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Two outcomes between a pair of vertices:
edge or non-edge



Trigraphs

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs

Identification of two non-necessarily adjacent vertices



Contractions in trigraphs

Identification of two non-necessarily adjacent vertices



Contractions in trigraphs

edges to N(u)AN(v) turn red, for N(u) N N(v) red is absorbing



Contraction sequence

A contraction sequence of G:
Sequence of trigraphs G = G, G,_1, ..., G, Gy such that
G; is obtained by performing one contraction in Gjy1.
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G; is obtained by performing one contraction in Gjy1.
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Contraction sequence

A contraction sequence of G:
Sequence of trigraphs G = G, G,_1, ..., G, G1 such that
G; is obtained by performing one contraction in Gjy1.



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

Maximum red degree = 0
overall maximum red degree = 0
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Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.
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Maximum red degree = 0
overall maximum red degree = 2



Simple operations preserving small twin-width

» complementation: remains the same
» taking induced subgraphs: may only decrease
P adding one vertex linked arbitrarily: at most “doubles”

» substitution, lexicographic product: max of the twin-widths



Complementation




Complementation




Induced subgraph
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tww(H) < tww(G)



Induced subgraph

Ignore absent vertices



Induced subgraph

Mimic the contractions otherwise



Induced subgraph

Mimic the contractions otherwise



Induced subgraph

=

Mimic the contractions otherwise



Induced subgraph

=

Mimic the contractions otherwise



Induced subgraph

abcde

Mimic the contractions otherwise



Adding one apex v

Ignore the contractions of X C A with Y C B



Substitution and lexicographic product




Substitution and lexicographic product

G = G5, H= P4, substitution G[v < H]



Substitution and lexicographic product

G = Gs, H= P4, lexicographic product G[H]




Substitution and lexicographic product

More generally any modular decomposition




Substitution and lexicographic product
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More generally any modular decomposition




Substitution and lexicographic product
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tww(G[H]) = max(tww(G), tww(H))




Classes with bounded twin-width

» cographs = twin-width 0

» trees, bounded treewidth, clique-width/rank-width
> grids

> ..



Trees

If possible, contract two twin leaves



Trees

If not, contract a deepest leaf with its parent



Trees

If not, contract a deepest leaf with its parent



Trees

If possible, contract two twin leaves



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Generalization to bounded treewidth and even bounded rank-width



Grids
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Grids
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Grids
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Grids
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Grids
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Grids

O—O—C0O—=0
O—O—0O—=0
O—O—0O—C0
O—O—"C0O—0
O—O—"~CO——0

4-sequence for planar grids



3-dimensional grids
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Contains arbitrary Iarge clique minors



3-dimensional grids
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Contract the blue edges in any order — 12-sequence



3-dimensional grids

The d-dimensional grid has twin-width < 4d (even 3d)



2-lifts, expanders with bounded twin-width

split each vertex in 2, replace each edge by 1 of the 2 matchings



2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K; have twin-width at most 6
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2-lifts, expanders with bounded twin-width
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[terated 2-lifts of K3 have twin-width at most 6



2-lifts, expanders with bounded twin-width
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[terated 2-lifts of K3 have twin-width at most 6
but no balanced separators of size o(n)



First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph



First example of unbounded twin-width

No pair of near twins



First example of unbounded twin-width
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No pair of near twins



Universal bipartite graph

No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.



Universal bipartite graph

No O(1)-contraction sequence:

twin-width is not an iterated identification of near twins.
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Universal bipartite graph

No O(1)-contraction sequence:

twin-width is not an iterated identification of near twins.
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Universal bipartite graph

No O(1)-contraction sequence:
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Universal bipartite graph

No O(1)-contraction sequence:

twin-width is not an iterated identification of near twins.

9
4

\AWO
N
>
()




Universal bipartite graph

No O(1)-contraction sequence:

twin-width is not an iterated identification of near twins.
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Universal bipartite graph

No O(1)-contraction sequence:

twin-width is not an iterated identification of near twins.
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Universal bipartite graph
twin-width is not an iterated identification of near twins.

No O(1)-contraction sequence:
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Universal bipartite graph

No O(1)-contraction sequence:

twin-width is not an iterated identification of near twins.
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Universal bipartite graph

No O(1)-contraction sequence:
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Universal bipartite graph

No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.




Universal bipartite graph

No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.




Planar graphs?









Twin-width in the language of matrices

(11 111110]
01100101
000000O0TO01
01001010
10011010
01111100
10111001,

Encode a bipartite graph (or, if symmetric, any graph)



Twin-width in the language of matrices

(1 1(1)1(1)1 1 0]
0 1/1/0/0|1 0 1
0 0/0/0[0|0 0 1
0 1/0/0[1|0 1 O
1 0(0[1/1/0 1 0
0 1/1|1|1]1 0 0
1 0(1)1{1jo 0 1

Contraction of two columns (similar with two rows)



Twin-width in the language of matrices

(1 1(1)1 11 0]
01/rjl0 101
00/0/0 001
01/r/0 010
10/rl1 010
0 1/1|1 100
1 0(1J1 00 1

How is the twin-width (re)defined?



Twin-width in the language of matrices

1 1(1)1 11 0]
01/rjl0 101
00/0/0 001
01/r/l0 010
10/rl1 010
0 1/1|/1 100
1 0(1J1 00 1

How to tune it for non-bipartite graph?



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1]1]1 1]1]1]1]o
of[1]t ofo]1]o]t
0JoJo ofo]o]o]t
JANNARNAR
1{ofo 1]1]o]1]0
o]z 1[1]1]o]o
“1fofr tfxTofolr]

Maximum number of non-constant zones per column or row part
= error value



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

(11 1|z]1]z]o]
of1]r ofofz]o]1
olojo ofolofo]1
of1]o ofz]ofz]0
1{ofo 1]1fofz1]o
ofz]1 1fz]1ToTo
‘1]ofr 1[1fo]o1]

Maximum number of non-constant zones per column or row part
... until there are a single row part and column part



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1)1]1 1]1]1]1]o
o[tz ofof1]o]z
ofoflo o|ofo]o]1
0[1]o of1fo]1]o
1[oJo 1]1]o1]o
o[1{r 1]1]1]o]o
‘1]o]t 11]ofo]1]

Twin-width as maximum error value
of a contraction/division sequence



Grid minor

t-grid minor: t x t-division where every cell is non-empty
Non-empty cell: contains at least one 1 entry

1 1)1 1)1 1]1 0
0 1[1 ofo 1fo 1
0 0o oJo ofo 1
0 1fo of1 o1 0
1 0/0 1|1 0|10
0 1t 1f1 1]o 0

1 0|1 1|1 ofo 1]

4-grid minor



Grid minor

t-grid minor: t x t-division where every cell is non-empty
Non-empty cell: contains at least one 1 entry

1 1)1 1)1 1]1 0
0 1[1 ofo 1fo 1
0 0o oJo ofo 1
0 1fo of1 o1 0
1 0/0 1|1 0|10
0 1t 1f1 1]o 0

1 0|1 1|1 ofo 1]

4-grid minor

A matrix is said t-grid free if it does not have a t-grid minor



Mixed minor

Mixed cell: not horizontal nor vertical
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3-mixed minor



Mixed minor

Mixed cell: not horizontal nor vertical

S o s E N [ R O
0 1|1 0 of1 0
0 0]0 0 0f0 O
0 1]o 0 1]0 1
1 0/0 1 1|0 1
0 1|1 1 1[1 O
1 0[1 1 1]0 0

3-mixed minor

= O OO0 ~H|+—

Every mixed cell is witnessed by a 2 x 2 square = corner



Mixed minor

Mixed cell: not horizontal nor vertical
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3

A matrix is said t-mixed free if it does not have a t-mixed minor



Mixed value

1 0f1 0 0|10 1
1 0f1 0 0J0J0 1

0 110 0 1]0]1 O

1 1{0 0 1J0|1 O

Re1 111 0 0|11 O

R3

2

R

~ (maximum) number of cells with a corner per row/column part



Mixed value

Ol —H|O O|O
—|O O|lH H]|O O
- O|O O]+ O
o|lo o|~ |H|o! —
|
ﬁ\\\\, =T N
o 0”0 Of‘O\,ﬁs SHE)
— = =]o o= =
—|Oo O]l H]|—= O
] H| O H]|O
L J
< o N —
x @ a4 Q@

But we add the number of boundaries containing a corner



Mixed value
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*. merging row parts do not increase mixed value of column part



Twin-width and mixed freeness

Theorem
If G admits a t-mixed free adjacency matrix, then tww(G) = 22700,
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Twin-width and mixed freeness
Theorem
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 22°.

Step 1: find a division sequence (D;); with mixed value f(t)
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Merge consecutive parts greedily
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Twin-width and mixed freeness
Theorem
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 22°.

Step 1: find a division sequence (D;); with mixed value f(t)
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oftfr ofofz]ofz
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Twin-width and mixed freeness

Theorem
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 22°".

Step 1: find a division sequence (D;); with mixed value f(t)

1]1]1 1]1]1]1]o0
oftfr ofofz]oft
ofofo ofofofof1
o[t]o of1]o]1]o
1]ofo 1[1]o[1]0
o[tz 1{1]1]o]o
‘1{ofr 1]tfofo]1]

Stuck, removing every other separation — @ mixed cells per part



Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Question

For every k, is there a cx such that every n x m 0, 1-matrix with at
least ¢, 1 per row and column admits a k-grid minor?



Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Conjecture (reformulation of Fiiredi-Hajnal conjecture '92)

For every k, there is a ¢, such that every n x m 0, 1-matrix with at
least cx max(n, m) 1 entries admits a k-grid minor.



Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Conjecture (reformulation of Fiiredi-Hajnal conjecture '92)

For every k, there is a ¢, such that every n x m 0, 1-matrix with at
least cx max(n, m) 1 entries admits a k-grid minor.

Conjecture (Stanley-Wilf conjecture '80s)

Any proper permutation class contains only 20(n) n_permutations.

Klazar showed Fiiredi-Hajnal = Stanley-Wilf in 2000
Marcus and Tardos showed Fiiredi-Hajnal in 2004



Marcus-Tardos one-page inductive proof

Let M be an n x n 0, 1-matrix without k-grid minor



Marcus-Tardos one-page inductive proof

K2 x k2

Draw a regular 13 X ;% division on top of M



Marcus-Tardos one-page inductive proof

1 111

K2 x k2

A cell is wide if it has at least k columns with a 1



Marcus-Tardos one-page inductive proof

K2 x k2

A cell is tall if it has at least k rows with a 1



Marcus-Tardos one-page inductive proof

W

K2 x k2

There are less than k(lf) wide cells per column part. Why?



Marcus-Tardos one-page inductive proof

K2 x k2

2
There are less than k() tall cells per row part



Marcus-Tardos one-page inductive proof

_ . ,
W T
M =
T W T T
T
K2 x K2 W

In W and T, at most 2 - 5 - k(/f) kA = 2k3(lf)n entries 1



Marcus-Tardos one-page inductive proof

W, T

K2 x k2

There are at most (k — 1)*cx s remaining 1. Why?



Marcus-Tardos one-page inductive proof

W
W T
-W, =T
M = -
T W T T
T
K2 x k2 W

Choose ¢, = 2k* (lf) so that (k — 1)2ckk—"2 +2k3 (’f)n < ckn



Twin-width and mixed freeness

Theorem

If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 220

Step 1: find a division sequence (D;); with mixed value f(t)

1
1
0
1
0
1

RIO|IO|O H |+

RIR|O|OC O

1
0
0
1
1
1

Stuck, removing every other separation
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mixed cells per part



Twin-width and mixed

Theorem

freeness

If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 220

Step 1: find a division sequence (D;); with mixed value f(t)

RIR|O|OC O

1
0
0
1
1
1

RIO|IO|O H |+

1
1
0
1
0
1

RO ]|O|1O0 O+
o|lr]|o|lo|lo |+

‘1ot 11

Stuck, removing every other separation
Impossible!
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t) mixed cells per part



Twin-width and mixed freeness

Theorem
If Jo s.t. Adj,(G) is t-mixed free, then tww(G) = 5200).

Step 1: find a division sequence (D;); with mixed value f(t)
Step 2: find a contraction sequence with error value g(t)

1)1]1 1]1]1]1]o0
of1]z ofof1]o]z
ofo]o o|ofojo]1
o[1]o of1foJ1]o
1Jo]Jo 1[1]o1]o
o[1{r 1[1]1]o]o
‘1]o]1 1]1]ofo]1]

Refinement of D; where each part coincides on the non-mixed cells



Twin-width and mixed freeness

Theorem
If Jo s.t. Adj,(G) is t-mixed free, then tww(G) = 52000



Twin-width and mixed freeness

Theorem
If Jo s.t. Adj,(G) is t-mixed free, then tww(G) = 52000

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C



Unit interval graphs
Intersection graph of unit segments on the real line



Unit interval graphs

order by left endpoints




Unit interval graphs

. A7
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No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves



Graph minors

Formed by vertex deletion, edge deletion, and edge contraction
A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are



Graph minors

Formed by vertex deletion, edge deletion, and edge contraction
A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without Ks or K33 as a minor



Bounded twin-width — K;-minor free graphs

Given a hamiltonian path, we would just use this order



Bounded twin-width — K;-minor free graphs

Bt 14 Mo 1
Byl 1 1 1 1 1
B; 1 1} 1 1
B 1 1 1 1 1
B: 111 1 1
Al A A A A

Contracting the 2t subpaths yields a K; :-minor, hence a K;-minor



Bounded twin-width — K;-minor free graphs

B g 1 1
Bi|l 1 1, 1 1
B; 1 1} 1 1
B 1 1 1 1 1
B; 11 1 1 1
A1 A Asz As At

Instead we use a specially crafted lex-DFS discovery order



Theorem
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.

VVVvVyVvVVYVYyVVYVYVYY

Bounded rank-width, and even, boolean-width graphs,
every hereditary proper subclass of permutation graphs,
posets of bounded antichain size (seen as digraphs),

unit interval graphs,

Ki-minor free graphs,

map graphs,

subgraphs of d-dimensional grids,

Ki-free unit d-dimensional ball graphs,

Q(log n)-subdivisions of all the n-vertex graphs,

cubic expanders defined by iterative random 2-lifts from Ky,

strong products of two bounded twin-width classes, one with
bounded degree, etc.



Theorem
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.

VVVvVyVvVVYVYyVVYVYVYY

Bounded rank-width, and even, boolean-width graphs,
every hereditary proper subclass of permutation graphs,
posets of bounded antichain size (seen as digraphs),

unit interval graphs,

Ki-minor free graphs,

map graphs,

subgraphs of d-dimensional grids,

Ki-free unit d-dimensional ball graphs,

Q(log n)-subdivisions of all the n-vertex graphs,

cubic expanders defined by iterative random 2-lifts from Ky,

strong products of two bounded twin-width classes, one with
bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?



