (U V ) denotes a (2W )-bit quantity
obtained by concatenation of W -bit words U and V .

Algorithm 2.9 Integer multiplication (operand scanning form)

INPUT: Integers a,b ∈ [0, p −1].
OUTPUT: c = a ·b.

1. Set C[i ]←0 for 0 ≤ i ≤ t −1.
2. For i from 0 to t −1 do

2.1 U ←0.
2.2 For j from 0 to t −1 do:

(U V )←C[i + j ]+ A[i ] · B[ j ]+U .
C[i + j ]←V .

2.3 C[i + t]←U .
3. Return(c).
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The calculation C[i + j ] + A[i ] · B[ j ]+ U at step 2.2 is called the inner product
operation. Since the operands are W -bit values, the inner product is bounded by 2(2W −
1)+ (2W −1)2 = 22W −1 and can be represented by (U V ).

Algorithm 2.10 is arranged so that the product c = ab is calculated right-to-left. As in
the preceding algorithm, a (2W )-bit product of W -bit operands is required. The values
R0, R1, R2, U , and V are W -bit words.

Algorithm 2.10 Integer multiplication (product scanning form)

INPUT: Integers a,b ∈ [0, p −1].
OUTPUT: c = a ·b.

1. R0 ←0, R1 ←0, R2 ←0.
2. For k from 0 to 2t −2 do

2.1 For each element of {(i, j ) | i + j = k, 0 ≤ i, j ≤ t −1} do
(U V )← A[i ] · B[ j ].
(ε, R0)← R0 + V .
(ε, R1)← R1 +U + ε.
R2 ← R2 + ε.

2.2 C[k]← R0, R0 ← R1, R1 ← R2, R2 ←0.
3. C[2t −1]← R0.
4. Return(c).

Note 2.11 (implementing Algorithms 2.9 and 2.10) Algorithms 2.9 and 2.10 are writ-
ten in a form motivated by the case where a W -bit architecture has a multiplication
operation giving a 2W -bit result (e.g., the Intel Pentium or Sun SPARC). A common
exception is illustrated by the 64-bit Sun UltraSPARC, where the multiplier produces
the lower 64 bits of the product of 64-bit inputs. One variation of these algorithms splits
a and b into (W/2)-bit half-words, but accumulates in W -bit registers. See also §5.1.3
for an example concerning a 32-bit architecture which has some 64-bit operations.

Karatsuba-Ofman multiplication

Algorithms 2.9 and 2.10 take O(n2) bit operations for multiplying two n-bit integers. A
divide-and-conquer algorithm due to Karatsuba and Ofman reduces the complexity to
O(nlog2 3). Suppose that n = 2l and x = x12l + x0 and y = y12l + y0 are 2l-bit integers.
Then

xy = (x12l + x0)(y12l + y0)

= x1 · y122l +[(x0 + x1) · (y0 + y1)− x1 y1 − x0 · y0]2l + x0 y0

and xy can be computed by performing three multiplications of l-bit integers (as op-
posed to one multiplication with 2l-bit integers) along with two additions and two
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subtractions.1 For large values of l, the cost of the additions and subtractions is in-
significant relative to the cost of the multiplications. The procedure may be applied
recursively to the intermediate values, terminating at some threshold (possibly the word
size of the machine) where a classical or other method is employed.

For integers of modest size, the overhead in Karatsuba-Ofman may be significant.
Implementations may deviate from the traditional description in order to reduce the
shifting required (for multiplications by 2l and 22l ) and make more efficient use of
word-oriented operations. For example, it may be more effective to split on word
boundaries, and the split at a given stage may be into more than two fragments.

Example 2.12 (Karatsuba-Ofman methods) Consider multiplication of 224-bit values
x and y, on a machine with word size W = 32. Two possible depth-2 approaches are in-
dicated in Figure 2.2. The split in Figure 2.2(a) is perhaps mathematically more elegant
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(a) n/2 split
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(b) split on word boundary

Figure 2.2. Depth-2 splits for 224-bit integers. The product xy using (a) has three 112×112
multiplications, each performed using three 56×56 multiplications. Using (b), xy has a 96×96
(split as a 32×32 and two 64×64) and two 128×128 multiplications (each generating three
64×64 multiplies).

and may have more reusable code compared with that in Figure 2.2(b). However, more
shifting will be required (since the splits are not on word boundaries). If multiplication
of 56-bit quantities (perhaps by another application of Karatsuba-Ofman) has approxi-
mately the same cost as multiplication of 64-bit values, then the split has under-utilized
the hardware capabilities since the cost is nine 64-bit multiplications versus one 32-bit
and eight 64-bit multiplications in (b). On the other hand, the split on word boundaries
in Figure 2.2(b) has more complicated cross term calculations, since there may be carry
to an additional word. For example, the cross terms at depth 2 are of the form

(x0 + x1)(y0 + y1)− x1 y1 − x0 y0

where x0 + x1 and y0 + y1 are 57-bit in (a) and 65-bit in (b). Split (b) costs somewhat
more here, although (x0 + x1)(y0 + y1) can be managed as a 64×64 mulitply followed
by two possible additions corresponding to the high bits.

1The cross term can be written (x0 − x1)(y1 − y0)+ x0 y0 + x1y1 which may be useful on some platforms
or if it is known a priori that x0 ≥ x1 and y0 ≤ y1.
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(b) 3-way split at depth 1
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(c) 3-way split at depth 2

Figure 2.3. Depth-2 splits for 192-bit integers. The product xy using (a) has three 96×96 mul-
tiplications. Each is performed with a 32×32 and two 64×64 (each requiring three 32×32)
multiplications, for a total of 21 multiplications of size 32×32. Using (b) or (c), only 18
multiplications of size 32×32 are required.

As a second illustration, consider Karatsuba-Ofman applied to 192-bit integers,
again with W = 32. Three possible depth-2 approaches are given in Figure 2.3. In
terms of 32×32 multiplications, the split in Figure 2.3(a) will require 21, while (b) and
(c) use 18. The basic idea is that multiplication of 3l-bit integers x = x222l + x12l + x0
and y = y222l + y12l + y0 can be done as

xy = (x222l + x12l + x0) · (y222l + y12l + y0)

= x2 y224l + (x2 y1 + x1 y2)2
3l + (x2 y0 + x0 y2 + x1 y1)2

2l

+ (x1 y0 + x0 y1)2
l + x0 y0

= x2 · y224l +[(x2 + x1) · (y2 + y1)− x2 y2 − x1 · y1]23l

+[(x2 + x0) · (y2 + y0)− x2 y2 − x0 · y0 + x1 y1]22l

+[(x1 + x0) · (y1 + y0)− x1 y1 − x0 y0]2l + x0 y0

for a total of six multiplications of l-bit integers.

The performance of field multiplication is fundamental to mechanisms based on
elliptic curves. Constraints on hardware integer multipliers and the cost of carry propa-
gation can result in significant bottlenecks in direct implementations of Algorithms 2.9
and 2.10. As outlined in the introductory paragraphs of §2.2, Chapter 5 discusses
alternative strategies applicable in some environments.

2.2.3 Integer squaring

Field squaring of a ∈ Fp can be accomplished by first squaring a as an integer, and then
reducing the result modulo p. A straightforward modification of Algorithm 2.10 gives
the following algorithm for integer squaring, reducing the number of required single-
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precision multiplications by roughly half. In step 2.1, a (2W + 1)-bit result (ε,U V ) is
obtained from multiplication of the (2W )-bit quantity (U V ) by 2.

Algorithm 2.13 Integer squaring

INPUT: Integer a ∈ [0, p −1].
OUTPUT: c = a2.

1. R0 ←0, R1 ←0, R2 ←0.
2. For k from 0 to 2t −2 do

2.1 For each element of {(i, j ) | i + j = k, 0 ≤ i ≤ j ≤ t −1} do
(U V )← A[i ] · A[ j ].
If (i < j ) then do: (ε,U V )← (U V ) ·2, R2 ← R2 + ε.
(ε, R0)← R0 + V .
(ε, R1)← R1 +U + ε.
R2 ← R2 + ε.

2.2 C[k]← R0, R0 ← R1, R1 ← R2, R2 ←0.
3. C[2t −1]← R0.
4. Return(c).

The multiplication by 2 in step 2.1 may be implemented as two single-precision
shift-through-carry (if available) or as two single-precision additions with carry. The
step can be rewritten so that each output word C[k] requires at most one multiplication
by 2, at the cost of two additional accumulators and an associated accumulation step.

2.2.4 Reduction

For moduli p that are not of special form, the reduction z mod p can be an expen-
sive part of modular multiplication. Since the performance of elliptic curve schemes
depends heavily on the speed of field multiplication, there is considerable incentive to
select moduli, such as the NIST-recommended primes of §2.2.6, that permit fast reduc-
tion. In this section, we present only the reduction method of Barrett and an overview
of Montgomery multiplication.

The methods of Barrett and Montgomery are similar in that expensive divisions
in classical reduction methods are replaced by less-expensive operations. Barrett re-
duction can be regarded as a direct replacement for classical methods; however, an
expensive modulus-dependent calculation is required, and hence the method is ap-
plicable when many reductions are performed with a single modulus. Montgomery’s
method, on the other hand, requires transformations of the data. The technique can be
effective when the cost of the input and output conversions is offset by savings in many
intermediate multiplications, as occurs in modular exponentiation.

Note that some modular operations are typically required in a larger framework such
as the signature schemes of §4.4, and the moduli involved need not be of special form.
In these instances, Barrett reduction may be an appropriate method.



36 2. Finite Field Arithmetic

Barrett reduction

Barrett reduction (Algorithm 2.14) finds z mod p for given positive integers z and p.
In contrast to the algorithms presented in §2.2.6, Barrett reduction does not exploit any
special form of the modulus p. The quotient �z/p� is estimated using less-expensive
operations involving powers of a suitably-chosen base b (e.g., b = 2L for some L which
may depend on the modulus but not on z). A modulus-dependent quantity �b2k/p�
must be calculated, making the algorithm suitable for the case that many reductions are
performed with a single modulus.

Algorithm 2.14 Barrett reduction

INPUT: p, b ≥ 3, k = �logb p�+1, 0 ≤ z < b2k , and µ = �b2k/p�.
OUTPUT: z mod p.

1. q̂ ← ⌊�z/bk−1� ·µ/bk+1
⌋

.
2. r ←(z mod bk+1)− (̂q · p mod bk+1).
3. If r < 0 then r ←r +bk+1.
4. While r ≥ p do: r ←r − p.
5. Return(r ).

Note 2.15 (correctness of Algorithm 2.14) Let q = �z/p�; then r = z mod p = z −qp.
Step 1 of the algorithm calculates an estimate q̂ to q since

z

p
= z

bk−1
· b2k

p
· 1

bk+1
.

Note that

0 ≤ q̂ =
⌊⌊ z

bk−1

⌋ ·µ
bk+1

⌋
≤
⌊

z

p

⌋
= q.

The following argument shows that q − 2 ≤ q̂ ≤ q; that is, q̂ is a good estimate for q.
Define
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z

bk−1

⌋
, β = b2k

p
−
⌊

b2k

p

⌋
.

Then 0 ≤ α,β < 1 and

q =
⌊(⌊ z

bk−1

⌋+α
)(⌊ b2k

p

⌋+β
)

bk+1

⌋

≤
⌊⌊ z

bk−1

⌋ ·µ
bk+1

+
⌊ z

bk−1

⌋+⌊ b2k

p

⌋+1

bk+1

⌋
.
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Since z < b2k and p ≥ bk−1, it follows that⌊ z

bk−1

⌋
+
⌊

b2k

p

⌋
+1 ≤ (bk+1 −1)+bk+1 +1 = 2bk+1

and

q ≤
⌊⌊ z

bk−1

⌋ ·µ
bk+1

+2

⌋
= q̂ +2.

The value r calculated in step 2 necessarily satisfies r ≡ z − q̂ p (mod bk+1) with
|r | < bk+1. Hence 0 ≤ r < bk+1 and r = z − q̂ p mod bk+1 after step 3. Now, since
0 ≤ z −qp < p, we have

0 ≤ z − q̂ p ≤ z − (q −2)p < 3p.

Since b ≥ 3 and p < bk , we have 3p < bk+1. Thus 0 ≤ z− q̂ p < bk+1, and so r = z− q̂ p
after step 3. Hence, at most two subtractions at step 4 are required to obtain 0 ≤ r < p,
and then r = z mod p.

Note 2.16 (computational considerations for Algorithm 2.14)

(i) A natural choice for the base is b = 2L where L is near the word size of the
processor.

(ii) Other than the calculation of µ (which is done once per modulus), the divisions
required are simple shifts of the base-b representation.

(iii) Let z′ = �z/bk−1�. Note that z′ and µ have at most k + 1 base-b digits. The
calculation of q̂ in step 1 discards the k +1 least-significant digits of the product
z′µ. Given the base-b representations z′ =∑ z′

i b
i and µ =∑µ j b j , write

z′µ =
2k∑

l=0

( ∑
i+ j=l

z′
iµ j︸ ︷︷ ︸

wl

)
bl

where wl may exceed b −1. If b ≥ k −1, then
∑k−2

l=0 wlbl < bk+1 and hence

0 ≤ z′µ
bk+1

−
2k∑

l=k−1

wlbl

bk+1
=

k−2∑
l=0

wlbl

bk+1
< 1.

It follows that
⌊∑2k

l=k−1 wlbl
/

bk+1
⌋

underestimates q̂ by at most 1 if b ≥ k −
1. At most

(k+2
2

)+ k = (k2 + 5k + 2)/2 single-precision multiplications (i.e.,
multiplications of values less than b) are required to find this estimate for q̂ .

(iv) Only the k +1 least significant digits of q̂ · p are required at step 2. Since p < bk ,
the k +1 digits can be obtained with

(k+1
2

)+ k single-precision multiplications.
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Montgomery multiplication

As with Barrett reduction, the strategy in Montgomery’s method is to replace division
in classical reduction algorithms with less-expensive operations. The method is not ef-
ficient for a single modular multiplication, but can be used effectively in computations
such as modular exponentiation where many multiplications are performed for given
input. For this section, we give only an overview (for more details, see §2.5).

Let R > p with gcd(R, p) = 1. Montgomery reduction produces z R−1 mod p for an
input z < pR. We consider the case that p is odd, so that R = 2Wt may be selected and
division by R is relatively inexpensive. If p′ = −p−1 mod R, then c = z R−1 mod p
may be obtained via

c← (z + (zp′ mod R)p)/R,

if c ≥ p then c←c − p,

with t (t +1) single-precision multiplications (and no divisions).
Given x ∈ [0, p), let x̃ = x R mod p. Note that (̃x ỹ)R−1 mod p = (xy)R mod p; that

is, Montgomery reduction can be used in a multiplication method on representatives x̃ .
We define the Montgomery product of x̃ and ỹ to be

Mont(̃x, ỹ) = x̃ ỹR−1 mod p = xyR mod p. (2.1)

A single modular multiplication cannot afford the expensive transformations x �→ x̃ =
x R mod p and x̃ �→ x̃ R−1 mod p = x ; however, the transformations are performed
only once when used as part of a larger calculation such as modular exponentiation, as
illustrated in Algorithm 2.17.

Algorithm 2.17 Montgomery exponentiation (basic)

INPUT: Odd modulus p, R = 2Wt , p′ = −p−1 mod R, x ∈ [0, p), e = (el , . . . ,e0)2.
OUTPUT: xe mod p.

1. x̃ ←x R mod p, A← R mod p.
2. For i from l downto 0 do

2.1 A← Mont(A, A).
2.2 If ei = 1 then A← Mont(A, x̃).

3. Return(Mont(A,1)).

As a rough comparison, Montgomery reduction requires t (t + 1) single-precision
multiplications, while Barrett (with b = 2W ) uses t (t +4)+1, and hence Montgomery
methods are expected to be superior in calculations such as general modular expo-
nentiation. Both methods are expected to be much slower than the direct reduction
techniques of §2.2.6 for moduli of special form.
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Montgomery arithmetic can be used to accelerate modular inversion methods that
use repeated multiplication, where a−1 is obtained as a p−2 mod p (since a p−1 ≡ 1
(mod p) if gcd(a, p) = 1). Elliptic curve point multiplication (§3.3) can benefit from
Montgomery arithmetic, where the Montgomery inverse discussed in §2.2.5 may also
be of interest.

2.2.5 Inversion

Recall that the inverse of a nonzero element a ∈ Fp, denoted a−1 mod p or simply a−1

if the field is understood from context, is the unique element x ∈ Fp such that ax = 1
in Fp , i.e., ax ≡ 1 (mod p). Inverses can be efficiently computed by the extended
Euclidean algorithm for integers.

The extended Euclidean algorithm for integers

Let a and b be integers, not both 0. The greatest common divisor (gcd) of a and b,
denoted gcd(a,b), is the largest integer d that divides both a and b. Efficient algorithms
for computing gcd(a,b) exploit the following simple result.

Theorem 2.18 Let a and b be positive integers. Then gcd(a,b) = gcd(b − ca,a) for
all integers c.

In the classical Euclidean algorithm for computing the gcd of positive integers a and
b where b ≥ a, b is divided by a to obtain a quotient q and a remainder r satisfying
b = qa + r and 0 ≤ r < a. By Theorem 2.18, gcd(a,b) = gcd(r,a). Thus, the problem
of determining gcd(a,b) is reduced to that of computing gcd(r,a) where the arguments
(r,a) are smaller than the original arguments (a,b). This process is repeated until one
of the arguments is 0, and the result is then immediately obtained since gcd(0,d) = d .
The algorithm must terminate since the non-negative remainders are strictly decreasing.
Moreover, it is efficient because the number of division steps can be shown to be at most
2k where k is the bitlength of a.

The Euclidean algorithm can be extended to find integers x and y such that ax +by =
d where d = gcd(a,b). Algorithm 2.19 maintains the invariants

ax1 +by1 = u, ax2 +by2 = v, u ≤ v.

The algorithm terminates when u = 0, in which case v = gcd(a,b) and x = x2, y = y2
satisfy ax +by = d .
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Algorithm 2.19 Extended Euclidean algorithm for integers

INPUT: Positive integers a and b with a ≤ b.
OUTPUT: d = gcd(a,b) and integers x, y satisfying ax +by = d .

1. u ←a, v←b.
2. x1 ←1, y1 ←0, x2 ←0, y2 ←1.
3. While u 	= 0 do

3.1 q ←�v/u�, r ←v −qu, x ←x2 −qx1, y ← y2 −qy1.
3.2 v←u, u ←r , x2 ← x1, x1 ←x , y2 ← y1, y1 ← y.

4. d ←v, x ←x2, y ← y2.
5. Return(d, x, y).

Suppose now that p is prime and a ∈ [1, p − 1], and hence gcd(a, p) = 1. If Al-
gorithm 2.19 is executed with inputs (a, p), the last nonzero remainder r encountered
in step 3.1 is r = 1. Subsequent to this occurrence, the integers u, x1 and y1 as up-
dated in step 3.2 satisfy ax1 + py1 = u with u = 1. Hence ax1 ≡ 1 (mod p) and so
a−1 = x1 mod p. Note that y1 and y2 are not needed for the determination of x1. These
observations lead to Algorithm 2.20 for inversion in Fp.

Algorithm 2.20 Inversion in Fp using the extended Euclidean algorithm

INPUT: Prime p and a ∈ [1, p −1].
OUTPUT: a−1 mod p.

1. u ←a, v← p.
2. x1 ←1, x2 ←0.
3. While u 	= 1 do

3.1 q ←�v/u�, r ←v −qu, x ←x2 −qx1.
3.2 v←u, u ←r , x2 ← x1, x1 ←x .

4. Return(x1 mod p).

Binary inversion algorithm

A drawback of Algorithm 2.20 is the requirement for computationally expensive divi-
sion operations in step 3.1. The binary inversion algorithm replaces the divisions with
cheaper shifts (divisions by 2) and subtractions. The algorithm is an extended version
of the binary gcd algorithm which is presented next.

Before each iteration of step 3.1 of Algorithm 2.21, at most one of u and v is odd.
Thus the divisions by 2 in steps 3.1 and 3.2 do not change the value of gcd(u,v). In
each iteration, after steps 3.1 and 3.2, both u and v are odd and hence exactly one of
u and v will be even at the end of step 3.3. Thus, each iteration of step 3 reduces the
bitlength of either u or v by at least one. It follows that the total number of iterations
of step 3 is at most 2k where k is the maximum of the bitlengths of a and b.
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Algorithm 2.21 Binary gcd algorithm

INPUT: Positive integers a and b.
OUTPUT: gcd(a,b).

1. u ←a, v←b, e←1.
2. While both u and v are even do: u ←u/2, v←v/2, e←2e.
3. While u 	= 0 do

3.1 While u is even do: u ←u/2.
3.2 While v is even do: v←v/2.
3.3 If u ≥ v then u ←u −v; else v←v −u.

4. Return(e ·v).

Algorithm 2.22 computes a−1 mod p by finding an integer x such that ax + py = 1.
The algorithm maintains the invariants

ax1 + py1 = u, ax2 + py2 = v

where y1 and y2 are not explicitly computed. The algorithm terminates when u = 1 or
v = 1. In the former case, ax1 + py1 = 1 and hence a−1 = x1 mod p. In the latter case,
ax2 + py2 = 1 and a−1 = x2 mod p.

Algorithm 2.22 Binary algorithm for inversion in Fp

INPUT: Prime p and a ∈ [1, p −1].
OUTPUT: a−1 mod p.

1. u ←a, v← p.
2. x1 ←1, x2 ←0.
3. While (u 	= 1 and v 	= 1) do

3.1 While u is even do
u ←u/2.
If x1 is even then x1 ←x1/2; else x1 ←(x1 + p)/2.

3.2 While v is even do
v←v/2.
If x2 is even then x2 ←x2/2; else x2 ←(x2 + p)/2.

3.3 If u ≥ v then: u ←u −v, x1 ←x1 − x2;
Else: v←v −u, x2 ←x2 − x1.

4. If u = 1 then return(x1 mod p); else return(x2 mod p).

A division algorithm producing b/a = ba−1 mod p can be obtained directly from the
binary algorithm by changing the initialization condition x1 ←1 to x1 ←b. The running
times are expected to be the same, since x1 in the inversion algorithm is expected to be
full-length after a few iterations. Division algorithms are discussed in more detail for
binary fields (§2.3) where the lower cost of inversion relative to multiplication makes
division especially attractive.
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Algorithm 2.22 can be converted to a two-stage inversion method that first finds
a−12k mod p for some integer k ≥ 0 and then solves for a−1. This alternative is sim-
ilar to the almost inverse method (Algorithm 2.50) for inversion in binary fields, and
permits some optimizations not available in a direct implementation of Algorithm 2.22.
The basic method is outlined in the context of the Montgomery inverse below, where
the strategy is particularly appropriate.

Montgomery inversion

As outlined in §2.2.4, the basic strategy in Montgomery’s method is to replace modular
reduction z mod p by a less-expensive operation z R−1 mod p for a suitably chosen R.
Montgomery arithmetic can be regarded as operating on representatives x̃ = x R mod p,
and is applicable in calculations such as modular exponentiation where the required
initial and final conversions x �→ x̃ and x̃ �→ x̃ R−1 mod p = x are an insignificant
portion of the overall computation.

Let p > 2 be an odd (but possibly composite) integer, and define n = �log2 p�.
The Montgomery inverse of an integer a with gcd(a, p) = 1 is a−12n mod p. Algo-
rithm 2.23 is a modification of the binary algorithm (Algorithm 2.22), and computes
a−12k mod p for some integer k ∈ [n,2n].

Algorithm 2.23 Partial Montgomery inversion in Fp

INPUT: Odd integer p > 2, a ∈ [1, p −1], and n = �log2 p�.
OUTPUT: Either “not invertible” or (x,k) where n ≤ k ≤ 2n and x = a−12k mod p.

1. u ←a, v← p, x1 ←1, x2 ←0, k ←0.
2. While v > 0 do

2.1 If v is even then v←v/2, x1 ←2x1;
else if u is even then u ←u/2, x2 ←2x2;
else if v ≥ u then v← (v −u)/2, x2 ←x2 + x1, x1 ←2x1;
else u ←(u −v)/2, x1 ←x2 + x1, x2 ←2x2.

2.2 k ←k +1.
3. If u 	= 1 then return(“not invertible”).
4. If x1 > p then x1 ←x1 − p.
5. Return(x1,k).

For invertible a, the Montgomery inverse a−12n mod p may be obtained from the
output (x,k) by k −n repeated divisions of the form:

if x is even then x ←x/2; else x ←(x + p)/2. (2.2)

Compared with the binary method (Algorithm 2.22) for producing the ordinary inverse,
Algorithm 2.23 has simpler updating of the variables x1 and x2, although k − n of the
more expensive updates occur in (2.2).
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Note 2.24 (correctness of and implementation considerations for Algorithm 2.23)

(i) In addition to gcd(u,v) = gcd(a, p), the invariants

ax1 ≡ u2k (mod p) and ax2 ≡ −v2k (mod p)

are maintained. If gcd(a, p) = 1, then u = 1 and x1 ≡ a−12k (mod p) at the last
iteration of step 2.

(ii) Until the last iteration, the conditions

p = vx1 +ux2, x1 ≥ 1, v ≥ 1, 0 ≤ u ≤ a,

hold, and hence x1,v ∈ [1, p]. At the last iteration, x1 ←2x1 ≤ 2p; if gcd(a, p) =
1, then necessarily x1 < 2p and step 4 ensures x1 < p. Unlike Algorithm 2.22,
the variables x1 and x2 grow slowly, possibly allowing some implementation
optimizations.

(iii) Each iteration of step 2 reduces the product uv by at least half and the sum u +v

by at most half. Initially u+v = a+ p and uv = ap, and u = v = 1 before the final
iteration. Hence (a + p)/2 ≤ 2k−1 ≤ ap, and it follows that 2n−2 < 2k−1 < 22n

and n ≤ k ≤ 2n.

Montgomery arithmetic commonly selects R = 2Wt ≥ 2n for efficiency and uses
representatives x̃ = x R mod p. The Montgomery product Mont(̃x, ỹ) of x̃ and ỹ is as
defined in (2.1). The second stage (2.2) can be modified to use Montgomery multipli-
cation to produce a−1 mod p or a−1 R mod p (rather than a−12n mod p) from a, or
to calculate a−1 R mod p when Algorithm 2.23 is presented with ã rather than a. Al-
gorithm 2.25 is applicable in elliptic curve point multiplication (§3.3) if Montgomery
arithmetic is used with affine coordinates.

Algorithm 2.25 Montgomery inversion in Fp

INPUT: Odd integer p > 2, n = �log2 p�, R2 mod p, and ã = aR mod p with
gcd(a, p) = 1.

OUTPUT: a−1 R mod p.
1. Use Algorithm 2.23 to find (x,k) where x = ã−12k mod p and n ≤ k ≤ 2n.
2. If k < Wt then

2.1 x ← Mont(x, R2) = a−12k mod p.
2.2 k ←k + Wt . {Now, k > Wt .}

3. x ← Mont(x, R2) = a−12k mod p.
4. x ← Mont(x,22Wt−k) = a−1 R mod p.
5. Return(x).

The value a−1 R ≡ R2/(aR) (mod p) may also be obtained by a division algorithm
variant of Algorithm 2.22 with inputs R2 mod p and ã. However, Algorithm 2.25 may
have implementation advantages, and the Montgomery multiplications required are
expected to be relatively inexpensive compared to the cost of inversion.
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Simultaneous inversion

Field inversion tends to be expensive relative to multiplication. If inverses are required
for several elements, then the method of simultaneous inversion finds the inverses with
a single inversion and approximately three multiplications per element. The method is
based on the observation that 1/x = y(1/xy) and 1/y = x(1/xy), which is generalized
in Algorithm 2.26 to k elements.

Algorithm 2.26 Simultaneous inversion

INPUT: Prime p and nonzero elements a1, . . . ,ak in Fp

OUTPUT: Field elements a−1
1 , . . . ,a−1

k , where ai a
−1
i ≡ 1 (mod p).

1. c1 ←a1.
2. For i from 2 to k do: ci ←ci−1ai mod p.
3. u ←c−1

k mod p.
4. For i from k downto 2 do

4.1 a−1
i ←uci−1 mod p.

4.2 u ←uai mod p.
5. a−1

1 ←u.
6. Return(a−1

1 , . . . ,a−1
k ).

For k elements, the algorithm requires one inversion and 3(k − 1) multiplications,
along with k elements of temporary storage. Although the algorithm is presented in
the context of prime fields, the technique can be adapted to other fields and is superior
to k separate inversions whenever the cost of an inversion is higher than that of three
multiplications.

2.2.6 NIST primes

The FIPS 186-2 standard recommends elliptic curves over the five prime fields with
moduli:

p192 = 2192 −264 −1

p224 = 2224 −296 +1

p256 = 2256 −2224 +2192 +296 −1

p384 = 2384 −2128 −296 +232 −1

p521 = 2521 −1.

These primes have the property that they can be written as the sum or difference of a
small number of powers of 2. Furthermore, except for p521, the powers appearing in
these expressions are all multiples of 32. These properties yield reduction algorithms
that are especially fast on machines with wordsize 32.
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For example, consider p = p192 = 2192 − 264 − 1, and let c be an integer with 0 ≤
c < p2. Let

c = c52320 + c42256 + c32192 + c22128 + c1264 + c0 (2.3)

be the base-264 representation of c, where each ci ∈ [0,264 − 1]. We can then reduce
the higher powers of 2 in (2.3) using the congruences

2192 ≡ 264 +1 (mod p)

2256 ≡ 2128 +264 (mod p)

2320 ≡ 2128 +264 +1 (mod p).

We thus obtain
c ≡ c52128 + c5264 + c5

+ c42128 + c4264

+ c3264 + c3

+ c22128 + c1264 + c0 (mod p).

Hence, c modulo p can be obtained by adding the four 192-bit integers c52128 +c5264 +
c5, c42128 + c4264, c3264 + c3 and c22128 + c1264 + c0, and repeatedly subtracting p
until the result is less than p.

Algorithm 2.27 Fast reduction modulo p192 = 2192 −264 −1

INPUT: An integer c = (c5,c4,c3,c2,c1,c0) in base 264 with 0 ≤ c < p2
192.

OUTPUT: c mod p192.
1. Define 192-bit integers:

s1 = (c2,c1,c0), s2 = (0,c3,c3),
s3 = (c4,c4,0), s4 = (c5,c5,c5).

2. Return(s1 + s2 + s3 + s4 mod p192).

Algorithm 2.28 Fast reduction modulo p224 = 2224 −296 +1

INPUT: An integer c = (c13, . . . ,c2,c1,c0) in base 232 with 0 ≤ c < p2
224.

OUTPUT: c mod p224.
1. Define 224-bit integers:

s1 = (c6,c5,c4,c3,c2,c1,c0), s2 = (c10,c9,c8,c7,0,0,0),
s3 = (0,c13,c12,c11,0,0,0), s4 = (c13,c12,c11,c10,c9,c8,c7),
s5 = (0,0,0,0,c13,c12,c11).

2. Return(s1 + s2 + s3 − s4 − s5 mod p224).
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Algorithm 2.29 Fast reduction modulo p256 = 2256 −2224 +2192 +296 −1

INPUT: An integer c = (c15, . . . ,c2,c1,c0) in base 232 with 0 ≤ c < p2
256.

OUTPUT: c mod p256.
1. Define 256-bit integers:

s1 = (c7,c6,c5,c4,c3,c2,c1,c0),
s2 = (c15,c14,c13,c12,c11,0,0,0),
s3 = (0,c15,c14,c13,c12,0,0,0),
s4 = (c15,c14,0,0,0,c10,c9,c8),
s5 = (c8,c13,c15,c14,c13,c11,c10,c9),
s6 = (c10,c8,0,0,0,c13,c12,c11),
s7 = (c11,c9,0,0,c15,c14,c13,c12),
s8 = (c12,0,c10,c9,c8,c15,c14,c13),
s9 = (c13,0,c11,c10,c9,0,c15,c14).

2. Return(s1 +2s2 +2s3 + s4 + s5 − s6 − s7 − s8 − s9 mod p256).

Algorithm 2.30 Fast reduction modulo p384 = 2384 −2128 −296 +232 −1

INPUT: An integer c = (c23, . . . ,c2,c1,c0) in base 232 with 0 ≤ c < p2
384.

OUTPUT: c mod p384.
1. Define 384-bit integers:

s1 = (c11,c10,c9,c8,c7,c6,c5,c4,c3,c2,c1,c0),
s2 = (0,0,0,0,0,c23,c22,c21,0,0,0,0),
s3 = (c23,c22,c21,c20,c19,c18,c17,c16,c15,c14,c13,c12),
s4 = (c20,c19,c18,c17,c16,c15,c14,c13,c12,c23,c22,c21),
s5 = (c19,c18,c17,c16,c15,c14,c13,c12,c20,0,c23,0),
s6 = (0,0,0,0,c23,c22,c21,c20,0,0,0,0),
s7 = (0,0,0,0,0,0,c23,c22,c21,0,0,c20),
s8 = (c22,c21,c20,c19,c18,c17,c16,c15,c14,c13,c12,c23),
s9 = (0,0,0,0,0,0,0,c23,c22,c21,c20,0),
s10 = (0,0,0,0,0,0,0,c23,c23,0,0,0).

2. Return(s1 +2s2 + s3 + s4 + s5 + s6 + s7 − s8 − s9 − s10 mod p384).

Algorithm 2.31 Fast reduction modulo p521 = 2521 −1

INPUT: An integer c = (c1041, . . . ,c2,c1,c0) in base 2 with 0 ≤ c < p2
521.

OUTPUT: c mod p521.
1. Define 521-bit integers:

s1 = (c1041, . . . ,c523,c522,c521),
s2 = (c520, . . . ,c2,c1,c0).

2. Return(s1 + s2 mod p521).
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2.3 Binary field arithmetic

This section presents algorithms that are suitable for performing binary field arith-
metic in software. Chapter 5 includes additional material on use of single-instruction
multiple-data (SIMD) registers found on some processors (§5.1.3), and on design con-
siderations for hardware implementation (§5.2.2). Selected timings for field operations
appear in §5.1.5.

We assume that the implementation platform has a W -bit architecture where W is
a multiple of 8. The bits of a W -bit word U are numbered from 0 to W − 1, with the
rightmost bit of U designated as bit 0. The following standard notation is used to denote
operations on words U and V :

U ⊕ V bitwise exclusive-or
U & V bitwise AND
U � i right shift of U by i positions with the i high-order bits set to 0
U � i left shift of U by i positions with the i low-order bits set to 0.

Let f (z) be an irreducible binary polynomial of degree m, and write f (z) =
zm + r(z). The elements of F2m are the binary polynomials of degree at most m − 1.
Addition of field elements is the usual addition of binary polynomials. Multiplication is
performed modulo f (z). A field element a(z) = am−1zm−1+·· ·+a2z2+a1z+a0 is as-
sociated with the binary vector a = (am−1, . . . ,a2,a1,a0) of length m. Let t = �m/W�,
and let s = Wt − m. In software, a may be stored in an array of t W -bit words:
A = (A[t − 1], . . . , A[2], A[1], A[0]), where the rightmost bit of A[0] is a0, and the
leftmost s bits of A[t −1] are unused (always set to 0).

A[t −1] A[1] A[0]
am−1 · · ·a(t−1)W · · · a2W−1 · · ·aW+1aW aW−1 · · · a1a0︸︷︷︸

s

Figure 2.4. Representation of a ∈ F2m as an array A of W -bit words. The s = tW − m highest
order bits of A[t −1] remain unused.

2.3.1 Addition

Addition of field elements is performed bitwise, thus requiring only t word operations.

Algorithm 2.32 Addition in F2m

INPUT: Binary polynomials a(z) and b(z) of degrees at most m −1.
OUTPUT: c(z) = a(z)+b(z).

1. For i from 0 to t −1 do
1.1 C[i ]← A[i ]⊕ B[i ].

2. Return(c).
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2.3.2 Multiplication

The shift-and-add method (Algorithm 2.33) for field multiplication is based on the
observation that

a(z) ·b(z) = am−1zm−1b(z)+·· ·+a2z2b(z)+a1zb(z)+a0b(z).

Iteration i in the algorithm computes zi b(z) mod f (z) and adds the result to the
accumulator c if ai = 1. If b(z) = bm−1zm−1 +·· ·+b2z2 +b1z +b0, then

b(z) · z = bm−1zm +bm−2zm−1 +·· ·+b2z3 +b1z2 +b0z

≡ bm−1r(z)+ (bm−2zm−1 +·· ·+b2z3 +b1z2 +b0z) (mod f (z)).

Thus b(z) · z mod f (z) can be computed by a left-shift of the vector representation of
b(z), followed by addition of r(z) to b(z) if the high order bit bm−1 is 1.

Algorithm 2.33 Right-to-left shift-and-add field multiplication in F2m

INPUT: Binary polynomials a(z) and b(z) of degree at most m −1.
OUTPUT: c(z) = a(z) ·b(z) mod f (z).

1. If a0 = 1 then c←b; else c←0.
2. For i from 1 to m −1 do

2.1 b←b · z mod f (z).
2.2 If ai = 1 then c←c +b.

3. Return(c).

While Algorithm 2.33 is well-suited for hardware where a vector shift can be per-
formed in one clock cycle, the large number of word shifts make it less desirable
for software implementation. We next consider faster methods for field multiplication
which first multiply the field elements as polynomials (§2.3.3 and §2.3.4), and then
reduce the result modulo f (z) (§2.3.5).

2.3.3 Polynomial multiplication

The right-to-left comb method (Algorithm 2.34) for polynomial multiplication is based
on the observation that if b(z) · zk has been computed for some k ∈ [0,W − 1], then
b(z) · zW j+k can be easily obtained by appending j zero words to the right of the vector
representation of b(z) · zk . Algorithm 2.34 processes the bits of the words of A from
right to left, as shown in Figure 2.5 when the parameters are m = 163, W = 32. The
following notation is used: if C = (C[n], . . . ,C[2],C[1],C[0]) is an array, then C{ j }
denotes the truncated array (C[n], . . . ,C[ j +1],C[ j ]).
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←−−−−
A[0] a31 · · · a2 a1 a0
A[1] a63 · · · a34 a33 a32
A[2] a95 · · · a66 a65 a64
A[3] a127 · · · a98 a97 a96
A[4] a159 · · · a130 a129 a128
A[5] a162 a161 a160

�

Figure 2.5. The right-to-left comb method (Algorithm 2.34) processes the columns of the expo-
nent array for a right-to-left. The bits in a column are processed from top to bottom. Example
parameters are W = 32 and m = 163.

Algorithm 2.34 Right-to-left comb method for polynomial multiplication

INPUT: Binary polynomials a(z) and b(z) of degree at most m −1.
OUTPUT: c(z) = a(z) ·b(z).

1. C ←0.
2. For k from 0 to W −1 do

2.1 For j from 0 to t −1 do
If the kth bit of A[ j ] is 1 then add B to C{ j }.

2.2 If k 	= (W −1) then B ← B · z.
3. Return(C).

The left-to-right comb method for polynomial multiplication processes the bits of a
from left to right as follows:

a(z) ·b(z) =
(
· · ·((am−1b(z)z +am−2b(z))z +am−3b(z)

)
z +·· ·+a1b(z)

)
z +a0b(z).

Algorithm 2.35 is a modification of this method where the bits of the words of A are
processed from left to right. This is illustrated in Figure 2.6 when m = 163, W = 32
are the parameters.

�
−−−−→

a31 · · · a2 a1 a0 A[0]
a63 · · · a34 a33 a32 A[1]
a95 · · · a66 a65 a64 A[2]
a127 · · · a98 a97 a96 A[3]
a159 · · · a130 a129 a128 A[4]

a162 a161 a160 A[5]

Figure 2.6. The left-to-right comb method (Algorithm 2.35) processes the columns of the expo-
nent array for a left-to-right. The bits in a column are processed from top to bottom. Example
parameters are W = 32 and m = 163.
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Algorithm 2.35 Left-to-right comb method for polynomial multiplication

INPUT: Binary polynomials a(z) and b(z) of degree at most m −1.
OUTPUT: c(z) = a(z) ·b(z).

1. C ←0.
2. For k from W −1 downto 0 do

2.1 For j from 0 to t −1 do
If the kth bit of A[ j ] is 1 then add B to C{ j }.

2.2 If k 	= 0 then C ←C · z.
3. Return(C).

Algorithms 2.34 and 2.35 are both faster than Algorithm 2.33 since there are fewer
vector shifts (multiplications by z). Algorithm 2.34 is faster than Algorithm 2.35 since
the vector shifts in the former involve the t-word array B (which can grow to size t +1),
while the vector shifts in the latter involve the 2t-word array C .

Algorithm 2.35 can be accelerated considerably at the expense of some storage over-
head by first computing u(z) · b(z) for all polynomials u(z) of degree less than w, and
then processing the bits of A[ j ] w at a time. The modified method is presented as Al-
gorithm 2.36. The order in which the bits of a are processed is shown in Figure 2.7
when the parameters are M = 163, W = 32, w = 4.

Algorithm 2.36 Left-to-right comb method with windows of width w

INPUT: Binary polynomials a(z) and b(z) of degree at most m −1.
OUTPUT: c(z) = a(z) ·b(z).

1. Compute Bu = u(z) ·b(z) for all polynomials u(z) of degree at most w −1.
2. C ←0.
3. For k from (W/w)−1 downto 0 do

3.1 For j from 0 to t −1 do
Let u = (uw−1, . . . ,u1,u0), where ui is bit (wk + i) of A[ j ].
Add Bu to C{ j }.

3.2 If k 	= 0 then C ←C · zw.
4. Return(C).

As written, Algorithm 2.36 performs polynomial multiplication—modular reduction
for field multiplication is performed separately. In some situations, it may be advanta-
geous to include the reduction polynomial f as an input to the algorithm. Step 1 may
then be modified to calculate ub mod f , which may allow optimizations in step 3.

Note 2.37 (enhancements to Algorithm 2.36) Depending on processor characteristics,
one potentially useful variation of Algorithm 2.36 exchanges shifts for additions and
table lookups. Precomputation is split into l tables; for simplicity, we assume l | w. Ta-
ble i , 0 ≤ i < l, consists of values Bv,i = v(z)ziw/ l b(z) for all polynomials v of degree
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�
−−−−→

a31 a30 a29 a28 · · · a3 a2 a1 a0 A[0]
a63 a62 a61 a60 · · · a35 a34 a33 a32 A[1]
a95 a94 a93 a92 · · · a67 a66 a65 a64 A[2]
a127 a126 a125 a124 · · · a99 a98 a97 a96 A[3]
a159 a158 a157 a156 · · · a131 a130 a129 a128 A[4]

a162 a161 a160 A[5]
←−−−−− w −−−−−→ ←−−−−− w −−−−−→

Figure 2.7. Algorithm 2.36 processes columns of the exponent array for a left-to-right. The
entries within a width w column are processed from top to bottom. Example parameters are
W = 32, m = 163, and w = 4.

less than w/ l. Step 3.1 of Algorithm 2.36 is modified to calculate Bu =∑l−1
i=0 Bui ,i

where u = (uw−1, . . . ,u0) = (ul−1, . . . ,u0) and ui has w/ l bits. As an example, Al-
gorithm 2.36 with w = 4 has 16 elements of precomputation. The modified algorithm
with parameters w = 8 and l = 4 has the same amount of precomputation (four tables
of four points each). Compared with the original algorithm, there are fewer iterations
at step 3 (and hence fewer shifts at step 3.2); however, step 3.1 is more expensive.

The comb methods are due to López and Dahab, and are based on the observation
that the exponentiation methods of Lim and Lee can be adapted for use in binary fields.
§3.3.2 discusses Lim-Lee methods in more detail in the context of elliptic curve point
multiplication; see Note 3.47.

Karatsuba-Ofman multiplication

The divide-and-conquer method of Karatsuba-Ofman outlined in §2.2.2 can be directly
adapted for the polynomial case. For example,

a(z)b(z) = (A1zl + A0)(B1zl + B0)

= A1 B1z2l +[(A1 + A0)(B1 + B0)+ A1 B1 + A0 B0]zl + A0 B0

where l = �m/2� and the coefficients A0, A1, B0, B1 are binary polynomials in z of
degree less than l. The process may be repeated, using table-lookup or other methods
at some threshold. The overhead, however, is often sufficient to render such strategies
inferior to Algorithm 2.36 for m of practical interest.

Note 2.38 (implementing polynomial multiplication) Algorithm 2.36 appears to be
among the fastest in practice for binary fields of interest in elliptic curve methods,
provided that the hardware characteristics are targeted reasonably accurately. The code
produced by various C compilers can differ dramatically in performance, and compilers
can be sensitive to the precise form in which the algorithm is written.
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The contribution by Sun Microsystems Laboratories (SML) to the OpenSSL project
in 2002 provides a case study of the compromises chosen in practice. OpenSSL is
widely used to provide cryptographic services for the Apache web server and the
OpenSSH secure shell communication tool. SML’s contribution must be understood in
context: OpenSSL is a public and collaborative effort—it is likely that Sun’s proprietary
code has significant enhancements.

To keep the code size relatively small, SML implemented a fairly generic polynomial
multiplication method. Karatsuba-Ofman is used, but only on multiplication of 2-word
quantities rather than recursive application. At the lowest level of multiplication of
1-word quantities, a simplified Algorithm 2.36 is applied (with w = 2, w = 3, and
w = 4 on 16-bit, 32-bit, and 64-bit platforms, respectively). As expected, the result
tends to be much slower than the fastest versions of Algorithm 2.36. In our tests on Sun
SPARC and Intel P6-family hardware, the Karatsuba-Ofman method implemented is
less efficient than use of Algorithm 2.36 at the 2-word stage. However, the contribution
from SML may be a better compromise in OpenSSL if the same code is used across
platforms and compilers.

2.3.4 Polynomial squaring

Since squaring a binary polynomial is a linear operation, it is much faster than mul-
tiplying two arbitrary polynomials; i.e., if a(z) = am−1zm−1 + ·· · + a2z2 + a1z + a0,
then

a(z)2 = am−1z2m−2 +·· ·+a2z4 +a1z2 +a0.

The binary representation of a(z)2 is obtained by inserting a 0 bit between consecutive
bits of the binary representation of a(z) as shown in Figure 2.8. To facilitate this pro-
cess, a table T of size 512 bytes can be precomputed for converting 8-bit polynomials
into their expanded 16-bit counterparts. Algorithm 2.39 describes this procedure for
the parameter W = 32.

am−1

�����
��

��
��

�
am−2

��












· · · a1

���
��

��
��

�
a0

����
��

��
��

��

0 am−1 0 am−2 0 · · · 0 a1 0 a0

Figure 2.8. Squaring a binary polynomial a(z) = am−1zm−1 +·· ·+a2z2 +a1z +a0.
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Algorithm 2.39 Polynomial squaring (with wordlength W = 32)

INPUT: A binary polynomial a(z) of degree at most m −1.
OUTPUT: c(z) = a(z)2.

1. Precomputation. For each byte d = (d7, . . . ,d1,d0), compute the 16-bit quantity
T (d) = (0,d7, . . . ,0,d1,0,d0).

2. For i from 0 to t −1 do
2.1 Let A[i ] = (u3,u2,u1,u0) where each u j is a byte.
2.2 C[2i ]← (T (u1),T (u0)), C[2i +1]←(T (u3),T (u2)).

3. Return(c).

2.3.5 Reduction

We now discuss techniques for reducing a binary polynomial c(z) obtained by multi-
plying two binary polynomials of degree ≤ m −1, or by squaring a binary polynomial
of degree ≤ m −1. Such polynomials c(z) have degree at most 2m −2.

Arbitrary reduction polynomials

Recall that f (z) = zm + r(z), where r(z) is a binary polynomial of degree at most
m − 1. Algorithm 2.40 reduces c(z) modulo f (z) one bit at a time, starting with the
leftmost bit. It is based on the observation that

c(z) = c2m−2z2m−2 +·· ·+ cmzm + cm−1zm−1 +·· ·+ c1z + c0

≡ (c2m−2zm−2 +·· ·+ cm)r(z)+ cm−1zm−1 +·· ·+ c1z + c0 (mod f (z)).

The reduction is accelerated by precomputing the polynomials zkr(z), 0 ≤ k ≤ W −1.
If r(z) is a low-degree polynomial, or if f (z) is a trinomial, then the space requirements
are smaller, and furthermore the additions involving zkr(z) in step 2.1 are faster. The
following notation is used: if C = (C[n], . . . ,C[2],C[1],C[0]) is an array, then C{ j }
denotes the truncated array (C[n], . . . ,C[ j +1],C[ j ]).

Algorithm 2.40 Modular reduction (one bit at a time)

INPUT: A binary polynomial c(z) of degree at most 2m −2.
OUTPUT: c(z) mod f (z).

1. Precomputation. Compute uk(z) = zkr(z), 0 ≤ k ≤ W −1.
2. For i from 2m −2 downto m do

2.1 If ci = 1 then
Let j = �(i −m)/W� and k = (i −m)− W j .
Add uk(z) to C{ j }.

3. Return(C[t −1], . . . ,C[1],C[0]).
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If f (z) is a trinomial, or a pentanomial with middle terms close to each other, then
reduction of c(z) modulo f (z) can be efficiently performed one word at a time. For
example, suppose m = 163 and W = 32 (so t = 6), and consider reducing the word
C[9] of c(z) modulo f (z) = z163 + z7 + z6 + z3 + 1. The word C[9] represents the
polynomial c319z319 +·· ·+ c289z289 + c288z288. We have

z288 ≡ z132 + z131 + z128 + z125 (mod f (z)),

z289 ≡ z133 + z132 + z129 + z126 (mod f (z)),

...

z319 ≡ z163 + z162 + z159 + z156 (mod f (z)).

By considering the four columns on the right side of the above congruences, we see that
reduction of C[9] can be performed by adding C[9] four times to C , with the rightmost
bit of C[9] added to bits 132, 131, 128 and 125 of C; this is illustrated in Figure 2.9.

3

⊕

⊕

⊕

⊕

C[9]

C[9]

C[9]

C[5] C[4] C[3]

4

3

C[9]

c160c191 c159 c128 c127 c96

Figure 2.9. Reducing the 32-bit word C[9] modulo f (z) = z163 + z7 + z6 + z3 +1.

NIST reduction polynomials

We next present algorithms for fast reduction modulo the following reduction
polynomials recommended by NIST in the FIPS 186-2 standard:

f (z) = z163 + z7 + z6 + z3 +1

f (z) = z233 + z74 +1

f (z) = z283 + z12 + z7 + z5 +1

f (z) = z409 + z87 +1

f (z) = z571 + z10 + z5 + z2 +1.
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These algorithms, which assume a wordlength W = 32, are based on ideas similar to
those leading to Figure 2.9. They are faster than Algorithm 2.40 and furthermore have
no storage overhead.

Algorithm 2.41 Fast reduction modulo f (z) = z163 + z7 + z6 + z3 +1 (with W = 32)

INPUT: A binary polynomial c(z) of degree at most 324.
OUTPUT: c(z) mod f (z).

1. For i from 10 downto 6 do {Reduce C[i ]z32i modulo f (z)}
1.1 T ←C[i ].
1.2 C[i −6]←C[i −6]⊕ (T � 29).
1.3 C[i −5]←C[i −5]⊕ (T � 4)⊕ (T � 3)⊕ T ⊕ (T � 3).
1.4 C[i −4]←C[i −4]⊕ (T � 28)⊕ (T � 29).

2. T ←C[5] � 3. {Extract bits 3–31 of C[5]}
3. C[0]←C[0]⊕ (T � 7)⊕ (T � 6)⊕ (T � 3)⊕ T .
4. C[1]←C[1]⊕ (T � 25)⊕ (T � 26).
5. C[5]←C[5]& 0x7. {Clear the reduced bits of C[5]}
6. Return (C[5],C[4],C[3],C[2],C[1],C[0]).

Algorithm 2.42 Fast reduction modulo f (z) = z233 + z74 +1 (with W = 32)

INPUT: A binary polynomial c(z) of degree at most 464.
OUTPUT: c(z) mod f (z).

1. For i from 15 downto 8 do {Reduce C[i ]z32i modulo f (z)}
1.1 T ←C[i ].
1.2 C[i −8]←C[i −8]⊕ (T � 23).
1.3 C[i −7]←C[i −7]⊕ (T � 9).
1.4 C[i −5]←C[i −5]⊕ (T � 1).
1.5 C[i −4]←C[i −4]⊕ (T � 31).

2. T ←C[7] � 9. {Extract bits 9–31 of C[7]}
3. C[0]←C[0]⊕ T .
4. C[2]←C[2]⊕ (T � 10).
5. C[3]←C[3]⊕ (T � 22).
6. C[7]←C[7]& 0x1FF. {Clear the reduced bits of C[7]}
7. Return (C[7],C[6],C[5],C[4],C[3],C[2],C[1],C[0]).
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Algorithm 2.43 Fast reduction modulo f (z) = z283 + z12 + z7 + z5 +1 (with W = 32)

INPUT: A binary polynomial c(z) of degree at most 564.
OUTPUT: c(z) mod f (z).

1. For i from 17 downto 9 do {Reduce C[i ]z32i modulo f (z)}
1.1 T ←C[i ].
1.2 C[i −9]←C[i −9]⊕ (T � 5)⊕ (T � 10)⊕ (T � 12)⊕ (T � 17).
1.3 C[i −8]←C[i −8]⊕ (T � 27)⊕ (T � 22)⊕ (T � 20)⊕ (T � 15).

2. T ←C[8] � 27. {Extract bits 27–31 of C[8]}
3. C[0]←C[0]⊕ T ⊕ (T � 5)⊕ (T � 7)⊕ (T � 12).
4. C[8]←C[8]& 0x7FFFFFF. {Clear the reduced bits of C[8]}
5. Return (C[8],C[7],C[6],C[5],C[4],C[3],C[2],C[1],C[0]).

Algorithm 2.44 Fast reduction modulo f (z) = z409 + z87 +1 (with W = 32)

INPUT: A binary polynomial c(z) of degree at most 816.
OUTPUT: c(z) mod f (z).

1. For i from 25 downto 13 do {Reduce C[i ]z32i modulo f (z)}
1.1 T ←C[i ].
1.2 C[i −13]←C[i −13]⊕ (T � 7).
1.3 C[i −12]←C[i −12]⊕ (T � 25).
1.4 C[i −11]←C[i −11]⊕ (T � 30).
1.5 C[i −10]←C[i −10]⊕ (T � 2).

2. T ←C[12] � 25. {Extract bits 25–31 of C[12]}
3. C[0]←C[0]⊕ T .
4. C[2]←C[2]⊕ (T¡¡23).
5. C[12]←C[12]& 0x1FFFFFF. {Clear the reduced bits of C[12]}
6. Return (C[12],C[11], . . . ,C[1],C[0]).

Algorithm 2.45 Fast reduction modulo f (z) = z571 + z10 + z5 + z2 +1 (with W = 32)

INPUT: A binary polynomial c(z) of degree at most 1140.
OUTPUT: c(z) mod f (z).

1. For i from 35 downto 18 do {Reduce C[i ]z32i modulo f (z)}
1.1 T ←C[i ].
1.2 C[i −18]←C[i −18]⊕ (T � 5)⊕ (T � 7)⊕ (T � 10)⊕ (T � 15).
1.3 C[i −17]←C[i −17]⊕ (T � 27)⊕ (T � 25)⊕ (T � 22)⊕ (T � 17).

2. T ←C[17] � 27. {Extract bits 27–31 of C[17]}
3. C[0]←C[0]⊕ T ⊕ (T � 2)⊕ (T � 5)⊕ (T � 10).
4. C[17]←C[17]& 0x7FFFFFFF. {Clear the reduced bits of C[17]}
5. Return (C[17],C[16], . . . ,C[1],C[0]).
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2.3.6 Inversion and division

In this subsection, we simplify the notation and denote binary polynomials a(z) by a.
Recall that the inverse of a nonzero element a ∈ F2m is the unique element g ∈ F2m such
that ag = 1 in F2m , that is, ag ≡ 1 (mod f ). This inverse element is denoted a−1 mod
f or simply a−1 if the reduction polynomial f is understood from context. Inverses
can be efficiently computed by the extended Euclidean algorithm for polynomials.

The extended Euclidean algorithm for polynomials

Let a and b be binary polynomials, not both 0. The greatest common divisor (gcd) of a
and b, denoted gcd(a,b), is the binary polynomial d of highest degree that divides both
a and b. Efficient algorithms for computing gcd(a,b) exploit the following polynomial
analogue of Theorem 2.18.

Theorem 2.46 Let a and b be binary polynomials. Then gcd(a,b) = gcd(b − ca,a)

for all binary polynomials c.

In the classical Euclidean algorithm for computing the gcd of binary polynomials a
and b, where deg(b) ≥ deg(a), b is divided by a to obtain a quotient q and a remainder
r satisfying b = qa + r and deg(r) < deg(a). By Theorem 2.46, gcd(a,b) = gcd(r,a).
Thus, the problem of determining gcd(a,b) is reduced to that of computing gcd(r,a)

where the arguments (r,a) have lower degrees than the degrees of the original argu-
ments (a,b). This process is repeated until one of the arguments is zero—the result is
then immediately obtained since gcd(0,d) = d . The algorithm must terminate since the
degrees of the remainders are strictly decreasing. Moreover, it is efficient because the
number of (long) divisions is at most k where k = deg(a).

In a variant of the classical Euclidean algorithm, only one step of each long division
is performed. That is, if deg(b) ≥ deg(a) and j = deg(b)−deg(a), then one computes
r = b + z j a. By Theorem 2.46, gcd(a,b) = gcd(r,a). This process is repeated until a
zero remainder is encountered. Since deg(r) < deg(b), the number of (partial) division
steps is at most 2k where k = max{deg(a),deg(b)}.

The Euclidean algorithm can be extended to find binary polynomials g and h
satisfying ag +bh = d where d = gcd(a,b). Algorithm 2.47 maintains the invariants

ag1 +bh1 = u

ag2 +bh2 = v.

The algorithm terminates when u = 0, in which case v = gcd(a,b) and ag2 +bh2 = d .
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Algorithm 2.47 Extended Euclidean algorithm for binary polynomials

INPUT: Nonzero binary polynomials a and b with deg(a) ≤ deg(b).
OUTPUT: d = gcd(a,b) and binary polynomials g,h satisfying ag +bh = d .

1. u ←a, v←b.
2. g1 ←1, g2 ←0, h1 ←0, h2 ←1.
3. While u 	= 0 do

3.1 j ←deg(u)−deg(v).
3.2 If j < 0 then: u ↔ v, g1 ↔ g2, h1 ↔ h2, j ← − j .
3.3 u ←u + z jv.
3.4 g1 ←g1 + z j g2, h1 ←h1 + z j h2.

4. d ←v, g←g2, h ←h2.
5. Return(d,g,h).

Suppose now that f is an irreducible binary polynomial of degree m and the nonzero
polynomial a has degree at most m − 1 (hence gcd(a, f ) = 1). If Algorithm 2.47 is
executed with inputs a and f , the last nonzero u encountered in step 3.3 is u = 1. After
this occurrence, the polynomials g1 and h1, as updated in step 3.4, satisfy ag1 + f h1 =
1. Hence ag1 ≡ 1 (mod f ) and so a−1 = g1. Note that h1 and h2 are not needed for the
determination of g1. These observations lead to Algorithm 2.48 for inversion in F2m .

Algorithm 2.48 Inversion in F2m using the extended Euclidean algorithm

INPUT: A nonzero binary polynomial a of degree at most m −1.
OUTPUT: a−1 mod f .

1. u ←a, v← f .
2. g1 ←1, g2 ←0.
3. While u 	= 1 do

3.1 j ← deg(u)−deg(v).
3.2 If j < 0 then: u ↔ v, g1 ↔ g2, j ← − j .
3.3 u ←u + z jv.
3.4 g1 ←g1 + z j g2.

4. Return(g1).

Binary inversion algorithm

Algorithm 2.49 is the polynomial analogue of the binary algorithm for inversion in
Fp (Algorithm 2.22). In contrast to Algorithm 2.48 where the bits of u and v are
cleared from left to right (high degree terms to low degree terms), the bits of u and
v in Algorithm 2.49 are cleared from right to left.
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Algorithm 2.49 Binary algorithm for inversion in F2m

INPUT: A nonzero binary polynomial a of degree at most m −1.
OUTPUT: a−1 mod f .

1. u ←a, v← f .
2. g1 ←1, g2 ←0.
3. While (u 	= 1 and v 	= 1) do

3.1 While z divides u do
u ←u/z.
If z divides g1 then g1 ←g1/z; else g1 ←(g1 + f )/z.

3.2 While z divides v do
v←v/z.
If z divides g2 then g2 ←g2/z; else g2 ←(g2 + f )/z.

3.3 If deg(u) > deg(v) then: u ←u +v, g1 ←g1 + g2;
Else: v←v +u, g2 ←g2 + g1.

4. If u = 1 then return(g1); else return(g2).

The expression involving degree calculations in step 3.3 may be replaced by a sim-
pler comparison on the binary representations of the polynomials. This differs from
Algorithm 2.48, where explicit degree calculations are required in step 3.1.

Almost inverse algorithm

The almost inverse algorithm (Algorithm 2.50) is a modification of the binary inversion
algorithm (Algorithm 2.49) in which a polynomial g and a positive integer k are first
computed satisfying

ag ≡ zk (mod f ).

A reduction is then applied to obtain

a−1 = z−k g mod f.

The invariants maintained are

ag1 + f h1 = zku

ag2 + f h2 = zkv

for some h1, h2 that are not explicitly calculated.
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Algorithm 2.50 Almost Inverse Algorithm for inversion in F2m

INPUT: A nonzero binary polynomial a of degree at most m −1.
OUTPUT: a−1 mod f .

1. u ←a, v← f .
2. g1 ←1, g2 ←0, k ←0.
3. While (u 	= 1 and v 	= 1) do

3.1 While z divides u do
u ←u/z, g2 ← z · g2, k ←k +1.

3.2 While z divides v do
v←v/z, g1 ← z · g1, k ←k +1.

3.3 If deg(u) > deg(v) then: u ←u +v, g1 ←g1 + g2.
Else: v←v +u, g2 ←g2 + g1.

4. If u = 1 then g←g1; else g←g2.
5. Return(z−k g mod f ).

The reduction in step 5 can be performed as follows. Let l = min{i ≥ 1 | fi = 1},
where f (z) = fm zm +·· ·+ f1z+ f0. Let S be the polynomial formed by the l rightmost
bits of g. Then S f + g is divisible by zl and T = (S f + g)/zl has degree less than m;
thus T = gz−l mod f . This process can be repeated to finally obtain gz−k mod f . The
reduction polynomial f is said to be suitable if l is above some threshold (which may
depend on the implementation; e.g., l ≥ W is desirable with W -bit words), since then
less effort is required in the reduction step.

Steps 3.1–3.2 are simpler than those in Algorithm 2.49. In addition, the g1 and
g2 appearing in these algorithms grow more slowly in almost inverse. Thus one can
expect Algorithm 2.50 to outperform Algorithm 2.49 if the reduction polynomial is
suitable, and conversely. As with the binary algorithm, the conditional involving degree
calculations may be replaced with a simpler comparison.

Division

The binary inversion algorithm (Algorithm 2.49) can be easily modified to perform
division b/a = ba−1. In cases where the ratio I/M of inversion to multiplication costs
is small, this could be especially significant in elliptic curve schemes, since an elliptic
curve point operation in affine coordinates (see §3.1.2) could use division rather than
an inversion and multiplication.

Division based on the binary algorithm To obtain b/a, Algorithm 2.49 is modified
at step 2, replacing g1 ←1 with g1 ←b. The associated invariants are

ag1 + f h1 = ub

ag2 + f h2 = vb.
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On termination with u = 1, it follows that g1 = ba−1. The division algorithm is
expected to have the same running time as the binary algorithm, since g1 in Algo-
rithm 2.49 goes to full-length in a few iterations at step 3.1 (i.e., the difference in
initialization of g1 does not contribute significantly to the time for division versus
inversion).

If the binary algorithm is the inversion method of choice, then affine point operations
would benefit from use of division, since the cost of a point double or addition changes
from I +2M to I + M . (I and M denote the time to perform an inversion and a multi-
plication, respectively.) If I/M is small, then this represents a significant improvement.
For example, if I/M is 3, then use of a division algorithm variant of Algorithm 2.49
provides a 20% reduction in the time to perform an affine point double or addition.
However, if I/M > 7, then the savings is less than 12%. Unless I/M is very small, it
is likely that schemes are used which reduce the number of inversions required (e.g.,
halving and projective coordinates), so that point multiplication involves relatively few
field inversions, diluting any savings from use of a division algorithm.

Division based on the extended Euclidean algorithm Algorithm 2.48 can be trans-
formed to a division algorithm in a similar fashion. However, the change in the
initialization step may have significant impact on implementation of a division algo-
rithm variant. There are two performance issues: tracking of the lengths of variables,
and implementing the addition to g1 at step 3.4.

In Algorithm 2.48, it is relatively easy to track the lengths of u and v efficiently
(the lengths shrink), and, moreover, it is also possible to track the lengths of g1 and
g2. However, the change in initialization for division means that g1 goes to full-length
immediately, and optimizations based on shorter lengths disappear.

The second performance issue concerns the addition to g1 at step 3.4. An imple-
mentation may assume that ordinary polynomial addition with no reduction may be
performed; that is, the degrees of g1 and g2 never exceed m−1. In adapting for division,
step 3.4 may be less-efficiently implemented, since g1 is full-length on initialization.

Division based on the almost inverse algorithm Although Algorithm 2.50 is similar
to the binary algorithm, the ability to efficiently track the lengths of g1 and g2 (in addi-
tion to the lengths of u and v) may be an implementation advantage of Algorithm 2.50
over Algorithm 2.49 (provided that the reduction polynomial f is suitable). As with
Algorithm 2.48, this advantage is lost in a division algorithm variant.

It should be noted that efficient tracking of the lengths of g1 and g2 (in addition to the
lengths of u and v) in Algorithm 2.50 may involve significant code expansion (perhaps
t2 fragments rather than the t fragments in the binary algorithm). If the expansion
cannot be tolerated (because of application constraints or platform characteristics), then
almost inverse may not be preferable to the other inversion algorithms (even if the
reduction polynomial is suitable).
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2.4 Optimal extension field arithmetic

Preceding sections discussed arithmetic for fields Fpm in the case that p = 2 (binary
fields) and m = 1 (prime fields). As noted on page 28, the polynomial basis repre-
sentation in the binary field case can be generalized to all extension fields Fpm , with
coefficient arithmetic performed in Fp.

For hardware implementations, binary fields are attractive since the operations in-
volve only shifts and bitwise addition modulo 2. The simplicity is also attractive for
software implementations on general-purpose processors; however the field multipli-
cation is essentially a few bits at a time and can be much slower than prime field
arithmetic if a hardware integer multiplier is available. On the other hand, the arith-
metic in prime fields can be more difficult to implement efficiently, due in part to the
propagation of carry bits.

The general idea in optimal extension fields is to select p, m, and the reduction poly-
nomial to more closely match the underlying hardware characteristics. In particular,
the value of p may be selected to fit in a single word, simplifying the handling of carry
(since coefficients are single-word).

Definition 2.51 An optimal extension field (OEF) is a finite field Fpm such that:

1. p = 2n − c for some integers n and c with log2 |c| ≤ n/2; and

2. an irreducible polynomial f (z) = zm −ω in Fp[z] exists.

If c ∈ {±1}, then the OEF is said to be of Type I (p is a Mersenne prime if c = 1); if
ω = 2, the OEF is said to be of Type II.

Type I OEFs have especially simple arithmetic in the subfield Fp , while Type II
OEFs allow simplifications in the Fpm extension field arithmetic. Examples of OEFs
are given in Table 2.1.

p f parameters Type

27 +3 z13 −5 n = 7, c = −3, m = 13, ω = 5 —
213 −1 z13 −2 n = 13, c = 1, m = 13, ω = 2 I, II
231 −19 z6 −2 n = 31, c = 19, m = 6, ω = 2 II
231 −1 z6 −7 n = 31, c = 1, m = 6, ω = 7 I
232 −5 z5 −2 n = 32, c = 5, m = 5, ω = 2 II
257 −13 z3 −2 n = 57, c = 13, m = 3, ω = 2 II
261 −1 z3 −37 n = 61, c = 1, m = 3, ω = 37 I
289 −1 z2 −3 n = 89, c = 1, m = 2, ω = 3 I

Table 2.1. OEF example parameters. Here, p = 2n − c is prime, and f (z) = zm −ω ∈ Fp[z] is
irreducible over Fp. The field is Fpm = Fp[z]/( f ) of order approximately 2mn .

The following results can be used to determine if a given polynomial f (z) = zm −ω

is irreducible in Fp[z].
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Theorem 2.52 Let m ≥ 2 be an integer and ω ∈ F∗
p. Then the binomial f (z) = zm −ω

is irreducible in Fp[z] if and only if the following two conditions are satisfied:

(i) each prime factor of m divides the order e of ω in F∗
p, but not (p −1)/e;

(ii) p ≡ 1 (mod 4) if m ≡ 0 (mod 4).

If the order of ω as an element of F∗
p is p − 1, then ω is said to be primitive. It is

easily verified that conditions (i) and (ii) of Theorem 2.52 are satisfied if ω is primitive
and m|(p −1).

Corollary 2.53 If ω is a primitive element of F∗
p and m|(p − 1), then zm − ω is

irreducible in Fp[z].
Elements of Fpm are polynomials

a(z) = am−1zm−1 +·· ·+a2z2 +a1z +a0

where the coefficients ai are elements of Fp. We next present algorithms for performing
arithmetic operations in OEFs. Selected timings for field operations appear in §5.1.5.

2.4.1 Addition and subtraction

If a(z) =∑m−1
i=0 ai zi and b(z) =∑m−1

i=0 bi zi are elements of Fpm , then

a(z)+b(z) =
m−1∑
i=0

ci z
i ,

where ci = (ai +bi ) mod p; that is, p is subtracted whenever ai +bi ≥ p. Subtraction
of elements of Fpm is done similarly.

2.4.2 Multiplication and reduction

Multiplication of elements a,b ∈ Fpm can be done by ordinary polynomial multiplica-
tion in Z[z] (i.e., multiplication of polynomials having integer coefficients), along with
coefficient reductions in Fp and a reduction by the polynomial f . This multiplication
takes the form

c(z) = a(z)b(z) =
(m−1∑

i=0

ai z
i
)(m−1∑

j=0

b j z
j
)

≡
2m−2∑
k=0

ck zk ≡ cm−1zm−1 +
m−2∑
k=0

(ck +ωck+m)zk (mod f (z))
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where
ck =

∑
i+ j=k

ai b j mod p.

Karatsuba-Ofman techniques may be applied to reduce the number of Fp multiplica-
tions. For example,

a(z)b(z) = (A1zl + A0)(B1zl + B0)

= A1 B1z2l +[(A1 + A0)(B1 + B0)− A1 B1 − A0 B0]zl + A0 B0

where l = �m/2� and the coefficients A0, A1, B0, B1 are polynomials in Fp[z] of
degree less than l. The process may be repeated, although for small values of m it may
be advantageous to consider splits other than binary. The analogous case for prime
fields was discussed in §2.2.2.

Reduction in FFF p

The most straightforward implementation performs reductions in Fp for every addi-
tion and multiplication encountered during the calculation of each ck . The restriction
log2 |c| ≤ n/2 means that reduction in the subfield Fp requires only a few simple op-
erations. Algorithm 2.54 performs reduction of base-B numbers, using only shifts,
additions, and single-precision multiplications.

Algorithm 2.54 Reduction modulo M = Bn − c

INPUT: A base B, positive integer x , and modulus M = Bn − c where c is an l-digit
base-B positive integer for some l < n.

OUTPUT: x mod M .
1. q0 ←�x/Bn�, r0 ←x −q0 Bn . {x = q0 Bn + r0 with r0 < Bn}
2. r ←r0, i ←0.
3. While qi > 0 do

3.1 qi+1 ←�qi c/Bn�. {qi c = qi+1 Bn + ri+1 with ri+1 < Bn}
3.2 ri+1 ←qi c −qi+1 Bn .
3.3 i ← i +1, r ←r + ri .

4. While r ≥ M do: r ←r − M .
5. Return(r ).

Note 2.55 (implementation details for Algorithm 2.54)

(i) If l ≤ n/2 and x has at most 2n base-B digits, Algorithm 2.54 executes step 3.1
at most twice (i.e., there are at most two multiplications by c).

(ii) As an alternative, the quotient and remainder may be folded into x at each stage.
Steps 1–4 are replaced with the following.
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1. While x ≥ Bn

1.1 Write x = vBn +u with u < Bn.
1.2 x ←cv +u.

2. If x ≥ M then x ←x − M .

(iii) Algorithm 2.54 can be modified to handle the case M = Bn + c for some posi-
tive integer c < Bn−1: in step 3.3, replace r ←r + ri with r ←r + (−1)i ri , and
modify step 4 to also process the case r < 0.

For OEFs, Algorithm 2.54 with B = 2 may be applied, requiring at most two multi-
plications by c in the case that x < 22n . When c = 1 (a type I OEF) and x ≤ (p − 1)2,
the reduction is given by:

write x = 2nv +u; x ←v +u; if x ≥ p then x ←x − p.

Type I OEFs are attractive in the sense that Fp multiplication (with reduction) can be
done with a single multiplication and a few other operations. However, the reductions
modulo p are likely to contribute a significant amount to the cost of multiplication in
Fpm , and it may be more efficient to employ a direct multiply-and-accumulate strategy
to decrease the number of reductions.

Accumulation and reduction

The number of Fp reductions performed in finding the product c(z) = a(z)b(z) in
Fpm can be decreased by accumulation strategies on the coefficients of c(z). Since
f (z) = zm −ω, the product can be written

c(z) = a(z)b(z) ≡
2m−2∑
k=0

ck zk ≡
m−1∑
k=0

ck zk +ω

2m−2∑
k=m

ck zk−m

≡
m−1∑
k=0

( k∑
i=0

ai bk−i +ω

m−1∑
i=k+1

ai bk+m−i︸ ︷︷ ︸
c′

k

)
zk (mod f (z)).

If the coefficient c′
k is calculated as an expression in Z (i.e., as an integer without

reduction modulo p), then c′
k mod p may be performed with a single reduction (rather

than m reductions). The penalty incurred is the multiple-word operations (additions
and multiplication by ω) required in accumulating the terms of c′

k .
In comparison with the straightforward reduce-on-every-operation strategy, it should

be noted that complete reduction on each Fp operation may not be necessary; for exam-
ple, it may suffice to reduce the result to a value which fits in a single word. However,
frequent reduction (to a single word or value less than 2n) is likely to be expensive,
especially if a “carry” or comparison must be processed.
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Depending on the value of p, the multiply-and-accumulate strategy employs two or
three registers for the accumulation (under the assumption that p fits in a register). The
arithmetic resembles that commonly used in prime-field implementations, and multipli-
cation cost in Fpm is expected to be comparable to that in a prime field Fq where q ≈ pm

and which admits fast reduction (e.g., the NIST-recommended primes in §2.2.6).
For the reduction c′

k mod p, note that

c′
k ≤ (p −1)2 +ω(m −1)(p −1)2 = (p −1)2(1+ω(m −1)).

If p = 2n − c is such that

log2(1+ω(m −1))+2log2 |c| ≤ n, (2.4)

then reduction can be done with at most two multiplications by c. As an example, if
p = 228 −165 and f (z) = z6 −2, then

log2(1+ω(m −1))+2log2 |c| = log2 11+2log2 165 < n = 28

and condition (2.4) is satisfied.
If accumulation is in a series of registers each of size W bits, then selecting p =

2n − c with n < W allows several terms to be accumulated in two registers (rather
than spilling into a third register or requiring a partial reduction). The example with
p = 228 − 165 is attractive in this sense if W = 32. However, this strategy competes
with optimal use of the integer multiply, and hence may not be effective if it requires
use of a larger m to obtain a field of sufficient size.

Example 2.56 (accumulation strategies) Consider the OEF defined by p = 231 −1 and
f (z) = z6 −7, on a machine with wordsize W = 32. Since this is a Type I OEF, subfield
reduction is especially simple, and a combination of partial reduction with accumula-
tion may be effective in finding c′

k mod p. Although reduction into a single register
after each operation may be prohibitively expensive, an accumulation into two registers
(with some partial reductions) or into three registers can be employed.

Suppose the accumulator consists of two registers. A partial reduction may be per-
formed on each term of the form ai b j by writing ai b j = 232v + u and then 2v + u is
added to the accumulator. Similarly, the accumulator itself could be partially reduced
after the addition of a product ai b j .

If the accumulator is three words, then the partial reductions are unnecessary, and a
portion of the accumulation involves only two registers. On the other hand, the mul-
tiplication by ω = 7 and the final reduction are slightly more complicated than in the
two-register approach.

The multiply-and-accumulate strategies also apply to field squaring in Fpm . Squaring
requires a total of m + (m2) = m(m + 1)/2 integer multiplications (and possibly m − 1
multiplications by ω). The cost of the Fp reductions depends on the method; in partic-
ular, if only a single reduction is used in finding c′

k , then the number of reductions is
the same as for general multiplication.
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2.4.3 Inversion

Inversion of a ∈ Fpm , a 	= 0, finds a polynomial a−1 ∈ Fpm such that aa−1 ≡ 1
(mod f ). Variants of the Euclidean Algorithm have been proposed for use with OEFs.
However, the action of the Frobenius map along with the special form of f can be used
to obtain an inversion method that is among the fastest. The method is also relatively
simple to implement efficiently once field multiplication is written, since only a few
multiplications are needed to reduce inversion in Fpm to inversion in the subfield Fp.

Algorithm 2.59 computes

a−1 = (ar )−1ar−1 mod f (2.5)

where

r = pm −1

p −1
= pm−1 +·· ·+ p2 + p +1.

Since (ar )p−1 ≡ 1 (mod pm), it follows that ar ∈ Fp. Hence a suitable algorithm may
be applied for inversion in Fp in order to compute the term (ar )−1 in (2.5).

Efficient calculation of ar−1 = a pm−1+···+p in (2.5) is performed by using properties
of the Frobenius map ϕ : Fpm → Fpm defined by ϕ(a) = a p. Elements of Fp are fixed
by this map. Hence, if a = am−1zm−1 +·· ·+a2z2 +a1z +a0, then

ϕi : a �→ am−1z(m−1)pi +·· ·+a1z pi +a0 mod f.

To reduce the powers of z modulo f , write a given nonnegative integer e as e = qm +r ,
where q = �e/m� and r = e mod m. Since f (z) = zm −ω, it follows that

ze = zqm+r ≡ ωq zr (mod f (z)).

Notice that ϕi (a) is somewhat simpler to evaluate if p ≡ 1 (mod m). By Theorem 2.52,
every prime factor of m divides p − 1. Necessarily, if m is square free, the condition
p ≡ 1 (mod m) holds. The results are collected in the following theorem.

Theorem 2.57 (action of Frobenius map iterates) Given an OEF with p = 2n − c and
f (z) = zm −ω, let the Frobenius map on Fpm be given by ϕ : a �→ a p mod f .

(i) The i th iterate of ϕ is the map

ϕi : a �→
m−1∑
j=0

a j ω
� j pi/m�z j pi mod m .

(ii) If m is square-free, then p ≡ 1 (mod m) and hence j pi mod m = j for all 0 ≤
j ≤ m −1.
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The values ze ≡ ω�e/m�ze mod m (mod f (z)) may be precomputed for e = j pi of
interest, in which case ϕi (a) may be evaluated with only m − 1 multiplications in Fp.
Use of an addition chain then efficiently finds ar−1 in equation (2.5) using a few field
multiplications and applications of ϕi .

Example 2.58 (calculating ar−1) The OEF defined by p = 231 −1 and f (z) = z6 −7
has r −1 = p5 + p4 +·· ·+ p. We may calculate ar−1 using the sequence indicated in
Table 2.2 (an addition-chain-like method) for m = 6. Evaluation of ϕ and ϕ2 uses the
precomputed values in Table 2.3 obtained from Theorem 2.57.

m = 3 m = 5 m = 6

T ←a p T1 ←a p T1 ←a p

T ←T a = a p+1 T1 ←T1a = a p+1 T2 ←T1a = a p+1

ar−1 ←T p = a p2+p T2 ←T p2

1 = a p3+p2
T3 ←T p2

2 = a p3+p2

T1 ←T1T2 = a p3+p2+p+1 T2 ←T3T2 = a p3+p2+p+1

ar−1 ←T p
1 T2 ←T p2

2 = a p5+p4+p3+p2

ar−1 ←T2T1
Cost: 1M +2ϕ Cost: 2M +3ϕ Cost: 3M +3ϕ

Table 2.2. Computation of ar−1 for r = pm−1
p−1 , m ∈ {3,5,6}. The final row indicates the cost in

Fpm multiplications (M) and applications of an iterate of the Frobenius map (ϕ).

z j p ≡ ω� j p/m�z j (mod f ) z j p2 ≡ ω� j p2/m�z j (mod f )

z p ≡ 1513477736z z p2 ≡ 1513477735z

z2p ≡ 1513477735z2 z2p2 ≡ 634005911z2

z3p ≡ 2147483646z3 ≡ −1z3 z3p2 ≡ 1z3

z4p ≡ 634005911z4 z4p2 ≡ 1513477735z4

z5p ≡ 634005912z5 z5p2 ≡ 634005911z5

Table 2.3. Precomputation for evaluating ϕi , i ∈ {1,2}, in the case p = 231 −1 and f (z) = z6 −7

(cf. Example 2.58). If a = a5z5 +·· ·+a1z +a0 ∈ Fp6 , then ϕi (a) = a pi ≡∑5
j=0 a jω

� j pi/m�z j

(mod f ).

In general, if w(x) is the Hamming weight of the integer x , then ar−1 can be
calculated with

t1(m) = �log2(m −1)�+w(m −1)−1
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multiplications in Fpm , and

t2(m) =


t1(m)+1, m odd,

j = �log2(m −1)�+1, m = 2 j for some j,

�log2(m −1)�+w(m)−1, otherwise,

applications of Frobenius map iterates. Since t2(m) ≤ t1(m)+1, the time for calculating
ar−1 with m > 2 is dominated by the multiplications in Fpm (each of which is much
more expensive than the m −1 multiplications in Fp needed for evaluation of ϕi ).

Algorithm 2.59 OEF inversion

INPUT: a ∈ Fpm , a 	= 0.
OUTPUT: The element a−1 ∈ Fpm such that aa−1 ≡ 1 (mod f ).

1. Use an addition-chain approach to find ar−1, where r = (pm −1)/(p −1).
2. c←ar = ar−1a ∈ Fp.
3. Obtain c−1 such that cc−1 ≡ 1 (mod p) via an inversion algorithm in Fp .
4. Return(c−1ar−1).

Note 2.60 (implementation details for Algorithm 2.59)

(i) The element c in step 2 of Algorithm 2.59 belongs to Fp. Hence, only arith-
metic contributing to the constant term of ar−1a need be performed (requiring
m multiplications of elements in Fp and a multiplication by ω).

(ii) Since c−1 ∈ Fp, the multiplication in step 4 requires only m Fp-multiplications.

(iii) The running time is dominated by the t1(m) multiplications in Fpm in finding
ar−1, and the cost of the subfield inversion in step 3.

The ratio I/M of field inversion cost to multiplication cost is of fundamental interest.
When m = 6, Algorithm 2.59 will require significantly more time than the t1(6) = 3
multiplications involved in finding ar−1, since the time for subfield inversion (step 3)
will be substantial. However, on general-purpose processors, the ratio is expected to be
much smaller than the corresponding ratio in a prime field Fq where q ≈ pm .

2.5 Notes and further references
§2.1
For an introduction to the theory of finite fields, see the books of Koblitz [254] and
McEliece [311]. A more comprehensive treatment is given by Lidl and Niederreiter
[292].
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§2.2
Menezes, van Oorshot, and Vanstone [319] concisely cover algorithms for ordinary
and modular integer arithmetic of practical interest in cryptography. Knuth [249] is
a standard reference. Koç [258] describes several (modular) multiplication methods,
including classical and Karatsuba-Ofman, a method which interleaves multiplication
with reduction, and Montgomery multiplication.

The decision to base multiplication on operand scanning (Algorithm 2.9) or product
scanning (Algorithm 2.10) is platform dependent. Generally speaking, Algorithm 2.9
has more memory accesses, while Algorithm 2.10 has more complex control code
unless loops are unrolled. Comba [101] compares the methods in detail for 16-bit In-
tel 80286 processors, and the unrolled product-scanning versions were apparently the
inspiration for the “comba” routines in OpenSSL.

Scott [416] discusses multiplication methods on three 32-bit Intel IA-32 processors
(the 80486, Pentium, and Pentium Pro), and provides experimental results for mod-
ular exponentiation with multiplication based on operand scanning, product scanning
(Comba’s method), Karatsuba-Ofman with product scanning, and floating-point hard-
ware. Multiplication with features introduced on newer IA-32 processors is discussed
in §5.1.3. On the Motorola digital signal processor 56000, Dussé and Kaliski [127]
note that extraction of U in the inner loop of Algorithm 2.9 is relatively expensive.
The processor has a 56-bit accumulator but only signed multiplication of 24-bit quan-
tities, and the product scanning approach in Montgomery multiplication is reportedly
significantly faster.

The multiplication method of Karatsuba-Ofman is due to Karatsuba and Ofman [239].
For integers of relatively small size, the savings in multiplications is often insufficient in
Karatsuba-Ofman variants to make the methods competitive with optimized versions
of classical algorithms. Knuth [249] and Koç [258] cover Karatsuba-Ofman in more
detail.

Barrett reduction (Algorithm 2.14) is due to Barrett [29]. Bosselaers, Govaerts, and
Vandewalle [66] provide descriptions and comparative results for classical reduction
and the reduction methods of Barrett and Montgomery. If the transformations and pre-
computation are excluded, their results indicate that the methods are fairly similar in
cost, with Montgomery reduction fastest and classical reduction likely to be slightly
slower than Barrett reduction. These operation count comparisons are supported by
implementation results on an Intel 80386 in portable C. De Win, Mister, Preneel and
Wiener [111] report that the difference between Montgomery and Barrett reduction was
negligible in their implementation on an Intel Pentium Pro of field arithmetic in Fp for
a 192-bit prime p.

Montgomery reduction is due to Montgomery [330]. Koç, Acar, and Kaliski [260]
analyze five Montgomery multiplication algorithms. The methods were identified as
having a separate reduction phase or reduction integrated with multiplication, and
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according to the general form of the multiplication as operand-scanning or product-
scanning. Among the algorithms tested, they conclude that a “coarsely integrated
operand scanning” method (where a reduction step follows a multiplication step at each
index of an outer loop through one of the operands) is simplest and probably best for
general-purpose processors. Koç and Acar [259] extend Montgomery multiplication to
binary fields.

The binary gcd algorithm (Algorithm 2.21) is due to Stein [451], and is analyzed by
Knuth [249]. Bach and Shallit [23] provide a comprehensive analysis of several gcd
algorithms. The binary algorithm for inversion (Algorithm 2.22) is adapted from the
corresponding extended gcd algorithm.

Lehmer [278] proposed a variant of the classical Euclidean algorithm which replaces
most of the expensive multiple-precision divisions by single-precision operations. The
algorithm is examined in detail by Knuth [249], and a slight modification is analyzed
by Sorenson [450]. Durand [126] provides concise coverage of inversion algorithms
adapted from the extended versions of the Euclidean, binary gcd, and Lehmer algo-
rithms, along with timings for RSA and elliptic curve point multiplication on 32-bit
RISC processors (for smartcards) from SGS-Thomson. On these processors, Lehmer’s
method showed significant advantages, and in fact produced point multiplication times
faster than was obtained with projective coordinates.

Algorithm 2.23 for the partial Montgomery inverse is due to Kaliski [234]. De Win,
Mister, Preneel and Wiener [111] report that an inversion method based on this algo-
rithm was superior to variations of the extended Euclidean algorithm (Algorithm 2.19)
in their tests on an Intel Pentium Pro, although details are not provided. The generaliza-
tion in Algorithm 2.25 is due to Savas and Koç [403]; a similar algorithm is provided
for finding the usual inverse.

Simultaneous inversion (Algorithm 2.26) is attributed to Montgomery [331], where the
technique was suggested for accelerating the elliptic curve method (ECM) of factoring.
Cohen [99, Algorithm 10.3.4] gives an extended version of Algorithm 2.26, presented
in the context of ECM.

The NIST primes (§2.2.6) are given in the Federal Information Processing Standards
(FIPS) publication 186-2 [140] on the Digital Signature Standard, as part of the recom-
mended elliptic curves for US Government use. Solinas [445] discusses generalizations
of Mersenne numbers 2k − 1 that permit fast reduction (without division); the NIST
primes are special cases.

§2.3
Algorithms 2.35 and 2.36 for polynomial multiplication are due to López and Dahab
[301]. Their work expands on “comb” exponentiation methods of Lim and Lee [295].
Operation count comparisons and implementation results (on Intel family and Sun Ul-
traSPARC processors) suggest that Algorithm 2.36 will be significantly faster than
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Algorithm 2.34 at relatively modest storage requirements. The multiple-table variants
in Note 2.37 are essentially described by López and Dahab [301, Remark 2].

The OpenSSL contribution by Sun Microsystems Laboratories mentioned in Note 2.38
is authored by Sheueling Chang Shantz and Douglas Stebila. Our notes are based in
part on OpenSSL-0.9.8 snapshots. A significant enchancement is discussed by Weimer-
skirch, Stebila, and Chang Shantz [478]. Appendix C has a few notes on the OpenSSL
library.

The NIST reduction polynomials (§2.3.5) are given in the Federal Information Pro-
cessing Standards (FIPS) publication 186-2 [140] on the Digital Signature Standard, as
part of the recommended elliptic curves for US Government use.

The binary algorithm for inversion (Algorithm 2.49) is the polynomial analogue of
Algorithm 2.22. The almost inverse algorithm (Algorithm 2.50) is due to Schroeppel,
Orman, O’Malley, and Spatscheck [415]; a similar algorithm (Algorithm 2.23) in the
context of Montgomery inversion was described by Kaliski [234].

Algorithms for field division were described by Goodman and Chandrakasan [177],
Chang Shantz [90], Durand [126], and Schroeppel [412]. Inversion and division algo-
rithm implementations are especially sensitive to compiler differences and processor
characteristics, and rough operation count analysis can be misleading. Fong, Hanker-
son, López and Menezes [144] discuss inversion and division algorithm considerations
and provide comparative timings for selected compilers on the Intel Pentium III and
Sun UltraSPARC.

In a normal basis representation, elements of F2m are expressed in terms of a basis
of the form {β,β2,β22

, . . . ,β2m−1}. One advantage of normal bases is that squaring of
a field element is a simple rotation of its vector representation. Mullin, Onyszchuk,
Vanstone and Wilson [337] introduced the concept of an optimal normal basis in or-
der to reduce the hardware complexity of multiplying field elements in F2m whose
elements are represented using a normal basis. Hardware implementations of the arith-
metic in F2m using optimal normal bases are described by Agnew, Mullin, Onyszchuk
and Vanstone [6] and Sunar and Koç [456].

Normal bases of low complexity, also known as Gaussian normal bases, were further
studied by Ash, Blake and Vanstone [19]. Gaussian normal bases are explicitly de-
scribed in the ANSI X9.62 standard [14] for the ECDSA. Experience has shown that
optimal normal bases do not have any significant advantages over polynomial bases for
hardware implementation. Moreover, field multiplication in software for normal basis
representations is very slow in comparison to multiplication with a polynomial basis;
see Reyhani-Masoleh and Hasan [390] and Ning and Yin [348].

§2.4
Optimal extension fields were introduced by Bailey and Paar [25, 26]. Theorem 2.52 is
from Lidl and Niederreiter [292, Theorem 3.75]. Theorem 2.57 corrects [26, Corollary
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2]. The OEF construction algorithm of [26] has a minor flaw in the test for irreducibil-
ity, leading to a few incorrect entries in their table of Type II OEFs (e.g, z25 − 2 is not
irreducible when p = 28 −5). The inversion method of §2.4.3 given by Bailey and Paar
is based on Itoh and Tsujii [217]; see also [183].

Lim and Hwang [293] give thorough coverage to various optimization strategies and
provide useful benchmark timings on Intel and DEC processors. Their operation count
analysis favours a Euclidean algorithm variant over Algorithm 2.59 for inversion. How-
ever, rough operation counts at this level often fail to capture processor or compiler
characteristics adequately, and in subsequent work [294] they note that Algorithm 2.59
appears to be significantly faster in implementation on Intel Pentium II and DEC
Alpha processors. Chung, Sim, and Lee [97] note that the count for the number of
required Frobenius-map applications in inversion given in [26] is not necessarily min-
imal. A revised formula is given, along with inversion algorithm comparisons and
implementation results for a low-power Samsung CalmRISC 8-bit processor with a
math coprocessor.


