Introduction to treewidth

&

Ignasi Sau

LIRMM, Université de Montpellier, CNRS

Rencontres virtuelles en théorie des graphes
JCRAALMA — 29 mars 2021

OLIRMM

1/50

Outline of the talk

@ Definition and simple properties

e Dynamic programming on tree decompositions
@ Two simple algorithms
@ Courcelle's theorem
@ Introduction to parameterized complexity

© Brambles and duality

@ Computing treewidth

2/50

@ Definition and simple properties

3/50

The multiples origins of treewidth

1972: Bertele and Brioschi (dimension).
e 1976: Halin (S-functions of graphs).

@ 1984: Arnborg and Proskurowski (partial k-trees).

1984: Robertson and Seymour (treewidth).

4/50

A measure of the similarity with a tree

Treewidth measures the (topological) similarity of a graph with a tree.

5/50

A measure of the similarity with a tree

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

@ Number of cycles.

5/50

A measure of the similarity with a tree

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:
@ Number of cycles.

@ Vertex-deletion distance to a forest (feedback vertex set number).

5/50

A measure of the similarity with a tree

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:
@ Number of cycles.

@ Vertex-deletion distance to a forest (feedback vertex set number).

Generalization based on the following property of trees:

5/50

A measure of the similarity with a tree

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:
@ Number of cycles.

@ Vertex-deletion distance to a forest (feedback vertex set number).

Generalization based on the following property of trees:

5/50

A measure of the similarity with a tree

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:
@ Number of cycles.

@ Vertex-deletion distance to a forest (feedback vertex set number).

Generalization based on the following property of trees:

.—/

5/50

A measure of the similarity with a tree

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:
@ Number of cycles.

@ Vertex-deletion distance to a forest (feedback vertex set number).

Generalization based on the following property of trees:

.—/

5/50

A measure of the similarity with a tree

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:
@ Number of cycles.

@ Vertex-deletion distance to a forest (feedback vertex set number).

Generalization based on the following property of trees:

T

5/50

A measure of the similarity with a tree

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:
@ Number of cycles.

@ Vertex-deletion distance to a forest (feedback vertex set number).

Generalization based on the following property of trees:

T

5/50

A measure of the similarity with a tree

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:
@ Number of cycles.

@ Vertex-deletion distance to a forest (feedback vertex set number).

Generalization based on the following property of trees:

5/50

A measure of the similarity with a tree

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:
@ Number of cycles.

@ Vertex-deletion distance to a forest (feedback vertex set number).

Generalization based on the following property of trees:

5/50

A measure of the similarity with a tree

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:
@ Number of cycles.

@ Vertex-deletion distance to a forest (feedback vertex set number).

Generalization based on the following property of trees:

5/50

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

connected to a k-clique.
‘.\\\\\\

[Figure by Julien Baste]

6/50

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique
Example of a 2-tree:

AN

[Figure by Julien Baste]

and then iteratively adding a vertex
connected to a k-clique.

6/50

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

connected to a k-clique.

AN

[Figure by Julien Baste]

6/50

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique
Example of a 2-tree:

N

[Figure by Julien Baste]

and then iteratively adding a vertex
connected to a k-clique.

6/50

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

connected to a k-clique.

N

[Figure by Julien Baste]

6/50

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

connected to a k-clique.

o—0 0
!

[Figure by Julien Baste]

6/50

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

connected to a k-clique.

o—0
[Figure by Julien Baste]

6/50

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique
Example of a 2-tree:

004.
V]

—e

and then iteratively adding a vertex
connected to a k-clique.

[Figure by Julien Baste]

6/50

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique
Example of a 2-tree:

%

[Figure by Julien Baste]

and then iteratively adding a vertex
connected to a k-clique.

6/50

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

/. connected to a k-clique.
o—0 0

[Figure by Julien Baste]

6/50

Treewidth via k-trees

Example of a 2-tree:

[Figure by Julien Baste]

For k > 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

6/50

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

/. connected to a k-clique.
o—0 0
‘\‘/‘ A partial k-tree is a subgraph of a k-tree.
o—0 0
./ Treewidth of a graph G, denoted tw(G):

smallest integer k such that G is a partial k-tree.

[Figure by Julien Baste]

6/50

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

/. connected to a k-clique.
o—0 0
‘\‘/‘ A partial k-tree is a subgraph of a k-tree.
o—0 0
./ Treewidth of a graph G, denoted tw(G):

smallest integer k such that G is a partial k-tree.

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

6/50

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

/‘ connected to a k-clique.
‘\‘/‘ A partial k-tree is a subgraph of a k-tree.

‘/ Treewidth of a graph G, denoted tw(G):
smallest integer k such that G is a partial k-tree.

[Figure by Julien Baste]
Invariant that measures the topological resemblance of a graph to a forest.
Construction suggests the notion of tree decomposition: small separators.

6/50

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

7/50

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

7/50

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:
° UteV(T) Xe = V(G),

7/50

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:
° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

7/50

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o Y{u,v} € E(G), It € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v
define a connected subtree of T.

7/50

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o Y{u,v} € E(G), It € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v
define a connected subtree of T.

@ Width of a tree decomposition:
maxeev(T) [Xe| — 1.

7/50

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

o Uiev(n Xt = V(G),
o V{u,v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v
define a connected subtree of T.

@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.

e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G. 7/50

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and G
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v
define a connected subtree of T.
@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G. 7/50

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v

define a connected subtree of T.

@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

7/50

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v

define a connected subtree of T.

@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

7/50

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v

define a connected subtree of T.

@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

7/50

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

o Uiev(n Xt = V(G),
o V{u,v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v
define a connected subtree of T.

@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.

e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

7/50

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v

define a connected subtree of T.

@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

7/50

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v

define a connected subtree of T.

@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

7/50

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v

define a connected subtree of T.

@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

7/50

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v

define a connected subtree of T.

@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

7/50

Treewidth measures the tree-likeness of a graph

8/50

Treewidth measures the tree-likeness of a graph

8/50

Treewidth measures the tree-likeness of a graph

8/50

Treewidth measures the tree-likeness of a graph

8/50

Treewidth measures the tree-likeness of a graph

8/50

Treewidth measures the tree-likeness of a graph

8/50

Treewidth measures the tree-likeness of a graph

8/50

Every bag of a tree decomposition is a separator

Let (T, X ={X;|te V(T)}) be a tree decomposition of a graph G.

9/50

Every bag of a tree decomposition is a separator

Let (T, X ={X;|te V(T)}) be a tree decomposition of a graph G.

e Forevery t € V/(T), X; is a separator in G.

9/50

Every bag of a tree decomposition is a separator

Let (T, X ={X;|te V(T)}) be a tree decomposition of a graph G.

e Forevery t € V(T), X; is a separator in G.

@ For every edge {t1,t2} € E(T), Xy, N Xz, is a separator in G.

9/50

Every bag of a tree decomposition is a separator

Let (T, X ={X;|te V(T)}) be a tree decomposition of a graph G.

e Forevery t € V(T), X; is a separator in G.

@ For every edge {t1,t2} € E(T), Xy, N Xz, is a separator in G.

9/50

Every bag of a tree decomposition is a separator

Let (T, X ={X;|te V(T)}) be a tree decomposition of a graph G.

e Forevery t € V(T), X; is a separator in G.

@ For every edge {t1,t2} € E(T), Xy, N Xz, is a separator in G.

9/50

Every bag of a tree decomposition is a separator

Let (T, X ={X: |t € V(T)}) be a tree decomposition of a graph G.

e Forevery t € V(T), X; is a separator in G.

o For every edge {t1,to} € E(T), Xy, N Xz, is a separator in G.

9/50

Every clique is entirely contained in some bag

Let G be a graph, (T, X) be a tree decomposition of G, and let
K C V(G) be a clique.

10/50

Every clique is entirely contained in some bag

Let G be a graph, (T, X) be a tree decomposition of G, and let
K C V(G) be a clique. Then there exists a bag X; € X such that K C X;.

10/50

Every clique is entirely contained in some bag

Let G be a graph, (T, X) be a tree decomposition of G, and let
K C V(G) be a clique. Then there exists a bag X; € X such that K C X;.

Let K = {v1,...,v+}. Proof by induction on t.

10/50

Every clique is entirely contained in some bag

Let G be a graph, (T, X) be a tree decomposition of G, and let
K C V(G) be a clique. Then there exists a bag X; € X such that K C X;

Let K = {v1,...,v¢}. Proof by induction on t. True for t < 2.

10/50

Every clique is entirely contained in some bag

Let G be a graph, (T, X) be a tree decomposition of G, and let
K C V(G) be a clique. Then there exists a bag X; € X such that K C X;
Let K = {v1,...,v¢}. Proof by induction on t. True for t < 2.

Consider the subtrees in (T, X") corresponding to vertices {vq,...,vs_1}:

10/50

Every clique is entirely contained in some bag

Let G be a graph, (T, X) be a tree decomposition of G, and let
K C V(G) be a clique. Then there exists a bag X; € X such that K C X;
Let K = {v1,...,v¢}. Proof by induction on t. True for t < 2.

Consider the subtrees in (T, X") corresponding to vertices {vq,...,vs_1}:

10/50

Every clique is entirely contained in some bag

Let G be a graph, (T, X) be a tree decomposition of G, and let
K C V(G) be a clique. Then there exists a bag X; € X such that K C X;
Let K = {v1,...,v¢}. Proof by induction on t. True for t < 2.

Consider the subtrees in (T, X") corresponding to vertices {vq,...,vs_1}:

10/50

Every clique is entirely contained in some bag

Let G be a graph, (T, X) be a tree decomposition of G, and let
K C V(G) be a clique. Then there exists a bag X; € X such that K C X;
Let K = {v1,...,v¢}. Proof by induction on t. True for t < 2.

Consider the subtrees in (T, X") corresponding to vertices {vq,...,vs_1}:

10/50

Every clique is entirely contained in some bag

Let G be a graph, (T, X) be a tree decomposition of G, and let
K C V(G) be a clique. Then there exists a bag X; € X such that K C X;
Let K = {v1,...,v¢}. Proof by induction on t. True for t < 2.

Consider the subtrees in (T, X") corresponding to vertices {vq,...,vs_1}:

10/50

Every clique is entirely contained in some bag

Let G be a graph, (T, X) be a tree decomposition of G, and let
K C V(G) be a clique. Then there exists a bag X; € X such that K C X;
Let K = {v1,...,v¢}. Proof by induction on t. True for t < 2.

Consider the subtrees in (T, X") corresponding to vertices {vq,...,vs_1}:

10/50

Every clique is entirely contained in some bag

Let G be a graph, (T, X) be a tree decomposition of G, and let
K C V(G) be a clique. Then there exists a bag X; € X such that K C X;
Let K = {v1,...,v¢}. Proof by induction on t. True for t < 2.

Consider the subtrees in (T, X") corresponding to vertices {vq,...,vs_1}:

10/50

Every clique is entirely contained in some bag

Let G be a graph, (T, X) be a tree decomposition of G, and let
K C V(G) be a clique. Then there exists a bag X; € X such that K C X;
Let K = {v1,...,v¢}. Proof by induction on t. True for t < 2.

Consider the subtrees in (T, X") corresponding to vertices {vq,...,vs_1}:

10/50

e If F is a forest, then tw(F) = 1.

11/50

e If F is a forest, then tw(F) = 1.

e If Cis a cycle, then tw(C) = 2.

11/50

e If F is a forest, then tw(F) = 1.
e If Cis a cycle, then tw(C) = 2.

e If K, is the clique on n vertices, then tw(K,) = n — 1.

11/50

If Fis a forest, then tw(F) = 1.

If C is a cycle, then tw(C) = 2.

If K, is the clique on n vertices, then tw(K,) = n— 1.

If K, p is the complete bipartite graph with parts of sizes a and b,
then tw(K,) = min{a, b} + 1.

11/50

e If F is a forest, then tw(F) = 1.

e If Cis a cycle, then tw(C) = 2.

e If K, is the clique on n vertices, then tw(K,) = n — 1.

o If K, is the complete bipartite graph with parts of sizes a and b,

then tw(K,) = min{a, b} + 1.

If G is an outerplanar graph, or a series-parallel graph, then
tw(G) = 2.

11/50

e If F is a forest, then tw(F) = 1.
o If Cis a cycle, then tw(C) = 2.
e If K, is the clique on n vertices, then tw(K,) = n — 1.

o If K, is the complete bipartite graph with parts of sizes a and b,
then tw(K,) = min{a, b} + 1.

o If G is an outerplanar graph, or a series-parallel graph, then
tw(G) = 2.

e If G is a planar graph on n vertices, then tw(G) = O(/n).

11/50

Why treewidth?

Treewidth is important for (at least) 3 different reasons:

12/50

Why treewidth?

Treewidth is important for (at least) 3 different reasons:

@ Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

12/50

Why treewidth?

Treewidth is important for (at least) 3 different reasons:

@ Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

@ Treewidth behaves very well algorithmically, and algorithms
parameterized by treewidth appear very often in FPT algorithms.

12/50

Why treewidth?

Treewidth is important for (at least) 3 different reasons:

@ Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

@ Treewidth behaves very well algorithmically, and algorithms
parameterized by treewidth appear very often in FPT algorithms.

© In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).

12/50

e Dynamic programming on tree decompositions

13/50

Next subsection is...

e Dynamic programming on tree decompositions
@ Two simple algorithms

14/50

WEIGHTED INDEPENDENT SET on trees

[slides borrowed from Christophe Paul]

15/50

WEIGHTED INDEPENDENT SET on trees

[slides borrowed from Christophe Paul]

15/50

WEIGHTED INDEPENDENT SET on trees

[slides borrowed from Christophe Paul]

)

T

Observations:
© Every vertex of a tree is a separator.

@ The union of independent sets of distinct connected components is an
independent set.

15/50

WEIGHTED INDEPENDENT SET on trees

[slides borrowed from Christophe Paul]

)

T

Let x be the root of T, xy...xp its children, Ty,... T, subtrees of T — x:

e wiS(T,x): maximum weighted independent set containing x.

e wi/S(T,X): maximum weighted independent set not containing x.

15/50

WEIGHTED INDEPENDENT SET on trees

[slides borrowed from Christophe Paul]

N

T

Let x be the root of T, xy...xp its children, Ty,... T, subtrees of T — x:

e wiS(T,x): maximum weighted independent set containing x.
e wIS(T,X): maximum weighted independent set not containing x.

wiS(T,x) = w(x)+ > wiS(T;, %)
icl]

15/50

WEIGHTED INDEPENDENT SET on trees

[slides borrowed from Christophe Paul]

N

T

Let x be the root of T, xy...xp its children, Ty,... T, subtrees of T — x:

e wiS(T,x): maximum weighted independent set containing x.
e wIS(T,X): maximum weighted independent set not containing x.

wiS(T,x) = w(x)+ > wiS(T;, %)
i€l
wiS(T,x) = Y max{wlS(T;, x;), wiS(T;,x;)}
ielf]

15/50

Dynamic programming on tree decompositions

o Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

16/50

Dynamic programming on tree decompositions

o Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

@ Starting from the leaves of the tree decomposition, a set of
appropriately defined partial solutions is computed recursively until
the root, where a global solution is obtained.

16/50

Dynamic programming on tree decompositions

o Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

@ Starting from the leaves of the tree decomposition, a set of
appropriately defined partial solutions is computed recursively until
the root, where a global solution is obtained.

@ The way that these partial solutions are defined depends on each
particular problem:

[Figure by ¥alentin=Garnere]
16/50

Back to tree decompositions

Let (T,{X: |t € V(T)}) be a tree decomposition of a graph G.

@ For every t € V(T), X; is a separator in G.

@ For every edge {t1,to} € E(T), Xy, N Xz, is a separator in G.

17/50

Back to tree decompositions

Let (T,{X: |t € V(T)}) be a tree decomposition of a graph G.

@ For every t € V(T), X; is a separator in G.

@ For every edge {t1,to} € E(T), Xy, N Xz, is a separator in G.

Notation: If we root (T,{X: |t € V(T)}), then:

17/50

Back to tree decompositions

Let (7,{X: |t € V(T)}) be a tree decomposition of a graph G.
@ For every t € V(T), X; is a separator in G.

@ For every edge {t1,to} € E(T), Xy, N Xz, is a separator in G.

Notation: If we root (T,{X: |t € V(T)}), then:
o V;: all vertices of G appearing in bags that are descendants of t.

e Gy = G[V4].

17/50

INDEPENDENT SET on tree decompositions

VS C X;, IS(S,t) = maximum independent set / of G; s.t. /N X; = 5‘

18/50

INDEPENDENT SET on tree decompositions

VS C X;, IS(S,t) = maximum independent set / of G; s.t. /N X; = 5‘

18/50

INDEPENDENT SET on tree decompositions

VS C X;, IS(S,t) = maximum independent set / of G; s.t. /N X; = 5‘

18/50

INDEPENDENT SET on tree decompositions

VS C X;, IS(S,t) = maximum independent set / of G; s.t. /N X; = 5‘

If SC X, and S; = SN Xy, then [IS(S,t) N Vy| = [IS(S).).

18/50

INDEPENDENT SET on tree decompositions

VS C X;, IS(S,t) = maximum independent set / of G; s.t. /N X; = 5‘

If SC X, and S; = SN Xy, then [IS(S,t) N Vy| = [IS(S).).

For contradiction: suppose /S(S, t) N V4, is not maximum in G,.

18/50

INDEPENDENT SET on tree decompositions

VS C X;, IS(S,t) = maximum independent set / of G; s.t. /N X; = 5‘

If SC X, and S; = SN Xy, then [IS(S,t) N Vy| = [IS(S).).

For contradiction: suppose /S(S, t) N V4, is not maximum in G,.
= Jy € (5\5) C X; and Ix € IS(S),t;) \ Xy, such that {x,y} € E(G).

18/50

INDEPENDENT SET on tree decompositions

VS C X;, IS(S,t) = maximum independent set / of G; s.t. /N X; = 5‘

If SC X, and S; = SN Xy, then [IS(S,t) N Vy| = [IS(S).).

For contradiction: suppose /S(S, t) N V4, is not maximum in G,.
= Jy € (5\5) C X; and Ix € IS(S),t;) \ Xy, such that {x,y} € E(G).
Contradiction! X;, is not a separator.

18/50

INDEPENDENT SET on tree decompositions

Idea of the dynamic programming algorithm:

19/50

INDEPENDENT SET on tree decompositions

Idea of the dynamic programming algorithm:

19/50

INDEPENDENT SET on tree decompositions

Idea of the dynamic programming algorithm:

How to compute |/S(S, t)| from [IS(S/, t;)], V) € [6] VS C Xy
o verify that S’ NXy=5SNXy; =5 and §; C 5’

19/50

INDEPENDENT SET on tree decompositions

Idea of the dynamic programming algorithm:

How to compute |/S(S, t)| from [IS(S/, t;)], V) € [6] VS C Xy

o verify that S’ NXy=5SNXy; =5 and §; C 5’
o verify that SJ’ is an independent set.

19/50

INDEPENDENT SET on tree decompositions

Idea of the dynamic programming algorithm:

How to compute |/S(S, t)| from [IS(S/, t;)], V) € [6] VS C Xy

o verify that S’ NXy=5SNXy; =5 and §; C 5’.
o verify that 5’ is an independent set.

S|+
1S(5,0) = { Sreggmax {US(SL5)—IS1:
51{ NXe=5 NS C ij independent}

19/50

INDEPENDENT SET on tree decompositions

S|+
15(S,8)] = § Tiergmax {IIS(S)) — [l :
5’ ﬂXt Si NS C S’ independent}

Analysis of the running time, with bags of size k:

20/50

INDEPENDENT SET on tree decompositions

S|+
15(S,8)] = § Tiergmax {IIS(S)) — [l :
5’ ﬂXt Si NS C S’ independent}

Analysis of the running time, with bags of size k:

o Computing IS(S, t): O(2k- k% -1).

20/50

INDEPENDENT SET on tree decompositions

S|+
15(S,8)] = § Tiergmax {IIS(S)) — [l :
5’ ﬂXt Si NS C S’ independent}

Analysis of the running time, with bags of size k:
o Computing IS(S, t): O(2k- k% -1).

o Computing IS(S, t) for every S C X,: O(2K .2k . k2. 7).

20/50

INDEPENDENT SET on tree decompositions

S|+
15(S,8)] = § Tiergmax {IIS(S)) — [l :
5’ ﬂXt Si NS C S’ independent}

Analysis of the running time, with bags of size k:
o Computing IS(S, t): O(2k- k% -1).
o Computing IS(S, t) for every S C X,: O(2K .2k . k2. 7).

e Computing an optimal solution: O(4% - k% - n).

20/50

INDEPENDENT SET on tree decompositions

S|+
15(5, 0 = { Siegmax {IIS(SL6) - IS1:
5} NXe=S5 NS C Sj independent}

Analysis of the running time, with bags of size k:
o Computing IS(S, t): O(2k- k% -1).
o Computing IS(S, t) for every S C X,: O(2K .2k . k2. 7).

e Computing an optimal solution: O(4% - k% - n).

% We have to add the time in order to compute a “good” tree
decomposition of the input graph (we discuss this later).

20/50

Helpful tool: nice tree decompositions

21/50

Helpful tool: nice tree decompositions

A rooted tree decomposition (7,{X; : t € T}) of a graph G is nice if
every node t € V/(T) \ root is of one of the following four types:

21/50

Helpful tool: nice tree decompositions

A rooted tree decomposition (7,{X; : t € T}) of a graph G is nice if
every node t € V/(T) \ root is of one of the following four types:

O,

@ Leaf: no children and | X;| = 1.

21/50

Helpful tool: nice tree decompositions

A rooted tree decomposition (7,{X; : t € T}) of a graph G is nice if
every node t € V/(T) \ root is of one of the following four types:

ORI

a5

@ Leaf: no children and | X;| = 1.
@ Introduce: a unique child t" and X; = X U {v} with v ¢ X;.

21/50

Helpful tool: nice tree decompositions

A rooted tree decomposition (7,{X; : t € T}) of a graph G is nice if
every node t € V/(T) \ root is of one of the following four types:

® @ @
(se0) (229

@ Leaf: no children and | X;| = 1.
@ Introduce: a unique child t' and X; = Xy U {v} with v ¢ X,.
e Forget: a unique child t" and X; = Xy \ {v} with v € X

21/50

Helpful tool: nice tree decompositions

A rooted tree decomposition (7,{X; : t € T}) of a graph G is nice if
every node t € V/(T) \ root is of one of the following four types:

© @@ @
(se0) (209 (e9Ce9

Leaf: no children and |X;| = 1.

Introduce: a unique child t" and X; = X U {v} with v ¢ X,.
Forget: a unique child t" and X; = Xy \ {v} with v € X;/.
Join: two children t; and tp with X; = X, = X,.

21/50

Helpful tool: nice tree decompositions

A rooted tree decomposition (7,{X; : t € T}) of a graph G is nice if
every node t € V/(T) \ root is of one of the following four types:

© @@ @

QOB CDENCDIXD

Leaf: no children and |X;| = 1.

Introduce: a unique child t" and X; = X U {v} with v ¢ X,.
Forget: a unique child t" and X; = Xy \ {v} with v € X;/.
Join: two children t; and tp with X; = X, = X,.

A tree decomposition (T,{X; : t € T}) of width k and x nodes of an
n-vertex graph G can be transformed in time O(k? - n) into a nice tree
decomposition of G of width k and k - x nodes.

21/50

Simpler algorithm for INDEPENDENT SET

How to compute /S(S, t) for every S C X;:

22/50

Simpler algorithm for INDEPENDENT SET

How to compute /S(S, t) for every S C X;:

o If tis a leaf: trivial.

22/50

Simpler algorithm for INDEPENDENT SET

How to compute /S(S, t) for every S C X;:

o If tis a leaf: trivial.
@ tis an introduce node: X; = Xy U {v}
[IS(S, t')| ifvgs
[IS(S,t)| =< [IS(S\{v},t)]+1 if ve S and S independent
—00 otherwise

22/50

Simpler algorithm for INDEPENDENT SET

How to compute /S(S, t) for every S C X;:

o If tis a leaf: trivial.

@ tis an introduce node: X; = Xy U {v}

[IS(S, t')| ifves
[IS(S,t)| =< [IS(S\{v},t)]+1 if ve S and S independent
—00 otherwise

o If t is a forget node: X; = Xy \ {v}
1IS(S, t)| = max{|IS(S,)], [IS(Su {v},t)[}

22/50

Simpler algorithm for INDEPENDENT SET

How to compute /S(S, t) for every S C X;:

o If tis a leaf: trivial.

@ tis an introduce node: X; = Xy U {v}

[IS(S, t')| ifves
[IS(S,t)| =< [IS(S\{v},t)]+1 if ve S and S independent
—00 otherwise

o If t is a forget node: X; = Xy \ {v}
1IS(S, t)| = max{|IS(S,)], [IS(Su {v},t)[}

e If t is a join node: X; = X, = Xj,
[IS(S, t)| = [IS(S, t1)[+ [IS(S, 2)[— [S]

22/50

Simpler algorithm for INDEPENDENT SET

How to compute /S(S, t) for every S C X;:

o If tis a leaf: trivial.

@ tis an introduce node: X; = Xy U {v}

[IS(S, t')| ifves
[IS(S,t)| =< [IS(S\{v},t)]+1 if ve S and S independent
—00 otherwise

e If tis a forget node: X; = Xp \ {v}
[IS(S, t)] = max{|IS(S,)], [IS(S U {v},)|}
o If tis a join node: X; = X;, = Xy,
IS(S.) = [IS(S, t1)| + [IS(S, t2) — |S|

Complexity : O(2K - k? - n)

22/50

HAMILTONIAN CYCLE on tree decompositions

[slides borrowed from Christophe Paul]

Let C be a Hamiltonian cycle.

e Note that C N G[V,] is a
collection of paths.

23/50

HAMILTONIAN CYCLE on tree decompositions

[slides borrowed from Christophe Paul]

Let C be a Hamiltonian cycle.

e Note that C N G[V,] is a
collection of paths.

@ Partition of the bag X;:
o X?: isolated in G[V].
o X!: extremities of paths.
o X7: internal vertices.

23/50

HAMILTONIAN CYCLE on tree decompositions

[slides borrowed from Christophe Paul]

Let C be a Hamiltonian cycle.

e Note that C N G[V,] is a
collection of paths.

@ Partition of the bag X;:
o X?: isolated in G[V,].
o X!: extremities of paths.
o X7: internal vertices.

For every node t of the tree decomposition, we need to know if
(X2, X¢, X7, M)

where M is a matching on X}, corresponds to a partial solution.
23/50

Let t be a forget node and t’ its child such that X; = Xy \ {v}.

X is a separator =

Vv € Vi \ X¢, v is internal in every partial solution.

24/50

Let t be a forget node and t’ its child such that X; = Xy \ {v}.

X is a separator =

Vv € Vi \ X¢, v is internal in every partial solution.

(X9, X%, X2\ {v}, M) is a partial solution for t
iS4
(X9, XL, X2, M) is a partial solution for t' with v € X2

24/50

Introduce node

Let t be an introduce node and t’ its child such that X; = Xy U {v}.

25/50

Introduce node

Let t be an introduce node and t’ its child such that X; = Xy U {v}.

@ Suppose: v € X?.

25/50

Introduce node

Let t be an introduce node and t’ its child such that X; = Xy U {v}.

@ Suppose: v € X?.

(XS U {v}, XL, X2, M) is a partial solution for t
<~
(X9, XL, X2, M) is a partial solution for t/

25/50

Introduce node (2)

Let t be an introduce node and t’ its child such that X; = Xy U {v}.
@ Suppose: v € X}.

@it e

/
—— A

26/50

Introduce node (2)

Let t be an introduce node and t’ its child such that X; = Xy U {v}.

@ Suppose: v € X}.

@it e

I p— - A

Xy is a separator = N(v) N Vi C X;.

26/50

Introduce node (2)

Let t be an introduce node and t’ its child such that X; = Xy U {v}.

@ Suppose: v € X}.

@it e

I p— - A

Xy is a separator = N(v) N Vi C X;.

e avertex u € X}, becomes internal = u € X2

26/50

Introduce node (2)

Let t be an introduce node and t’ its child such that X; = Xy U {v}.

@ Suppose: v € X}.

Xy is a separator = N(v) N Vi C X;.

e avertex u € X}, becomes internal = u € X2
(X0, XL U {v}\ {u}, X3 U{u}, M) is a partial solution for ¢
=4
(XS,X,_},,X,_?,, M) is a partial solution for t'
26/50

Introduce node (2)

Let t be an introduce node and t’ its child such that X; = Xy U {v}.

@ Suppose: v € X}.

Xy is a separator = N(v) N Vi C X;.

e avertex u € X}, becomes internal = u € X2

e or a vertex w € X becomes extremity of a path = w € X} (similar).

26/50

Introduce node (3)

Let t be an introduce node and t’ its child such that X; = Xy U {v}.

X is a separator = N(v)N Vi C X..

27/50

Introduce node (3)

Let t be an introduce node and t’ its child such that X; = Xy U {v}.

X is a separator = N(v)N Vi C X..

@ two vertices u, U’ € X}, become internal = u, v’ € XZ.

27/50

Introduce node (3)

Let t be an introduce node and t’ its child such that X; = Xy U {v}.

X is a separator = N(v)N Vi C X..

@ two vertices u, U’ € X}, become internal = u, v’ € XZ.
(XS, XI\ {u, '}, X2 U{v,u, '}, M) is a partial solution for t
~
(X9, XL, X2, M) is a partial solution for t/

27/50

Introduce node (3)

Let t be an introduce node and t’ its child such that X; = Xy U {v}.

@ Suppose. v € X2,

Xy is a separator = N(v) N Vi C X;.

@ two vertices u, v/ € X} become internal = u, v € X?.

@ two vertices w, w’ € X,_?, become extremities = w, w’ € X}.

27/50

Introduce node (3)

Let t be an introduce node and t’ its child such that X; = Xy U {v}.

@ Suppose. v € X2,

Xy is a separator = N(v) N Vi C X;.

@ two vertices u, v/ € X} become internal = u, v € X?.
@ two vertices w, w’ € X,_?, become extremities = w, w’ € X}.
@ w € X0 becomes extremity and v € X} internal = w € X}, v € XZ.

27/50

Let ¢t be a join node and ti, to its children such that X; = X;, = X,

For being compatible, partial solutions should verify:
o X2 C XP and X} C XL UX).
° X2 C X2 and X}, € X} UXP.

@ The union of matchings My et M, does not create any cycle.

28/50

Let ¢t be a join node and ty, to its children such that X; = X;, = X,

For being compatible, partial solutions should verify:
o X2 C X2 and X} C XL UX.
o X2 CXP and X}, C Xt UX.

@ The union of matchings M; et M> does not create any cycle.

28/50

HAMILTONIAN CYCLE on tree decompositions

Analysis of the running time, given a tree decomposition of width k:

29/50

HAMILTONIAN CYCLE on tree decompositions

Analysis of the running time, given a tree decomposition of width k:

o Number of subproblems at each node: : 3% k!.

29/50

HAMILTONIAN CYCLE on tree decompositions

Analysis of the running time, given a tree decomposition of width k:

o Number of subproblems at each node: : 3% k!.

@ Number of nodes in a nice tree decomposition: k - n.

29/50

HAMILTONIAN CYCLE on tree decompositions

Analysis of the running time, given a tree decomposition of width k:

o Number of subproblems at each node: : 3% k!.

@ Number of nodes in a nice tree decomposition: k - n.

Total running time of the algorithm: k9() . n.

29/50

HAMILTONIAN CYCLE on tree decompositions

Analysis of the running time, given a tree decomposition of width k:

o Number of subproblems at each node: : 3% k!.

@ Number of nodes in a nice tree decomposition: k - n.

Total running time of the algorithm: k9() . n.

29/50

HAMILTONIAN CYCLE on tree decompositions

Analysis of the running time, given a tree decomposition of width k:

o Number of subproblems at each node: : 3% k!.

@ Number of nodes in a nice tree decomposition: k - n.

Total running time of the algorithm: k9() . n.

Can this approach be generalized to more problems?

29/50

Next subsection is...

e Dynamic programming on tree decompositions

@ Courcelle's theorem

30/50

Monadic second order logic of graphs

We represent a graph G = (V/, E) with a structure
G = (U, vertex, edge, /), where

31/50

Monadic second order logic of graphs

We represent a graph G = (V/, E) with a structure
G = (U, vertex, edge, /), where

@ U = V UE is the universe.

31/50

Monadic second order logic of graphs

We represent a graph G = (V/, E) with a structure
G = (U, vertex, edge, /), where

@ U = V UE is the universe.

@ “vertex" and “edge” are unary relations that allow to distinguish
vertices and edges.

31/50

Monadic second order logic of graphs

We represent a graph G = (V/, E) with a structure
G = (U, vertex, edge, /), where

@ U = V UE is the universe.

@ “vertex" and “edge” are unary relations that allow to distinguish
vertices and edges.

o /|={(v,e)|ve V,eec E, v e e} is the incidence relation.

31/50

Monadic second order logic of graphs

We represent a graph G = (V/, E) with a structure
G = (U, vertex, edge, /), where

@ U = V UE is the universe.

@ “vertex" and “edge” are unary relations that allow to distinguish
vertices and edges.

o /|={(v,e)|ve V,eec E, v e e} is the incidence relation.

An MSO formula is built using the following:

31/50

Monadic second order logic of graphs

We represent a graph G = (V/, E) with a structure
G = (U, vertex, edge, /), where

@ U = V UE is the universe.

@ “vertex" and “edge” are unary relations that allow to distinguish
vertices and edges.

o /|={(v,e)|ve V,eec E, v e e} is the incidence relation.

An MSO formula is built using the following:

o Logical connectors V, A, =, -, =, #.

31/50

Monadic second order logic of graphs

We represent a graph G = (V/, E) with a structure
G = (U, vertex, edge, /), where

@ U = V UE is the universe.

@ “vertex" and “edge” are unary relations that allow to distinguish
vertices and edges.

o /|={(v,e)|ve V,eec E, v e e} is the incidence relation.

An MSO formula is built using the following:
o Logical connectors V, A, =, -, =, #.

@ Predicates adj(u, v) and inc(e, v).

31/50

Monadic second order logic of graphs

We represent a graph G = (V/, E) with a structure
G = (U, vertex, edge, /), where

@ U = V UE is the universe.

@ “vertex" and “edge” are unary relations that allow to distinguish
vertices and edges.

o /|={(v,e)|ve V,eec E, v e e} is the incidence relation.

An MSO formula is built using the following:
o Logical connectors V, A, =, -, =, #.
@ Predicates adj(u, v) and inc(e, v).

@ Relations €, C on vertex/edge sets.

31/50

Monadic second order logic of graphs

We represent a graph G = (V/, E) with a structure
G = (U, vertex, edge, /), where
o U = V UE is the universe.

@ “vertex" and “edge” are unary relations that allow to distinguish
vertices and edges.

o /|={(v,e)|ve V,eec E, v e e} is the incidence relation.

An MSO formula is built using the following:
o Logical connectors V, A, =, -, =, #.
@ Predicates adj(u, v) and inc(e, v).
@ Relations €, C on vertex/edge sets.
e Quantifiers 3, V on vertex/edge variables or vertex/edge sets .
(MS0O1/MSO0,)

31/50

Monadic second order logic of graphs: examples

Expressing that {u,v} € E(G): 3Je € E,inc(u, e) Ainc(v,e).

32/50

Monadic second order logic of graphs: examples

Example 1| Expressing that {u, v} € E(G): Je € E,inc(u, e) Ainc(v, e).
Example 2| Expressing that a set S C V/(G) is a dominating set.

DomSet(S): Vve V(G)\S,JueS:{u,v} e E(G).

32/50

Monadic second order logic of graphs: examples

Example 1| Expressing that {u, v} € E(G): Je € E,inc(u, e) Ainc(v, e).
Example 2| Expressing that a set S C V/(G) is a dominating set.

DomSet(S): Vve V(G)\S,JueS:{u,v} e E(G).

Example 3| Expressing that a graph G = (V/, E) is connected.

32/50

Monadic second order logic of graphs: examples

Example 1| Expressing that {u, v} € E(G): Je € E,inc(u, e) Ainc(v, e).

Example 2| Expressing that a set S C V/(G) is a dominating set.

DomSet(S): Vve V(G)\S,JueS:{u,v} e E(G).

Example 3| Expressing that a graph G = (V/, E) is connected.

@ For every bipartition de V/, there is a transversal edge:

32/50

Monadic second order logic of graphs: examples

Example 1| Expressing that {u, v} € E(G): Je € E,inc(u, e) Ainc(v, e).
Example 2| Expressing that a set S C V/(G) is a dominating set.

DomSet(S): Vve V(G)\S,JueS:{u,v} e E(G).

Example 3| Expressing that a graph G = (V/, E) is connected.

@ For every bipartition de V/, there is a transversal edge:

Expressing that two sets V4, V5 define a bipartition of V:
VeV, (veVivveWA(veVi=vEWA(ve Vo= vE V).

32/50

Monadic second order logic of graphs: examples

Example 1| Expressing that {u, v} € E(G): Je € E,inc(u, e) Ainc(v, e).
Example 2| Expressing that a set S C V/(G) is a dominating set.

DomSet(S): Vve V(G)\S,JueS:{u,v} e E(G).

Example 3| Expressing that a graph G = (V/, E) is connected.

@ For every bipartition de V/, there is a transversal edge:

Expressing that two sets V4, V5 define a bipartition of V:
VeV, (veVivveWA(veVi=vEWA(ve Vo= vE V).
Connected: V bipartition Vi, Vo, 3vi € V4,3vs € Vo, {v1,w} € E(G).

32/50

Monadic second order logic of graphs: examples

Example 1| Expressing that {u, v} € E(G): Je € E,inc(u, e) Ainc(v, e).
Example 2| Expressing that a set S C V/(G) is a dominating set.

DomSet(S): Vve V(G)\S,JueS:{u,v} e E(G).

Example 3| Expressing that a graph G = (V/, E) is connected.

@ For every bipartition de V/, there is a transversal edge:

Expressing that two sets V4, V5 define a bipartition of V:
VeV, (veVivveWA(veVi=vEWA(ve Vo= vE V).
Connected: V bipartition Vi, Vo, 3vi € V4,3vs € Vo, {v1,w} € E(G).

Other properties that can be expressed in MSO:
@ a set being a vertex cover, independent set.

32/50

Monadic second order logic of graphs: examples

Example 1| Expressing that {u, v} € E(G): Je € E,inc(u, e) Ainc(v, e).
Example 2| Expressing that a set S C V/(G) is a dominating set.

DomSet(S): Vve V(G)\S,JueS:{u,v} e E(G).

Example 3| Expressing that a graph G = (V/, E) is connected.

@ For every bipartition de V/, there is a transversal edge:

Expressing that two sets V4, V5 define a bipartition of V:
VeV, (veVivveWA(veVi=vEWA(ve Vo= vE V).
Connected: V bipartition Vi, Vo, 3vi € V4,3vs € Vo, {v1,w} € E(G).

Other properties that can be expressed in MSO:
@ a set being a vertex cover, independent set.
@ a graph being k-colorable (for fixed k), having a Hamiltonian cycle.

32/50

Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

33/50

Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

The function f(tw) depends on the structure of the MSO, formula.

33/50

Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

The function f(tw) depends on the structure of the MSO, formula.

Withing the same running time, one can also optimize the size of a
vertex/edge set satisfying an MSO; formula.

33/50

Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

The function f(tw) depends on the structure of the MSO, formula.

Withing the same running time, one can also optimize the size of a
vertex/edge set satisfying an MSO; formula.

Examples: VERTEX COVER, DOMINATING SET, HAMILTONIAN CYCLE,
CLIQUE, INDEPENDENT SET, k-COLORING for fixed k, ...

33/50

Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

The function f(tw) depends on the structure of the MSO, formula.

Withing the same running time, one can also optimize the size of a
vertex/edge set satisfying an MSO; formula.

Examples: VERTEX COVER, DOMINATING SET, HAMILTONIAN CYCLE,
CLIQUE, INDEPENDENT SET, k-COLORING for fixed k, ...

In parameterized complexity: FPT parameterized by treewidth.

33/50

Next subsection is...

e Dynamic programming on tree decompositions

@ Introduction to parameterized complexity

34/50

Parameterized complexity in a nutshell

Measure the complexity of an algorithm in terms of the input size
and an additional parameter.

This theory started in the late 80's, by Downey and Fellows:

Today, it is a well-established and very active area.

35/50

Parameterized problems

A parameterized problem is a language L C ¥* x IN,
where 2 is a fixed, finite alphabet.

For an instance (x, k) € £* x IN, k is called the parameter.

36/50

Parameterized problems

A parameterized problem is a language L C ¥* x IN,
where 2 is a fixed, finite alphabet.

For an instance (x, k) € £* x IN, k is called the parameter.

@ k-VERTEX COVER: Does a graph G contain a set S C V/(G), with
|S| < k, containing at least an endpoint of every edge?

@ k-CLIQUE: Does a graph G contain aset S C V(G), with |S| > k, of
pairwise adjacent vertices?

@ VERTEX k-COLORING: Can the vertices of a graph be colored with
< k colors, so that any two adjacent vertices get different colors?

36/50

Parameterized problems

A parameterized problem is a language L C ¥* x IN,
where 2 is a fixed, finite alphabet.

For an instance (x, k) € £* x IN, k is called the parameter.

@ k-VERTEX COVER: Does a graph G contain a set S C V/(G), with
|S| < k, containing at least an endpoint of every edge?

@ k-CLIQUE: Does a graph G contain aset S C V(G), with |S| > k, of
pairwise adjacent vertices?

@ VERTEX k-COLORING: Can the vertices of a graph be colored with
< k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they |equally | hard?

36/50

They behave quite differently...

o k-VERTEX COVER: Solvable in time O(2% - (m + n))

e k-CLIQUE: Solvable in time O(k? - n¥)

@ VERTEX k-COLORING: NP-hard for fixed k = 3.

37/50

They behave quite differently...

o k-VERTEX COVER: Solvable in time O(2% - (m + n)) = f(k) - n®®).

o k-CLIQUE: Solvable in time O(k?- n¥) = f(k) - n8(k).

@ VERTEX k-COLORING: NP-hard for fixed k = 3.

37/50

They behave quite differently...

o k-VERTEX COVER: Solvable in time O(2% - (m + n)) = f(k) - n®®).

The problem is FPT‘ (fixed-parameter tractable)

o k-CLIQUE: Solvable in time O(k?- n¥) = f(k) - n8(k).

@ VERTEX k-COLORING: NP-hard for fixed k = 3.

37/50

They behave quite differently...

o k-VERTEX COVER: Solvable in time O(2% - (m + n)) = f(k) - n®®).

‘The problem is FPT‘ (fixed-parameter tractable)

o k-CLIQUE: Solvable in time O(k?- n¥) = f(k) - n8(k).

‘The problem is XP‘ (slice-wise polynomial)

@ VERTEX k-COLORING: NP-hard for fixed k = 3.

37/50

They behave quite differently...

o k-VERTEX COVER: Solvable in time O(2% - (m + n)) = f(k) - n®®).

‘The problem is FPT‘ (fixed-parameter tractable)

o k-CLIQUE: Solvable in time O(k?- n¥) = f(k) - n8(k).

‘The problem is XP‘ (slice-wise polynomial)

@ VERTEX k-COLORING: NP-hard for fixed k = 3.

‘The problem is para—NP—hard‘

37/50

Why k-CLIQUE may not be FPT?

k-CLIQUE: Solvable in time O(k? - nk) = f(k) - n8(k).

38/50

Why k-CLIQUE may not be FPT?

k-CLIQUE: Solvable in time O(k? - nk) = f(k) - n8(k).

Why k-CLIQUE may not be FPT?

38/50

Why k-CLIQUE may not be FPT?

k-CLIQUE: Solvable in time O(k? - nk) = f(k) - n8(k).
Why k-CLIQUE may not be FPT?

So far, nobody has managed to find an FPT algorithm.
(also, nobody has found a poly-time algorithm for 3-SAT)

38/50

Why k-CLIQUE may not be FPT?

k-CLIQUE: Solvable in time O(k? - nk) = f(k) - n8(k).
Why k-CLIQUE may not be FPT?

So far, nobody has managed to find an FPT algorithm.
(also, nobody has found a poly-time algorithm for 3-SAT)

k-CLIQUE is not FPT

Working hypothesis of parameterized complexity:

(in classical complexity: 3-SAT cannot be solved in poly-time)

38/50

How to transfer hardness among parameterized problems?

Let A,B C X* x IN be two parameterized problems.

39/50

How to transfer hardness among parameterized problems?

Let A,B C X* x IN be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x, k) of A‘

Instance (x', k") of B

39/50

How to transfer hardness among parameterized problems?

Let A,B C X* x IN be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x, k) of A‘

Instance (x', k") of B

@ (x,k) is a YEs-instance of A & (x/, k") is a YEs-instance of B.
@ k' < g(k) for some computable function g : IN — IN.

39/50

How to transfer hardness among parameterized problems?

Let A,B C X* x IN be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x, k) of A‘ Instance (x', k") of B

@ (x, k) is a YEs-instance of A & (x/, k') is a YEs-instance of B.
@ k' < g(k) for some computable function g : IN — IN.

WI(1]-hard problem: 3 parameterized reduction from k-CLIQUE to it.

W|2]-hard problem: 3 param. reduction from k-DOMINATING SET to it.

39/50

How to transfer hardness among parameterized problems?

Let A,B C X* x IN be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x, k) of A‘ Instance (x', k") of B

@ (x, k) is a YEs-instance of A & (x/, k') is a YEs-instance of B.
@ k' < g(k) for some computable function g : IN — IN.

WI(1]-hard problem: 3 parameterized reduction from k-CLIQUE to it.
W|2]-hard problem: 3 param. reduction from k-DOMINATING SET to it.

W][i]-hard: strong evidence of not being FPT.

39/50

How to transfer hardness among parameterized problems?

Let A,B C X* x IN be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x, k) of A‘ Instance (x', k") of B

@ (x, k) is a YEs-instance of A & (x/, k') is a YEs-instance of B.
@ k' < g(k) for some computable function g : IN — IN.

WI(1]-hard problem: 3 parameterized reduction from k-CLIQUE to it.

W|2]-hard problem: 3 param. reduction from k-DOMINATING SET to it.

W][i]-hard: strong evidence of not being FPT. Hypothesis: |FPT # W/[1]

39/50

Back to treewidth: only good news?

Theorem (Courcelle. 1990)

Every problem expressible in MSOy can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

40/50

Back to treewidth: only good news?

Theorem (Courcelle. 1990)

Every problem expressible in MSOy can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

© Are all "natural” graph problems FPT parameterized by treewidth?

40/50

Back to treewidth: only good news?

Theorem (Courcelle. 1990)

Every problem expressible in MSOy can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

© Are all "natural” graph problems FPT parameterized by treewidth?

The vast majority, but not all of them:

o LisT COLORING is W[1]-hard parameterized by treewidth.

[Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, Thomassen. 2007]

40/50

Back to treewidth: only good news?

Theorem (Courcelle. 1990)

Every problem expressible in MSOy can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

© Are all "natural” graph problems FPT parameterized by treewidth?

The vast majority, but not all of them:

o LisT COLORING is W[1]-hard parameterized by treewidth.

[Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, Thomassen. 2007]

e Some problems are even NP-hard on graphs of constant treewidth:
STEINER FOREST (tw = 3), BANDWIDTH (tw = 1).

40/50

Back to treewidth: only good news?

Theorem (Courcelle. 1990)

Every problem expressible in MSOy can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

© Are all "natural” graph problems FPT parameterized by treewidth?

The vast majority, but not all of them:
o LisT COLORING is W[1]-hard parameterized by treewidth.

[Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, Thomassen. 2007]

e Some problems are even NP-hard on graphs of constant treewidth:
STEINER FOREST (tw = 3), BANDWIDTH (tw = 1).

@ Most natural problems (VERTEX COVER, DOMINATING SET, ...)
do not admit polynomial kernels parameterized by treewidth.

40/50

© Brambles and duality

41/50

How to provide a lower bound on the treewidth of a graph?

42/50

How to provide a lower bound on the treewidth of a graph?

Two sets A, B C V(G) touch if either AN B # () or there is an edge in G
from A to B.

42/50

How to provide a lower bound on the treewidth of a graph?

Two sets A, B C V(G) touch if either AN B # () or there is an edge in G
from A to B.

A set S C V(G) is connected if G[S] is connected.

42/50

How to provide a lower bound on the treewidth of a graph?

Two sets A, B C V(G) touch if either AN B # () or there is an edge in G
from A to B.

A set S C V(G) is connected if G[S] is connected.

A bramble in a graph G is a family B of pairwise touching connected
vertex sets of G.

42/50

How to provide a lower bound on the treewidth of a graph?

Two sets A, B C V(G) touch if either AN B # () or there is an edge in G
from A to B.

A set S C V(G) is connected if G[S] is connected.

A bramble in a graph G is a family B of pairwise touching connected
vertex sets of G.

The order of a bramble B in a graph G is the minimum size of a vertex set
S C V(G) intersecting all the sets in 5.

42/50

How to provide a lower bound on the treewidth of a graph?

Two sets A, B C V(G) touch if either AN B # () or there is an edge in G
from A to B.

A set S C V(G) is connected if G[S] is connected.

A bramble in a graph G is a family B of pairwise touching connected
vertex sets of G.

The order of a bramble B in a graph G is the minimum size of a vertex set
S C V(G) intersecting all the sets in 5.

Theorem (Robertson and Seymour. 1993)

For every k > 0 and graph G, the treewidth of G is at least k if and only if
G contains a bramble of order at least k + 1.

42/50

Another dual notion to treewidth: linkedness

[slides borrowed from Christophe Paul]

@ Two sets Y, Z C V(G), with |Y| = |Z], are separable if there is a set
S C V(G) with |S| < |Y| and such that G — S contains no path
between Y\ S and Z\ S.

43/50

Another dual notion to treewidth: linkedness

[slides borrowed from Christophe Paul]

@ Two sets Y, Z C V(G), with |Y| = |Z], are separable if there is a set
S C V(G) with |S| < |Y| and such that G — S contains no path
between Y\ S and Z\ S.

@ For k > 1, aset X C V(G) is k-linked if | X| > k and
VY. ZCX,|Y|=1|Z| <k, Y and Z are not separable.

43/50

Another dual notion to treewidth: linkedness

[slides borrowed from Christophe Paul]
@ Two sets Y, Z C V(G), with |Y| = |Z], are separable if there is a set

S C V(G) with |S| < |Y| and such that G — S contains no path
between Y\ S and Z\ S.

@ For k > 1, aset X C V(G) is k-linked if | X| > k and
VY. ZCX,|Y|=1|Z| <k, Y and Z are not separable.

The (k x k)-grid is k-linked

43/50

Another dual notion to treewidth: linkedness

[slides borrowed from Christophe Paul]
@ Two sets Y, Z C V(G), with |Y| = |Z], are separable if there is a set

S C V(G) with |S| < |Y| and such that G — S contains no path
between Y\ S and Z\ S.

@ For k > 1, aset X C V(G) is k-linked if | X| > k and
VY. ZCX,|Y|=1|Z| <k, Y and Z are not separable.

The (k x k)-grid is k-linked

Kok i is also k-linked

43/50

Highly linked graphs have large treewidth

If G contains a (k + 1)-linked set X with |X| > 3k, then tw(G) > k.

44/50

Highly linked graphs have large treewidth

If G contains a (k + 1)-linked set X with |X| > 3k, then tw(G) > k.

Contradiction: Consider a tree decomposition of G of width < k.

Let ¢ be a "lowest” node with |V; N X| > 2k.

44/50

Highly linked graphs have large treewidth

If G contains a (k + 1)-linked set X with |X| > 3k, then tw(G) > k.

Contradiction: Consider a tree decomposition of G of width < k.

Let ¢ be a "lowest” node with |V, N X| > 2k.

If 3i € [¢] such that |V, N X| > k, then
we can choose Y C V;; N X, |Y|= k and
ZC(V\Vy)NX, |Z| = k.

But S = X, N X; separates Y and Z and
|S| < k—1.

44/50

Highly linked graphs have large treewidth

If G contains a (k + 1)-linked set X with |X| > 3k, then tw(G) > k.

Contradiction: Consider a tree decomposition of G of width < k.

Let ¢ be a "lowest” node with |V, N X| > 2k.

Otherwise, let W = V;, U--- U V;, with
(W X|>kand [(W\ V)N X| < k for
I<j<i

YCWnX,|Y|=k+1and
ZC(V\W)nX, |Z] =k+1.

S But S = X; separates Y from Z and |S| < k.

44/50

Deciding linkedness is FPT

Given a vertex set X of a graph G and k < |X|, it is possible to decide
whether X est k-linked in time f(k) - n®1).

45/50

Deciding linkedness is FPT

Given a vertex set X of a graph G and k < |X|, it is possible to decide
whether X est k-linked in time f(k) - n®1).

@ For every pair of subsets Y, Z C X with |Y| = |Z| < k, we can test
whether Y and Z are separable in polynomial time (flow algorithm).

45/50

Deciding linkedness is FPT

Given a vertex set X of a graph G and k < |X|, it is possible to decide
whether X est k-linked in time f(k) - n®1).

@ For every pair of subsets Y, Z C X with |Y| = |Z| < k, we can test
whether Y and Z are separable in polynomial time (flow algorithm).

o Complexity: 4k . n0(1).

45/50

Deciding linkedness is FPT

Given a vertex set X of a graph G and k < |X|, it is possible to decide
whether X est k-linked in time f(k) - n®1).

@ For every pair of subsets Y, Z C X with |Y| = |Z| < k, we can test
whether Y and Z are separable in polynomial time (flow algorithm).

o Complexity: 4k . n0(1).

If X is not k-linked we can find, within the same running time,
two separable subsets Y, Z C X.

45/50

@ Computing treewidth

46/50

Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

47/50

Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

(] DeCIdIng Whethel’ tW(G) S k |S NP-COmpIete [Arnborg, Corneil, Proskurowski. 1987]

47/50

Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

(] DeC|d|ng Whethel’ tW(G) S k |S NP-COmpIete [Arnborg, Corneil, Proskurowski. 1987]

. . 3
@ Can be solved in time k9(<) . . [Bodlaender. 1996]

47/50

Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

(] DeC|d|ng Whethel’ tW(G) S k |S NP-COmpIete [Arnborg, Corneil, Proskurowski. 1987]
. . 3
@ Can be solved in time k9(<) . . [Bodlaender. 1996]

e Either concludes that tw(G) > k or finds a tree decomposition of
W|dth at most 4k in tlme O(33k . k . n2) [Robertson and Seymour. 1995]

47/50

Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

(] DeC|d|ng Whethel’ tW(G) S k |S NP-COmpIete [Arnborg, Corneil, Proskurowski. 1987]
. . 3
@ Can be solved in time k9(<) . . [Bodlaender. 1996]

e Either concludes that tw(G) > k or finds a tree decomposition of
W|dth at most 4k in tlme O(33k . k . n2) [Robertson and Seymour. 1995]

e Either concludes that tw(G) > k or finds a tree decomposition of
width at most 9k/2 in time O(23% - k3/2. p?), [Amir. 2010]

47/50

Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

(] DeC|d|ng Whethel’ tW(G) S k |S NP-COmpIete [Arnborg, Corneil, Proskurowski. 1987]
. . 3
(] Can be SOlVed In time ko(k) - n. [Bodlaender. 1996]

e Either concludes that tw(G) > k or finds a tree decomposition of
W|dth at most 4k in tlme O(33k . k . n2) [Robertson and Seymour. 1995]

e Either concludes that tw(G) > k or finds a tree decomposition of
width at most 9k/2 in time O(23% - k3/2. p?), [Amir. 2010]

e Either concludes that tw(G) > k or finds a tree decomposition of
width at most 5k + 4 in time 2O(k) - n. [Bodlaender et al. 2016]

47/50

Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

(] DeC|d|ng Whethel’ tW(G) S k |S NP-COmpIete [Arnborg, Corneil, Proskurowski. 1987]
. . 3
(] Can be SOlVed In time ko(k) - n. [Bodlaender. 1996]

e Either concludes that tw(G) > k or finds a tree decomposition of
W|dth at most 4k in tlme O(33k . k . n2) [Robertson and Seymour. 1995]

e Either concludes that tw(G) > k or finds a tree decomposition of
width at most 9k/2 in time O(23% - k3/2. p?), [Amir. 2010]

e Either concludes that tw(G) > k or finds a tree decomposition of
width at most 5k + 4 in time 2O(k) - n. [Bodlaender et al. 2016]

e Either concludes that tw(G) > k or finds a tree decomposition of
W|dth at most O(k . \/m) in tlme no(l) [Feige, Hajiaghayi, Lee. 2008]

47/50

Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

(] DeC|d|ng Whethel’ tW(G) S k |S NP-COmpIete [Arnborg, Corneil, Proskurowski. 1987]
. . 3
(] Can be SOlVed In time ko(k) - n. [Bodlaender. 1996]

% Either concludes that tw(G) > k or finds a tree decomposition of
W|dth at most 4k in tlme O(33k . k . n2) [Robertson and Seymour. 1995]

e Either concludes that tw(G) > k or finds a tree decomposition of
width at most 9k/2 in time O(23% - k3/2. p?), [Amir. 2010]

e Either concludes that tw(G) > k or finds a tree decomposition of
width at most 5k + 4 in time 2O(k) - n. [Bodlaender et al. 2016]

e Either concludes that tw(G) > k or finds a tree decomposition of
W|dth at most O(k . \/m) in tlme no(l) [Feige, Hajiaghayi, Lee. 2008]

47/50

4-approximation of Robertson and Seymour

[slides borrowed from Christophe Paul]

@ We add vertices to a set U in a greedy way, until U = V(G).

48/50

4-approximation of Robertson and Seymour

[slides borrowed from Christophe Paul]

@ We add vertices to a set U in a greedy way, until U = V(G).
e We maintain a tree decomposition 7y of G[U] s.t. width(7y) < 4k,

48/50

4-approximation of Robertson and Seymour

[slides borrowed from Christophe Paul]

@ We add vertices to a set U in a greedy way, until U = V(G).

e We maintain a tree decomposition 7y of G[U] s.t. width(7y) < 4k,
unless we stop the algorithm and conclude that tw(G) > k.

48/50

4-approximation of Robertson and Seymour

[slides borrowed from Christophe Paul]

@ We add vertices to a set U in a greedy way, until U = V(G).

e We maintain a tree decomposition 7y of G[U] s.t. width(7y) < 4k,
unless we stop the algorithm and conclude that tw(G) > k.

Invariant

@ Every connected component of G — U has at most 3k neighbors in U.

48/50

4-approximation of Robertson and Seymour

[slides borrowed from Christophe Paul]

@ We add vertices to a set U in a greedy way, until U = V(G).

e We maintain a tree decomposition 7y of G[U] s.t. width(7y) < 4k,
unless we stop the algorithm and conclude that tw(G) > k.

Invariant

@ Every connected component of G — U has at most 3k neighbors in U.
@ There exists a bag X; of 7y containing all these neighbors.

48/50

4-approximation of Robertson and Seymour

[slides borrowed from Christophe Paul]

@ We add vertices to a set U in a greedy way, until U = V(G).

e We maintain a tree decomposition 7y of G[U] s.t. width(7y) < 4k,
unless we stop the algorithm and conclude that tw(G) > k.

Invariant

@ Every connected component of G — U has at most 3k neighbors in U.
@ There exists a bag X; of 7y containing all these neighbors.

Initially, we start with U being any set of 3k vertices.

48/50

4-approximation of Robertson and Seymour (2)

Let X be the neighbors of a component C and t be the node s.t. X C X;.

49/50

4-approximation of Robertson and Seymour (2)

Let X be the neighbors of a component C and t be the node s.t. X C X;.

e If [X| < 3k: we add a node t’' neighbor of t such that Xy = {x} U X,
with x € C being a neighbor of X;.

49/50

4-approximation of Robertson and Seymour (2)

Let X be the neighbors of a component C and t be the node s.t. X C X;.

o If | X| = 3k: we test whether X is (k + 1)-linked in time (k) - n®();

49/50

4-approximation of Robertson and Seymour (2)

Let X be the neighbors of a component C and t be the node s.t. X C X;.

o If | X| = 3k: we test whether X is (k + 1)-linked in time (k) - n®();
@ If Xis (k + 1)-linked, then tw(G) > k, and we stop.

49/50

4-approximation of Robertson and Seymour (2)

Let X be the neighbors of a component C and t be the node s.t. X C X;.

o If |X| = 3k: we test whether X is (k + 1)-linked in time f(k) - n®():
@ If Xis (k + 1)-linked, then tw(G) > k, and we stop.
@ Otherwise, we find sets Y, Z, S with [S| < |Y|=|Z| < k+1
and such that S separates Y and Z.

49/50

4-approximation of Robertson and Seymour (2)

Let X be the neighbors of a component C and t be the node s.t. X C X;.

o If |X| = 3k: we test whether X is (k + 1)-linked in time f(k) - n®():
@ If Xis (k + 1)-linked, then tw(G) > k, and we stop.
@ Otherwise, we find sets Y, Z, S with [S| < |Y|=|Z| < k+1
and such that S separates Y and Z.
We create a node t’ neighbor of t s.t. Xp = (SN C)UX.

49/50

4-approximation of Robertson and Seymour (2)

Let X be the neighbors of a component C and t be the node s.t. X C X;.

o If |X| = 3k: we test whether X is (k + 1)-linked in time f(k) - n®():
@ If Xis (k + 1)-linked, then tw(G) > k, and we stop.
@ Otherwise, we find sets Y, Z, S with [S| < |Y|=|Z| < k+1
and such that S separates Y and Z.
We create a node t’ neighbor of t s.t. Xp = (SN C)UX.

Obs: the neighbors of every new component C' C C are in
(X\Z2)u(SNnC)orin (X\Y)U(SNC)

49/50

4-approximation of Robertson and Seymour (2)

Let X be the neighbors of a component C and t be the node s.t. X C X;.

o If |X| = 3k: we test whether X is (k + 1)-linked in time f(k) - n®():
@ If Xis (k + 1)-linked, then tw(G) > k, and we stop.
@ Otherwise, we find sets Y, Z, S with [S| < |Y|=|Z| < k+1
and such that S separates Y and Z.
We create a node t’ neighbor of t s.t. Xp = (SN C)UX.

Obs: the neighbors of every new component C' C C are in
(X\NZ2)u(SnC)orin (X\Y)u(SNC)= <3k neighbors.

49/50

Gracies!

50/50

	Definition and simple properties
	Dynamic programming on tree decompositions
	Two simple algorithms
	Courcelle's theorem
	Introduction to parameterized complexity

	Brambles and duality
	Computing treewidth

