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Separators

Disclaimer :

Everything in this talk is hereditary !

S ⊆ V is a separator if G \ S is not connected.

Reminder of Ignasi’s talk :
Every bag of a tree decomposition is a separator.

Question :
Can we say better ?
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Balanced Separators
S is a balanced separator if there exists a partition A,B of G \ S
such that :

• max(|A|, |B|) ≤ 2n
3 and,

• A,B are anticomplete.

Every tree T has a vertex v such that every component of T \ v
has size ≤ n

2 .

Lemma

Proof :

• Orient the edge u → v if G \ u
contains ≥ 1

2 of the vertices.

• The orientation admits a sink.

• A sink vertex satisfies the lemma.
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Balanced separators and treewidth I

Every tree T has balanced separator of size 1.

Lemma

Proof :

• G \ v has components
C1, . . . ,Cr of size at most n

2 .

• Rank them by increasing size.

• Add Ci in A until
∑

j≤i Cj ≥ n
3 .

C1C2

C3

C4

Every graph of treewidth at most k has a balanced separator of
size k + 1.

Theorem

Proof : Replace nodes by bags.
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Super balanced separators
A separator S is super balanced if A,B have size at most n/2.

If G has a balanced separator of size ≤ k then G has a super
balanced separator of size ≤ ck .

Lemma

Proof :
• Find a balanced separator S1.

• Put the “small” part A in one of the two sets we are
constructing.
• Cut again B and repeat.

S1

n
2 ≤ |B| ≤

2n
3

BA A

?Gauche Dr.

B S1

Sep.

Total size of the separator ≤
∑log n

i=1 (2/3)ik = c · k .
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Questions

• When does it exist (small) balanced separators ?

• Why are we looking for (small) balanced separators ?

• When can’t we find (small) balanced separators ?
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Separator and treewidth II

Every graph with a balanced separator of size k has treewidth
O(k).

Theorem (Dvǒrák, Norin ’19)

Sketch of the proof of a weaker statement : [Bodlaender ’91]
If G has treewidth k then O(k log n))

S

k

tw(G ) ≤ k + k log(n/2) ≤ k · (log 2 + log(n/2) ≤ k log n
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Planar graphs

Planar graphs have balanced separators of size O(
√
n).

Theorem (Lipton, Tarjan)

Remark :
Ω(
√
n) is necessary for grids.

Every Kt-minor free graph has a balanced separator of size
O(t3/2

√
n).

Theorem (Alon, Seymour, Thomas)
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Proof 1 - Using Koebe
Proof of Har-Peled ’11 :

G is planar iff it is the contact graph of disks on the sphere.

Theorem (Koebe, Andreev, Thurston ’36)

Disk = natural separator.

P : sets of centers.

D : smallest disk of the plane
containing 1/10 of P.
 Wlog B(0, 1).

Let 1 ≤ r ≤ 2. Sr = {v/D(0, r) ∩ B(v , rv ) 6= ∅}.
⇒ Sr separate the “interior” from the “exterior”.
To conclude, we want to prove :
• Sr is balanced (no too large component on each side).
• Sr is not too big (the expected size of Sr is O(

√
n)).
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S is balanced

Every connected component of G \ S has size at most 9n/10.

Lemma 1

Proof :
Exterior : X

Interior :
P ′= Subset of centers in B(0, 2).
B(0, 2d) can be covered by 9 ball of radius
d .
⇒ By minimality of the ball, P ′ has size at
most 9n/10.

Fig. Har-Peled
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S is not too big

With high probability :

|S | = O(
√
n)

Lemma 2

(Very sketchy) proof :

• For every disk Di of radius ri :
P(D(x , r) ∩ Di 6= ∅) ≤ 2ri .

• Di uses an area of πr2i .

• Total area is 4π.

• Using Cauchy-Scharwz :
E(S) =

∑n
i P(D(x , r)∩Di 6= ∅)

E(S) ≤
∑n

i=1 2 · ri
E(S) ≤

√
(
∑n

i=1 4) · (
∑n

i=1 r
2
i )

E(S) = O(
√
n).

2ri
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Proof 2 - à la Baker
Proof by Lokshtanov

Note :
Instead of proving the existence of a separator, we will prove a
bound on the treewidth of planar graphs !

31 2 · · ·
√
n 1 2

· · · · · ·

3

• Layering partition.
• Label every layer according to its value modulo

√
n.

• There exists a label containing less than
√
n vertices.

→ Remove these vertices.

The treewidth of a planar graph of diameter d is at most 3d−1.

Theorem (Boadlander ’91)
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First try

• Peel the graphs into layers of a BFS.

• Every layer is an outerplanar graph.
⇒ Every layer has treewidth at most 2.

• Combine the tree decompositions of each layer ?

Problem : How to do it ?
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Layered treewidth

A layering of G is a partition V1, . . . ,Vt of V such that every edge
lies in a layer or between two consecutive layers.

Layered width= maximum for i ∈ {1, . . . , t} of the treewidth of
(T ,G [Vi ]).

Layered treewidth= Minimum over the layerings of G and the
tree decompositions of G of the layered width.

Remark :
1. ltw(G ) ≤ tw(G ).
2. ` consecutive layers induce a subgraph of treewidth ≤ ` · ltw(G ).
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Example

Grids have layered treewidth 2.

Every planar graph has layered treewidth at most 3

Theorem (Dujmović, Morin, Wood ’17)
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Application 1 - Universal Graphs
A universal graph Un of G is a graph that contains every graph of
G of size n as a subgraph.

Goal : Minimize the number of edges of Un.

Planar graphs have a universal graph with O(n3/2) edges.

Theorem

Proof : By induction.

• Every planar graph has a super
balanced separator of size c

√
n.

• Join a clique of c
√
n to two

universal graphs of size n/2.

• Total number of edges ≈ n3/2.

Kc
√
n

Remarks :
1. [Esperet, Joret, Morin ’21+] Planar graphs have a universal
graph with O(n1+ε) edges.
2. O(n3/2) still the best upper bound for minor closed classes.
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Application 2 - Approximation of MIS

Maximum Independent Set has a PTAS in planar graphs.

Theorem

Remark 1 : χ(G ) ≤ 4 ⇒ MIS(G ) ≥ n
4 for every planar graph G .

→ A poly-time algorithm to compute a MIS after the removal of
o(n) vertices ⇒ A (1 + ε)-approximation algorithm.

Roadmap : Divide and conquer

• Delete a balanced separator of size
O(
√
n).

• Apply induction on both sides.

• Stop when components have size
≤ log n.

→ A careful counting ensures that only o(n)
vertices have been removed.
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Existence of balanced separators ?
Question 1 : Does there always exist small balanced separator ?

NO !

Question 2 : Do there exist graphs of small degree with no
sublinear balanced separator ?
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Expanders
Border of S ⊆ V :

δ(S) = { w/w ∈ N(S) and w /∈ S}

Expansion of G :

h(G ) = min
|S| ≤ n

2

|δ(S)|
|S |

A graph G is a c-expander if h(G ) ≥ c .

The following are equivalent
• G is a c-expander for c > 0.

• G has linear treewidth.

• G has no sublinear balanced separator.

Theorem

19/20
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Building expanders ?
Remark :
A graph of maximum degree 2 is not an expander.

There exist cubic-expanders.

Theorem (Reingold, Vadhan, Wigderson ’00)

Rough idea : Zig-zag product
G a “large graph” of large degree D that is expanding.
H a “small graph” of size D and degree d which is an expander.

Zig-zag product G ◦ H : graph of degree d2 that has the
(essentially) expansion of G .
“Replace” every vertex v ∈ V (G ) by a “cloud” of size D which is
connected in a “dirty” way to the original neighbors of v in G .

Thanks for your attention !
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