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Maximum Independent Set (MIS)

Theorem [Tww I]
Given a FO formula ϕ and a n-vertex graph G with a d-sequence of G ,
one can decide G |= ϕ in time f (|ϕ|, d)n for some computable function f

“α(G) > k” is equivalent to:

∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi )

⇒ Deciding MIS is FPT in k and d := tww(G)

But the function f is a tower of exponentials

→ Now: O(k2d2kn) for MIS
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Maximum Independent Set (MIS)
Before twin-width: cographs: twin-decomposition

Gn → Gn−1 → . . . → Gi+1 → Gi . . . → G1

Solving MIS:
for i = n, . . . , 1, for each u ∈ V (Gi ), compute

OPT (u) := OPT (G [u(G)])
→ initialization ok
→ in G1: OPT (u) = OPT (V (G))

when contracting u, v into z :
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Maximum Independent Set (MIS)
With a d-contraction sequence:

Gn → Gn−1 → . . . → Gi+1 → Gi . . . → G1

each Gi is a trigraph : (Vi ,Ei , Ri )

Solving MIS:
for i = n, . . . , 1

for each T ⊆ V (Gi ) connected red induced subgraph of size 6 k

Compute:

OPT (T ) := OPT of G [
⋃

u∈T u(G)]
intersecting each u(G), for all u ∈T

We might have OPT (T ) = nil

(great figure by Édouard)
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Maximum Independent Set (MIS)
Lemma [folklore]
A graph with n vertices and maximum degree d has at most d2kn
connected induced subgraphs of 6k vertices

Gi+1 → Gi
u, v z

Let T be a CRIS6k in Gi

How to compute OPT (T )?
if z /∈ T , we take OPT (T ) from Gi+1
if z ∈ T . How will OPT intersect z(G)?

OPT intersects only u(G)
OPT intersects only v(G)
OPT intersects both u(G), v(G)

→ T ′1 := T \ {z} ∪ {u}
→ T ′2 := T \ {z} ∪ {v}
→ T ′3 := T \ {z} ∪ {u, v}

Construct a solution for each T ′` and take the best as OPT (T )
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Maximum Independent Set (MIS)
What is T ′` in Gi+1?

Gi

z

Gi+1

u
v

example: OPT intersects only v(G)
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Maximum Independent Set (MIS)
What is T ′` in Gi+1?

Each T ′` has 6 d connected components in Gi+1

T1, . . . , Tq

which are all CRIS6k in Gi+1 → take their OPT (Tx )
if:

I there is a black edge between two Tx , Ty
or

I OPT (Tx ) is nil for some x
→ discard T ′`

otherwise: take OPT (T1) ∪ · · · ∪ OPT (Tq)

Then:
if all T ′1, T ′1, T ′3 are discarded, OPT(T ) gets nil
otherwise: take the best
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Maximum Independent Set (MIS)
Running time:

n steps in the sequence
at each step:

I enumerate all CRIS6k : d2kn
I look for a black edge between red c.c.: k2

Theorem
Given k ∈ N and G on n vertices coming with a d-sequence, we can solve
MIS in time O(k2d2kn2)

Same running time for:
Maximum Clique
Minimum Dominating Set
r-Scattered Set
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Maximum Independent Set (MIS)
Generalizations:

weighted version in 2Od (k log k)n
Induced Subgraph Isomorphism in 2Od (k log k)n
(generalizes the result for H-minor free [Pilipczuk,Siebertz 2019])

Lower bound (for MIS):
given a O(1)-sequence, no 2o(n/ log n)nO(1) algorithm unless ETH
(subcubic graphs + (2 log n)-subdivision)

Open questions:
runs in poly-time in “number of connected red induced subgraphs”
→ graph classes admitting sequences with small number of such
things?
→ does general graphs have contraction sequences with O(cn) such
things for some c < 2?
→ what about other properties than “bounded red degree”?
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Coloring (χ-boundedness)
for any graph G , it holds that χ(G) > ω(G)

there exist graphs with ω(G) = 2 and χ(G) arbitrary large
a graph class G is χ-bounded if there exists a function f such that

∀G ∈ G χ(G) 6 f (ω(G))

Theorem [Tww III]
For any graph G of twin-width 6 d , we have χ(G) 6 (d + 2)ω(G)−1

If a d-sequence is given, we can find such a coloring in polynomial-time.

Works by induction on ω(G). Let’s prove the base case ω(G) = 2, that is:

Given a triangle-free graph G and a d-sequence of it, one can find in
polynomial-time a (d + 2)-coloring of G .
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Coloring (χ-boundedness)
Consider the d-sequence backward:

G1 → G2 → . . . → Gi → Gi+1 . . . → Gn

Observation 1
when z splits into u, v :

NEi∪Ri (z) = NEi+1∪Ri+1(u, v)

Observation 2 (for triangle-free graphs only)
In the triangle-free case:
if z is incident to a black edge, then z(G) is an independent set
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Coloring (χ-boundedness)
G1 → G2 → . . . → Gi → Gi+1 . . . → Gn
“proper coloring” = with respect to Ei ∪ Ri

Assume Gi is properly (d + 2)-colored
→ z splits into u, v
by Obs. 1, we can give to u the same color as z
How do we color v?

I if uv /∈ Ei+1 ∪ Ri+1, then give to v the same color as u
I if uv ∈ Ei+1 ∪ Ri+1, then give the first available color for v (not in its

neighborhood)

This is a proper (d + 2)-coloring of Gi+1. Proof:
proper by Obs. 1
d + 2 colors:

I if z was incident to a black edge, then uv /∈ Ei+1 ∪ Ri+1 (Obs. 2)
I otherwise, z had only 6 d (red) neighbors, so v has 6 d + 1 black/red

neighbors
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Coloring (χ-boundedness)
We have just seen
K3-free graphs coming with a d-sequence can be (d + 2)-colored in
polynomial-time.

Generalization to Kt-free graphs, by induction on t:

now Observation 2 becomes: if z is incident to a black edge, then
z(G) is Kt−1-free

→ we get by induction a coloring of z(G) with (d + 2)t−3 colors
...
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Coloring (χ-boundedness)

Related work/open question:

provides an “elementary” proof of “bounded rank-width classes are
χ-bounded” [Dvǒrák, Král’, 2012]

bounded clique-width classes are polynomially χ-bounded
[Bonamy,Pilipczuk, 2020]

→ are bounded twin-width graphs polynomially χ-bounded?
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Minimum Dominating Set
Versatile tree of d-contractions [Tww II]
Up to a small degradation on the twin-width value d of a graph:

at each step of the sequence: there exist |V (Gi )|
s disjoint pairs of

vertices that we can contract
all trigraphs of the tree have red degree 6 d ′

→ can be computed in poly-time (given a d-sequence)
→ s and d ′ are functions of d only



Minimum Dominating Set

Linear program:
minimize

∑
x∈V w(x)

s.t.
∑

y∈N[x ] w(x) > 1 for all x ∈ V

0 6 w(x) 6 1 for all x ∈ V

Let γ∗(G) be the optimal value of the LP
let w∗ be its associated solution

We will prove the following:
Given an s-versatile tree of d-contractions, one can compute in
polynomial-time a dominating set D of size 6 2s(d + 1)γ∗(G)
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Minimum Dominating Set
Using the s-versatile tree of d-contractions, we construct a d-sequence

Contraction Rule
At each step, choose a pair (u, v) such that w∗(u(G)), w∗(v(G)) < 1

2(d+1)

stop the sequence when there is no such pair
Gn → Gn−1 → . . . → Gstuck

Let nstuck be the number of vertices in Gstuck

Observation 1
nstuck 6 2s(d + 1)γ∗(G)

Proof:
in Gstuck , there are > nstuck

s disjoint pairs of d-contractions
Contraction rule ⇒ at least nstuck

s parts have weight > 1
2(d+1)∑

u∈V (Gstuck ) w∗(u(G)) = γ∗(G)
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Minimum Dominating Set
End of the algorithm:
Pick one arbitrary vertex from each u ∈ V (Gstuck) → solution D

|D| 6 2s(d + 1)γ∗(G) by Obs 1

D is a dominating set of G
Proof: let u ∈ V (Gstuck), show that u(G) is dominated

I if u is incident to a black edge: done
I otherwise: only 6 d red neighbors

for y ∈ u(G), let v1, . . . , vq be the bags with at least one edge with y
Claim: one of u(G), v1(G), . . . , vq(G) is a singleton:

w∗(u) +
q∑

i=1
w∗(vi ) > 1

One of them must have weight > 1
d+1

→ must be a singleton by our Contraction Rule
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Minimum Dominating Set

Related work/open questions:

There is a PTAS in minor-closed classes [Cabello, Gajser, 2015]

OPEN:
I c-approximation in bounded tww graphs (c independent of tww)?
I PTAS in bounded tww graphs?

Maximum Independent Set
any c-approximation implies a PTAS in bounded tww graphs
(iterated lexicographic product preserves tww)

PTAS?
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