Grid minor theorem and applications

William Lochet

University of Bergen, Norway

Minors and Grids

Question
What makes the treewidth large?

Question

What makes the treewidth large?

Lemma

If G has a clique K, then there exists a bag containing K

Question

What makes the treewidth large?

Lemma

If G has a clique K, then there exists a bag containing K

• If G contains a clique of size k, then $tw(G) \ge k - 1$.

Question

What makes the treewidth large?

Lemma

 $\overline{If} G$ has a clique K, then there exists a bag containing K

- If G contains a clique of size k, then $tw(G) \ge k 1$.
- Is the opposite true?

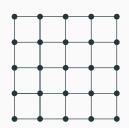
Question

Does every graph with large treewidth contains a large clique?

Grid

Lemma

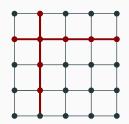
The $\mathbf{k} \times \mathbf{k}$ grid has tree-width exactly \mathbf{k} .



Grid

Lemma

The $k \times k$ grid has tree-width exactly k.

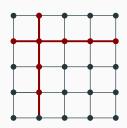


• Consider the bramble of all the crosses.

Grid

Lemma

The $\mathbf{k} \times \mathbf{k}$ grid has tree-width exactly \mathbf{k} .



- Consider the bramble of all the crosses.
- \bullet Hitting all the crosses requires k elements.

Theorem (Robertson and Seymour 1993) The treewidth of G is at least k if and only if G contains a bramble of order at least k + 1.

Large grid

Question

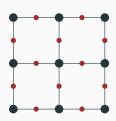
Does every graph with large treewidth contains a large grid?

Large grid

Question

Does every graph with large treewidth contains a large grid?

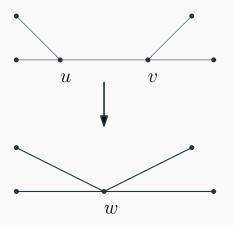
As a subgraph, no!



Minor

Definition

A graph H is a **minor** of G ($H \leq_m G$) if it can be obtained from G by deleting vertices, edges and **contracting** edges.



5

Another definition

Definition

H is a **minor** of G if there exists an function ϕ mapping vertices of H to **connected subgraph** of G s.t:

- $\phi(u) \cap \phi(v) = \emptyset$ if $u \neq v$.
- If $uv \in E(H)$, then $\phi(u)$ $\phi(v)$ are adjacent.

Another definition

Definition

H is a **minor** of G if there exists an function ϕ mapping vertices of H to **connected subgraph** of G s.t:

- $\phi(u) \cap \phi(v) = \emptyset$ if $u \neq v$.
- If $uv \in E(H)$, then $\phi(u)$ $\phi(v)$ are adjacent.

Tree-width and minors

Lemma

The treewidth does not increase when deleting edges, vertices or contracting edges.

Tree-width and minors

Lemma

The treewidth does not increase when deleting edges, vertices or contracting edges.

- When removing a vertex/edge: same decomposition
- When contracting the edge uv into w: replace u and v by w in the bags.

Tree-width and minors

Lemma

The treewidth does not increase when deleting edges, vertices or contracting edges.

- When removing a vertex/edge: same decomposition
- When contracting the edge uv into w: replace u and v by w in the bags.
- If $H \leq_m G$, then $tw(H) \leq tw(G)$

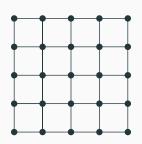
Lemma

If G contains a clique of size k as a minor, then $tw(G) \ge k$.

Kuratowski

Theorem (Kuratowski) A graph is planar if and only if it doesn't contain K_5 or $K_{3,3}$ as a minor.

• The grid is planar, so we have large treewidth without K_5 minors.



Theorem (Robertson and Seymour 1994) Every graph with large treewidth has a large grid as a minor

Theorem (Robertson and Seymour 1994) Every graph with large treewidth has a large grid as a minor

• Robertson and Seymour: $tw \ge 2^{k^5}$ implies $k \times k$ grid.

Theorem (Robertson and Seymour 1994) Every graph with large treewidth has a large grid as a minor

- Robertson and Seymour: $tw \ge 2^{k^5}$ implies $k \times k$ grid.
- Chekuri and Chuzoy: $tw \ge k^{100}$ implies $k \times k$ grid.
- Also show a **polynomial time algorithm** to find this grid.

Theorem (Robertson and Seymour 1994) Every graph with large treewidth has a large grid as a minor

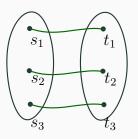
- Robertson and Seymour: $tw \ge 2^{k^5}$ implies $k \times k$ grid.
- Chekuri and Chuzoy: $tw \ge k^{100}$ implies $k \times k$ grid.
- Also show a **polynomial time algorithm** to find this grid.

Very important result with a lot of algorithmic applications!

Disjoint paths problem

Problem (Disjoint paths problem)

Given a graph G and k pairs of vertices $(s_1, t_1), \ldots, (s_k, t_k)$, does there exists k disjoint paths P_1, \ldots, P_k such that every P_i is a path between s_i and t_i



Irrelevant vertex

Theorem (Robertson and Seymour 1995)

The k disjoint paths problem has an algorithm in $f(k)n^3$.

• Small treewidth: DP; or

• Large grid: irrelevant vertex



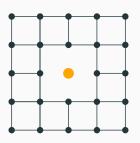
Irrelevant vertex

Theorem (Robertson and Seymour 1995)

The k disjoint paths problem has an algorithm in $f(k)n^3$.

• Small treewidth: DP; or

• Large grid: irrelevant vertex



Theorem (Robertson and Seymour 1995) There exists an algorithm deciding if G contains a minor of H and running in time $f(|H|) \cdot |G|^3$

Theorem (Robertson and Seymour 1995) There exists an algorithm deciding if G contains a minor of H and running in time $f(|H|) \cdot |G|^3$

Theorem (Robertson et Seymour 2004) Every minor-closed graph family \mathcal{F} , can be characterized by a set $\mathcal{L}_{\mathcal{F}}$ of excluded minors.

Theorem (Robertson and Seymour 1995) There exists an algorithm deciding if G contains a minor of H and running in time $f(|H|) \cdot |G|^3$

Theorem (Robertson et Seymour 2004) Every minor-closed graph family \mathcal{F} , can be characterized by a set $\mathcal{L}_{\mathcal{F}}$ of excluded minors.

• Planar: K_5 and $K_{3,3}$ are forbidden.

Theorem (Robertson and Seymour 1995) There exists an algorithm deciding if G contains a minor of H and running in time $f(|H|) \cdot |G|^3$

Theorem (Robertson et Seymour 2004) Every minor-closed graph family \mathcal{F} , can be characterized by a set $\mathcal{L}_{\mathcal{F}}$ of excluded minors.

- Planar: K_5 and $K_{3,3}$ are forbidden.
- Every minor-closed graph family \mathcal{F} , deciding if a graph G belongs to \mathcal{F} is **polynomial**.

Planar vertex deletion

Problem

Let G be a graph and k be an integer. Does there exists a set of k vertices X such that G - X is planar?

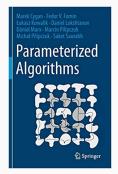
• The class of graph for which the answer is **yes** is minor-closed. The problem is thus FPT.

Planar vertex deletion

Problem

Let G be a graph and k be an integer. Does there exists a set of k vertices X such that G - X is planar?

- The class of graph for which the answer is **yes** is minor-closed. The problem is thus FPT.
- Easier proofs exist.



Planar case

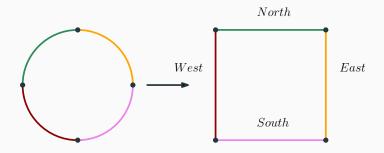
Excluded grid: Planar graphs

Theorem (Robertson and Seymour)

For any integer t, every **planar graph** of treewidth at least $\frac{9}{2}t$ contains a $t \times t$ grid as a minor. Moreover, there exists a polynomial time algorithm to find the model.

Planar embedding

Consider a planar embedding of the graph and partition the outer face into North east south and west.



Menger

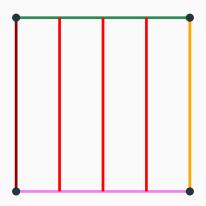
Theorem (Menger 1927)

Let G be a connected graph and x and y two vertices, the size of minimum (x, y)-cut is equal to the maximum number of pairwise vertex-disjoint paths between x and y.

Finding a grid

Lemma

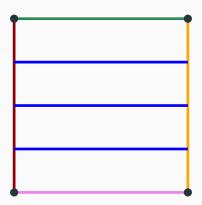
If we can find k vertex disjoint paths from North to South and k vertex disjoint paths from West to East, then there exists a $k \times k$ grid.



Finding a grid

Lemma

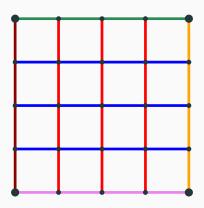
If we can find k vertex disjoint paths from North to South and k vertex disjoint paths from West to East, then there exists a $k \times k$ grid.



Finding a grid

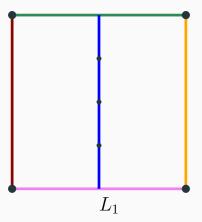
Lemma

If we can find k vertex disjoint paths from North to South and k vertex disjoint paths from West to East, then there exists a $k \times k$ grid.



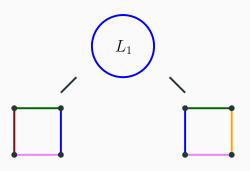
Cut

So either we find a $k \times k$ grid or there exists a k vertex cut L_1 cutting West and East



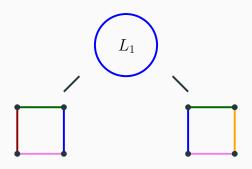
Recursion

The idea is to set the root of the tree decomposition as L_1 , and recurse on both side when you contract L_1 into a single vertex.



Recursion

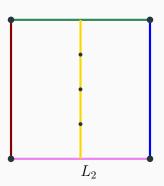
The idea is to set the root of the tree decomposition as L_1 , and recurse on both side when you contract L_1 into a single vertex.



We need to remember on each side, that L_1 is contracted.

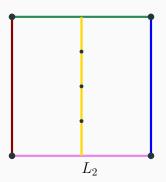
West-East cut

Suppose we have another East-West cut L_2



West-East cut

Suppose we have another East-West cut L_2



- The root of this subtree will contain $L_1 \cup L_2$
- When recursing on the right, we need to remember L_1 and L_2
- When recursing on the left, we need to remember only L_2

Grid minor theorem, end

- Overall we only need to remember one cut per side.
- Since each cut has size at most k, it makes 4k vertices.
- So overall all bags have size at most 5k.

Grid minor theorem, end

- Overall we only need to remember one cut per side.
- Since each cut has size at most k, it makes 4k vertices.
- So overall all bags have size at most 5k.

Theorem

There exists an polynomial time algorithm that, taking a planar graph G and an integer k as input, computes either:

- A tree decomposition of width 5k; or
- A model of the $k \times k$ grid.

Problem (Vertex Cover) Given a graph G, find the smallest set X of vertices incident to all edges.

Problem (Vertex Cover)

Given a graph G, find the smallest set X of vertices incident to all edges.

• If X is an independent set \iff |G|-X is a vertex cover.

Problem (Vertex Cover)

Given a gràph G, find the smallest set X of vertices incident to all edges.

- If X is an independent set \iff |G|-X is a vertex cover.
- We saw $O(2^{tw} \cdot n)$ for max independent set.

Problem (Vertex Cover)

Given a gràph G, find the smallest set X of vertices incident to all edges.

- If X is an independent set \iff |G|-X is a vertex cover.
- We saw $O(2^{tw} \cdot n)$ for max independent set.

Theorem

There is an algorithm in $2^{tw} \cdot n$ for vertex cover.

Problem (k-Vertex Cover)

Given a gràph G and an integer k, does there exists a vertex cover of size k?

Problem (k-Vertex Cover)

Given a gràph G and an integer k, does there exists a vertex cover of size k?

• k-Vertex Cover can be solved in $2^k \cdot n$

Problem (k-Vertex Cover)

Given a gràph G and an integer k, does there exists a vertex cover of size k?

- k-Vertex Cover can be solved in $2^k \cdot n$
- No $2^{o(k)}poly(n)$ algorithm (unless ETH)

Problem (k-Vertex Cover)

Given a gràph G and an integer k, does there exists a vertex cover of size k?

- k-Vertex Cover can be solved in $2^k \cdot n$
- No $2^{o(k)}poly(n)$ algorithm (unless ETH)

Theorem

There is a $2^{\sqrt{k}} \cdot n$ algorithm for k-Vertex Cover on **planar** graphs.

Grid and vertex cover

Lemma

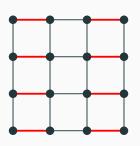
The vertex cover of a $k \times k$ grid is at least $\lfloor \frac{ks^2}{2} \rfloor$

Grid and vertex cover

Lemma

The vertex cover of a $k \times k$ grid is at least $\lfloor \frac{ks^2}{2} \rfloor$

- A matching of size $\lfloor \frac{k^2}{2} \rfloor$
- Needs at least one vertex per edge of the matching



Lemma (Minor closed) If $H \leq_m G$, then $VC(H) \leq VC(G)$

• When removing an edge?

Lemma (Minor closed) If $H \leq_m G$, then $VC(H) \leq VC(G)$

- When removing an edge?
- When removing a vertex?

Lemma (Minor closed) If $H \leq_m G$, then $VC(H) \leq VC(G)$

- When removing an edge?
- When removing a vertex?
- When contracting an edge?

Lemma (Minor closed) If $H \leq_m G$, then $VC(H) \leq VC(G)$

- When removing an edge?
- When removing a vertex?
- When contracting an edge?

Lemma

If G contains a $k \times k$ grid as a minor, then $\lfloor \frac{k^2}{2} \rfloor \leq VC(G)$.

Algorithm

Lemma

If a planar graph G contains a vertex cover of size k, then the treewidth of G is $O(\sqrt{k})$.

Algorithm

Lemma

If a planar graph G contains a vertex cover of size k, then the treewidth of G is $O(\sqrt{k})$.

Proof.

If $tw(G) \ge 10\sqrt{k}$, then by the grid minor theorem, G contains a grid of size $2\sqrt{k} \times 2\sqrt{k}$ as a minor. Thus $VC(G) \ge 2k$.

Algorithm

Lemma

If a planar graph G contains a vertex cover of size k, then the treewidth of G is $O(\sqrt{k})$.

Proof.

If $tw(G) \ge 10\sqrt{k}$, then by the grid minor theorem, G contains a grid of size $2\sqrt{k} \times 2\sqrt{k}$ as a minor. Thus $VC(G) \ge 2k$.

The algorithm for vertex cover on planar graphs: Find a decomposition of width $O(\sqrt{k})$ (running time: $2^{O(tw)} \cdot n$)

- If it doesn't exists: Answer no!
- If it exists, run the algorithm in time $2^{tw} \cdot n = 2^{O(\sqrt{k})} \cdot n$.

Paths

Problem (k-paths)

Let G be a graph, does there exists a path of length k?

- \bullet There is a $2^{O(k)}n^{O(1)}$ algorithm in general graphs
- $\bullet\,$ No $2^{o(k)}$ algorithm under ETH.

Paths

Problem (k-paths)

Let G be a graph, does there exists a path of length k?

- \bullet There is a $2^{O(k)}n^{O(1)}$ algorithm in general graphs
- No $2^{o(k)}$ algorithm under ETH.

Lemma

If G contains a $k \times k$ grid as a minor, then G has a path of length k^2 .



Paths

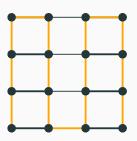
Problem (k-paths)

Let G be a graph, does there exists a path of length k?

- There is a $2^{O(k)}n^{O(1)}$ algorithm in general graphs
- No $2^{o(k)}$ algorithm under ETH.

Lemma

If G contains a $k \times k$ grid as a minor, then G has a path of length k^2 .



So the algorithm tries to compute a tree decomposition of width $O(\sqrt{k})$. If tw is larger answers **YES**, if not do DP.

Bidimensionality

The general approach:

- Compute the treewidth (approx.) of the graph.
- If it is at least $c \cdot \sqrt{k}$ answers NO (for minimisation) or YES (maximisation)
- If the treewidth is at most $c \cdot \sqrt{k}$, do DP.

Theorem (Demaine et al. 2005)

There exists a subexponential algorithm on planar graphs for: Vertex cover, independent set, dominating set, feedback vertex set, longest path ...

Bidimensionality

Can also be used for:

- PTASes on planar graphs for vertex cover, feedback vertex set ...
- Linear kernels on planar graphs for a lot of problems as well.

Bidimensionality

Can also be used for:

- PTASes on planar graphs for vertex cover, feedback vertex set ...
- Linear kernels on planar graphs for a lot of problems as well.

Remark

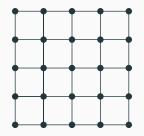
Works on any class of graph where the relation between size of the grid minor and treewdith is **linear**.

So H-free graphs for example.

Conclusion

Theorem (Robertson and Seymour)

Every graph with large treewidth has a large grid as a minor



• Small tree width: DP

• Large treewidth: use the grid