Some algorithmic applications of twin-width

Rémi Watrigant (LIP, Lyon)

Results mainly from:

Twin-width III, É. Bonnet, C. Geniet, E.J. Kim, S. Thomassé, R. W.

arxiv.org/abs/2007.14161

Journées CALAMAR
2 avril 2021
Outline:

- **Maximum Independent Set**
- **Minimum Coloring**
- **Minimum Dominating Set**
Maximum Independent Set (MIS)

Theorem [Tww I]

Given a FO formula φ and a n-vertex graph G with a d-sequence of G, one can decide $G \models \varphi$ in time $f(|\varphi|, d)n$ for some computable function f.
Maximum Independent Set (MIS)

Theorem [Tww 1]

Given a FO formula φ and a n-vertex graph G with a d-sequence of G, one can decide $G \models \varphi$ in time $f(|\varphi|, d)n$ for some computable function f

"$\alpha(G) \geq k$" is equivalent to:

$$\exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leq i < j \leq k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

\Rightarrow Deciding MIS is FPT in k and $d := tww(G)$
Maximum Independent Set (MIS)

Theorem [Tww I]

Given a FO formula φ and a n-vertex graph G with a d-sequence of G, one can decide $G \models \varphi$ in time $f(|\varphi|, d)n$ for some computable function f

"$\alpha(G) \geq k$" is equivalent to:

$$\exists x_1 \exists x_2 \ldots \exists x_k \bigwedge_{1 \leq i < j \leq k} \neg(x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

\Rightarrow Deciding MIS is FPT in k and $d := \text{tww}(G)$

But the function f is a tower of exponentials 😞

\rightarrow Now: $O(k^2 d^{2k} n)$ for MIS
Maximum Independent Set (MIS)

Before twin-width: cographs: twin-decomposition

\[G_n \rightarrow G_{n-1} \rightarrow \ldots \rightarrow G_{i+1} \rightarrow G_i \rightarrow \ldots \rightarrow G_1 \]
Maximum Independent Set (MIS)
Before twin-width: cographs: twin-decomposition

\[G_n \rightarrow G_{n-1} \rightarrow \ldots \rightarrow G_{i+1} \rightarrow G_i \rightarrow \ldots \rightarrow G_1 \]

Solving MIS:
- for \(i = n, \ldots, 1 \), for each \(u \in V(G_i) \), compute

\[OPT(u) := OPT(G[u(G)]) \]

\[\rightarrow \text{initialization ok} \]
\[\rightarrow \text{in } G_1: \ OPT(u) = OPT(V(G)) \]
Maximum Independent Set (MIS)

Before twin-width: **cographs**: twin-decomposition

\[G_n \rightarrow G_{n-1} \rightarrow \ldots \rightarrow G_{i+1} \rightarrow G_i \ldots \rightarrow G_1 \]

Solving MIS:

- for \(i = n, \ldots, 1 \), for each \(u \in V(G_i) \), compute

\[OPT(u) := OPT(G[u(G)]) \]

\[\rightarrow \text{initialization ok} \]

\[\rightarrow \text{in } G_1: \ OPT(u) = OPT(V(G)) \]

- when contracting \(u, v \) into \(z \):
Maximum Independent Set (MIS)

With a d-contraction sequence:

\[G_n \rightarrow G_{n-1} \rightarrow \ldots \rightarrow G_{i+1} \rightarrow G_i \rightarrow \ldots \rightarrow G_1 \]

- each G_i is a trigraph : (V_i, E_i, R_i)

Solving MIS:

for $i = n, \ldots, 1$

for each $T \subseteq V(G_i)$ connected red induced subgraph of size $\leq k$

Compute:

\[\text{OPT}(T) := \text{OPT} \text{ of } G[\bigcup_{u \in T} u(G)] \]

intersecting each $u(G)$, for all $u \in T$

We might have $\text{OPT}(T) = \text{nil}$ (great figure by ´Edouard)
Maximum Independent Set (MIS)

With a d-contraction sequence:

$$G_n \rightarrow G_{n-1} \rightarrow \ldots \rightarrow G_{i+1} \rightarrow G_i \rightarrow \ldots \rightarrow G_1$$

- each G_i is a trigraph : (V_i, E_i, R_i)

Solving MIS:

- for $i = n, \ldots, 1$
 - for each $T \subseteq V(G_i)$ connected red induced subgraph of size $\leq k$

Compute:

$$OPT(T) := \text{OPT of } G[\bigcup_{u \in T} u(G)]$$

intersecting each $u(G)$, for all $u \in T$
Maximum Independent Set (MIS)

With a d-contraction sequence:

$$G_n \rightarrow G_{n-1} \rightarrow \ldots \rightarrow G_{i+1} \rightarrow G_i \rightarrow \ldots \rightarrow G_1$$

- each G_i is a trigraph: (V_i, E_i, R_i)

Solving MIS:

- for $i = n, \ldots, 1$
 - for each $T \subseteq V(G_i)$ connected red induced subgraph of size $\leq k$

Compute:

$$OPT(T) := \text{OPT of } G[\bigcup_{u \in T} u(G)]$$

intersecting each $u(G)$, for all $u \in T$

We might have $OPT(T) = \text{nil}$

(great figure by Édouard)
A graph with n vertices and maximum degree d has at most $d^{2k} n$ connected induced subgraphs of $\leq k$ vertices
Maximum Independent Set (MIS)

Lemma [folklore]

A graph with \(n \) vertices and maximum degree \(d \) has at most \(d^{2k} n \) connected induced subgraphs of \(\leq k \) vertices

\[G_{i+1} \rightarrow G_i \]

\[u, v \quad z \]

Let \(T \) be a \(CRIS_{\leq k} \) in \(G_i \)

How to compute \(OPT(T) \)?
Maximum Independent Set (MIS)

Lemma [folklore]

A graph with n vertices and maximum degree d has at most $d^{2k}n$ connected induced subgraphs of $\leq k$ vertices

$$G_{i+1} \rightarrow G_i$$

$u, v \quad z$

Let T be a $CRIS_{\leq k}$ in G_i

How to compute $OPT(T)$?

- if $z \notin T$, we take $OPT(T)$ from G_{i+1}
Maximum Independent Set (MIS)

Lemma [folklore]

A graph with \(n \) vertices and maximum degree \(d \) has at most \(d^{2k} n \) connected induced subgraphs of \(\leq k \) vertices

\[
G_{i+1} \rightarrow G_i
\]

\[
u, v \rightarrow z
\]

Let \(T \) be a \(CRIS_{\leq k} \) in \(G_i \)

How to compute \(OPT(T) \)?

- if \(z \not\in T \), we take \(OPT(T) \) from \(G_{i+1} \)
- if \(z \in T \). How will \(OPT \) intersect \(z(G) \)?

\[
\begin{align*}
\text{OPT intersects only } u(G) & \quad \rightarrow T'_1 := T \setminus \{z\} \cup \{u\} \\
\text{OPT intersects only } v(G) & \quad \rightarrow T'_2 := T \setminus \{z\} \cup \{v\} \\
\text{OPT intersects both } u(G), v(G) & \quad \rightarrow T'_3 := T \setminus \{z\} \cup \{u, v\}
\end{align*}
\]

Construct a solution for each \(T'_\ell \) and take the best as \(OPT(T) \)
Maximum Independent Set (MIS)

What is T'_ℓ in G_{i+1}?
Maximum Independent Set (MIS)

What is T'_ℓ in G_{i+1}?

example: OPT intersects only $v(G)$
What is T'_ℓ in G_{i+1}?
What is T'_ℓ in G_{i+1}?

Each T'_ℓ has $\leq d$ connected components in G_{i+1}

$$T_1, \ldots, T_q$$

which are all $CRIS_{\leq k}$ in $G_{i+1} \rightarrow$ take their $OPT(T_x)$
Maximum Independent Set (MIS)

What is T'_ℓ in G_{i+1}?

Each T'_ℓ has $\leq d$ connected components in G_{i+1}

$$T_1, \ldots, T_q$$

which are all $CRIS_{\leq k}$ in G_{i+1} → take their $OPT(T_x)$

- if:
 - there is a black edge between two T_x, T_y
 - or
 - $OPT(T_x)$ is nil for some x
 → discard T'_ℓ

- otherwise: take $OPT(T_1) \cup \cdots \cup OPT(T_q)$
Maximum Independent Set (MIS)

What is T'_ℓ in G_{i+1}?

Each T'_ℓ has $\leq d$ connected components in G_{i+1}

$$T_1, \ldots, T_q$$

which are all $CRIS_{\leq k}$ in $G_{i+1} \rightarrow$ take their $OPT(T_x)$

- if:
 - there is a black edge between two T_x, T_y
 - or
 - $OPT(T_x)$ is nil for some x

 \rightarrow discard T'_ℓ

- otherwise: take $OPT(T_1) \cup \cdots \cup OPT(T_q)$

Then:

- if all T'_1, T'_1, T'_3 are discarded, $OPT(T)$ gets nil
- otherwise: take the best
Maximum Independent Set (MIS)

Running time:

- n steps in the sequence
- at each step:
 - enumerate all $CRIS_{\leq k}$: $d^{2k} n$
 - look for a black edge between red c.c.: k^2

Theorem

Given $k \in \mathbb{N}$ and G on n vertices coming with a d-sequence, we can solve MIS in time $O(k^2 d^{2k} n^2)$

Same running time for:

- Maximum Clique
- Minimum Dominating Set
- r-Scattered Set
Maximum Independent Set (MIS)

Running time:

- n steps in the sequence
- at each step:
 - enumerate all $CRIS_{\leq k}$: $d^{2k}n$
 - look for a black edge between red c.c.: k^2

Theorem

Given $k \in \mathbb{N}$ and G on n vertices coming with a d-sequence, we can solve MIS in time $O(k^2d^{2k}n^2)$ $O(k^2d^{2k}n) = 2^{O_d(k)}n$

Same running time for:

- Maximum Clique
- Minimum Dominating Set
- r-Scattered Set
Maximum Independent Set (MIS)

Generalizations:

- weighted version in $2^{O_d(k \log k)n}$
- **Induced Subgraph Isomorphism** in $2^{O_d(k \log k)n}$
 (generalizes the result for H-minor free [Pilipczuk, Siebertz 2019])

Lower bound (for MIS):

given a $O(1)$-sequence, no $2^{o(n/\log n)}$ algorithm unless ETH (subcubic graphs + $(2 \log n)$-subdivision)

Open questions:

- runs in poly-time in "number of connected red induced subgraphs" → graph classes admitting sequences with small number of such things?
- → does general graphs have contraction sequences with $O(cn)$ such things for some $c < 2$?
- → what about other properties than "bounded red degree"?
Maximum Independent Set (MIS)

Generalizations:
- weighted version in $2^{O_d(k \log k) n}$
- **Induced Subgraph Isomorphism** in $2^{O_d(k \log k) n}$
 (generalizes the result for H-minor free [Pilipczuk, Siebertz 2019])

Lower bound (for MIS):
- given a $O(1)$-sequence, no $2^{o(n/ \log n)} n^{O(1)}$ algorithm unless ETH
 (subcubic graphs + (2 log n)-subdivision)
Maximum Independent Set (MIS)

Generalizations:
- weighted version in $2^{O_d(k \log k)} n$
- **Induced Subgraph Isomorphism** in $2^{O_d(k \log k)} n$
 (generalizes the result for H-minor free [Pilipczuk,Siebertz 2019])

Lower bound (for MIS):
- given a $O(1)$-sequence, no $2^{o(n/ \log n)} n^{O(1)}$ algorithm unless ETH
 (subcubic graphs + (2 log n)-subdivision)

Open questions:
- runs in poly-time in “number of connected red induced subgraphs”
 → graph classes admitting sequences with small number of such things?
 → does general graphs have contraction sequences with $O(c^n)$ such things for some $c < 2$?
 → what about other properties than “bounded red degree”?
Outline:

- **Maximum Independent Set**
- **Minimum Coloring** (χ-boundedness)
- **Minimum Dominating Set**
Coloring (χ-boundedness)

- for any graph G, it holds that $\chi(G) \geq \omega(G)$
Coloring (χ-boundedness)

- for any graph G, it holds that $\chi(G) \geq \omega(G)$
- there exist graphs with $\omega(G) = 2$ and $\chi(G)$ arbitrary large
Coloring (χ-boundedness)

- for any graph G, it holds that $\chi(G) \geq \omega(G)$
- there exist graphs with $\omega(G) = 2$ and $\chi(G)$ arbitrary large
- a graph class \mathcal{G} is χ-bounded if there exists a function f such that

 $$\forall G \in \mathcal{G} \quad \chi(G) \leq f(\omega(G))$$
Coloring (χ-boundedness)

- for any graph G, it holds that $\chi(G) \geq \omega(G)$
- there exist graphs with $\omega(G) = 2$ and $\chi(G)$ arbitrary large
- a graph class \mathcal{G} is χ-bounded if there exists a function f such that
 \[\forall G \in \mathcal{G} \quad \chi(G) \leq f(\omega(G)) \]

Theorem [Tww III]

For any graph G of twin-width $\leq d$, we have $\chi(G) \leq (d + 2)^{\omega(G) - 1}$

If a d-sequence is given, we can find such a coloring in polynomial-time.
Coloring (χ-boundedness)

- for any graph G, it holds that $\chi(G) \geq \omega(G)$
- there exist graphs with $\omega(G) = 2$ and $\chi(G)$ arbitrary large
- a graph class \mathcal{G} is χ-bounded if there exists a function f such that
 \[\forall G \in \mathcal{G} \quad \chi(G) \leq f(\omega(G)) \]

Theorem [Tww III]

For any graph G of twin-width $\leq d$, we have $\chi(G) \leq (d + 2)\omega(G) - 1$

If a d-sequence is given, we can find such a coloring in polynomial-time.

Works by induction on $\omega(G)$. Let’s prove the base case $\omega(G) = 2$, that is:

Given a triangle-free graph G and a d-sequence of it, one can find in polynomial-time a $(d + 2)$-coloring of G.

Coloring (χ-boundedness)

Consider the d-sequence backward:

$$G_1 \rightarrow G_2 \rightarrow \ldots \rightarrow G_i \rightarrow G_{i+1} \rightarrow \ldots \rightarrow G_n$$

Observation 1 when z splits into u, v:

$$N_E i \cup R_i (z) = N_E i + 1 \cup R_i + 1 (u, v)$$

Observation 2 (for triangle-free graphs only)

In the triangle-free case:

if z is incident to a black edge, then $z (G)$ is an independent set
COLORING (χ-boundedness)

Consider the d-sequence backward:

$$G_1 \rightarrow G_2 \rightarrow \ldots \rightarrow G_i \rightarrow G_{i+1} \rightarrow \ldots \rightarrow G_n$$

Observation 1

when z splits into u, v:

$$N_{E_i \cup R_i}(z) = N_{E_{i+1} \cup R_{i+1}}(u, v)$$

Observation 2 (for triangle-free graphs only)

In the triangle-free case:

if z is incident to a black edge, then $z(G)$ is an independent set
Coloring (χ-boundedness)

Consider the d-sequence backward:

$$G_1 \rightarrow G_2 \rightarrow \ldots \rightarrow G_i \rightarrow G_{i+1} \rightarrow \ldots \rightarrow G_n$$

Observation 1

when z splits into u, v:

$$N_{E_i \cup R_i}(z) = N_{E_{i+1} \cup R_{i+1}}(u, v)$$

Observation 2 (for triangle-free graphs only)

In the triangle-free case:

if z is incident to a black edge, **then** $z(G)$ is an independent set
Coloring (χ-boundedness)

\[G_1 \rightarrow G_2 \rightarrow \ldots \rightarrow G_i \rightarrow G_{i+1} \rightarrow \ldots \rightarrow G_n \]

"proper coloring" = with respect to \(E_i \cup R_i \)

- Assume \(G_i \) is properly \((d+2)\)-colored
 - \(z \) splits into \(u, v \)
- by Obs. 1, we can give to \(u \) the same color as \(z \)
 How do we color \(v \)?
Coloring (χ-boundedness)

\[G_1 \to G_2 \to \ldots \to G_i \to G_{i+1} \ldots \to G_n \]

"proper coloring" = with respect to \(E_i \cup R_i \)

- Assume \(G_i \) is properly \((d+2)\)-colored
 \[\rightarrow z \text{ splits into } u, v \]
- by Obs. 1, we can give to \(u \) the same color as \(z \)
 How do we color \(v \)?
 - if \(uv \notin E_{i+1} \cup R_{i+1} \), then give to \(v \) the same color as \(u \)
COLORING (χ-boundedness)

$G_1 \rightarrow G_2 \rightarrow \ldots \rightarrow G_i \rightarrow G_{i+1} \rightarrow \ldots \rightarrow G_n$

“proper coloring” = with respect to $E_i \cup R_i$

- Assume G_i is properly $(d + 2)$-colored
 - z splits into u, v

- by Obs. 1, we can give to u the same color as z

 How do we color v?
 - if $uv \notin E_{i+1} \cup R_{i+1}$, then give to v the same color as u
 - if $uv \in E_{i+1} \cup R_{i+1}$, then give the first available color for v (not in its neighborhood)
Coloring (χ-boundedness)

\[G_1 \rightarrow G_2 \rightarrow \ldots \rightarrow G_i \rightarrow G_{i+1} \rightarrow \ldots \rightarrow G_n \]

“proper coloring” = with respect to \(E_i \cup R_i \)

- Assume \(G_i \) is properly \((d+2)\)-colored
 - \(z \) splits into \(u, v \)
- by Obs. 1, we can give to \(u \) the same color as \(z \)
 - How do we color \(v \)?
 - if \(uv \notin E_{i+1} \cup R_{i+1} \), then give to \(v \) the same color as \(u \)
 - if \(uv \in E_{i+1} \cup R_{i+1} \), then give the first available color for \(v \) (not in its neighborhood)

This is a proper \((d+2)\)-coloring of \(G_{i+1} \). Proof:
- *proper* by Obs. 1
Coloring (χ-boundedness)

$G_1 \rightarrow G_2 \rightarrow \ldots \rightarrow G_i \rightarrow G_{i+1} \ldots \rightarrow G_n$

“proper coloring” = with respect to $E_i \cup R_i$

- Assume G_i is properly $(d + 2)$-colored
 - z splits into u, v
- by Obs. 1, we can give to u the same color as z
 - How do we color v?
 - if $uv \notin E_{i+1} \cup R_{i+1}$, then give to v the same color as u
 - if $uv \in E_{i+1} \cup R_{i+1}$, then give the first available color for v (not in its neighborhood)

This is a proper $(d + 2)$-coloring of G_{i+1}. Proof:

- *proper* by Obs. 1
- $d + 2$ colors:
 - if z was incident to a black edge, then $uv \notin E_{i+1} \cup R_{i+1}$ (Obs. 2)
COLORING (χ-boundedness)

\[G_1 \rightarrow G_2 \rightarrow \ldots \rightarrow G_i \rightarrow G_{i+1} \rightarrow \ldots \rightarrow G_n \]

“proper coloring” = with respect to \(E_i \cup R_i \)

- Assume \(G_i \) is properly \((d + 2)\)-colored
 \[\rightarrow z \text{ splits into } u, v \]
- by Obs. 1, we can give to \(u \) the same color as \(z \)
 How do we color \(v \)?
 - if \(uv \notin E_{i+1} \cup R_{i+1} \), then give to \(v \) the same color as \(u \)
 - if \(uv \in E_{i+1} \cup R_{i+1} \), then give the first available color for \(v \) (not in its neighborhood)

This is a proper \((d + 2)\)-coloring of \(G_{i+1} \). Proof:

- **proper** by Obs. 1
- **\(d + 2\) colors**:
 - if \(z \) was incident to a black edge, then \(uv \notin E_{i+1} \cup R_{i+1} \) (Obs. 2)
 - otherwise, \(z \) had only \(\leq d \) (red) neighbors, so \(v \) has \(\leq d + 1 \) black/red neighbors
We have just seen K_3-free graphs coming with a d-sequence can be $(d + 2)$-colored in polynomial-time.

Generalization to K_t-free graphs, by induction on t:
Coloring (χ-boundedness)

We have just seen

K_3-free graphs coming with a d-sequence can be $(d + 2)$-colored in polynomial-time.

Generalization to K_t-free graphs, by induction on t:

- now **Observation 2** becomes: *if z is incident to a black edge, then $z(G)$ is K_{t-1}-free*
Coloring (χ-boundedness)

We have just seen K_3-free graphs coming with a d-sequence can be $(d + 2)$-colored in polynomial-time.

Generalization to K_t-free graphs, by induction on t:

- now **Observation 2** becomes: *if z is incident to a black edge, then $z(G)$ is K_{t-1}-free*

 → we get by induction a coloring of $z(G)$ with $(d + 2)^{t-3}$ colors
Related work/open question:

- provides an “elementary” proof of “bounded rank-width classes are \(\chi \)-bounded” [Dvořák, Král’, 2012]

- bounded clique-width classes are \textit{polynomially} \(\chi \)-bounded [Bonamy, Pilipczuk, 2020]

\[\rightarrow \text{are bounded twin-width graphs polynomially } \chi \text{-bounded?} \]
Outline:

- **Maximum Independent Set**
- **Minimum Coloring** (χ-boundedness)
- **Minimum Dominating Set**
Minimum Dominating Set

Versatile tree of d-contractions [Tww II]

Up to a small degradation on the twin-width value d of a graph:
- at each step of the sequence: there exist $\frac{|V(G_i)|}{s}$ disjoint pairs of vertices that we can contract
- all trigraphs of the tree have red degree $\leq d'$

→ can be computed in poly-time (given a d-sequence)
→ s and d' are functions of d only
Minimum Dominating Set

Linear program:

\[
\text{minimize } \sum_{x \in V} w(x) \\
\text{s.t. } \sum_{y \in N[x]} w(x) \geq 1 \quad \text{for all } x \in V \\
0 \leq w(x) \leq 1 \quad \text{for all } x \in V
\]
Minimum Dominating Set

Linear program:

\[
\begin{align*}
\text{minimize } & \sum_{x \in V} w(x) \\
\text{s.t.} & \sum_{y \in N[x]} w(x) \geq 1 \quad \text{for all } x \in V \\
& 0 \leq w(x) \leq 1 \quad \text{for all } x \in V
\end{align*}
\]

Let \(\gamma^*(G) \) be the optimal value of the LP
let \(w^* \) be its associated solution

We will prove the following:
Given an \(s \)-versatile tree of \(d \)-contractions, one can compute in polynomial-time a dominating set \(D \) of size \(\leq 2s(d + 1)\gamma^*(G) \)
Minimum Dominating Set

Using the s-versatile tree of d-contractions, we construct a d-sequence

Contraction Rule

At each step, choose a pair (u, v) such that $w^*(u(G)), w^*(v(G)) < \frac{1}{2(d+1)}$

stop the sequence when there is no such pair

$G_n \rightarrow G_{n-1} \rightarrow \ldots \rightarrow G_{\text{stuck}}$

Let n_{stuck} be the number of vertices in G_{stuck}
Minimum Dominating Set

Using the s-versatile tree of d-contractions, we construct a d-sequence

Contraction Rule

At each step, choose a pair (u, v) such that $w^*(u(G)), w^*(v(G)) < \frac{1}{2(d+1)}$

stop the sequence when there is no such pair

$G_n \rightarrow G_{n-1} \rightarrow \ldots \rightarrow G_{stuck}$

Let n_{stuck} be the number of vertices in G_{stuck}

Observation 1

$n_{stuck} \leq 2s(d+1)\gamma^*(G)$
Minimum Dominating Set

Using the s-versatile tree of d-contractions, we construct a d-sequence

Contraction Rule

At each step, choose a pair (u, v) such that $w^*(u(G)), w^*(v(G)) < \frac{1}{2(d+1)}$

Stop the sequence when there is no such pair

$G_n \rightarrow G_{n-1} \rightarrow \ldots \rightarrow G_{stuck}$

Let n_{stuck} be the number of vertices in G_{stuck}

Observation 1

$n_{stuck} \leq 2s(d+1)\gamma^*(G)$

Proof:

- In G_{stuck}, there are $\geq \frac{n_{stuck}}{s}$ disjoint pairs of d-contractions
Minimum Dominating Set

Using the s-versatile tree of d-contractions, we construct a d-sequence

Contraction Rule

At each step, choose a pair (u, v) such that $w^*(u(G))$, $w^*(v(G)) < \frac{1}{2(d+1)}$

stop the sequence when there is no such pair

\[
G_n \rightarrow G_{n-1} \rightarrow \ldots \rightarrow G_{\text{stuck}}
\]

Let n_{stuck} be the number of vertices in G_{stuck}

Observation 1

\[n_{\text{stuck}} \leq 2s(d+1)\gamma^*(G)\]

Proof:

- in G_{stuck}, there are $\geq \frac{n_{\text{stuck}}}{s}$ disjoint pairs of d-contractions
 - Contraction rule \Rightarrow at least $\frac{n_{\text{stuck}}}{s}$ parts have weight $\geq \frac{1}{2(d+1)}$
Minimum Dominating Set

Using the s-versatile tree of d-contractions, we construct a d-sequence

Contraction Rule

At each step, choose a pair (u, v) such that $w^*(u(G)), w^*(v(G)) < \frac{1}{2(d+1)}$

stop the sequence when there is no such pair

$$G_n \rightarrow G_{n-1} \rightarrow \ldots \rightarrow G_{\text{stuck}}$$

Let n_{stuck} be the number of vertices in G_{stuck}

Observation 1

$$n_{\text{stuck}} \leq 2s(d+1)\gamma^*(G)$$

Proof:

- in G_{stuck}, there are $\geq \frac{n_{\text{stuck}}}{s}$ disjoint pairs of d-contractions
 - Contraction rule \Rightarrow at least $\frac{n_{\text{stuck}}}{s}$ parts have weight $\geq \frac{1}{2(d+1)}$
 - $\sum_{u \in V(G_{\text{stuck}})} w^*(u(G)) = \gamma^*(G)$
End of the algorithm:
Pick one arbitrary vertex from each $u \in V(G_{stuck}) \rightarrow$ solution D

- $|D| \leq 2s(d + 1)\gamma^*(G)$ by Obs 1
Minimum Dominating Set

End of the algorithm:

Pick one arbitrary vertex from each \(u \in V(G_{stuck}) \) \(\rightarrow \) solution \(D \)

\(|D| \leq 2s(d + 1) \gamma^*(G) \) by Obs 1

\(D \) is a dominating set of \(G \)

Proof: let \(u \in V(G_{stuck}) \), show that \(u(G) \) is dominated
Minimum Dominating Set

End of the algorithm:
Pick one arbitrary vertex from each $u \in V(G_{stuck}) \rightarrow$ solution D

- $|D| \leq 2s(d + 1)\gamma^*(G)$ by Obs 1
- D is a dominating set of G
 Proof: let $u \in V(G_{stuck})$, show that $u(G)$ is dominated
 - if u is incident to a black edge: done
End of the algorithm:

Pick one arbitrary vertex from each $u \in V(G_{stuck}) \rightarrow$ solution D

- $|D| \leq 2s(d + 1)\gamma^*(G)$ by Obs 1
- D is a dominating set of G

Proof: let $u \in V(G_{stuck})$, show that $u(G)$ is dominated

 ▶ if u is incident to a black edge: done

 ▶ otherwise: only $\leq d$ red neighbors

 for $y \in u(G)$, let v_1, \ldots, v_q be the bags with at least one edge with y

 Claim: one of $u(G), v_1(G), \ldots, v_q(G)$ is a singleton:

 $$w^*(u) + \sum_{i=1}^{q} w^*(v_i) \geq 1$$

 One of them must have weight $\geq \frac{1}{d+1}$

 \rightarrow must be a singleton by our **Contraction Rule**
Minimum Dominating Set

Related work/open questions:

- There is a PTAS in minor-closed classes [Cabello, Gajser, 2015]

OPEN:
- c-approximation in bounded tww graphs (c independent of tww)?
- PTAS in bounded tww graphs?
Minimum Dominating Set

Related work/open questions:

- There is a PTAS in minor-closed classes [Cabello, Gajser, 2015]

OPEN:
- c-approximation in bounded tww graphs (c independent of tww)?
- PTAS in bounded tww graphs?

Maximum Independent Set

- any c-approximation implies a PTAS in bounded tww graphs (iterated lexicographic product preserves tww)

- PTAS?
Questions?