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Minors and Grids



Large tree-width

Question
What makes the treewidth large?

Lemma
If G has a clique K, then there exists a bag containing K

• If G contains a clique of size k, then tw(G) ≥ k − 1.

• Is the opposite true?

Question
Does every graph with large treewidth contains a large clique?
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Grid

Lemma
The k × k grid has tree-width exactly k.

• Consider the bramble of all the crosses.

• Hitting all the crosses requires k elements.

Theorem (Robertson and Seymour 1993)
The treewidth of G is at least k if and only if G contains a
bramble of order at least k + 1.
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Large grid

Question
Does every graph with large treewidth contains a large grid?

As a subgraph, no!
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Minor

Definition
A graph H is a minor of G (H ≤m G) if it can be obtained
from G by deleting vertices, edges and contracting edges.

u v

w
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Another definition

Definition
H is a minor of G if there exists an function φ mapping
vertices of H to connected subgraph of G s.t:

• φ(u) ∩ φ(v) = ∅ if u 6= v.

• If uv ∈ E(H), then φ(u) φ(v) are adjacent.
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Tree-width and minors

Lemma
The treewidth does not increase when deleting edges, vertices
or contracting edges.

• When removing a vertex/edge: same decomposition

• When contracting the edge uv into w: replace u and v by w
in the bags.

• If H ≤m G, then tw(H) ≤ tw(G)

Lemma
If G contains a clique of size k as a minor, then tw(G) ≥ k.
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Kuratowski

Theorem (Kuratowski)
A graph is planar if and only if it doesn’t contain K5 or K3,3 as
a minor.

• The grid is planar, so we have large treewidth without K5

minors.
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Grid minor theorem

Theorem (Robertson and Seymour 1994)
Every graph with large treewidth has a large grid as a minor

• Robertson and Seymour: tw ≥ 2k
5 implies k × k grid.

• Chekuri and Chuzoy: tw ≥ k100 implies k × k grid.

• Also show a polynomial time algorithm to find this grid.

Very important result with a lot of algorithmic applications!
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Disjoint paths problem

Problem (Disjoint paths problem)
Given a graph G and k pairs of vertices (s1, t1), . . . , (sk, tk),
does there exists k disjoint paths P1, . . . , Pk such that every Pi is
a path between si and ti

s1

s2

s3

t1

t2

t3
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Irrelevant vertex

Theorem (Robertson and Seymour 1995)
The k disjoint paths problem has an algorithm in f(k)n3.

• Small treewidth: DP; or

• Large grid: irrelevant vertex
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Finding a minor

Theorem (Robertson and Seymour 1995)
There exists an algorithm deciding if G contains a minor of
H and running in time f(|H|) · |G|3

Theorem (Robertson et Seymour 2004)
Every minor-closed graph family F , can be characterized by a
set LF of excluded minors.

• Planar: K5 and K3,3 are forbidden.

• Every minor-closed graph family F , deciding if a graph G
belongs to F is polynomial.
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Planar vertex deletion

Problem
Let G be a graph and k be an integer. Does there exists a set of
k vertices X such that G−X is planar?

• The class of graph for which the answer is yes is
minor-closed. The problem is thus FPT.

• Easier proofs exist.
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Planar case



Excluded grid: Planar graphs

Theorem (Robertson and Seymour)
For any integer t, every planar graph of treewidth at least 9

2 t

contains a t× t grid as a minor. Moreover, there exists a
polynomial time algorithm to find the model.
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Planar embedding

Consider a planar embedding of the graph and partition the
outer face into North east south and west.

North

EastWest

South
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Menger

Theorem (Menger 1927)
Let G be a connected graph and x and y two vertices, the size of
minimum (x, y)-cut is equal to the maximum number of pairwise
vertex-disjoint paths between x and y.
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Finding a grid

Lemma
If we can find k vertex disjoint paths from North to South and k
vertex disjoint paths from West to East, then there exists a k× k
grid.
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Cut

So either we find a k × k grid or there exists a k vertex cut L1

cutting West and East

L1
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Recursion

The idea is to set the root of the tree decomposition as L1, and
recurse on both side when you contract L1 into a single vertex.

L1

We need to remember on each side, that L1 is contracted.
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West-East cut

Suppose we have another
East-West cut L2

L2

• The root of this subtree will contain L1 ∪ L2

• When recursing on the right, we need to remember L1 and
L2

• When recursing on the left, we need to remember only L2
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Grid minor theorem, end

• Overall we only need to remember one cut per side.

• Since each cut has size at most k, it makes 4k vertices.

• So overall all bags have size at most 5k.

Theorem
There exists an polynomial time algorithm that, taking a planar
graph G and an integer k as input, computes either:

• A tree decomposition of width 5k; or

• A model of the k × k grid.
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Vertex cover in planar graphs

Problem (Vertex Cover)
Given a graph G, find the smallest set X of vertices incident to
all edges.

• If X is an independent set ⇐⇒ |G| −X is a vertex cover.

• We saw O(2tw · n) for max independent set.

Theorem
There is an algorithm in 2tw · n for vertex cover.
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Vertex cover in planar graphs

Problem (k-Vertex Cover)
Given a graph G and an integer k, does there exists a vertex
cover of size k?

• k-Vertex Cover can be solved in 2k · n
• No 2o(k)poly(n) algorithm (unless ETH)

Theorem
There is a 2

√
k · n algorithm for k-Vertex Cover on planar

graphs.
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Grid and vertex cover

Lemma
The vertex cover of a k × k grid is at least bks22 c

• A matching of size bk22 c
• Needs at least one vertex per

edge of the matching
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VC and minors

Lemma (Minor closed)
If H ≤m G, then V C(H) ≤ V C(G)

• When removing an edge?

• When removing a vertex?

• When contracting an edge?

Lemma
If G contains a k × k grid as a minor, then bk22 c ≤ V C(G).
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Algorithm

Lemma
If a planar graph G contains a vertex cover of size k, then the
treewidth of G is O(

√
k).

Proof.
If tw(G) ≥ 10

√
k, then by the grid minor theorem, G contains a

grid of size 2
√
k × 2

√
k as a minor. Thus V C(G) ≥ 2k.

The algorithm for vertex cover on planar graphs: Find a
decomposition of width O(

√
k) (running time: 2O(tw) · n)

• If it doesn’t exists: Answer no!

• If it exists, run the algorithm in time 2tw · n = 2O(
√
k) · n.
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Paths

Problem (k-paths)
Let G be a graph, does there exists a path of length k?

• There is a 2O(k)nO(1) algorithm in general graphs

• No 2o(k) algorithm under ETH.

Lemma
If G contains a k × k grid as a
minor, then G has a path of length
k2.

So the algorithm tries to compute a tree decomposition of width
O(
√
k). If tw is larger answers YES, if not do DP.
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Bidimensionality

The general approach:

• Compute the treewidth (approx.) of the graph.

• If it is at least c ·
√
k answers NO (for minimisation) or

YES (maximisation)

• If the treewidth is at most c ·
√
k, do DP.

Theorem (Demaine et al. 2005)
There exists a subexponential algorithm on planar graphs for:
Vertex cover, independent set, dominating set, feedback vertex
set, longest path ...
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Bidimensionality

Can also be used for:

• PTASes on planar graphs for vertex cover, feedback vertex
set ...

• Linear kernels on planar graphs for a lot of problems as
well.

Remark
Works on any class of graph where the relation between size of
the grid minor and treewdith is linear.

So H-free graphs for example.
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Conclusion

Theorem (Robertson and Seymour)
Every graph with large treewidth has a large grid as a minor

• Small tree width: DP

• Large treewidth: use the grid
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