Some algorithmic applications of twin-width

Rémi Watrigant (LIP, Lyon)

Results mainly from:

Twin-width III, É. Bonnet, C. Geniet, E.J. Kim, S. Thomassé, R. W. arxiv.org/abs/2007.14161

Journées CALAMAR 2 avril 2021

Outline:

- MAXIMUM INDEPENDENT SET
- Minimum Coloring
- MINIMUM DOMINATING SET

Theorem [Tww I]

Given a FO formula φ and a *n*-vertex graph G with a d-sequence of G, one can decide $G \models \varphi$ in time $f(|\varphi|, d)n$ for some computable function f

Theorem [Tww I]

Given a FO formula φ and a *n*-vertex graph G with a d-sequence of G, one can decide $G \models \varphi$ in time $f(|\varphi|, d)n$ for some computable function f

" $\alpha(G) \geqslant k$ " is equivalent to:

$$\exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leqslant i < j \leqslant k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

 \Rightarrow Deciding MIS is FPT in k and d := tww(G)

Theorem [Tww I]

Given a FO formula φ and a *n*-vertex graph G with a *d*-sequence of G, one can decide $G \models \varphi$ in time $f(|\varphi|, d)n$ for some computable function f

" $\alpha(G) \geqslant k$ " is equivalent to:

$$\exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leqslant i < j \leqslant k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

$$\Rightarrow$$
 Deciding MIS is FPT in k and $d := tww(G)$

But the function f is a tower of exponentials \odot

 \rightarrow Now: $O(k^2d^{2k}n)$ for MIS

Before twin-width: cographs: twin-decomposition

$$G_n \rightarrow G_{n-1} \rightarrow \cdots \rightarrow G_{i+1} \rightarrow G_i \cdots \rightarrow G_1$$

Before twin-width: cographs: twin-decomposition

$$G_n \rightarrow G_{n-1} \rightarrow \cdots \rightarrow G_{i+1} \rightarrow G_i \cdots \rightarrow G_1$$

Solving MIS:

• for i = n, ..., 1, for each $u \in V(G_i)$, compute

$$OPT(u) := OPT(G[u(G)])$$

 \rightarrow initialization ok

 \rightarrow in G_1 : OPT(u) = OPT(V(G))

Before twin-width: cographs: twin-decomposition

$$G_n \rightarrow G_{n-1} \rightarrow \ldots \rightarrow G_{i+1} \rightarrow G_i \ldots \rightarrow G_1$$

Solving MIS:

• for i = n, ..., 1, for each $u \in V(G_i)$, compute

$$OPT(u) := OPT(G[u(G)])$$

 \rightarrow initialization ok

$$\rightarrow$$
 in G_1 : $OPT(u) = OPT(V(G))$

• when contracting u, v into z:

With a *d*-contraction sequence:

$$G_n \to G_{n-1} \to \ldots \to G_{i+1} \to G_i \ldots \to G_1$$

• each G_i is a trigraph : (V_i, E_i, R_i)

With a *d*-contraction sequence:

$$G_n \to G_{n-1} \to \ldots \to G_{i+1} \to G_i \ldots \to G_1$$

• each G_i is a trigraph : (V_i, E_i, R_i)

Solving MIS:

• for i = n, ..., 1for each $T \subseteq V(G_i)$ connected red induced subgraph of size $\leq k$

Compute:

$$OPT(T) := OPT \text{ of } G[\bigcup_{u \in T} u(G)]$$

intersecting each $u(G)$, for all $u \in T$

With a *d*-contraction sequence:

$$G_n \to G_{n-1} \to \ldots \to G_{i+1} \to G_i \ldots \to G_1$$

• each G_i is a trigraph : (V_i, E_i, R_i)

Solving MIS:

• for i = n, ..., 1for each $T \subseteq V(G_i)$ connected red induced subgraph of size $\leq k$

Compute:

$$OPT(T) := OPT \text{ of } G[\bigcup_{u \in T} u(G)]$$

intersecting each $u(G)$, for all $u \in T$

We might have OPT(T) = nil

(great figure by $\acute{\rm E}$ douard)

Lemma [folklore]

A graph with n vertices and maximum degree d has at most $d^{2k}n$ connected induced subgraphs of $\leq k$ vertices

Lemma [folklore]

A graph with n vertices and maximum degree d has at most $d^{2k}n$ connected induced subgraphs of $\leq k$ vertices

$$G_{i+1} \rightarrow G_i$$

 $u, v \qquad z$

Let T be a $CRIS_{\leqslant k}$ in G_i

How to compute OPT(T)?

Lemma [folklore]

A graph with n vertices and maximum degree d has at most $d^{2k}n$ connected induced subgraphs of $\leq k$ vertices

$$G_{i+1} \rightarrow G_i$$

 $u, v \qquad z$

Let T be a $CRIS_{\leqslant k}$ in G_i

How to compute OPT(T)?

• if $z \notin T$, we take OPT(T) from G_{i+1}

Lemma [folklore]

A graph with n vertices and maximum degree d has at most $d^{2k}n$ connected induced subgraphs of $\leq k$ vertices

$$G_{i+1} \rightarrow G_i$$

 $u, v \qquad z$

Let T be a $CRIS_{\leqslant k}$ in G_i

How to compute OPT(T)?

- if $z \notin T$, we take OPT(T) from G_{i+1}
- if $z \in T$. How will OPT intersect z(G)?

OPT intersects only
$$u(G)$$
 $\rightarrow T_1' := T \setminus \{z\} \cup \{u\}$
OPT intersects only $v(G)$ $\rightarrow T_2' := T \setminus \{z\} \cup \{v\}$
OPT intersects both $u(G)$, $v(G)$ $\rightarrow T_3' := T \setminus \{z\} \cup \{u, v\}$

Construct a solution for each T'_ℓ and take the best as OPT(T)

example: OPT intersects only v(G)

What is T'_{ℓ} in G_{i+1} ?

What is T'_{ℓ} in G_{i+1} ?

Each T'_{ℓ} has $\leqslant d$ connected components in G_{i+1}

 T_1, \ldots, T_q

which are all $CRIS_{\leqslant k}$ in $G_{i+1} \to \text{take their } OPT(T_{\times})$

What is T'_{ℓ} in G_{i+1} ?

Each T'_{ℓ} has $\leqslant d$ connected components in G_{i+1}

$$T_1, \ldots, T_q$$

which are all $CRIS_{\leq k}$ in $G_{i+1} \to \text{take their } OPT(T_{\times})$

- if:
 - there is a black edge between two T_x , T_y
- or
- $ightharpoonup OPT(T_x)$ is *nil* for some x
- ightarrow discard T'_ℓ
- otherwise: take $OPT(T_1) \cup \cdots \cup OPT(T_q)$

What is T'_{ℓ} in G_{i+1} ?

Each T'_{ℓ} has $\leqslant d$ connected components in G_{i+1}

$$T_1, \ldots, T_q$$

which are all $CRIS_{\leqslant k}$ in $G_{i+1} \to \mathsf{take}$ their $OPT(T_{\times})$

- if:
 - there is a black edge between two T_x , T_y
- or OPT(T) is pil for some Y
 - $ightharpoonup OPT(T_x)$ is *nil* for some x
 - ightarrow discard T'_ℓ
- otherwise: take $OPT(T_1) \cup \cdots \cup OPT(T_q)$

Then:

- if all T'_1 , T'_1 , T'_3 are discarded, OPT(T) gets *nil*
- otherwise: take the best

Running time:

- *n* steps in the sequence
- at each step:
 - enumerate all $CRIS_{\leq k}$: $d^{2k}n$
 - ▶ look for a black edge between red c.c.: k^2

Theorem

Given $k \in \mathbb{N}$ and G on n vertices coming with a d-sequence, we can solve MIS in time $O(k^2d^{2k}n^2)$

Same running time for:

- Maximum Clique
- MINIMUM DOMINATING SET
- r-Scattered Set

Running time:

- *n* steps in the sequence
- at each step:
 - enumerate all $CRIS_{\leq k}$: $d^{2k}n$
 - ▶ look for a black edge between red c.c.: k^2

Theorem

Given $k \in \mathbb{N}$ and G on n vertices coming with a d-sequence, we can solve MIS in time $O(k^2d^{2k}n^2) = O(k^2d^{2k}n) = 2^{O_d(k)}n$

Same running time for:

- Maximum Clique
- Minimum Dominating Set
- r-Scattered Set

Generalizations:

- weighted version in $2^{O_d(k \log k)} n$
- INDUCED SUBGRAPH ISOMORPHISM in $2^{O_d(k \log k)} n$ (generalizes the result for H-minor free [Pilipczuk,Siebertz 2019])

Generalizations:

- weighted version in $2^{O_d(k \log k)} n$
- INDUCED SUBGRAPH ISOMORPHISM in $2^{O_d(k \log k)} n$ (generalizes the result for H-minor free [Pilipczuk,Siebertz 2019])

Lower bound (for MIS):

• given a O(1)-sequence, no $2^{o(n/\log n)}n^{O(1)}$ algorithm unless ETH (subcubic graphs $+ (2\log n)$ -subdivision)

Generalizations:

- weighted version in $2^{O_d(k \log k)} n$
- \bullet INDUCED SUBGRAPH ISOMORPHISM in $2^{O_d(k\log k)}n$ (generalizes the result for H-minor free [Pilipczuk,Siebertz 2019])

Lower bound (for MIS):

• given a O(1)-sequence, no $2^{o(n/\log n)}n^{O(1)}$ algorithm unless ETH (subcubic graphs + $(2\log n)$ -subdivision)

Open questions:

- runs in poly-time in "number of connected red induced subgraphs"
 - \rightarrow graph classes admitting sequences with small number of such things?
 - \rightarrow does general graphs have contraction sequences with $O(c^n)$ such things for some c < 2?
 - \rightarrow what about other properties than "bounded red degree"?

Outline:

- Maximum Independent Set
- MINIMUM COLORING (χ -boundedness)
- MINIMUM DOMINATING SET

• for any graph G, it holds that $\chi(G) \geqslant \omega(G)$

- for any graph G, it holds that $\chi(G) \geqslant \omega(G)$
- there exist graphs with $\omega(G) = 2$ and $\chi(G)$ arbitrary large

- for any graph G, it holds that $\chi(G) \geqslant \omega(G)$
- there exist graphs with $\omega(G)=2$ and $\chi(G)$ arbitrary large
- ullet a graph class ${\cal G}$ is χ -bounded if there exists a function f such that

$$\forall G \in \mathcal{G} \quad \chi(G) \leqslant f(\omega(G))$$

- for any graph G, it holds that $\chi(G) \geqslant \omega(G)$
- there exist graphs with $\omega(G) = 2$ and $\chi(G)$ arbitrary large
- ullet a graph class ${\mathcal G}$ is $\chi ext{-bounded}$ if there exists a function f such that

$$\forall G \in \mathcal{G} \quad \chi(G) \leqslant f(\omega(G))$$

Theorem [Tww III]

For any graph G of twin-width $\leqslant d$, we have $\chi(G) \leqslant (d+2)^{\omega(G)-1}$

If a d-sequence is given, we can find such a coloring in polynomial-time.

- for any graph G, it holds that $\chi(G) \geqslant \omega(G)$
- there exist graphs with $\omega(G) = 2$ and $\chi(G)$ arbitrary large
- ullet a graph class ${\cal G}$ is $\chi ext{-bounded}$ if there exists a function f such that

$$\forall G \in \mathcal{G} \quad \chi(G) \leqslant f(\omega(G))$$

Theorem [Tww III]

For any graph G of twin-width $\leqslant d$, we have $\chi(G) \leqslant (d+2)^{\omega(G)-1}$

If a d-sequence is given, we can find such a coloring in polynomial-time.

Works by induction on $\omega(G)$. Let's prove the base case $\omega(G)=2$, that is:

Given a triangle-free graph G and a d-sequence of it, one can find in polynomial-time a (d+2)-coloring of G.

Consider the *d*-sequence backward:

$$G_1 \rightarrow G_2 \rightarrow \cdots \rightarrow G_i \rightarrow G_{i+1} \cdots \rightarrow G_n$$

Consider the *d*-sequence backward:

$$G_1 \rightarrow G_2 \rightarrow \cdots \rightarrow G_i \rightarrow G_{i+1} \cdots \rightarrow G_n$$

Observation 1

when z splits into u, v:

$$N_{E_i \cup R_i}(z) = N_{E_{i+1} \cup R_{i+1}}(u, v)$$

Consider the *d*-sequence backward:

$$G_1 \rightarrow G_2 \rightarrow \cdots \rightarrow G_i \rightarrow G_{i+1} \cdots \rightarrow G_n$$

Observation 1

when z splits into u, v:

$$N_{E_i \cup R_i}(z) = N_{E_{i+1} \cup R_{i+1}}(u, v)$$

Observation 2 (for triangle-free graphs only)

In the triangle-free case:

if z is incident to a black edge, then z(G) is an independent set

$$G_1 \rightarrow G_2 \rightarrow \cdots \rightarrow G_i \rightarrow G_{i+1} \cdots \rightarrow G_n$$

"proper coloring" = with respect to $E_i \cup R_i$

- Assume G_i is properly (d+2)-colored $\rightarrow z$ splits into u, v
- by Obs. 1, we can give to u the same color as z How do we color v?

$$G_1 \rightarrow G_2 \rightarrow \cdots \rightarrow G_i \rightarrow G_{i+1} \cdots \rightarrow G_n$$

"proper coloring" = with respect to $E_i \cup R_i$

- Assume G_i is properly (d+2)-colored $\rightarrow z$ splits into u, v
- by Obs. 1, we can give to u the same color as z How do we color v?
 - ▶ if $uv \notin E_{i+1} \cup R_{i+1}$, then give to v the same color as u

$$G_1 \rightarrow G_2 \rightarrow \cdots \rightarrow G_i \rightarrow G_{i+1} \cdots \rightarrow G_n$$

"proper coloring" = with respect to $E_i \cup R_i$

- Assume G_i is properly (d + 2)-colored $\rightarrow z$ splits into u, v
- by Obs. 1, we can give to u the same color as z How do we color v?
 - ▶ if $uv \notin E_{i+1} \cup R_{i+1}$, then give to v the same color as u
 - ▶ if $uv \in E_{i+1} \cup R_{i+1}$, then give the first available color for v (not in its neighborhood)

$$G_1 \rightarrow G_2 \rightarrow \cdots \rightarrow G_i \rightarrow G_{i+1} \cdots \rightarrow G_n$$

"proper coloring" = with respect to $E_i \cup R_i$

- Assume G_i is properly (d+2)-colored $\rightarrow z$ splits into u, v
- by Obs. 1, we can give to u the same color as z How do we color v?
 - ▶ if $uv \notin E_{i+1} \cup R_{i+1}$, then give to v the same color as u
 - ▶ if $uv \in E_{i+1} \cup R_{i+1}$, then give the first available color for v (not in its neighborhood)

This is a proper (d+2)-coloring of G_{i+1} . Proof:

• proper by Obs. 1

$$G_1 \rightarrow G_2 \rightarrow \cdots \rightarrow G_i \rightarrow G_{i+1} \cdots \rightarrow G_n$$

"proper coloring" = with respect to $E_i \cup R_i$

- Assume G_i is properly (d+2)-colored $\rightarrow z$ splits into u, v
- by Obs. 1, we can give to u the same color as z How do we color v?
 - ▶ if $uv \notin E_{i+1} \cup R_{i+1}$, then give to v the same color as u
 - ▶ if $uv \in E_{i+1} \cup R_{i+1}$, then give the first available color for v (not in its neighborhood)

This is a proper (d+2)-coloring of G_{i+1} . Proof:

- proper by Obs. 1
- d + 2 colors:
 - if z was incident to a black edge, then $uv \notin E_{i+1} \cup R_{i+1}$ (Obs. 2)

$$G_1 \rightarrow G_2 \rightarrow \cdots \rightarrow G_i \rightarrow G_{i+1} \cdots \rightarrow G_n$$

"proper coloring" = with respect to $E_i \cup R_i$

- Assume G_i is properly (d+2)-colored $\rightarrow z$ splits into u, v
- by Obs. 1, we can give to u the same color as z How do we color v?
 - ▶ if $uv \notin E_{i+1} \cup R_{i+1}$, then give to v the same color as u
 - ▶ if $uv \in E_{i+1} \cup R_{i+1}$, then give the first available color for v (not in its neighborhood)

This is a proper (d+2)-coloring of G_{i+1} . Proof:

- proper by Obs. 1
- d+2 colors:
 - if z was incident to a black edge, then $uv \notin E_{i+1} \cup R_{i+1}$ (Obs. 2)
 - b otherwise, z had only $\leqslant d$ (red) neighbors, so v has $\leqslant d+1$ black/red neighbors

We have just seen

 K_3 -free graphs coming with a d-sequence can be (d+2)-colored in polynomial-time.

Generalization to K_t -free graphs, by induction on t:

We have just seen

 K_3 -free graphs coming with a d-sequence can be (d+2)-colored in polynomial-time.

Generalization to K_t -free graphs, by induction on t:

• now Observation 2 becomes: if z is incident to a black edge, then z(G) is K_{t-1} -free

We have just seen

 K_3 -free graphs coming with a d-sequence can be (d+2)-colored in polynomial-time.

Generalization to K_t -free graphs, by induction on t:

• now Observation 2 becomes: if z is incident to a black edge, then z(G) is K_{t-1} -free

 \rightarrow we get by induction a coloring of z(G) with $(d+2)^{t-3}$ colors ...

Related work/open question:

- provides an "elementary" proof of "bounded rank-width classes are χ -bounded" [Dvořák, Král', 2012]
- bounded clique-width classes are **polynomially** χ -bounded [Bonamy,Pilipczuk, 2020]
 - \rightarrow are bounded twin-width graphs polynomially χ -bounded?

Outline:

- Maximum Independent Set
- MINIMUM COLORING (χ -boundedness)
- MINIMUM DOMINATING SET

Versatile tree of *d*-contractions [Tww II]

Up to a small degradation on the twin-width value d of a graph:

- at each step of the sequence: there exist $\frac{|V(G_i)|}{s}$ disjoint pairs of vertices that we can contract
- all trigraphs of the tree have red degree $\leq d'$
- \rightarrow can be computed in poly-time (given a *d*-sequence)
- \rightarrow s and d' are functions of d only

Linear program:

minimize
$$\sum_{x \in V} w(x)$$

s.t.
$$\sum_{y \in N[x]} w(x) \geqslant 1$$
 for all $x \in V$

$$0 \leqslant w(x) \leqslant 1$$
 for all $x \in V$

Linear program:

minimize
$$\sum_{x \in V} w(x)$$

s.t.
$$\sum_{y \in N[x]} w(x) \geqslant 1$$
 for all $x \in V$

$$0 \leqslant w(x) \leqslant 1$$
 for all $x \in V$

Let $\gamma^*(G)$ be the optimal value of the LP let w^* be its associated solution

We will prove the following:

Given an s-versatile tree of d-contractions, one can compute in polynomial-time a dominating set D of size $\leq 2s(d+1)\gamma^*(G)$

Using the s-versatile tree of d-contractions, we construct a d-sequence

CONTRACTION RULE

At each step, choose a pair (u, v) such that $w^*(u(G))$, $w^*(v(G)) < \frac{1}{2(d+1)}$

stop the sequence when there is no such pair

$$G_n o G_{n-1} o \ldots o G_{stuck}$$

Let n_{stuck} be the number of vertices in G_{stuck}

Using the s-versatile tree of d-contractions, we construct a d-sequence

CONTRACTION RULE

At each step, choose a pair (u, v) such that $w^*(u(G))$, $w^*(v(G)) < \frac{1}{2(d+1)}$

stop the sequence when there is no such pair

$$G_n \to G_{n-1} \to \dots \to G_{stuck}$$

Let n_{stuck} be the number of vertices in G_{stuck}

Observation 1

 $n_{stuck} \leqslant 2s(d+1)\gamma^*(G)$

Using the s-versatile tree of d-contractions, we construct a d-sequence

CONTRACTION RULE

At each step, choose a pair (u,v) such that $w^*(u(G)), \ w^*(v(G)) < \frac{1}{2(d+1)}$

stop the sequence when there is no such pair

$$G_n \to G_{n-1} \to \dots \to G_{stuck}$$

Let n_{stuck} be the number of vertices in G_{stuck}

Observation 1

$$n_{stuck} \leqslant 2s(d+1)\gamma^*(G)$$

Proof:

• in G_{stuck} , there are $\geqslant \frac{n_{stuck}}{s}$ disjoint pairs of d-contractions

Using the s-versatile tree of d-contractions, we construct a d-sequence

CONTRACTION RULE

At each step, choose a pair (u, v) such that $w^*(u(G))$, $w^*(v(G)) < \frac{1}{2(d+1)}$

stop the sequence when there is no such pair

$$G_n \to G_{n-1} \to \dots \to G_{stuck}$$

Let n_{stuck} be the number of vertices in G_{stuck}

Observation 1

$$n_{stuck} \leqslant 2s(d+1)\gamma^*(G)$$

Proof:

• in G_{stuck} , there are $\geqslant \frac{n_{stuck}}{s}$ disjoint pairs of d-contractions Contraction rule \Rightarrow at least $\frac{n_{stuck}}{s}$ parts have weight $\geqslant \frac{1}{2(d+1)}$

Using the s-versatile tree of d-contractions, we construct a d-sequence

CONTRACTION RULE

At each step, choose a pair (u, v) such that $w^*(u(G))$, $w^*(v(G)) < \frac{1}{2(d+1)}$

stop the sequence when there is no such pair

$$G_n o G_{n-1} o \ldots o G_{stuck}$$

Let n_{stuck} be the number of vertices in G_{stuck}

Observation 1

$$n_{stuck} \leqslant 2s(d+1)\gamma^*(G)$$

Proof:

- in G_{stuck} , there are $\geqslant \frac{n_{stuck}}{s}$ disjoint pairs of d-contractions Contraction rule \Rightarrow at least $\frac{n_{stuck}}{s}$ parts have weight $\geqslant \frac{1}{2(d+1)}$
- $\sum_{u \in V(G_{stuck})} w^*(u(G)) = \gamma^*(G)$

End of the algorithm:

Pick one arbitrary vertex from each $u \in V(G_{stuck}) \rightarrow \text{solution } D$

• $|D| \leqslant 2s(d+1)\gamma^*(G)$ by Obs 1

End of the algorithm:

Pick one arbitrary vertex from each $u \in V(G_{stuck}) \rightarrow \text{solution } D$

- $|D| \leqslant 2s(d+1)\gamma^*(G)$ by Obs 1
- D is a dominating set of GProof: let $u \in V(G_{stuck})$, show that u(G) is dominated

End of the algorithm:

Pick one arbitrary vertex from each $u \in V(G_{stuck}) \rightarrow \text{solution } D$

- $|D| \leq 2s(d+1)\gamma^*(G)$ by Obs 1
- D is a dominating set of GProof: let $u \in V(G_{stuck})$, show that u(G) is dominated
 - ▶ if *u* is incident to a black edge: done

End of the algorithm:

Pick one arbitrary vertex from each $u \in V(G_{stuck}) \rightarrow \text{solution } D$

- $|D| \le 2s(d+1)\gamma^*(G)$ by Obs 1
- D is a dominating set of GProof: let $u \in V(G_{stuck})$, show that u(G) is dominated
 - ▶ if *u* is incident to a black edge: done
 - ▶ otherwise: only $\leq d$ red neighbors for $y \in u(G)$, let v_1, \ldots, v_q be the bags with at least one edge with y Claim: one of $u(G), v_1(G), \ldots, v_q(G)$ is a singleton:

$$w^*(u) + \sum_{i=1}^q w^*(v_i) \geqslant 1$$

One of them must have weight $\geqslant \frac{1}{d+1}$ \rightarrow must be a singleton by our CONTRACTION RULE

Related work/open questions:

• There is a PTAS in minor-closed classes [Cabello, Gajser, 2015]

OPEN:

- c-approximation in bounded tww graphs (c independent of tww)?
- PTAS in bounded tww graphs?

Related work/open questions:

There is a PTAS in minor-closed classes [Cabello, Gajser, 2015]

OPEN:

- c-approximation in bounded tww graphs (c independent of tww)?
- ► PTAS in bounded tww graphs?

MAXIMUM INDEPENDENT SET

- any c-approximation implies a PTAS in bounded tww graphs (iterated lexicographic product preserves tww)
- PTAS?

