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Theorem [Tww ]

Given a FO formula ¢ and a n-vertex graph G with a d-sequence of G,
one can decide G |= ¢ in time f(|¢|, d)n for some computable function f

“a(G) = k" is equivalent to:

IxyIxo - - Ixx /\ —(xi = xj) A =E(xi, X)) A —E(x;, x;)

1<i<j<k

= Deciding MIS is FPT in k and d := tww/(G)

But the function f is a tower of exponentials ®

— Now: O(k?d?*n) for MIS
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MAXIMUM INDEPENDENT SET (MIS)
Before twin-width: cographs: twin-decomposition

G, — G,_1 — e — Gy — G

Solving MIS:
e for i =n,...,1, for each u € V(G;j), compute

OPT (u) := OPT(G[u(G)])
— initialization ok
— in G1: OPT(u) = OPT(V(G))

@ when contracting u, v into z:
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With a d-contraction sequence:

G, — G,_1 — oo = Gy — G — G
e each G; is a trigraph : (V}, E;, R;)
Solving MIS:

e fori=n,...,1
for each T C V(G;) connected red induced subgraph of size < k

Compute:

OPT(T7):= OPT of G[J, -+ u(G)]
intersecting each u(G), for all v c T



MAXIMUM INDEPENDENT SET (MIS)
With a d-contraction sequence:

G, — G,_1 — oo = Gy — G — G
e each G; is a trigraph : (V}, E;, R;)

Solving MIS:
e fori=n,...,1

Compute:

OPT(T7):= OPT of G[J, -+ u(G)]
intersecting each u(G), for all v <7

We might have OPT(7) = nil

(great figure by Edouard)
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MAXIMUM INDEPENDENT SET (MIS)
Lemma [folklore]

A graph with n vertices and maximum degree d has at most d**n
connected induced subgraphs of <k vertices

Giy1 — G
u,v z

Let 7 be a CRIS<k in G;

How to compute OPT(7)?
o if z¢ T, we take OPT(T) from Gjy1
e if z € 7. How will OPT intersect z(G)?

OPT intersects only u(G) — T{ =T\ {z}U{u}
OPT intersects only v(G) — T =T\ {z} U{v}
OPT intersects both u(G), v(G) — T3 :=T\{z}U{u, v}

Construct a solution for each Té and take the best as
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MAXIMUM INDEPENDENT SET (MIS)

What is Té in Gj;117

example: OPT intersects only v(G)
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What is T; in Gj1?
Each T, has < d connected components in Gj1

Ty, ..., T4

which are all CRIS<k in Gjy1 — take their OPT(Ty)
e if:
> there is a black edge between two T, T,

or
» OPT(T,) is nil for some x

— discard T

@ otherwise: take OPT(T1)U---UOPT(Ty)



MAXIMUM INDEPENDENT SET (MIS)

What is T; in Gj1?
Each T, has < d connected components in Gj1

Ty, ..., T4

which are all CRIS<k in Gjy1 — take their OPT(Ty)
e if:
> there is a black edge between two T, T,

or
» OPT(T,) is nil for some x

— discard T
@ otherwise: take OPT(T1)U---UOPT(Ty)

Then:
o if all T{, T{, T} are discarded, OPT(T) gets nil
@ otherwise: take the best
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Running time:
@ n steps in the sequence

@ at each step:

» enumerate all CRIS¢y: d**n
» look for a black edge between red c.c.: k®

Theorem

Given k € N and G on n vertices coming with a d-sequence, we can solve
MIS in time O(k2d?*n?)

Same running time for:
e MAXIMUM CLIQUE
e MINIMUM DOMINATING SET
@ r-SCATTERED SET
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Running time:
@ n steps in the sequence

@ at each step:

» enumerate all CRIS¢y: d**n
» look for a black edge between red c.c.: k®

Theorem
Given k € N and G on n vertices coming with a d-sequence, we can solve

MIS in time O{k2d2n2)  O(k*>d**n) = 204K p

Same running time for:
e MAXIMUM CLIQUE
e MINIMUM DOMINATING SET
@ r-SCATTERED SET
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MAXIMUM INDEPENDENT SET (MIS)

o weighted version in 204(klogk)

o INDUCED SUBGRAPH ISOMORPHISM in 204(klogk)
(generalizes the result for H-minor free [Pilipczuk,Siebertz 2019])
Lower bound (for MIS):

e given a O(1)-sequence, no 2°("/1°g1) nO(1) 3lgorithm unless ETH
(subcubic graphs + (2log n)-subdivision)

Open questions:

@ runs in poly-time in “number of connected red induced subgraphs”
— graph classes admitting sequences with small number of such
things?

— does general graphs have contraction sequences with O(c") such
things for some ¢ < 27
— what about other properties than "bounded red degree"?
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COLORING (x-boundedness)
e for any graph G, it holds that x(G) > w(G)
@ there exist graphs with w(G) = 2 and x(G) arbitrary large
@ a graph class G is x-bounded if there exists a function f such that

VGegG x(G)< f(w(G))

Theorem [Tww 1]
For any graph G of twin-width < d, we have x(G) < (d + 2)~(¢)-1

If a d-sequence is given, we can find such a coloring in polynomial-time.

Works by induction on w(G). Let's prove the base case w(G) = 2, that is:

Given a triangle-free graph G and a d-sequence of it, one can find in
polynomial-time a (d + 2)-coloring of G.
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COLORING (x-boundedness)

Consider the d-sequence backward:

G — G, — . = G = Gy — G,

Observation 1

when z splits into u, v:

NEIURI(Z) = NEi+1URi+1(u7 V)

Observation 2 (for triangle-free graphs only)
In the triangle-free case:
if z is incident to a black edge, then z(G) is an independent set
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@ by Obs. 1, we can give to u the same color as z
How do we color v?



COLORING (x-boundedness)
G — G — . = G = Giyq
“proper coloring” = with respect to E; U R;
@ Assume G; is properly (d + 2)-colored
— z splits into u, v

@ by Obs. 1, we can give to u the same color as z
How do we color v?

» if uv ¢ E; 11 U R;11, then give to v the same color as u

— G,



COLORING (x-boundedness)
G — G — . = G = Giyq — G,
“proper coloring” = with respect to E; U R;

@ Assume G; is properly (d + 2)-colored
— z splits into u, v

@ by Obs. 1, we can give to u the same color as z
How do we color v?

» if uv ¢ E; 11 U R;11, then give to v the same color as u

» if uv € Ej11 U Ri11, then give the first available color for v (not in its
neighborhood)



COLORING (x-boundedness)
G — G, — . = G = Giyq — G,

“proper coloring” = with respect to E; U R;

@ Assume G; is properly (d + 2)-colored
— z splits into u, v

@ by Obs. 1, we can give to u the same color as z
How do we color v?

» if uv ¢ E; 11 U R;11, then give to v the same color as u

» if uv € Ej11 U Ri11, then give the first available color for v (not in its
neighborhood)

This is a proper (d + 2)-coloring of Gjy1. Proof:
o proper by Obs. 1




COLORING (x-boundedness)
G — G, — . = G = Giyq — G,
“proper coloring” = with respect to E; U R;
@ Assume G; is properly (d + 2)-colored
— z splits into u, v

@ by Obs. 1, we can give to u the same color as z
How do we color v?

» if uv ¢ E; 11 U R;11, then give to v the same color as u

» if uv € Ej11 U Ri11, then give the first available color for v (not in its
neighborhood)

This is a proper (d + 2)-coloring of Gjy1. Proof:
o proper by Obs. 1
@ d + 2 colors:

if z was incident to a black edge, then uv ¢ E;11 U R;1 (Obs. 2)




COLORING (x-boundedness)
G — G, — . = G = Giyq — G,

“proper coloring” = with respect to E; U R;

@ Assume G; is properly (d + 2)-colored
— z splits into u, v

@ by Obs. 1, we can give to u the same color as z
How do we color v?

» if uv ¢ E; 11 U R;11, then give to v the same color as u

» if uv € Ej11 U Ri11, then give the first available color for v (not in its
neighborhood)

This is a proper (d + 2)-coloring of Gjy1. Proof:
o proper by Obs. 1
@ d + 2 colors:

if z was incident to a black edge, then uv ¢ E;11 U R;1 (Obs. 2)

otherwise, z had only < d (red) neighbors, so v has < d + 1 black/red
neighbors

V.
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COLORING (x-boundedness)

We have just seen

Ks-free graphs coming with a d-sequence can be (d + 2)-colored in
polynomial-time.

Generalization to K;-free graphs, by induction on t:

@ now Observation 2 becomes: if z is incident to a black edge, then
z(G) is Ki_1-free

— we get by induction a coloring of z(G) with (d +2)¢~3 colors



COLORING (x-boundedness)

Related work/open question:

@ provides an “elementary” proof of “bounded rank-width classes are
x-bounded” [Dvorak, Kral’, 2012]

@ bounded clique-width classes are polynomially y-bounded
[Bonamy,Pilipczuk, 2020]

— are bounded twin-width graphs polynomially x-bounded?
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MINIMUM DOMINATING SET

Versatile tree of d-contractions [Tww Il]

Up to a small degradation on the twin-width value d of a graph:

@ at each step of the sequence: there exist LSG’)' disjoint pairs of
vertices that we can contract

@ all trigraphs of the tree have red degree < d’

— can be computed in poly-time (given a d-sequence)
— s and d’ are functions of d only
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Linear program:
minimize Y, o\ w(x)
st Pyenpgwix) =1 for all x € V

0<w(x)<1 forall x € V




MINIMUM DOMINATING SET

Linear program:
minimize Y, o\ w(x)
st Pyenpgwix) =1 for all x € V

0<w(x)<1 for all x € V

Let v*(G) be the optimal value of the LP
let w* be its associated solution

We will prove the following:

Given an s-versatile tree of d-contractions, one can compute in
polynomial-time a dominating set D of size < 2s(d + 1)7*(G)
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Using the s-versatile tree of d-contractions, we construct a d-sequence

CONTRACTION RULE
At each step, choose a pair (u, v) such that w*(u(G)), w*(v(G)) < 2(dl+1)J

stop the sequence when there is no such pair
Gn % Gn_l % o e % Gstuck

Let ne,cx be the number of vertices in Gepyex
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Using the s-versatile tree of d-contractions, we construct a d-sequence

At each step, choose a pair (u, v) such that w*(u(G)), w*(v(G)) < 2(d1+1

CONTRACTION RULE
)J

stop the sequence when there is no such pair
Gn % Gn_l % o e % Gstuck

Let ne,cx be the number of vertices in Gepyex

Observation 1
Nstuck < 25(d =+ 1)7*(6) J

Proof:

@ in Ggtyek, there are > ”Ls“k disjoint pairs of d-contractions
Contraction rule = at least < parts have weight >

@D
© D UeV(Guer) W (u(G)) = 77(G)
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Proof: let u € V(Gstyck), show that u(G) is dominated
» if u is incident to a black edge: done
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End of the algorithm:

Pick one arbitrary vertex from each u € V(Ggyex) — solution D

e |D| <2s(d+1)y*(G) by Obs 1
@ D is a dominating set of G
Proof: let u € V(Gstyck), show that u(G) is dominated
» if u is incident to a black edge: done
» otherwise: only < d red neighbors

for y € u(G), let vi, ..., vq4 be the bags with at least one edge with y
Claim: one of u(G), vi(G), ..., v4(G) is a singleton:
q
u) + Z w*(v;) =21
i=1

One of them must have weight > d+1
— must be a singleton by our CONTRACTION RULE



MINIMUM DOMINATING SET

Related work/open questions:

@ There is a PTAS in minor-closed classes [Cabello, Gajser, 2015]

OPEN:

» c-approximation in bounded tww graphs (c independent of tww)?
» PTAS in bounded tww graphs?



MINIMUM DOMINATING SET

Related work/open questions:

@ There is a PTAS in minor-closed classes [Cabello, Gajser, 2015]

MAXIMUM INDEPENDENT SET

@ any c-approximation implies a PTAS in bounded tww graphs
(iterated lexicographic product preserves tww)



Questions?



