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The multiples origins of treewidth

1972: Bertelè and Brioschi (dimension).

1976: Halin (S-functions of graphs).

1984: Arnborg and Proskurowski (partial k-trees).

1984: Robertson and Seymour (treewidth).
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A measure of the similarity with a tree
Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

Number of cycles.

Vertex-deletion distance to a forest (feedback vertex set number).

Generalization based on the following property of trees:
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Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.
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An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

7/50



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:

⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

7/50



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

7/50



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

7/50



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

7/50



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

7/50



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G . 7/50



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

G

7/50



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

G

T

7/50



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

G

T

7/50



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu
G

T

7/50



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu

Xv

G

T

7/50



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu

Xv

Xw

G

T

7/50



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu

Xv

Xw

Xs

G

T

7/50



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu

Xv

Xw

Xs

Xt

G

T

7/50



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu

Xv

Xw

Xs

Xt

Xz

G

T

7/50



Treewidth measures the tree-likeness of a graph
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Every bag of a tree decomposition is a separator
Let (T ,X = {Xt | t ∈ V (T )}) be a tree decomposition of a graph G .

For every t ∈ V (T ), Xt is a separator in G .

For every edge {t1, t2} ∈ E (T ), Xt1 ∩ Xt2 is a separator in G .

Xt1 ∩Xt2

Xt1 Xt2
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Every clique is entirely contained in some bag
Let G be a graph, (T ,X ) be a tree decomposition of G , and let
K ⊆ V (G) be a clique.

Then there exists a bag Xt ∈ X such that K ⊆ Xt .

Let K = {v1, . . . , vt}. Proof by induction on t. True for t ≤ 2.

Consider the subtrees in (T ,X ) corresponding to vertices {v1, . . . , vt−1}:

10/50



Every clique is entirely contained in some bag
Let G be a graph, (T ,X ) be a tree decomposition of G , and let
K ⊆ V (G) be a clique. Then there exists a bag Xt ∈ X such that K ⊆ Xt .

Let K = {v1, . . . , vt}. Proof by induction on t. True for t ≤ 2.

Consider the subtrees in (T ,X ) corresponding to vertices {v1, . . . , vt−1}:

10/50



Every clique is entirely contained in some bag
Let G be a graph, (T ,X ) be a tree decomposition of G , and let
K ⊆ V (G) be a clique. Then there exists a bag Xt ∈ X such that K ⊆ Xt .

Let K = {v1, . . . , vt}. Proof by induction on t.

True for t ≤ 2.

Consider the subtrees in (T ,X ) corresponding to vertices {v1, . . . , vt−1}:

10/50



Every clique is entirely contained in some bag
Let G be a graph, (T ,X ) be a tree decomposition of G , and let
K ⊆ V (G) be a clique. Then there exists a bag Xt ∈ X such that K ⊆ Xt .

Let K = {v1, . . . , vt}. Proof by induction on t. True for t ≤ 2.

Consider the subtrees in (T ,X ) corresponding to vertices {v1, . . . , vt−1}:

10/50



Every clique is entirely contained in some bag
Let G be a graph, (T ,X ) be a tree decomposition of G , and let
K ⊆ V (G) be a clique. Then there exists a bag Xt ∈ X such that K ⊆ Xt .

Let K = {v1, . . . , vt}. Proof by induction on t. True for t ≤ 2.

Consider the subtrees in (T ,X ) corresponding to vertices {v1, . . . , vt−1}:

10/50



Every clique is entirely contained in some bag
Let G be a graph, (T ,X ) be a tree decomposition of G , and let
K ⊆ V (G) be a clique. Then there exists a bag Xt ∈ X such that K ⊆ Xt .

Let K = {v1, . . . , vt}. Proof by induction on t. True for t ≤ 2.

Consider the subtrees in (T ,X ) corresponding to vertices {v1, . . . , vt−1}:

Tv1

10/50



Every clique is entirely contained in some bag
Let G be a graph, (T ,X ) be a tree decomposition of G , and let
K ⊆ V (G) be a clique. Then there exists a bag Xt ∈ X such that K ⊆ Xt .

Let K = {v1, . . . , vt}. Proof by induction on t. True for t ≤ 2.

Consider the subtrees in (T ,X ) corresponding to vertices {v1, . . . , vt−1}:

Tv1

Tv2

10/50



Every clique is entirely contained in some bag
Let G be a graph, (T ,X ) be a tree decomposition of G , and let
K ⊆ V (G) be a clique. Then there exists a bag Xt ∈ X such that K ⊆ Xt .

Let K = {v1, . . . , vt}. Proof by induction on t. True for t ≤ 2.

Consider the subtrees in (T ,X ) corresponding to vertices {v1, . . . , vt−1}:

Tv1

Tv2
Tv3

10/50



Every clique is entirely contained in some bag
Let G be a graph, (T ,X ) be a tree decomposition of G , and let
K ⊆ V (G) be a clique. Then there exists a bag Xt ∈ X such that K ⊆ Xt .

Let K = {v1, . . . , vt}. Proof by induction on t. True for t ≤ 2.

Consider the subtrees in (T ,X ) corresponding to vertices {v1, . . . , vt−1}:

Tv1

Tv2
Tv3

Tv4

10/50



Every clique is entirely contained in some bag
Let G be a graph, (T ,X ) be a tree decomposition of G , and let
K ⊆ V (G) be a clique. Then there exists a bag Xt ∈ X such that K ⊆ Xt .

Let K = {v1, . . . , vt}. Proof by induction on t. True for t ≤ 2.

Consider the subtrees in (T ,X ) corresponding to vertices {v1, . . . , vt−1}:

Tv1

Tv2
Tv3

Tv4

10/50



Every clique is entirely contained in some bag
Let G be a graph, (T ,X ) be a tree decomposition of G , and let
K ⊆ V (G) be a clique. Then there exists a bag Xt ∈ X such that K ⊆ Xt .

Let K = {v1, . . . , vt}. Proof by induction on t. True for t ≤ 2.

Consider the subtrees in (T ,X ) corresponding to vertices {v1, . . . , vt−1}:

Tv1

Tv2
Tv3

Tv4

10/50



Every clique is entirely contained in some bag
Let G be a graph, (T ,X ) be a tree decomposition of G , and let
K ⊆ V (G) be a clique. Then there exists a bag Xt ∈ X such that K ⊆ Xt .

Let K = {v1, . . . , vt}. Proof by induction on t. True for t ≤ 2.

Consider the subtrees in (T ,X ) corresponding to vertices {v1, . . . , vt−1}:

Tv1

Tv2
Tv3

Tv4

10/50



Examples

If F is a forest, then tw(F ) = 1.

If C is a cycle, then tw(C) = 2.

If Kn is the clique on n vertices, then tw(Kn) = n − 1.

If Ka,b is the complete bipartite graph with parts of sizes a and b,
then tw(Ka,b) = min{a, b}+ 1.

If G is an outerplanar graph, or a series-parallel graph, then
tw(G) = 2.

If G is a planar graph on n vertices, then tw(G) = O(
√

n).
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Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 Treewidth behaves very well algorithmically, and algorithms
parameterized by treewidth appear very often in FPT algorithms.

3 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).
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Next section is...

1 Definition and simple properties

2 Dynamic programming on tree decompositions
Two simple algorithms
Courcelle’s theorem
Introduction to parameterized complexity

3 Brambles and duality

4 Computing treewidth
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Weighted Independent Set on trees
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Observations:
1 Every vertex of a tree is a separator.
2 The union of independent sets of distinct connected components is an

independent set.
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Dynamic programming on tree decompositions

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

Starting from the leaves of the tree decomposition, a set of
appropriately defined partial solutions is computed recursively until
the root, where a global solution is obtained.

The way that these partial solutions are defined depends on each
particular problem:

G′

GB

B

A

[Figure by Valentin Garnero]
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Back to tree decompositions

Let (T , {Xt | t ∈ V (T )}) be a tree decomposition of a graph G .

For every t ∈ V (T ), Xt is a separator in G .

For every edge {t1, t2} ∈ E (T ), Xt1 ∩ Xt2 is a separator in G .

Notation: If we root (T , {Xt | t ∈ V (T )}), then:

Vt : all vertices of G appearing in bags that are descendants of t.

Gt = G [Vt ].
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Independent Set on tree decompositions

∀S ⊆ Xt , IS(S, t) = maximum independent set I of Gt s.t. I ∩ Xt = S
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Contradiction! Xtj is not a separator.
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Independent Set on tree decompositions

Idea of the dynamic programming algorithm:

1

t

2t

S

t
t3

S2

How to compute |IS(S, t)| from |IS(S i
j , tj)|, ∀j ∈ [`], ∀S i

j ⊆ Xtj :

verify that S i
j ∩ Xt = S ∩ Xtj = Sj and Sj ⊆ S i

j .
verify that S i

j is an independent set.

|IS(S, t)| =


|S| +∑

i∈[`] max {|IS(S i
j , tj)| − |Sj | :

S i
j ∩ Xt = Sj ∧ Sj ⊆ S i

j independent}

19/50



Independent Set on tree decompositions

Idea of the dynamic programming algorithm:

1

t

2t

S

t
t3

S2

How to compute |IS(S, t)| from |IS(S i
j , tj)|, ∀j ∈ [`], ∀S i

j ⊆ Xtj :

verify that S i
j ∩ Xt = S ∩ Xtj = Sj and Sj ⊆ S i

j .

verify that S i
j is an independent set.

|IS(S, t)| =


|S| +∑

i∈[`] max {|IS(S i
j , tj)| − |Sj | :

S i
j ∩ Xt = Sj ∧ Sj ⊆ S i

j independent}

19/50



Independent Set on tree decompositions

Idea of the dynamic programming algorithm:

1

t

2t

S

t
t3

S2

How to compute |IS(S, t)| from |IS(S i
j , tj)|, ∀j ∈ [`], ∀S i

j ⊆ Xtj :

verify that S i
j ∩ Xt = S ∩ Xtj = Sj and Sj ⊆ S i

j .

verify that S i
j is an independent set.

|IS(S, t)| =


|S| +∑

i∈[`] max {|IS(S i
j , tj)| − |Sj | :

S i
j ∩ Xt = Sj ∧ Sj ⊆ S i

j independent}

19/50



Independent Set on tree decompositions

Idea of the dynamic programming algorithm:

1

t

2t

S

t
t3

S2

How to compute |IS(S, t)| from |IS(S i
j , tj)|, ∀j ∈ [`], ∀S i

j ⊆ Xtj :

verify that S i
j ∩ Xt = S ∩ Xtj = Sj and Sj ⊆ S i

j .
verify that S i

j is an independent set.

|IS(S, t)| =


|S| +∑

i∈[`] max {|IS(S i
j , tj)| − |Sj | :

S i
j ∩ Xt = Sj ∧ Sj ⊆ S i

j independent}

19/50



Independent Set on tree decompositions

Idea of the dynamic programming algorithm:

1

t

2t

S

t
t3

S2

How to compute |IS(S, t)| from |IS(S i
j , tj)|, ∀j ∈ [`], ∀S i

j ⊆ Xtj :

verify that S i
j ∩ Xt = S ∩ Xtj = Sj and Sj ⊆ S i

j .
verify that S i

j is an independent set.

|IS(S, t)| =


|S| +∑

i∈[`] max {|IS(S i
j , tj)| − |Sj | :

S i
j ∩ Xt = Sj ∧ Sj ⊆ S i

j independent}
19/50



Independent Set on tree decompositions

|IS(S, t)| =


|S| +∑

i∈[`] max {|IS(S i
j , tj)| − |Sj | :

S i
j ∩ Xt = Sj ∧ Sj ⊆ S i

j independent}

Analysis of the running time, with bags of size k:

Computing IS(S, t): O(2k · k2 · `).

Computing IS(S, t) for every S ⊆ Xt : O(2k · 2k · k2 · `).

Computing an optimal solution: O(4k · k2 · n).

F We have to add the time in order to compute a “good” tree
decomposition of the input graph (we discuss this later).
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Helpful tool: nice tree decompositions

A rooted tree decomposition (T , {Xt : t ∈ T}) of a graph G is nice if
every node t ∈ V (T ) \ root is of one of the following four types:

�

Leaf: no children and |Xt | = 1.

Introduce: a unique child t ′ and Xt = Xt′ ∪ {v} with v /∈ Xt′ .
Forget: a unique child t ′ and Xt = Xt′ \ {v} with v ∈ Xt′ .
Join: two children t1 and t2 with Xt = Xt1 = Xt2 .
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Forget: a unique child t ′ and Xt = Xt′ \ {v} with v ∈ Xt′ .

Join: two children t1 and t2 with Xt = Xt1 = Xt2 .

Lemma
A tree decomposition (T , {Xt : t ∈ T}) of width k and x nodes of an
n-vertex graph G can be transformed in time O(k2 · n) into a nice tree
decomposition of G of width k and k · x nodes.
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Simpler algorithm for Independent Set

How to compute IS(S, t) for every S ⊆ Xt :

If t is a leaf: trivial.

t is an introduce node: Xt = Xt′ ∪ {v}

|IS(S, t)| =


|IS(S, t ′)| if v /∈ S
|IS(S \ {v}, t ′)|+ 1 if v ∈ S and S independent
−∞ otherwise

If t is a forget node: Xt = Xt′ \ {v}
|IS(S, t)| = max{|IS(S, t ′)|, |IS(S ∪ {v}, t ′)|}

If t is a join node: Xt = Xt1 = Xt2

|IS(S, t)| = |IS(S, t1)|+ |IS(S, t2)| − |S|

Complexity : O(2k · k2 · n)
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Hamiltonian Cycle on tree decompositions
[slides borrowed from Christophe Paul]

Let C be a Hamiltonian cycle.

Note that C ∩ G [Vt ] is a
collection of paths.

Partition of the bag Xt :
X 0

t : isolated in G [Vt ].
X 1

t : extremities of paths.
X 2

t : internal vertices.

Vt

Xt
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Let C be a Hamiltonian cycle.

Note that C ∩ G [Vt ] is a
collection of paths.

Partition of the bag Xt :
X 0

t : isolated in G [Vt ].
X 1

t : extremities of paths.
X 2

t : internal vertices.
Vt

Xt

For every node t of the tree decomposition, we need to know if

(X 0
t , X 1

t , X 2
t , M)

where M is a matching on X 1
t , corresponds to a partial solution. skip
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Forget node

Let t be a forget node and t ′ its child such that Xt = Xt′ \ {v}.

v

Claim Xt is a separator ⇒
∀v ∈ Vt \ Xt , v is internal in every partial solution.
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∀v ∈ Vt \ Xt , v is internal in every partial solution.

(X 0
t′ , X 1

t′ , X 2
t′ \ {v}, M) is a partial solution for t
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t′ , M) is a partial solution for t ′ with v ∈ X 2
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Introduce node

Let t be an introduce node and t ′ its child such that Xt = Xt′ ∪ {v}.

Suppose: v ∈ X 0
t .
v
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Introduce node (2)

Let t be an introduce node and t ′ its child such that Xt = Xt′ ∪ {v}.

Suppose: v ∈ X 1
t .

v

Fact Xt′ is a separator ⇒ N(v) ∩ Vt ⊆ Xt .
a vertex u ∈ X 1

t′ becomes internal ⇒ u ∈ X 2
t .

or a vertex w ∈ X 0
t′ becomes extremity of a path ⇒ w ∈ X 1

t (similar).

(X 0
t′ , X 1

t′ ∪ {v} \ {u}, X 2
t′ ∪ {u}, M ′) is a partial solution for t

⇔
(X 0

t′ , X 1
t′ , X 2

t′ , M) is a partial solution for t ′
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Introduce node (3)

Let t be an introduce node and t ′ its child such that Xt = Xt′ ∪ {v}.

Suppose. v ∈ X 2
t . v

Fact Xt′ is a separator ⇒ N(v) ∩ Vt ⊆ Xt .

1 two vertices u, u′ ∈ X 1
t′ become internal ⇒ u, u′ ∈ X 2

t .

2 two vertices w , w ′ ∈ X 0
t′ become extremities ⇒ w , w ′ ∈ X 1

t .
3 w ∈ X 0

t′ becomes extremity and v ∈ X 1
t′ internal ⇒ w ∈ X 1

t , v ∈ X 2
t .

(X 0
t′ , X 1

t′ \ {u, u′}, X 2
t′ ∪ {v , u, u′}, M ′) is a partial solution for t

⇔
(X 0

t′ , X 1
t′ , X 2

t′ , M) is a partial solution for t ′
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Join node

Let t be a join node and t1, t2 its children such that Xt = Xt1 = Xt2

Fact For being compatible, partial solutions should verify:
X 2

t1 ⊆ X 0
t2 and X 1

t1 ⊆ X 1
t2 ∪ X 0

t2 .
X 2

t2 ⊆ X 0
t1 and X 1

t2 ⊆ X 1
t1 ∪ X 0

t1 .
The union of matchings M1 et M2 does not create any cycle.
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Hamiltonian Cycle on tree decompositions

Analysis of the running time, given a tree decomposition of width k:

Number of subproblems at each node: : 3k · k!.

Number of nodes in a nice tree decomposition: k · n.

Total running time of the algorithm: kO(k) · n.

Can this approach be generalized to more problems?
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Next subsection is...

1 Definition and simple properties

2 Dynamic programming on tree decompositions
Two simple algorithms
Courcelle’s theorem
Introduction to parameterized complexity

3 Brambles and duality

4 Computing treewidth
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Monadic second order logic of graphs

We represent a graph G = (V , E ) with a structure
G = (U, vertex, edge, I), where

U = V ∪ E is the universe.
“vertex” and “edge” are unary relations that allow to distinguish
vertices and edges.
I = {(v , e) | v ∈ V , e ∈ E , v ∈ e} is the incidence relation.

An MSO formula is built using the following:
Logical connectors ∨, ∧, ⇒, ¬, =, 6=.
Predicates adj(u, v) and inc(e, v).
Relations ∈, ⊆ on vertex/edge sets.
Quantifiers ∃, ∀ on vertex/edge variables or vertex/edge sets .

(MSO1/MSO2)
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Monadic second order logic of graphs: examples

Example 1 Expressing that {u, v} ∈ E (G): ∃e ∈ E , inc(u, e) ∧ inc(v , e).

Example 2 Expressing that a set S ⊆ V (G) is a dominating set.

DomSet(S) : ∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G).

Example 3 Expressing that a graph G = (V , E ) is connected.

For every bipartition de V , there is a transversal edge:

Expressing that two sets V1, V2 define a bipartition of V :
∀v ∈ V , (v ∈ V1 ∨ v ∈ V2) ∧ (v ∈ V1 ⇒ v 6∈ V2) ∧ (v ∈ V2 ⇒ v 6∈ V1).
Connected: ∀ bipartition V1, V2, ∃v1 ∈ V1, ∃v2 ∈ V2, {v1, v2} ∈ E (G).

Other properties that can be expressed in MSO2:
a set being a vertex cover, independent set.
a graph being k-colorable (for fixed k), having a Hamiltonian cycle.

32/50



Monadic second order logic of graphs: examples

Example 1 Expressing that {u, v} ∈ E (G): ∃e ∈ E , inc(u, e) ∧ inc(v , e).

Example 2 Expressing that a set S ⊆ V (G) is a dominating set.

DomSet(S) : ∀v ∈ V (G) \ S, ∃u ∈ S : {u, v} ∈ E (G).

Example 3 Expressing that a graph G = (V , E ) is connected.

For every bipartition de V , there is a transversal edge:

Expressing that two sets V1, V2 define a bipartition of V :
∀v ∈ V , (v ∈ V1 ∨ v ∈ V2) ∧ (v ∈ V1 ⇒ v 6∈ V2) ∧ (v ∈ V2 ⇒ v 6∈ V1).
Connected: ∀ bipartition V1, V2, ∃v1 ∈ V1, ∃v2 ∈ V2, {v1, v2} ∈ E (G).

Other properties that can be expressed in MSO2:
a set being a vertex cover, independent set.
a graph being k-colorable (for fixed k), having a Hamiltonian cycle.

32/50



Monadic second order logic of graphs: examples

Example 1 Expressing that {u, v} ∈ E (G): ∃e ∈ E , inc(u, e) ∧ inc(v , e).

Example 2 Expressing that a set S ⊆ V (G) is a dominating set.

DomSet(S) : ∀v ∈ V (G) \ S, ∃u ∈ S : {u, v} ∈ E (G).

Example 3 Expressing that a graph G = (V , E ) is connected.

For every bipartition de V , there is a transversal edge:

Expressing that two sets V1, V2 define a bipartition of V :
∀v ∈ V , (v ∈ V1 ∨ v ∈ V2) ∧ (v ∈ V1 ⇒ v 6∈ V2) ∧ (v ∈ V2 ⇒ v 6∈ V1).
Connected: ∀ bipartition V1, V2, ∃v1 ∈ V1, ∃v2 ∈ V2, {v1, v2} ∈ E (G).

Other properties that can be expressed in MSO2:
a set being a vertex cover, independent set.
a graph being k-colorable (for fixed k), having a Hamiltonian cycle.

32/50



Monadic second order logic of graphs: examples

Example 1 Expressing that {u, v} ∈ E (G): ∃e ∈ E , inc(u, e) ∧ inc(v , e).

Example 2 Expressing that a set S ⊆ V (G) is a dominating set.

DomSet(S) : ∀v ∈ V (G) \ S, ∃u ∈ S : {u, v} ∈ E (G).

Example 3 Expressing that a graph G = (V , E ) is connected.

For every bipartition de V , there is a transversal edge:

Expressing that two sets V1, V2 define a bipartition of V :
∀v ∈ V , (v ∈ V1 ∨ v ∈ V2) ∧ (v ∈ V1 ⇒ v 6∈ V2) ∧ (v ∈ V2 ⇒ v 6∈ V1).
Connected: ∀ bipartition V1, V2, ∃v1 ∈ V1, ∃v2 ∈ V2, {v1, v2} ∈ E (G).

Other properties that can be expressed in MSO2:
a set being a vertex cover, independent set.
a graph being k-colorable (for fixed k), having a Hamiltonian cycle.

32/50



Monadic second order logic of graphs: examples

Example 1 Expressing that {u, v} ∈ E (G): ∃e ∈ E , inc(u, e) ∧ inc(v , e).

Example 2 Expressing that a set S ⊆ V (G) is a dominating set.

DomSet(S) : ∀v ∈ V (G) \ S, ∃u ∈ S : {u, v} ∈ E (G).

Example 3 Expressing that a graph G = (V , E ) is connected.

For every bipartition de V , there is a transversal edge:

Expressing that two sets V1, V2 define a bipartition of V :
∀v ∈ V , (v ∈ V1 ∨ v ∈ V2) ∧ (v ∈ V1 ⇒ v 6∈ V2) ∧ (v ∈ V2 ⇒ v 6∈ V1).

Connected: ∀ bipartition V1, V2, ∃v1 ∈ V1,∃v2 ∈ V2, {v1, v2} ∈ E (G).

Other properties that can be expressed in MSO2:
a set being a vertex cover, independent set.
a graph being k-colorable (for fixed k), having a Hamiltonian cycle.

32/50



Monadic second order logic of graphs: examples

Example 1 Expressing that {u, v} ∈ E (G): ∃e ∈ E , inc(u, e) ∧ inc(v , e).

Example 2 Expressing that a set S ⊆ V (G) is a dominating set.

DomSet(S) : ∀v ∈ V (G) \ S, ∃u ∈ S : {u, v} ∈ E (G).

Example 3 Expressing that a graph G = (V , E ) is connected.

For every bipartition de V , there is a transversal edge:

Expressing that two sets V1, V2 define a bipartition of V :
∀v ∈ V , (v ∈ V1 ∨ v ∈ V2) ∧ (v ∈ V1 ⇒ v 6∈ V2) ∧ (v ∈ V2 ⇒ v 6∈ V1).
Connected: ∀ bipartition V1, V2, ∃v1 ∈ V1, ∃v2 ∈ V2, {v1, v2} ∈ E (G).

Other properties that can be expressed in MSO2:
a set being a vertex cover, independent set.
a graph being k-colorable (for fixed k), having a Hamiltonian cycle.

32/50



Monadic second order logic of graphs: examples

Example 1 Expressing that {u, v} ∈ E (G): ∃e ∈ E , inc(u, e) ∧ inc(v , e).

Example 2 Expressing that a set S ⊆ V (G) is a dominating set.

DomSet(S) : ∀v ∈ V (G) \ S, ∃u ∈ S : {u, v} ∈ E (G).

Example 3 Expressing that a graph G = (V , E ) is connected.

For every bipartition de V , there is a transversal edge:

Expressing that two sets V1, V2 define a bipartition of V :
∀v ∈ V , (v ∈ V1 ∨ v ∈ V2) ∧ (v ∈ V1 ⇒ v 6∈ V2) ∧ (v ∈ V2 ⇒ v 6∈ V1).
Connected: ∀ bipartition V1, V2, ∃v1 ∈ V1, ∃v2 ∈ V2, {v1, v2} ∈ E (G).

Other properties that can be expressed in MSO2:
a set being a vertex cover, independent set.

a graph being k-colorable (for fixed k), having a Hamiltonian cycle.

32/50



Monadic second order logic of graphs: examples

Example 1 Expressing that {u, v} ∈ E (G): ∃e ∈ E , inc(u, e) ∧ inc(v , e).

Example 2 Expressing that a set S ⊆ V (G) is a dominating set.

DomSet(S) : ∀v ∈ V (G) \ S, ∃u ∈ S : {u, v} ∈ E (G).

Example 3 Expressing that a graph G = (V , E ) is connected.

For every bipartition de V , there is a transversal edge:

Expressing that two sets V1, V2 define a bipartition of V :
∀v ∈ V , (v ∈ V1 ∨ v ∈ V2) ∧ (v ∈ V1 ⇒ v 6∈ V2) ∧ (v ∈ V2 ⇒ v 6∈ V1).
Connected: ∀ bipartition V1, V2, ∃v1 ∈ V1, ∃v2 ∈ V2, {v1, v2} ∈ E (G).

Other properties that can be expressed in MSO2:
a set being a vertex cover, independent set.
a graph being k-colorable (for fixed k), having a Hamiltonian cycle.

32/50



Theorem (Courcelle. 1990)
Every problem expressible in MSO2 can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

The function f (tw) depends on the structure of the MSO2 formula.

Withing the same running time, one can also optimize the size of a
vertex/edge set satisfying an MSO2 formula.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

In parameterized complexity: FPT parameterized by treewidth.
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Next subsection is...

1 Definition and simple properties

2 Dynamic programming on tree decompositions
Two simple algorithms
Courcelle’s theorem
Introduction to parameterized complexity

3 Brambles and duality

4 Computing treewidth
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Parameterized complexity in a nutshell

Idea Measure the complexity of an algorithm in terms of the input size
and an additional parameter.

This theory started in the late 80’s, by Downey and Fellows:

Today, it is a well-established and very active area.
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Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

k-Clique: Does a graph G contain a set S ⊆ V (G), with |S| ≥ k, of
pairwise adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?
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They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n))

= f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Clique: Solvable in time O(k2 · nk)

= f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard skip
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Why k-Clique may not be FPT?

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)
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How to transfer hardness among parameterized problems?

Let A, B ⊆ Σ∗ ×N be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x , k) of A time f (k) · |x |O(1) Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ g(k) for some computable function g : N→ N.

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

W[i ]-hard: strong evidence of not being FPT. Hypothesis: FPT 6= W[1]
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Back to treewidth: only good news?

Theorem (Courcelle. 1990)
Every problem expressible in MSO2 can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

1 Are all “natural” graph problems FPT parameterized by treewidth?

The vast majority, but not all of them:
List Coloring is W[1]-hard parameterized by treewidth.

[Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, Thomassen. 2007]

Some problems are even NP-hard on graphs of constant treewidth:
Steiner Forest (tw = 3), Bandwidth (tw = 1).

2 Most natural problems (Vertex Cover, Dominating Set, ...)
do not admit polynomial kernels parameterized by treewidth.
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Brambles

How to provide a lower bound on the treewidth of a graph?

Two sets A, B ⊆ V (G) touch if either A ∩ B 6= ∅ or there is an edge in G
from A to B.

A set S ⊆ V (G) is connected if G [S] is connected.

A bramble in a graph G is a family B of pairwise touching connected
vertex sets of G .

The order of a bramble B in a graph G is the minimum size of a vertex set
S ⊆ V (G) intersecting all the sets in B.

Theorem (Robertson and Seymour. 1993)
For every k ≥ 0 and graph G, the treewidth of G is at least k if and only if
G contains a bramble of order at least k + 1.
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Another dual notion to treewidth: linkedness
[slides borrowed from Christophe Paul]

Two sets Y , Z ⊆ V (G), with |Y | = |Z |, are separable if there is a set
S ⊆ V (G) with |S| < |Y | and such that G − S contains no path
between Y \ S and Z \ S.

For k ≥ 1, a set X ⊆ V (G) is k-linked if |X | ≥ k and
∀ Y , Z ⊆ X , |Y | = |Z | ≤ k, Y and Z are not separable.
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The (k × k)-grid is k-linked

K2k,k is also k-linked
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Highly linked graphs have large treewidth

Lemma
If G contains a (k + 1)-linked set X with |X | > 3k, then tw(G) ≥ k.

skip
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skip

Contradiction: Consider a tree decomposition of G of width < k.

t

r

t t1 2 tl

tG

Let t be a “lowest” node with |Vt ∩ X | > 2k.

If ∃i ∈ [`] such that |Vti ∩ X | > k, then
we can choose Y ⊆ Vti ∩ X , |Y | = k and
Z ⊆ (V \ Vti ) ∩ X , |Z | = k.

But S = Xti ∩ Xt separates Y and Z and
|S| ≤ k − 1.
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Highly linked graphs have large treewidth

Lemma
If G contains a (k + 1)-linked set X with |X | > 3k, then tw(G) ≥ k.

skip

Contradiction: Consider a tree decomposition of G of width < k.

t

r

t t1 2 tl

tG

Let t be a “lowest” node with |Vt ∩ X | > 2k.

Otherwise, let W = Vt1 ∪ · · · ∪ Vti with
|W ∩ X | > k and |(W \ Vtj ) ∩ X | < k for
1 ≤ j ≤ i .

Y ⊆W ∩ X , |Y | = k + 1 and
Z ⊆ (V \W ) ∩ X , |Z | = k + 1.

But S = Xt separates Y from Z and |S| 6 k.
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Deciding linkedness is FPT

Lemma
Given a vertex set X of a graph G and k ≤ |X |, it is possible to decide
whether X est k-linked in time f (k) · nO(1).

For every pair of subsets Y , Z ⊆ X with |Y | = |Z | ≤ k, we can test
whether Y and Z are separable in polynomial time (flow algorithm).

Complexity: 4k · nO(1).
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Given a vertex set X of a graph G and k ≤ |X |, it is possible to decide
whether X est k-linked in time f (k) · nO(1).

For every pair of subsets Y , Z ⊆ X with |Y | = |Z | ≤ k, we can test
whether Y and Z are separable in polynomial time (flow algorithm).

Complexity: 4k · nO(1).

Remark If X is not k-linked we can find, within the same running time,
two separable subsets Y , Z ⊆ X .

45/50



Next section is...

1 Definition and simple properties

2 Dynamic programming on tree decompositions
Two simple algorithms
Courcelle’s theorem
Introduction to parameterized complexity

3 Brambles and duality

4 Computing treewidth
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Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

Deciding whether tw(G) ≤ k is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]

Can be solved in time kO(k3) · n. [Bodlaender. 1996]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 4k in time O(33k · k · n2). [Robertson and Seymour. 1995]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 9k/2 in time O(23k · k3/2 · n2). [Amir. 2010]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 5k + 4 in time 2O(k) · n. [Bodlaender et al. 2016]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most O(k ·

√
log k) in time nO(1). [Feige, Hajiaghayi, Lee. 2008]

47/50



Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

Deciding whether tw(G) ≤ k is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]

Can be solved in time kO(k3) · n. [Bodlaender. 1996]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 4k in time O(33k · k · n2). [Robertson and Seymour. 1995]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 9k/2 in time O(23k · k3/2 · n2). [Amir. 2010]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 5k + 4 in time 2O(k) · n. [Bodlaender et al. 2016]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most O(k ·

√
log k) in time nO(1). [Feige, Hajiaghayi, Lee. 2008]

47/50



Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

Deciding whether tw(G) ≤ k is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]

Can be solved in time kO(k3) · n. [Bodlaender. 1996]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 4k in time O(33k · k · n2). [Robertson and Seymour. 1995]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 9k/2 in time O(23k · k3/2 · n2). [Amir. 2010]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 5k + 4 in time 2O(k) · n. [Bodlaender et al. 2016]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most O(k ·

√
log k) in time nO(1). [Feige, Hajiaghayi, Lee. 2008]

47/50



Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

Deciding whether tw(G) ≤ k is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]

Can be solved in time kO(k3) · n. [Bodlaender. 1996]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 4k in time O(33k · k · n2). [Robertson and Seymour. 1995]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 9k/2 in time O(23k · k3/2 · n2). [Amir. 2010]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 5k + 4 in time 2O(k) · n. [Bodlaender et al. 2016]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most O(k ·

√
log k) in time nO(1). [Feige, Hajiaghayi, Lee. 2008]

47/50



Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

Deciding whether tw(G) ≤ k is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]

Can be solved in time kO(k3) · n. [Bodlaender. 1996]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 4k in time O(33k · k · n2). [Robertson and Seymour. 1995]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 9k/2 in time O(23k · k3/2 · n2). [Amir. 2010]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 5k + 4 in time 2O(k) · n. [Bodlaender et al. 2016]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most O(k ·

√
log k) in time nO(1). [Feige, Hajiaghayi, Lee. 2008]

47/50



Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

Deciding whether tw(G) ≤ k is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]

Can be solved in time kO(k3) · n. [Bodlaender. 1996]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 4k in time O(33k · k · n2). [Robertson and Seymour. 1995]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 9k/2 in time O(23k · k3/2 · n2). [Amir. 2010]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 5k + 4 in time 2O(k) · n. [Bodlaender et al. 2016]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most O(k ·

√
log k) in time nO(1). [Feige, Hajiaghayi, Lee. 2008]

47/50



Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

Deciding whether tw(G) ≤ k is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]

Can be solved in time kO(k3) · n. [Bodlaender. 1996]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 4k in time O(33k · k · n2). [Robertson and Seymour. 1995]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 9k/2 in time O(23k · k3/2 · n2). [Amir. 2010]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 5k + 4 in time 2O(k) · n. [Bodlaender et al. 2016]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most O(k ·

√
log k) in time nO(1). [Feige, Hajiaghayi, Lee. 2008]

47/50



Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

Deciding whether tw(G) ≤ k is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]

Can be solved in time kO(k3) · n. [Bodlaender. 1996]

F Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 4k in time O(33k · k · n2). [Robertson and Seymour. 1995]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 9k/2 in time O(23k · k3/2 · n2). [Amir. 2010]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 5k + 4 in time 2O(k) · n. [Bodlaender et al. 2016]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most O(k ·

√
log k) in time nO(1). [Feige, Hajiaghayi, Lee. 2008]

47/50



4-approximation of Robertson and Seymour
[slides borrowed from Christophe Paul]

Idea

We add vertices to a set U in a greedy way, until U = V (G).

We maintain a tree decomposition TU of G [U] s.t. width(TU) < 4k,
unless we stop the algorithm and conclude that tw(G) ≥ k.

Invariant

Every connected component of G −U has at most 3k neighbors in U.
There exists a bag Xt of TU containing all these neighbors.

Initially, we start with U being any set of 3k vertices.
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4-approximation of Robertson and Seymour (2)

Let X be the neighbors of a component C and t be the node s.t. X ⊆ Xt .
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Let X be the neighbors of a component C and t be the node s.t. X ⊆ Xt .

If |X | < 3k: we add a node t ′ neighbor of t such that Xt′ = {x} ∪ X ,
with x ∈ C being a neighbor of Xt .
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4-approximation of Robertson and Seymour (2)

Let X be the neighbors of a component C and t be the node s.t. X ⊆ Xt .

If |X | = 3k: we test whether X is (k + 1)-linked in time f (k) · nO(1):

1 If X is (k + 1)-linked, then tw(G) ≥ k, and we stop.
2 Otherwise, we find sets Y , Z , S with |S| < |Y | = |Z | ≤ k + 1

and such that S separates Y and Z .

Obs: the neighbors of every new component C ′ ⊆ C are in
(X \ Z ) ∪ (S ∩ C) or in (X \ Y ) ∪ (S ∩ C)

⇒ ≤ 3k neighbors.
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Gràcies!

FREEDOM FOR ALL CATALAN POLITICAL PRISONERS IN SPAIN
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