Balanced separators and (layered) treewidth

Nicolas Bousquet

March 2021

Disclaimer :

Everything in this talk is hereditary !

Disclaimer :

Everything in this talk is hereditary !

```
S \subseteq V is a separator if G \setminus S is not connected.
```

Disclaimer :

Everything in this talk is hereditary !

 $S \subseteq V$ is a separator if $G \setminus S$ is not connected.

Reminder of Ignasi's talk :

Every bag of a tree decomposition is a separator.

Disclaimer :

Everything in this talk is hereditary !

 $S \subseteq V$ is a separator if $G \setminus S$ is not connected.

Reminder of Ignasi's talk :

Every bag of a tree decomposition is a separator.

Question : Can we say better?

S is a balanced separator if there exists a partition A,B of $G\setminus S$ such that :

- $\max(|A|, |B|) \leq \frac{2n}{3}$ and,
- A, B are anticomplete.

S is a balanced separator if there exists a partition A,B of $G\setminus S$ such that :

- $\max(|A|, |B|) \leq \frac{2n}{3}$ and,
- A, B are anticomplete.

Lemma

Every tree T has a vertex v such that every component of $T \setminus v$ has size $\leq \frac{n}{2}$.

S is a balanced separator if there exists a partition A,B of $G\setminus S$ such that :

- $\max(|A|, |B|) \leq \frac{2n}{3}$ and,
- A, B are anticomplete.

Lemma Every tree *T* has a vertex *v* such that every component of $T \setminus v$ has size $\leq \frac{n}{2}$.

Proof :

Orient the edge u → v if G \ u contains ≥ ¹/₂ of the vertices.

S is a balanced separator if there exists a partition A,B of $G\setminus S$ such that :

- $\max(|A|, |B|) \leq \frac{2n}{3}$ and,
- A, B are anticomplete.

Lemma Every tree *T* has a vertex *v* such that every component of $T \setminus v$ has size $\leq \frac{n}{2}$.

- Orient the edge u → v if G \ u contains ≥ ¹/₂ of the vertices.
- The orientation admits a sink.

S is a balanced separator if there exists a partition A,B of $G\setminus S$ such that :

- $\max(|A|, |B|) \leq \frac{2n}{3}$ and,
- A, B are anticomplete.

Lemma Every tree *T* has a vertex *v* such that every component of $T \setminus v$ has size $\leq \frac{n}{2}$.

- Orient the edge u → v if G \ u contains ≥ ¹/₂ of the vertices.
- The orientation admits a sink.
- A sink vertex satisfies the lemma.

Lemma

Every tree T has balanced separator of size 1.

Lemma

Every tree T has balanced separator of size 1.

Proof:

• $G \setminus v$ has components C_1, \ldots, C_r of size at most $\frac{n}{2}$.

Lemma

Every tree T has balanced separator of size 1.

- $G \setminus v$ has components C_1, \ldots, C_r of size at most $\frac{n}{2}$.
- Rank them by increasing size.

Lemma

Every tree T has balanced separator of size 1.

- $G \setminus v$ has components C_1, \ldots, C_r of size at most $\frac{n}{2}$.
- Rank them by increasing size.
- Add C_i in A until $\sum_{j \le i} C_j \ge \frac{n}{3}$.

Lemma

Every tree T has balanced separator of size 1.

Proof :

- $G \setminus v$ has components C_1, \ldots, C_r of size at most $\frac{n}{2}$.
- Rank them by increasing size.
- Add C_i in A until $\sum_{j \leq i} C_j \geq \frac{n}{3}$.

Theorem

Every graph of treewidth at most k has a balanced separator of size k + 1.

Lemma

Every tree T has balanced separator of size 1.

Proof :

- $G \setminus v$ has components C_1, \ldots, C_r of size at most $\frac{n}{2}$.
- Rank them by increasing size.
- Add C_i in A until $\sum_{j \leq i} C_j \geq \frac{n}{3}$.

Theorem

Every graph of treewidth at most k has a balanced separator of size k + 1.

Proof : Replace nodes by bags.

A separator S is super balanced if A, B have size at most n/2.

Lemma

If G has a balanced separator of size $\leq k$ then G has a super balanced separator of size $\leq ck$.

A separator S is super balanced if A, B have size at most n/2.

Lemma

If G has a balanced separator of size $\leq k$ then G has a super balanced separator of size $\leq ck$.

Proof :

• Find a balanced separator S_1 .

A separator S is super balanced if A, B have size at most n/2.

Lemma

If G has a balanced separator of size $\leq k$ then G has a super balanced separator of size $\leq ck$.

- Find a balanced separator S_1 .
- Put the "small" part A in one of the two sets we are constructing.

A separator S is super balanced if A, B have size at most n/2.

Lemma

If G has a balanced separator of size $\leq k$ then G has a super balanced separator of size $\leq ck$.

- Find a balanced separator S_1 .
- Put the "small" part A in one of the two sets we are constructing.
- Cut again *B* and repeat.

A separator S is super balanced if A, B have size at most n/2.

Lemma

If G has a balanced separator of size $\leq k$ then G has a super balanced separator of size $\leq ck$.

- Find a balanced separator S_1 .
- Put the "small" part A in one of the two sets we are constructing.
- Cut again *B* and repeat.

A separator S is super balanced if A, B have size at most n/2.

Lemma

If G has a balanced separator of size $\leq k$ then G has a super balanced separator of size $\leq ck$.

- Find a balanced separator S_1 .
- Put the "small" part A in one of the two sets we are constructing.
- Cut again *B* and repeat.

A separator S is super balanced if A, B have size at most n/2.

Lemma

If G has a balanced separator of size $\leq k$ then G has a super balanced separator of size $\leq ck$.

Proof :

- Find a balanced separator S_1 .
- Put the "small" part A in one of the two sets we are constructing.
- Cut again *B* and repeat.

Total size of the separator $\leq \sum_{i=1}^{\log n} (2/3)^i k = \mathbf{c} \cdot \mathbf{k}$.

Questions

- When does it exist (small) balanced separators?
- Why are we looking for (small) balanced separators?
- When can't we find (small) balanced separators?

Theorem (Dvořák, Norin '19)

Every graph with a balanced separator of size k has treewidth O(k).

Theorem (Dvořák, Norin '19)

Every graph with a balanced separator of size k has treewidth O(k).

Sketch of the proof of a weaker statement : [Bodlaender '91] If G has treewidth k then $O(k \log n)$)

Theorem (Dvořák, Norin '19)

Every graph with a balanced separator of size k has treewidth O(k).

Sketch of the proof of a weaker statement : [Bodlaender '91] If G has treewidth k then $O(k \log n)$)

Theorem (Dvořák, Norin '19)

Every graph with a balanced separator of size k has treewidth O(k).

Sketch of the proof of a weaker statement : [Bodlaender '91] If G has treewidth k then $O(k \log n)$)

Theorem (Dvořák, Norin '19)

Every graph with a balanced separator of size k has treewidth O(k).

Sketch of the proof of a weaker statement : [Bodlaender '91] If G has treewidth k then $O(k \log n)$)

Theorem (Dvořák, Norin '19)

Every graph with a balanced separator of size k has treewidth O(k).

Sketch of the proof of a weaker statement : [Bodlaender '91] If G has treewidth k then $O(k \log n)$)

 $tw(G) \le k + k \log(n/2) \le k \cdot (\log 2 + \log(n/2) \le k \log n)$

Theorem (Lipton, Tarjan)

Planar graphs have balanced separators of size $O(\sqrt{n})$.

Theorem (Lipton, Tarjan)

Planar graphs have balanced separators of size $O(\sqrt{n})$.

Remark : $\Omega(\sqrt{n})$ is necessary for grids.

Theorem (Lipton, Tarjan)

Planar graphs have balanced separators of size $O(\sqrt{n})$.

Remark : $\Omega(\sqrt{n})$ is necessary for grids.

Theorem (Lipton, Tarjan)

Planar graphs have balanced separators of size $O(\sqrt{n})$.

Remark : $\Omega(\sqrt{n})$ is necessary for grids.

Theorem (Alon, Seymour, Thomas)

Every K_t -minor free graph has a balanced separator of size $O(t^{3/2}\sqrt{n})$.

Proof 1 - Using Koebe

Proof of Har-Peled '11 :

Theorem (Koebe, Andreev, Thurston '36)

G is planar iff it is the contact graph of disks on the sphere.

Proof of Har-Peled '11 :

Theorem (Koebe, Andreev, Thurston '36)

G is planar iff it is the contact graph of disks on the sphere.

Disk = natural separator.

Proof of Har-Peled '11 :

Theorem (Koebe, Andreev, Thurston '36)

G is planar iff it is the contact graph of disks on the sphere.

Disk = natural separator.

 \mathcal{P} : sets of centers.

 \mathcal{D} : smallest disk of the plane containing 1/10 of \mathcal{P} .

Proof of Har-Peled '11 :

Theorem (Koebe, Andreev, Thurston '36)

G is planar iff it is the contact graph of disks on the sphere.

Disk = natural separator.

 \mathcal{P} : sets of centers.

 $\begin{aligned} \mathcal{D} &: \text{ smallest disk of the plane} \\ & \text{containing } 1/10 \text{ of } \mathcal{P}. \\ & \rightsquigarrow \text{Wlog } B(0,1). \end{aligned}$

Proof of Har-Peled '11 :

Theorem (Koebe, Andreev, Thurston '36)

G is planar iff it is the contact graph of disks on the sphere.

Disk = natural separator.

 \mathcal{P} : sets of centers.

 $\begin{aligned} \mathcal{D} &: \text{ smallest disk of the plane} \\ & \text{containing } 1/10 \text{ of } \mathcal{P}. \\ & \rightsquigarrow \text{Wlog } B(0,1). \end{aligned}$

Let $1 \le r \le 2$. $S_r = \{v/D(0, r) \cap B(v, r_v) \ne \emptyset\}$. $\Rightarrow S_r$ separate the "interior" from the "exterior".

Proof of Har-Peled '11 :

Theorem (Koebe, Andreev, Thurston '36)

G is planar iff it is the contact graph of disks on the sphere.

Disk = natural separator.

 \mathcal{P} : sets of centers.

 $\begin{aligned} \mathcal{D} &: \text{ smallest disk of the plane} \\ & \text{containing } 1/10 \text{ of } \mathcal{P}. \\ & \rightsquigarrow \text{ Wlog } B(0,1). \end{aligned}$

Let $1 \le r \le 2$. $S_r = \{v/D(0, r) \cap B(v, r_v) \ne \emptyset\}$. $\Rightarrow S_r$ separate the "interior" from the "exterior". To conclude, we want to prove :

- S_r is balanced (no too large component on each side).
- S_r is not too big (the expected size of S_r is $O(\sqrt{n})$).

Lemma 1

Every connected component of $G \setminus S$ has size at most 9n/10.

Lemma 1

Every connected component of $G \setminus S$ has size at most 9n/10.

Proof : Exterior : \checkmark

[Lemma 1]

Every connected component of $G \setminus S$ has size at most 9n/10.

Proof : Exterior : \checkmark Interior : $\mathcal{P}'=$ Subset of centers in B(0,2).

Lemma 1

Every connected component of $G \setminus S$ has size at most 9n/10.

Proof: Exterior : ✓

```
Interior :

\mathcal{P}'= Subset of centers in B(0,2).

B(0,2d) can be covered by 9 ball of radius

d.
```


Lemma 1

Every connected component of $G \setminus S$ has size at most 9n/10.

Proof : Exterior : √

Interior :

```
\mathcal{P}'= Subset of centers in B(0,2).
B(0,2d) can be covered by 9 ball of radius d.
\Rightarrow By minimality of the ball, \mathcal{P}' has size at most 9n/10.
```


(Lemma 2<u>)</u>

With high probability :

$$|S| = O(\sqrt{n})$$

Lemma 2

With high probability :

$$|S| = O(\sqrt{n})$$

(Very sketchy) proof :

• For every disk D_i of radius r_i : $\mathbb{P}(D(x,r) \cap D_i \neq \emptyset) \leq 2r_i$.

[Lemma 2]

With high probability :

$$|S| = O(\sqrt{n})$$

(Very sketchy) proof :

- For every disk D_i of radius r_i : $\mathbb{P}(D(x,r) \cap D_i \neq \emptyset) \leq 2r_i$.
- D_i uses an area of πr_i^2 .
- Total area is 4π.

Lemma 2

With high probability :

$$|S| = O(\sqrt{n})$$

(Very sketchy) proof :

- For every disk D_i of radius r_i : $\mathbb{P}(D(x,r) \cap D_i \neq \emptyset) \leq 2r_i$.
- D_i uses an area of πr_i^2 .
- Total area is 4π.
- Using Cauchy-Scharwz : $\mathbb{E}(S) = \sum_{i}^{n} \mathbb{P}(D(x, r) \cap D_{i} \neq \emptyset)$ $\mathbb{E}(S) \leq \sum_{i=1}^{n} 2 \cdot r_{i}$ $\mathbb{E}(S) \leq \sqrt{(\sum_{i=1}^{n} 4) \cdot (\sum_{i=1}^{n} r_{i}^{2})}$ $\mathbb{E}(S) = O(\sqrt{n}).$

Proof 2 - à la Baker

Proof by Lokshtanov

Note :

Instead of proving the existence of a separator, we will prove a bound on the treewidth of planar graphs !

Note :

Instead of proving the existence of a separator, we will prove a bound on the treewidth of planar graphs !

 $\underbrace{}_{1} \underbrace{\bigcirc}_{2} \underbrace{\bigcirc}_{3} \cdots \underbrace{\bigcirc}_{n} \underbrace{\bigcirc}_{n} \underbrace{\bigcirc}_{n} \underbrace{\bigcirc}_{n} \underbrace{\bigcirc}_{n} \underbrace{\bigcirc}_{n} \cdots$

- Layering partition.
- Label every layer according to its value modulo \sqrt{n} .

Note :

Instead of proving the existence of a separator, we will prove a bound on the treewidth of planar graphs !

- Layering partition.
- Label every layer according to its value modulo \sqrt{n} .
- There exists a label containing less than \sqrt{n} vertices. \rightarrow Remove these vertices.

Note :

Instead of proving the existence of a separator, we will prove a bound on the treewidth of planar graphs !

- Layering partition.
- Label every layer according to its value modulo \sqrt{n} .
- There exists a label containing less than \sqrt{n} vertices.
 - \rightarrow Remove these vertices.

Theorem (Boadlander '91)

The treewidth of a planar graph of diameter d is at most 3d - 1.

Note :

Instead of proving the existence of a separator, we will prove a bound on the treewidth of planar graphs !

- Layering partition.
- Label every layer according to its value modulo \sqrt{n} .
- There exists a label containing less than \sqrt{n} vertices.
 - \rightarrow Remove these vertices.

Theorem (Boadlander '91)

The treewidth of a planar graph of diameter d is at most 3d - 1.

• Peel the graphs into layers of a BFS.

• Peel the graphs into layers of a BFS.

• Peel the graphs into layers of a BFS.

- Peel the graphs into layers of a BFS.
- Every layer is an outerplanar graph.
 ⇒ Every layer has treewidth at most 2.

- Peel the graphs into layers of a BFS.
- Every layer is an outerplanar graph.
 ⇒ Every layer has treewidth at most 2.
- Combine the tree decompositions of each layer?

- Peel the graphs into layers of a BFS.
- Every layer is an outerplanar graph.
 ⇒ Every layer has treewidth at most 2.
- Combine the tree decompositions of each layer?

Problem : How to do it?

A layering of G is a partition V_1, \ldots, V_t of V such that every edge lies in a layer or between two consecutive layers.

Layered width= maximum for $i \in \{1, ..., t\}$ of the treewidth of $(T, G[V_i])$.

A layering of G is a partition V_1, \ldots, V_t of V such that every edge lies in a layer or between two consecutive layers.

Layered width= maximum for $i \in \{1, ..., t\}$ of the treewidth of $(T, G[V_i])$.

Layered treewidth= Minimum over the layerings of *G* and the tree decompositions of *G* of the layered width.

A layering of G is a partition V_1, \ldots, V_t of V such that every edge lies in a layer or between two consecutive layers.

Layered width= maximum for $i \in \{1, ..., t\}$ of the treewidth of $(T, G[V_i])$.

Layered treewidth= Minimum over the layerings of *G* and the tree decompositions of *G* of the layered width.

Remark : 1. $ltw(G) \le tw(G)$.

A layering of G is a partition V_1, \ldots, V_t of V such that every edge lies in a layer or between two consecutive layers.

Layered width= maximum for $i \in \{1, ..., t\}$ of the treewidth of $(T, G[V_i])$.

Layered treewidth= Minimum over the layerings of *G* and the tree decompositions of *G* of the layered width.

Remark :

1. $Itw(G) \leq tw(G)$.

2. ℓ consecutive layers induce a subgraph of treewidth $\leq \ell \cdot ltw(G)$.

Grids have layered treewidth 2.

Theorem (Dujmović, Morin, Wood '17)

Every planar graph has layered treewidth at most 3
A universal graph U_n of G is a graph that contains every graph of G of size n as a subgraph.

A universal graph U_n of G is a graph that contains every graph of G of size n as a subgraph.

Goal : Minimize the number of edges of U_n .

A universal graph U_n of G is a graph that contains every graph of G of size n as a subgraph.

Goal : Minimize the number of edges of U_n .

Theorem

Planar graphs have a universal graph with $O(n^{3/2})$ edges.

A universal graph U_n of G is a graph that contains every graph of G of size n as a subgraph.

Goal : Minimize the number of edges of U_n .

(Theorem)

Planar graphs have a universal graph with $O(n^{3/2})$ edges.

Proof : By induction.

• Every planar graph has a super balanced separator of size $c\sqrt{n}$.

 $K_{c\sqrt{n}}$

A universal graph U_n of G is a graph that contains every graph of G of size n as a subgraph.

Goal : Minimize the number of edges of U_n .

(Theorem)

Planar graphs have a universal graph with $O(n^{3/2})$ edges.

Proof : By induction.

- Every planar graph has a super balanced separator of size c√n.
- Join a clique of $c\sqrt{n}$ to two universal graphs of size n/2.

A universal graph U_n of G is a graph that contains every graph of G of size n as a subgraph.

Goal : Minimize the number of edges of U_n .

(Theorem)

Planar graphs have a universal graph with $O(n^{3/2})$ edges.

Proof : By induction.

- Every planar graph has a super balanced separator of size $c\sqrt{n}$.
- Join a clique of $c\sqrt{n}$ to two universal graphs of size n/2.
- Total number of edges $\approx n^{3/2}$.

A universal graph U_n of G is a graph that contains every graph of G of size n as a subgraph.

Goal : Minimize the number of edges of U_n .

Theorem

Planar graphs have a universal graph with $O(n^{3/2})$ edges.

Proof : By induction.

- Every planar graph has a super balanced separator of size $c\sqrt{n}$.
- Join a clique of $c\sqrt{n}$ to two universal graphs of size n/2.

• Total number of edges $\approx n^{3/2}$. Remarks :

1. [Esperet, Joret, Morin '21+] Planar graphs have a universal graph with $O(n^{1+\epsilon})$ edges.

A universal graph U_n of G is a graph that contains every graph of G of size n as a subgraph.

Goal : Minimize the number of edges of U_n .

(Theorem)

Planar graphs have a universal graph with $O(n^{3/2})$ edges.

Proof : By induction.

- Every planar graph has a super balanced separator of size $c\sqrt{n}$.
- Join a clique of $c\sqrt{n}$ to two universal graphs of size n/2.

• Total number of edges $\approx n^{3/2}$. Remarks :

1. [Esperet, Joret, Morin '21+] Planar graphs have a universal graph with $O(n^{1+\epsilon})$ edges. 2. $O(n^{3/2})$ still the best upper bound for minor closed classes.

Theorem

MAXIMUM INDEPENDENT SET has a PTAS in planar graphs.

Theorem

MAXIMUM INDEPENDENT SET has a PTAS in planar graphs.

Remark 1 : $\chi(G) \le 4 \Rightarrow MIS(G) \ge \frac{n}{4}$ for every planar graph *G*.

Theorem

MAXIMUM INDEPENDENT SET has a PTAS in planar graphs.

Remark 1 : $\chi(G) \le 4 \Rightarrow MIS(G) \ge \frac{n}{4}$ for every planar graph *G*. \rightarrow A poly-time algorithm to compute a MIS after the removal of o(n) vertices \Rightarrow A $(1 + \epsilon)$ -approximation algorithm.

Theorem

MAXIMUM INDEPENDENT SET has a PTAS in planar graphs.

Remark 1 : $\chi(G) \le 4 \Rightarrow MIS(G) \ge \frac{n}{4}$ for every planar graph *G*. \rightarrow A poly-time algorithm to compute a MIS after the removal of

o(n) vertices $\Rightarrow A(1 + \epsilon)$ -approximation algorithm.

Roadmap : Divide and conquer

• Delete a balanced separator of size $O(\sqrt{n})$.

Theorem

MAXIMUM INDEPENDENT SET has a PTAS in planar graphs.

Remark 1 : $\chi(G) \le 4 \Rightarrow MIS(G) \ge \frac{n}{4}$ for every planar graph *G*. \rightarrow A poly-time algorithm to compute a MIS after the removal of o(n) vertices \Rightarrow A $(1 + \epsilon)$ -approximation algorithm.

Roadmap : Divide and conquer

• Delete a balanced separator of size $O(\sqrt{n})$.

Theorem

MAXIMUM INDEPENDENT SET has a PTAS in planar graphs.

Remark 1 : $\chi(G) \le 4 \Rightarrow MIS(G) \ge \frac{n}{4}$ for every planar graph *G*. \rightarrow A poly-time algorithm to compute a MIS after the removal of

o(n) vertices $\Rightarrow A(1 + \epsilon)$ -approximation algorithm.

Roadmap : Divide and conquer

- Delete a balanced separator of size $O(\sqrt{n})$.
- Apply induction on both sides.

Theorem

MAXIMUM INDEPENDENT SET has a PTAS in planar graphs.

Remark 1 : $\chi(G) \le 4 \Rightarrow MIS(G) \ge \frac{n}{4}$ for every planar graph *G*. \rightarrow A poly-time algorithm to compute a MIS after the removal of

o(n) vertices $\Rightarrow A (1 + \epsilon)$ -approximation algorithm.

Roadmap : Divide and conquer

- Delete a balanced separator of size $O(\sqrt{n})$.
- Apply induction on both sides.

Theorem

MAXIMUM INDEPENDENT SET has a PTAS in planar graphs.

Remark 1 : $\chi(G) \le 4 \Rightarrow MIS(G) \ge \frac{n}{4}$ for every planar graph *G*. \rightarrow A poly-time algorithm to compute a MIS after the removal of o(n) vertices \Rightarrow A $(1 + \epsilon)$ -approximation algorithm.

Roadmap : Divide and conquer

- Delete a balanced separator of size $O(\sqrt{n})$.
- Apply induction on both sides.
- Stop when components have size $\leq \log n$.

Theorem

MAXIMUM INDEPENDENT SET has a PTAS in planar graphs.

Remark 1 : $\chi(G) \le 4 \Rightarrow MIS(G) \ge \frac{n}{4}$ for every planar graph *G*. \rightarrow A poly-time algorithm to compute a MIS after the removal of o(n) vertices \Rightarrow A $(1 + \epsilon)$ -approximation algorithm.

Roadmap : Divide and conquer

- Delete a balanced separator of size $O(\sqrt{n})$.
- Apply induction on both sides.
- Stop when components have size $\leq \log n$.

 \rightarrow A careful counting ensures that only o(n) vertices have been removed.

Question 1: Does there always exist small balanced separator?

Question 1 : Does there always exist small balanced separator?

NO!

Question 1 : Does there always exist small balanced separator?

NO!

Question 1 : Does there always exist small balanced separator?

NO!

Question 1 : Does there always exist small balanced separator?

NO!

Question 1 : Does there always exist small balanced separator?

NO!

Border of $S \subseteq V$:

 $\delta(S) = \{ w/w \in N(S) \text{ and } w \notin S \}$

Border of $S \subseteq V$:

 $\delta(S) = \{ w/w \in N(S) \text{ and } w \notin S \}$

Expansion of
$$G$$
:

$$h(G) = \min_{|S| \le \frac{n}{2}} \frac{|\delta(S)|}{|S|}$$

Border of $S \subseteq V$:

 $\delta(S) = \{ w/w \in N(S) \text{ and } w \notin S \}$

Expansion of
$$G$$
:

$$h(G) = \min_{|S| \le \frac{n}{2}} \frac{|\delta(S)|}{|S|}$$

A graph G is a c-expander if $h(G) \ge c$.

Border of $S \subseteq V$:

 $\delta(S) = \{ w/w \in N(S) \text{ and } w \notin S \}$

Expansion of
$$G$$
:

$$h(G) = \min_{|S| \leq \frac{n}{2}} \frac{|\delta(S)|}{|S|}$$

A graph G is a c-expander if $h(G) \ge c$.

Theorem

The following are equivalent

- G is a c-expander for c > 0.
- G has linear treewidth.
- G has no sublinear balanced separator.

Remark :

A graph of maximum degree 2 is not an expander.

Remark :

A graph of maximum degree 2 is not an expander.

Theorem (Reingold, Vadhan, Wigderson '00)

There exist cubic-expanders.

Remark :

A graph of maximum degree 2 is not an expander.

Theorem (Reingold, Vadhan, Wigderson '00)

There exist cubic-expanders.

Rough idea : Zig-zag product *G* a "large graph" of large degree *D* that is expanding. *H* a "small graph" of size *D* and degree *d* which is an expander.

Remark :

A graph of maximum degree 2 is not an expander.

Theorem (Reingold, Vadhan, Wigderson '00)

There exist cubic-expanders.

Rough idea : Zig-zag product
G a "large graph" of large degree D that is expanding.
H a "small graph" of size D and degree d which is an expander.

Zig-zag product $G \circ H$: graph of degree d^2 that has the (essentially) expansion of G.

"Replace" every vertex $v \in V(G)$ by a "cloud" of size D which is connected in a "dirty" way to the original neighbors of v in G.

Remark :

A graph of maximum degree 2 is not an expander.

Theorem (Reingold, Vadhan, Wigderson '00)

There exist cubic-expanders.

Rough idea : Zig-zag product
G a "large graph" of large degree D that is expanding.
H a "small graph" of size D and degree d which is an expander.

Zig-zag product $G \circ H$: graph of degree d^2 that has the (essentially) expansion of G.

"Replace" every vertex $v \in V(G)$ by a "cloud" of size D which is connected in a "dirty" way to the original neighbors of v in G.

Thanks for your attention !