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Trigraphs
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Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uvuv

Identification of two non-necessarily adjacent vertices
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Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing



Contraction sequence
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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overall maximum red degree = 0
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Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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Simple operations preserving small twin-width

I complementation: remains the same
I taking induced subgraphs: may only decrease
I adding one vertex linked arbitrarily: at most “doubles”
I substitution, lexicographic product: max of the twin-widths
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Induced subgraph
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Induced subgraph
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Induced subgraph
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Induced subgraph
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Mimic the contractions otherwise



Induced subgraph

abcdefg

H

abcde

Mimic the contractions otherwise



Adding one apex v

A B

v

G

Ignore the contractions of X ⊆ A with Y ⊆ B



Substitution and lexicographic product

G = C5



Substitution and lexicographic product

G = C5, H = P4, substitution G [v ← H]



Substitution and lexicographic product

G = C5, H = P4, lexicographic product G [H]



Substitution and lexicographic product

More generally any modular decomposition



Substitution and lexicographic product

More generally any modular decomposition



Substitution and lexicographic product

tww(G [H]) = max(tww(G), tww(H))



Classes with bounded twin-width

I cographs = twin-width 0
I trees, bounded treewidth, clique-width/rank-width
I grids
I . . .



Trees

If possible, contract two twin leaves



Trees

If not, contract a deepest leaf with its parent



Trees

If not, contract a deepest leaf with its parent



Trees

If possible, contract two twin leaves



Trees

Cannot create a red degree-3 vertex
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Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Generalization to bounded treewidth and even bounded rank-width
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4-sequence for planar grids
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Grids

4-sequence for planar grids



3-dimensional grids

Contains arbitrary large clique minors



3-dimensional grids

Contract the blue edges in any order → 12-sequence



3-dimensional grids

The d-dimensional grid has twin-width 6 4d (even 3d)



2-lifts, expanders with bounded twin-width

split each vertex in 2, replace each edge by 1 of the 2 matchings

but no balanced separators of size o(n)
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2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6
but no balanced separators of size o(n)



First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph



First example of unbounded twin-width

No pair of near twins



First example of unbounded twin-width

No pair of near twins



Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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No O(1)-contraction sequence:
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1

2

3

4

∅

14

4

1
12
13
14

123
124
134

1234

2

23
24

234

3

34
4



Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

123

23

1
12
13
14

123
124
134

1234

2

23
24

234

3

34

4



Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

124

24

1
12
13
14

123
124
134

1234

2
23

24
234

3

34

4



Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

134

34

1
12
13
14

123
124
134

1234

2
23
24

234

3

34

4
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No O(1)-contraction sequence:
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More powerfool tool needed
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Twin-width in the language of matrices
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Encode a bipartite graph (or, if symmetric, any graph)



Twin-width in the language of matrices
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Contraction of two columns (similar with two rows)
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Twin-width in the language of matrices
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Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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Partition viewpoint

Matrix partition: partitions of the row set and of the column set
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Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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Twin-width as maximum error value
of a contraction/division sequence



Grid minor

t-grid minor: t × t-division where every cell is non-empty
Non-empty cell: contains at least one 1 entry
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A matrix is said t-grid free if it does not have a t-grid minor
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Mixed minor

Mixed cell: not horizontal nor vertical
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Every mixed cell is witnessed by a 2× 2 square
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Every mixed cell is witnessed by a 2× 2 square = corner
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A matrix is said t-mixed free if it does not have a t-mixed minor



Mixed value
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≈ (maximum) number of cells with a corner per row/column part
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But we add the number of boundaries containing a corner
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∪

∴ merging row parts do not increase mixed value of column part



Twin-width and mixed freeness

Theorem
If G admits a t-mixed free adjacency matrix, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)
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Twin-width and mixed freeness

Theorem
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Stuck, removing every other separation → f (t)
2 mixed cells per part



Stanley-Wilf conjecture / Marcus-Tardos theorem
Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Question
For every k, is there a ck such that every n×m 0, 1-matrix with at
least ck 1 per row and column admits a k-grid minor?

Conjecture (Stanley-Wilf conjecture ’80s)
Any proper permutation class contains only 2O(n) n-permutations.

Klazar showed Füredi-Hajnal ⇒ Stanley-Wilf in 2000
Marcus and Tardos showed Füredi-Hajnal in 2004
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Klazar showed Füredi-Hajnal ⇒ Stanley-Wilf in 2000
Marcus and Tardos showed Füredi-Hajnal in 2004



Marcus-Tardos one-page inductive proof
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Let M be an n × n 0, 1-matrix without k-grid minor
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k2 division on top of M
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A cell is wide if it has at least k columns with a 1
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A cell is tall if it has at least k rows with a 1



Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11

W

W

W

T T T

W

T

T

W

¬W ,¬T
1

There are less than k
(k2

k
)

wide cells per column part. Why?
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n entries 1
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Marcus-Tardos one-page inductive proof
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n 6 ckn



Twin-width and mixed freeness

Theorem
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)
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Stuck, removing every other separation → f (t)
2 mixed cells per part

Impossible!
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Twin-width and mixed freeness

Theorem
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)
Step 2: find a contraction sequence with error value g(t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Refinement of Di where each part coincides on the non-mixed cells



Twin-width and mixed freeness

Theorem
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C
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Unit interval graphs

Intersection graph of unit segments on the real line



Unit interval graphs

1

0

0

order by left endpoints



Unit interval graphs

1

0

0

not
mixed

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves



Graph minors
Formed by vertex deletion, edge deletion, and edge contraction

A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K5 or K3,3 as a minor

K5 K3,3
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Bounded twin-width – Kt-minor free graphs
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Given a hamiltonian path, we would just use this order
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Contracting the 2t subpaths yields a Kt,t-minor, hence a Kt-minor



Bounded twin-width – Kt-minor free graphs
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Instead we use a specially crafted lex-DFS discovery order



Theorem
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?
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