Toward High Performance Matrix Multiplication

for Exact Computation

Pascal Giorgi

Joint work with Romain Lebreton (U. Waterloo)
Funded by the French ANR project HPAC

Séminaire CASYS - LJK, April 2014

Motivations

@ Matrix multiplication plays a central role in computer algebra.
algebraic complexity of O(n“) with w < 2.3727 [Williams 2011]

@ Modern processors provide many levels of parallelism.
superscalar, SIMD units, multiple cores

High performance matrix multiplication

v/ numerical computing = classic algorithm + hardware arithmetic

X exact computing # numerical computing
o algebraic algorithm is not the most efficient (# complexity model)

e arithmetic is not directly in the hardware (e.g. Z, Fq, Z[x], Q[x, y, 2])

v

Motivation : Superscalar processor with SIMD
Intel Haswell Execution Engine

Hierarchical memory :

L1 cache : 32kB - 4 cycles

L2 cache : 256kB - 12 cycles
L3 cache : 8MB - 36 cycles
RAM : 32GB - 36 cycles + 57ns

60-entry Unified Reservation Station

Port 0 Port 1 Port 2 Port3 Port 4 Port5

Integer Store
ALUSShift | Address

FMA MA FMul
256b FP 256b FP
Mul Add

Divide

Motivations : practical algorithms

High performance algorithms (rule of thumb)

@ best asymptotic complexity is not alway faster : constants matter
@ better arithmetic count is not always faster : caches matter
@ process multiple data at the same time : vectorization

o fine/coarse grain task parallelism matter : multicore parallelism

Motivations : practical algorithms

High performance algorithms (rule of thumb)

@ best asymptotic complexity is not alway faster : constants matter
@ better arithmetic count is not always faster : caches matter
@ process multiple data at the same time : vectorization

o fine/coarse grain task parallelism matter : multicore parallelism

Our goal : try to incorporate these rules into exact matrix multiplications

Outline

o Matrix multiplication with small integers
9 Matrix multiplication with multi-precision integers

9 Matrix multiplication with polynomials

Outline

o Matrix multiplication with small integers

Matrix multiplication with small integers

This corresponds to the case where each integer result holds in one
processor register :

A, B € Z"" such that ||AB||s < 2°

where s is the register size.

Main interests

@ ring isomorphism :
— computation over Z/pZ is congruent to Z/2°7 when p(n — 1) < 2°.
@ its a building block for matrix mutiplication with larger integers

Matrix multiplication with small integers

Two possibilities for hardware support :
e use floating point mantissa, i.e. s = 253,

@ use native integer, i.e. s = 2%,

Using floating point

historically, the first approach in computer algebra [Dumas, Gautier, Pernet 2002]

v/ out of the box performance from optimized BLAS

X handle matrix with entries < 226

Using native integers

v apply same optimizations as BLAS libraries [Goto, Van De Geijn 2008]
v/ handle matrix with entries < 232

Matrix multiplication with small integers

floating point

integers

Sandy Bridge (2011) | AVX 256-bits | 1 mul+1 add

Nehalem (2008) | SSE4 128-bits | 1 mul+1 add | 1 mul42 add

Haswell (2013) | AVX2 256-bits 2 FMA | 1 mul4-2 add

vector operations per cycle (pipelined)

50

~OpenBlas: double - SSE

45 | =OpenBlas: double - AVX
OpenBlas: double - AVX2

40 | *<Our code: int - SSE
~=0ur code: int - AVX2

35

g

225

H

) /?‘f

o

—

32 64 128 256 512 1024 2048 4096
Matrix dimensions

8192

benchmark on Intel i7-4960HQ ©@ 2.60GHz

Matrix multiplication with small integers

Matrix multiplication modulo a small integer

Let p such that (p — 1)? x n < 253
@ perform the multiplication in Z using BLAS

@ reduce the result modulo p

60

20

50

~-OpenBlas
<#mod p - Classic
mod p - Winograd

LR\

32 64

128 256 512 1024 2048 4096

Matrix dimensions

8192

benchmark on Intel i7-4960HQ @ 2.60GHz

Outline

o Matrix multiplication with multi-precision integers

Matrix multiplication with multi-precision integers

Direct approach

Let M(k) be the bit complexity of k-bit integers multiplication and
A, B € Z"™" such that ||A||oo, ||B]|ec € O(25).

Computing AB using direct algorithm costs n“M(k) bit operations.

X not best possible complexity, i.e. M(k) is super-linear

X not efficient in practice

Remark:
Use evaluation/interpolation technique for better performances!!!

Multi-modular matrix multiplication

Multi-modular approach

K
|AB||oc < M = Hm,-, with primes m; € O(1)
i=1
then AB can be reconstructed with the CRT from (AB) mod m;.

@ for each m; compute A; = A mod m; and B; = B mod m;
@ for each m; compute C; = A;B; mod m;
@ reconstruct C = AB from (G, ..., Ck)

Bit complexity :
O(n“k + n*R(k)) where R(k) is the cost of reduction/reconstruction

Multi-modular matrix multiplication

Multi-modular approach

K
|AB||oc < M = Hm,-, with primes m; € O(1)
i=1
then AB can be reconstructed with the CRT from (AB) mod m;.

@ for each m; compute A; = A mod m; and B; = B mod m;
@ for each m; compute C; = A;B; mod m;
@ reconstruct C = AB from (G, ..., Ck)

Bit complexity :
O(n“k + n*R(k)) where R(k) is the cost of reduction/reconstruction

o R(k) = O(M(k)log(k)) using divide and conquer strategy
e R(k) = O(k?) using naive approach

Multi-modular matrix multiplication

Improving naive approach with linear algebra

reduction/reconstruction of n? data corresponds to matrix multiplication

v/ improve the bit complexity from O(n?k?) to O(n?k“~1)

v benefit from optimized matrix multiplication, i.e. SIMD

Remark :
A similar approach has been used by [Doliskani, Schost 2010] in a
non-distributed code.

Multi-modular reductions of an integer matrix

Let us assume M =[], m; < 8% with m; < .

Multi-reduction of a single entry

Let a=ap+ a1 +...ak_16*"! be a value to reduce modm; then
|a|m, L Bl - 185 Ym, a0 m
: = | : : X : — QX

|a|mk L |Blmy - |ﬂk71|mk ak—1 my

with ||Q|[ee < k32

Lemma : if k3% € O(l) than the reduction of n? integers modulo the
mj's costs O(n*k“~') + O(n?k) bit operations.

Multi-modular reconstruction of an integer matrix

Let us assume M = Hf.;l m; < BX with m; < 3 and M; = M/m;

k
CRT formulae : a = (Z |almy - Mi|M;|,,) mod M
i=1

Reconstruction of a single entry

Let MM Y = ol + {78+ ... ol <! be the CRT constants, then

do Qg - |al m,
dk—1 Ozgk) (st(li)l |a|mk

with a; < k8% and a = ag + ... + ax_18“" mod M the CRT solution.

v

Lemma : if k32 € O(1) than the reconstruction of n? integers from their
images modulo the m;'s costs O(n*k“~1) 4+ O"(nk) bit operations.

Matrix multiplication with multi-precision integers

Implementation of multi-modular approach

@ choose 3 = 2% to optimize B-adic conversions
@ choose m; s.t. n3m; < 2% and use BLAS dgemm

@ use a linear storage for multi-modular matrices

Compare sequential performances with :

@ FLINT library® : uses divide and conquer
e Mathemagix library? : uses divide and conquer

e Doliskani's code3 : uses dgemm for reductions only

fay

. www.flintlib.org
. www.mathemagix.org
3. courtesy of J. Doliskani

N

www.flintlib.org
www.mathemagix.org

Matrix multiplication with multi-precision integers

Integer matrix multiplication
(matrix dim = 32)

64.00

—>%— Flint
—H&— Mathemagix
16.00 | —— Doliskani’s code]
--------- Our code
4.00
(2]
©
c
8 1.00
(0]
w
£
o 0.25
S
'_
0.06
0.02
0.00 L ! L L L
24 26 28 210 212 214

Entry bitsize

benchmark on Intel Xeon-2620 @ 2.0GHz

Matrix multiplication with multi-precision integers

Integer matrix multiplication
(matrix dim = 128)

256.00

—>— Flint
—+— Mathemagix -

64.00 - —m— Doliskani’s code /
--------- Our code
16.00 &

)4

?:ZZ .

Time in seconds

0.25

0.06

0.02

0.00 Il Il Il Il Il
o4 26 28 510 512 o4
Entry bitsize

benchmark on Intel Xeon-2620 @ 2.0GHz

Matrix multiplication with multi-precision integers

Integer matrix multiplication
(matrix dim = 512)

256.00

—%— Flint A
128.00 —HE— Mathemagix

—— Doliskani’s code

64.00 | Our code

32.00

16.00 /Z '
8.00 /Z/ / /
4.00 Z>Z//x /

Time in seconds

200 - /

1.00 ./ Fas
0.50

0.25 Il Il Il
o4 26 28 510 512 o4
Entry bitsize

benchmark on Intel Xeon-2620 @ 2.0GHz

Matrix multiplication with multi-precision integers

Integer matrix multiplication
(matrix dim = 1024)

128.00 T
—><— Flint
—+— Mathemagix
64.00 | —i— Doliskani’s code /<
el I Our code
o 32.00
©
c
Q
(8}
o
E
= 8.0 /
4.00 / e
2.00 Il N Il Il Il Il
o4 26 28 510 512 o4

Entry bitsize

benchmark on Intel Xeon-2620 @ 2.0GHz

Parallel multi-modular matrix multiplication

Q fori=1...k compute A; = Amod m; and B; = B mod m;

@ reconstruct C = AB from (Cy, ..., Ck)

Parallelization of multi-modular reduction/reconstruction

each thread reduces (resp. reconstructs) a chunk of the given matrix

I thread 0 thread 1 I thread 2
| |

Ao = Ajmod mo

T
A1 = Aimod m;

A = A:mod my

Az = A:mod m3

As = A:mod ms

| |
| |
| |
| |
: Ay = A;mod my :
| |
| |
| |
| |

As = Ajmod m

Parallel multi-modular matrix multiplication

Q fori=1...k compute C; = A;B; mod m;

Parallelization of modular multiplication

each thread computes a bunch of matrix multiplications modm;

_1:h_r<;a(_i 6 o gy wo e
C; = A1B; mod my

thread 1 G=ABmoam |
C3 = A3B3 mod m3

thread 2 C—ABimodme |
Cs = AsBs mod ms

_th_re_aa E’) o Go— ABomod ms |

Parallel Matrix multiplication with multi-precision integers

@ based on OpenMP task
e CPU affinity (hwloc-bind), allocator (tcmalloc)
@ still under progress for better memory strategy ! !

Speedup of parallel integer matrix multiplication

|| =dim=1024
bitsize = 1024
10 77 w dim=1024
bitsize = 4096
8 1| dim=256 —
bitsize = 8192

2 6 8 12
number of cores

benchmark on Intel Xeon-2620 @ 2.0GHz (2 NUMA with 6 cores)

Outline

9 Matrix multiplication with polynomials

Matrix multiplication over F,[x]

We consider the "easiest” case :

A, B € Fy[x]"*" such that deg(AB) < k =2°

@ pis a Fourier prime, i.e. p=2'q+1
@ pissuch that n(p —1)? < 2%

O(n*k + n*klog(k)) op. in F, using evaluation/interpolation with FFT

Matrix multiplication over F,[x]
We consider the "easiest” case :

A, B € Fy[x]"*" such that deg(AB) < k = 2"
p

@ pis a Fourier prime, i.e. p=2'q+1
@ pissuch that n(p —1)? < 2%

O(n*k + n*klog(k)) op. in F, using evaluation/interpolation with FFT

Remark:
using Vandermonde matrix on can get a similar approach as for
integers, i.e. O(n“k + n?k“~1)

Matrix multiplication over F,[x]

Evaluation/Interpolation scheme

Let 6 a primitive kth root of unity in Fy.
© fori=1...k compute A; = A(6'~!) and B; = B(¢'~1)
@ fori=1...k compute GG = A;B; € F,
@ interpolate C = AB from (Cy, ...,)

e steps 1 and 3 : O(n?) call to FFT4 over Fy[x]
@ step 2 : k matrix multiplications modulo a small prime p

FFT with SIMD over F,

[>

Butterly operation modulo p

compute X + Y mod p and (X — Y)6% mod p.
@ Barret's modular multiplication with a constant (NTL)
@ calculate into [0,2p) to remove two conditionals [Harvey 2014]

Let X, Y €1[0,2p), W € [0,p). p < /4 and W' = [W5/p].

Algorithm: Butterfly(X,Y,W,W',p)

X' =X+ Y mod 2p

T=X-Y+2p

Q:=[W'T/B] 1 high short product
Y :=(WT — Qp) mod 3 2 low short products
return (X', Y’)

FFT with SIMD over F,

[>

Butterly operation modulo p

compute X + Y mod p and (X — Y)62 mod p.
@ Barret's modular multiplication with a constant (NTL)
@ calculate into [0,2p) to remove two conditionals [Harvey 2014]

Let X, Y €1[0,2p), W € [0,p). p < /4 and W' = [W5/p].

Algorithm: Butterfly(X,Y,W,W',p)

X' =X+ Y mod 2p

T=X-Y+2p

Q:=[W'T/B] 1 high short product
Y :=(WT — Qp) mod 3 2 low short products
return (X', Y’)

v SSE/AVX provide 16 or 32-bits low short product
X no high short product available (use full product)

Matrix multiplication over Fy[x]

Implementation

@ radix-4 FFT with 128-bits SSE (29 bits primes)

o BLAS-based matrix multiplication over F,, [FFLAS-FFPACK library]

Polynomial Matrix Multiplication Performances
1024,00

512,00
256,00
128,00
64,00
32,00
16,00
8,00
4,00

Time in seconds

2,00
1,00

deg=1024

n=16

deg=2048
n=16

deg=4096 | deg=8192 | deg=512 | deg=256 | deg=512

deg=64

deg=32
n=16 n=128 ‘ n=256 ‘ n=512 ‘ n=1024 ‘ n=2048
Matrix with dimension (n) and degree (deg)

n=16

~ WFLINT

EMMX

our code

benchmark on Intel Xeon-2620 @ 2.0GHz

Matrix multiplication over Z[x]

A, B € Z][x]"*" such that deg(AB) < d and ||(AB)i||s < k

e O7(n*“dlog(d)log(k)) bit op. using Kronecker substitution
e O(n*dlog(k) + n*dlog(d)log(k)) bit op. using CRT+FFT

Remark:
if the result’s degree and bitsize are not too large, CRT with Fourier
primes might suffice.

Matrix multiplication over Z[x]

Implementation

@ use CRT with Fourier primes
@ re-use multi-modular reduction/reconstruction with linear algebra

@ re-use multiplication in Fj[x]

M FLINT © our code
4096

2048 —

1024

512 —1

256

128

Time in seconds

log(k)=64 | log(k)=128 | log(k}=256 | log(k)=512 | log(k}=64 | log(k}=128 | log(k)=256

n=16 ; deg=8192 =128 ; deg=512

benchmark on Intel Xeon-2620 @ 2.0GHz

Parallel Matrix multiplication over Z[x]

Very first attempt (work still in progress)

@ parallel CRT with linear algebra (same code as in Z case)
e perform each multiplication over F;[x] in parallel

@ some part of the code still sequential

n d | log(k) || 6 cores | 12 cores | time seq
64 | 1024 600 x3.52 x4.88 61.1s
32 | 4096 600 || x3.68 x5.02 64.4s
32 | 2048 1024 x3.95 x5.73 54.5s

128 128 1024 x3.76 x5.55 53.9s

Polynomial Matrix in LinBox (proposition)

Generic handler class for Polynomial Matrix

template<size_t type, size_t storage, class Field>
class PolynomialMatrix;

Specialization for different memory strategy

// Matrix of polynomials
template<class _Field>
class PolynomialMatrix<PMType:: polfirst ,PMStorage:: plain, _Field >;

// Polynomial of matrices
template<class _Field>
class PolynomialMatrix<PMType:: matfirst ,PMStorage:: plain , _Field >;

// Polynomial of matrices (partial view on monomials)
template<class _Field>
class PolynomialMatrix<PMType:: matfirst ,PMStorage:: view, _Field >;

Conclusion

High performance tools for exact linear algebra :

@ matrix multiplication through floating points
e multi-dimensional CRT
@ FFT for polynomial over wordsize prime fields

@ adaptative matrix representation

We provide in the LinBox library (www.linalg.org)
o efficient sequential/parallel matrix multiplication over Z

o efficient sequential matrix multiplication over Fy[x] and Z[x]

www.linalg.org

	Matrix multiplication with small integers
	Matrix multiplication with multi-precision integers
	Matrix multiplication with polynomials

