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χ-boundedness

χ(G ): minimum number of colours needed for a colouring.
ω(G ): size of a largest clique.

ω ≤ χ
?
≤ f (ω)

Theorem (Erdős ’59)

There exist graphs with arbitrarily large chromatic number and
arbitrarily large girth.

Theorem (Strong perfect graph theorem, Chudnovsky, Robertson,
Seymour, Thomas ’02)

Every graph with no induced C2p+5 nor C2p+5 satisfies χ = ω.

Not always possible: intersections of segments in the plane.

Marthe Bonamy Colouring graphs of bounded cliquewidth 2/7



χ-boundedness

χ(G ): minimum number of colours needed for a colouring.
ω(G ): size of a largest clique.

ω ≤ χ
?
≤ f (ω)

Theorem (Erdős ’59)

There exist graphs with arbitrarily large chromatic number and
arbitrarily large girth.

Theorem (Strong perfect graph theorem, Chudnovsky, Robertson,
Seymour, Thomas ’02)

Every graph with no induced C2p+5 nor C2p+5 satisfies χ = ω.

Not always possible: intersections of segments in the plane.

Marthe Bonamy Colouring graphs of bounded cliquewidth 2/7



χ-boundedness

χ(G ): minimum number of colours needed for a colouring.
ω(G ): size of a largest clique.

ω ≤ χ
?
≤ f (ω)

Theorem (Erdős ’59)

There exist graphs with arbitrarily large chromatic number and
arbitrarily large girth.

Theorem (Strong perfect graph theorem, Chudnovsky, Robertson,
Seymour, Thomas ’02)

Every graph with no induced C2p+5 nor C2p+5 satisfies χ = ω.

Not always possible: intersections of segments in the plane.

Marthe Bonamy Colouring graphs of bounded cliquewidth 2/7



χ-boundedness

χ(G ): minimum number of colours needed for a colouring.
ω(G ): size of a largest clique.

ω ≤ χ
?
≤ f (ω)

Theorem (Erdős ’59)

There exist graphs with arbitrarily large chromatic number and
arbitrarily large girth.

Theorem (Strong perfect graph theorem, Chudnovsky, Robertson,
Seymour, Thomas ’02)

Every graph with no induced C2p+5 nor C2p+5 satisfies χ = ω.

Not always possible: intersections of segments in the plane.

Marthe Bonamy Colouring graphs of bounded cliquewidth 2/7



Good χ-bounding functions

Theorem (Dvořák, Král’ ’11)

Graphs of bounded cliquewidth are χ-bounded.

Generalizes to bounded twinwidth ( Friday).

Conjecture (Esperet ’16)

For every hereditary class G, if there is f such that χ ≤ f (ω), then
there is c such that χ ≤ ωc .

Open even for P5-free graphs...

Theorem (B., Pilipczuk ’19)

Graphs of bounded cliquewidth are polynomially χ-bounded.

Theorem (B., Pilipczuk ’19)

For every k , every graph of cliquewidth ≤ k satisfies χ ≤ ω22O(k log k)

.
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Lower bound

Theorem (B., Pilipczuk ’19)

For every k , every graph of cliquewidth ≤ k satisfies χ ≤ ω22O(k log k)

.

Chudnovsky, Penev, Scott, Trotignon (2013): need ωΩ(log k) above.

F : triangle-free graph with fractional chromatic number > 2d .

Iteratively (p − 1 times), replace every vertex with a copy of F .
ω = 2p

χ > (2d)p = (2p)d = ωd

cw ≤ |V (F )| ≤ (2d)2 (by considering R(3, d · 2d))
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General approach

Graphs of cliquewidth ≤ 2: exactly cographs.

Cograph ⇔ Either elementary (single vertex) or disjoint union of
two cographs or join of two cographs.

≈ Same general idea as for perfect graphs (basic classes +
decomposition theorem).

Here: Either elementary (single vertex) or there is a cut of “low
diversity”.
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Useful tools

Theorem (Chudnovsky, Penev, Scott, Trotignon ’13)

For every hereditary class G, if ∃c such that χ ≤ ωc , then ∃d such
that χ ≤ ωd for any graph in the closure of G under substitutions.

Here d = 3c + 11.
Key ingredient in the proof: “substitution depth”. It’s a
lower-bound on ω. Naively: χ ≤ ωcω. (Better: partition vertices
based on ω of the graph that substitutes them).

Theorem (B., Pilipczuk ’19)

For every hereditary class G, and every k ∈ N, if ∃c such that
χ ≤ ωc , then ∃d such that χ ≤ ωd for any graph in the closure of
G under cuts of diversity ≤ k .

(Colcombet’s version of) Simon’s Factorization Forest Theorem.
 “decomposition depth” at most 2O(k log k)
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Conclusion

Survey on χ-boundedness: https://arxiv.org/abs/1812.07500
Our paper: https://arxiv.org/abs/1910.00697
Linear cliquewidth: https://arxiv.org/abs/1911.07748
Substitutions: https://arxiv.org/abs/1302.1145

Thanks!
(See you at 2pm for Rose’s talk)
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