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3 LRI, CNRS et Université Paris-Sud,Bât 490, 91405 Orsay Cedex, FraneAbstratWe prove that every planar graph is an intersetion graph of strings in the plane, suhthat any two strings interset at most one.1 IntrodutionA string s is a urve of the plane homeomorphi to a segment. A string s has two ends, thepoints of s that are not ends of s are internal points of s. Two strings s1 and s2 ross if theyhave a ommon point p ∈ s1 ∩ s2 and if going around p we suessively meet s1, s2, s1, and

s2. This means that a tangent point is not a �rossing�. In the following we onsider stringsets without tangent points.In this paper, we onsider intersetion models for simple planar graphs (i.e., planar graphswithout loops or multiple edges). A string representation of a graph G = (V,E) is a set Σ ofstrings in the plane suh that every vertex v ∈ V maps to a string v ∈ Σ and suh that uv ∈ Eif and only if the strings u and v ross (at least one). Similarly, a segment representation ofa graph G is a string representation of G in whih the strings are segments.These notions were introdued by Ehrlih et al. [3℄, who proved the following:Theorem 1 [3℄ Planar graphs have a string representation.In [9℄, Koebe proved that planar graphs are the ontat graphs of disks in the plane.Note that in this model the urves bounding two adjaent disks are tangent. However byin�ating these irles we obtain string representations for planar graphs. In his PhD thesis,Sheinerman [10℄ onjetures a stronger result:Conjeture 1 [10℄ Planar graphs have a segment representation.
∗An abstrat of this paper appeared in the Proeedings of the eighteenth annual ACM-SIAM Symposiumon Disrete algorithms (SODA 2007). 1



Hartman et al. [8℄ and de Fraysseix et al. [4℄ proved Conjeture 1 for bipartite planargraphs. Castro et al. [1℄ proved Conjeture 1 for triangle-free planar graphs. Reently deFraysseix and Ossona de Mendez [6℄ extended this to planar graphs that have a 4-oloringin whih every indued yle of length 4 uses at most 3 olors. Observe that, sine parallelsegments never ross, a set of parallel segments in a segment representation of a graph induesa stable set of verties. The onstrution in [4, 8℄ (resp. [1℄) has the nie property that thereare only 2 (resp. 3) possible slopes for the segments. So the onstrution indues a 2-oloring(resp. 3-oloring) of G. Note that Castro et al. do not prove the 3-olorability of triangle-free planar graphs, they use suh oloring of the graphs (by Grötzsh's Theorem) in theironstrution. West [11℄ proposed a stronger version of Conjeture 1 in whih only 4 slopes areallowed, thus using the fat that these graphs are 4-olorable.Notie that two segments ross at at most one point, whereas in the onstrution of Theo-rem 1, strings may ross twie. Let us de�ne a 1-string representation as a string representationin whih any two strings ross at most one. Thus the following theorem is a step towardsConjeture 1.Theorem 2 Planar graphs have a 1-string representation.Note that if we would allow and onsider tangent points, this theorem would diretlyfollow from Koebe's theorem. Theorem 2 answers an open problem of de Fraysseix andOssona de Mendez [5℄. In the same artile they notied that Theorem 2 implies that anyplanar multigraph has a string representation suh that the number of rossings between twostrings equals the number of edges between the two orresponding verties.In the next setion we provide some de�nitions and prove that it is su�ient to provethis theorem for triangulations. Setion 3 is devoted to the study of string representations of4-onneted triangulations. In this setion we use a deomposition tehnique of 4-onnetedtriangulations that is inspired on Whitney's work [12℄ and that was reently used by the seondauthor [7℄. Then in Setion 4 we �nally prove Theorem 2 for all triangulations.2 Preliminaries2.1 Restrition to triangulationsLemma 1 Every planar graph is an indued subgraph of some planar triangulation.Proof. Let G be a planar graph embedded in the plane (i.e. a plane graph). The graph
h(G) is obtained from G by adding in every fae f of G a new vertex vf adjaent to everyvertex inident to f in G. Notie that h(G) is also a plane graph and that G is an induedsubgraph of h(G). Moreover h(G) is onneted, h(h(G)) is 2-onneted, and h(h(h(G))) is atriangulation.Note that we have to apply the h operator several times: if a faial walk goes through thesame vertex several times, sine multiples edges are not allowed, we obtain a non-triangularfae. 2It is lear that a 1-string representation of a triangulation T indues a 1-string representa-tion for any of its indued subgraphs. It is thus su�ient to prove Theorem 2 for triangulations.
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2.2 String RepresentationsIn a plane graph G, the unbounded fae of G is alled the outer-fae and every other fae of
G is an inner-fae of G. An outer-vertex (resp. outer-edge) of G is a vertex (resp. edge) of
G inident to the outer-fae. The other verties (resp. edges) of G are inner-verties (resp.inner-edges). The set of outer-verties (resp. outer-edges, inner-verties, and inner-edges) of
G is denoted by Vo(G) (resp. Eo(G), Vi(G), and Ei(G)). A near-triangulation is a plane graphin whih all the inner-faes are triangles. An edge uv is a hord of some near-triangulation Tif uv is an inner-edge linking two outer-verties. From now on, we use the following notation:the strings orresponding to verties of a graph G are denoted by bold letters, i.e., for any
v ∈ V (G) we denote its orresponding string by v. We need that in a 1-string representationof a plane graph G, eah fae of G orresponds to some topologial region of the stringrepresentation.De�nition 1 Let G = (V,E) be a plane graph with a 1-string representation Σ. Given a fae
abc of G, onsider a triplet (a, b, c) of its inident verties. An (a, b, c)-region abc is a regionof the plane homeomorphi to a disk suh that (see Figure 1):

• for any vertex v 6= a, b, and c we have abc ∩ v = ∅ (i.e., abc intersets only with
a,b, c),

• abc ∩ a ∩ b = ∅, abc ∩ b ∩ c = ∅, and abc ∩ c ∩ a = ∅ (i.e., a,b, c interset outside
abc),

• both abc ∩ b and abc ∩ c are onneted,
• the boundary of abc suessively rosses (lokwise or antilokwise) a, a, b, b, c, a, c.

c

a

b

abc

Figure 1: An (a, b, c)-region abc.Note that aording to this de�nition abc ∩ a has two omponents and one end of a is in
abc. Note that the order in the triplet (a, b, c) matters: a region τ of the plane annot be an
(a, b, c)-region and a (c, b, a)-region for example. A region abc of the plane is an {a, b, c}-region if it is either an (a, b, c)-region, an (a, c, b)-region, a (b, a, c)-region, a (b, c, a)-region, a
(c, a, b)-region, or a (c, b, a)-region. When the verties a, b, and c are not mentioned, we allsuh a region a fae-region.De�nition 2 A strong 1-string representation (S-representation, for short) of a near-triangu-lation T is a pair (Σ, R) suh that: 3



(1) Σ is a 1-string representation of T ,(2) R is a set of disjoint fae-regions suh that for every inner-fae abc of T , R ontains an
{a, b, c}-region.A partial strong 1-string representation (PS-representation, for short) of a near-triangulation

T is a triplet (Σ, R, F ) in whih F ⊆ E(T ) and suh that (Σ, R) is a strong 1-string represen-tation of T without the rossings orresponding to the edges of F .In a PS-representation (Σ, R, F ) of T , note that Σ is a 1-string representation of T \ Fand that eah inner-fae of T has a orresponding fae-region in R.2.3 Speial TriangulationsIn a near-triangulation T , a separating 3-yle C is a yle of length 3 suh that some vertiesof T lie inside C whereas other verties lie outside. It is well known that a triangulation is4-onneted if and only if it ontains no separating 3-yle. In [12℄, Whitney onsidered aspeial family of near-triangulations, it is why we all them W-triangulations.De�nition 3 A W-triangulation is a 2-onneted near-triangulation ontaining no separating3-yle.In partiular, any 4-onneted triangulation is a W-triangulation. Note that sine a W-triangulation has no ut vertex, its outer-edges indue a yle. The following lemma gives asu�ient ondition for a subgraph of a W-triangulation T to be a W-triangulation.Lemma 2 Let T be a W-triangulation and onsider a yle C of T . The subgraph indued bythe verties lying on and inside C is a W-triangulation.Proof. Consider the near-triangulation T ′ inside some yle C of T . By de�nition, T hasno separating 3-yle and onsequently T ′ does not have any separating 3-yle. Sine T ′ islearly onneted and has more than two verties, we prove that it is 2-onneted by showingthat it does not ontain any ut vertex.Sine the yle C delimits the outer-fae of T ′, any vertex v ∈ V (T ′) appears at most oneon the outer fae. Sine the outerfae appears at most one around v and sine all its otherinident faes are triangles, T ′ ontains a path linking all the neighbors of v. This impliesthat T ′ \ v is onneted and thus T ′ has no ut vertex. 2De�nition 4 A W-triangulation T is 3-bounded if the outer-boundary of T is the union ofthree paths (a1, . . . , ap), (b1, . . . , bq), and (c1, . . . , cr) that satisfy the following onditions (seeFigure 2):
• a1 = cr, b1 = ap and c1 = bq.
• the paths are non-trivial, i.e., p ≥ 2, q ≥ 2 and r ≥ 2.
• there exists no hord aiaj , bibj or cicj .Suh a 3-boundary of T will be denoted by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr).In the following, we will use the order on the three paths and their diretions, i.e.,

(a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr) will be di�erent from (b1, . . . , bq)-(c1, . . . , cr)-(a1, . . . , ap)and (ap, . . . , a1)-(cr , . . . , c1)-(bq, . . . , b1). 4



a1 = cr b1 = ap

c1 = bq

T

a2

b2

b3

c2

c3

Figure 2: 3-boundary of T .3 Proof for 4-onneted triangulations.The following property desribes the shape of a PS-representation of a 3-bounded W-triangu-lation.Property 1 Consider a 3-bounded W-triangulation T with a 3-boundary (a1, . . . , ap)-(b1, . . . ,
bq)-(c1, . . . , cr). The W-triangulation T has Property 1 if T has a PS-representation (Σ, R, F )ontained inside a region τ of the plane homeomorphi to the disk that satis�es the followingproperties (see Figure 3):(a) F = Eo(T )\{a1a2} (i.e., the missing rossings orrespond to the outer edges, exept a1a2),(b) on the boundary of τ we suessively have the ends of a2,a3, . . . ,ap,b1, . . . ,bq, c1, . . . , cr.If going lokwise (resp. antilokwise) around the boundary of τ , we ross the stringsin the order desribed in (b), we say that the PS-representation is lokwise (resp. antilok-wise). Note that by an axial symmetry, one an obtain a lokwise PS-representation froman antilokwise PS-representation, and vie versa. Observe that sine ap = b1, bq = c1, and
cr = a1, both ends of b1 and c1 lie on the boundary of τ , but it is not the ase for a1 or anyother string (i.e., all the strings appearing on the boundary of τ have an end inside τ exept
b1 and c1).
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cr
b1

bq

τ

Figure 3: Property 1Before proving that eah 3-bounded W-triangulation has Property 1, we give some def-initions and we present Property 2. Consider a 3-bounded W-triangulation T 6= K3 whoseboundary is (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr) and suh that T does not ontain any hord
aibj or aicj . Let D ⊆ Vi(T ) be the set of inner-verties of T that are adjaent to some vertex
ai with i > 1 (the blak verties on the left of Figure 4). Sine T has at least 4 verties, no5



separating 3-yle, and no hord aiaj, aibj , or aicj , then a1 and a2 (resp. b1 and b2) haveexatly one ommon neighbor in Vi(T ) that will be denoted a (resp. d1).Sine there is no hord aiaj , aibj, or aicj , for eah vertex ai with i ∈ [2, p − 1], all theneighbors of ai (resp. ap) exept ai−1 and ai+1 (resp. ap−1 and b2) are in D. Sine for eah
i ∈ [2, p], there is a path linking the neighbors of ai in D, and sine the verties ai and ai+1have a ommon neighbor in D, then the set D indues a onneted graph. Sine a is in D,the set D ∪ {a1} also indues a onneted graph.De�nition 5 The adjaent path of T with respet to the 3-boundary (a1, . . . , ap)-(b1, . . . , bq)-
(c1, . . . , cr) is the shortest path linking d1 and a1 in T [D∪{a1}] (the graph indued by D∪{a1}).This path will be denoted (d1, d2, . . . , ds, a1).Observation 1 There exists neither an edge didj with 2 ≤ i + 1 < j ≤ s, nor an edge a1diwith 1 ≤ i < s. Otherwise, (d1, d2, . . . ds, a1) would not be the shortest path between d1 and a1.
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c1 = bq

a5 b1 = ap

TFigure 4: the adjaent path of T and the graph Td2a5
.De�nition 6 For eah edge dxay ∈ E(T ) with x ∈ [1, s] and y ∈ [2, p], the graph Tdxay

is thegraph lying inside the yle C = (a1, ds, . . . , dx, ay, . . . , ap, b2, . . . , bq, c2, . . . , cr) (see Figure 4).Note that sine D ⊆ Vi(T ), C is a yle and by Lemma 2, Tdxay
is a W-triangulation. Thefollowing property desribes the shape of a PS-representation of Tdxay

.Property 2 Consider a 3-bounded W-triangulation T with a 3-boundary (a1, . . . , ap)-(b1, . . . ,
bq)-(c1, . . . , cr) that does not have any hord aibj or aicj and let (d1, d2, . . . , ds, a1) be itsadjaent path. Consider an edge dxay ∈ E(T ) with y > 1. The W-triangulation Tdxay

hasProperty 2 if Tdxay
has a PS-representation (Σ, R, F ) satisfying the following properties (seeFigure 5):(a) F = Eo(G) \ {dxay},(b) Every string v ∈ Σ \ {dx,ay} is ontained in a region τ of the plane homeomorphi tothe disk. Furthermore dx and ay have their ends in τ (or on the boundary of τ) but theyross eah other outside τ . 6



() eah fae-region of R is ontained inside τ ,(d) on the boundary of τ we suessively have the ends of ay, . . . ,ap,b1, . . . ,bq, c1, . . . , cr,
a1,ds, . . . ,dx+1, and then we suessively have internal points of dx,ay,dx, and ay.
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ay
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Figure 5: Property 2.Here again, if going lokwise (resp. antilokwise) around the boundary of τ , we rossthe strings in the order desribed in (d), we say that the PS-representation is lokwise (resp.antilokwise). In the proof of Theorem 2, we only use Property 1. However, in order to proveProperty 1, we use Property 2. We prove these two properties by doing a �rossed� indution.Proof of Property 1 and Property 2We prove, by indution on m ≥ 3, that the following two statements hold:- Property 1 holds if T has at most m edges.- Property 2 holds if Tdxay
has at most m edges.The initial ase, m = 3, is easy to prove sine there is only one W-triangulation having atmost 3 edges, K3. For Property 1, we have to onsider all the possible 3-boundaries of K3.All these 3-boundaries are equivalent, so let V (K3) = {a, b, c} and onsider the 3-boundary

(a, b)-(b, c)-(c, a). In Figure 6 there is a PS-representation (Σ, R, F ) of K3 with F = {bc, ac}that ful�lls Property 1. For Property 2, sine a W-triangulation Tdxay
has at least 4 verties,

a1, b1, c1, and d1, we have Tdxay
6= K3 and there is no W-triangulation Tdxay

with at most 3edges. So by vauity, Property 2 holds for Tdxay
with at most 3 edges.The indution step applies to both Property 1 and Property 2. This means that we proveProperty 1 (resp. Property 2) for the W-triangulations T (resp. Tdxay

) with m edges usingboth Property 1 and Property 2 on W-triangulations with less than m edges. We �rst provethe indution for Property 1. 7
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Figure 6: Initial ase for Property 1.Case 1: Proof of Property 1 for a W-triangulation T with m edges. Let (a1, . . . , ap)-
(b1, . . . , bq)-(c1, . . . , cr) be the 3-boundary of T onsidered. We distinguish di�erent asesaording to the existene of a hord aibj or aicj in T . We suessively onsider the asewhere there is a hord a1bi, with 1 < i < q, the ase where there is a hord aibj, with
1 < i < p and 1 < j ≤ q, and the ase where there is a hord aicj , with 1 < i ≤ p and
1 < j < r. We then �nish with the ase where there is no hord aibj, with 1 ≤ i ≤ p and
1 ≤ j ≤ q (by de�nition of 3-boundary, T has no hord a1bq, aib1, or apbj), and no hord aicj ,with 1 ≤ i ≤ p and 1 ≤ j ≤ r (by de�nition of 3-boundary, T has no hord apc1, aicr, or a1cj).

b1 = ap

c1 = bq

bi

T2

T1

T

a1 = crFigure 7: Case 1.1: Chord a1bi.Case 1.1: There is a hord a1bi, with 1 < i < q (see Figure 7). Let T1 (resp. T2) be thesubgraph of T that lies inside the yle (a1, bi, . . . , bq, c2, . . . , cr) (resp. (a1, a2, . . . , ap, b2, . . . , bi,
a1)). By Lemma 2, T1 and T2 are W-triangulations. Sine T has no hord axay, bxby, or
cxcy, (bi, a1)-(cr, . . . , c1)-(bq, . . . , bi) (resp. (a1, . . . , ap)-(b1, . . . , bi)-(bia1)) is a 3-boundary of
T1 (resp. T2). Furthermore, sine a1a2 /∈ E(T1) and c1c2 /∈ E(T2), T1 and T2 have lessedges than T and Property 1 holds for T1 and T2 with the mentioned 3-boundaries. Let
(Σ1, R1, F1) (resp. (Σ2, R2, F2)) be a lokwise (resp. antilokwise) PS-representation on-tained in the region τ1 (resp. τ2) obtained for T1 (resp. T2) with F1 = Eo(T1) \ {a1bi} (resp.
F2 = Eo(T2) \ {a1a2}). In Figure 8 we show how to assoiate these two representations toobtain (Σ, R, F ), an antilokwise PS-representation of T ontained in τ . Note that the twostrings a1 (resp. bi) from Σ1 and Σ2 have been linked.We easily verify that (Σ, R, F ) satis�es Property 1:

• Σ is a string representation of T \ F with F = Eo(T ) \ {a1a2}. Indeed, sine V (T1) ∪
V (T2) = V (T ) and V (T1) ∩ V (T2) = {a1, bi}, every vertex v ∈ V (T ) has exatly one8
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Figure 8: Case 1.1: (Σ, R, F ).string in Σ. Furthermore, sine (E(T1) \ F1) ∪ (E(T2) \ F2) = E(T ) \ F , Σ is a stringrepresentation of T \ F .
• Σ is a 1-string representation. The only edge that belongs to both T1 and T2 is a1bi.Sine a1 and bi ross eah other in Σ1 (a1bi /∈ F1) but not in Σ2 (a1bi ∈ F2), a1 and biross exatly one in Σ.
• (Σ, R) is �strong�: Eah inner-fae of T is an inner-fae in T1 or T2 and the regions τ1and τ2 are disjoint (so the fae-regions in τ1 are disjoint from the fae-regions in τ2).Finally we see in Figure 8 that point (b) of Property 1 is satis�ed.

T

a1 = cr b1 = ap

c1 = bq

ai
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T2

T1

Figure 9: Case 1.2: Chord aibj.Case 1.2: There is a hord aibj, with 1 < i < p and 1 < j ≤ q (see Figure 9).If there are several hords aibj , we onsider one that maximizes j, i.e., there is no hord
aibk with j < k ≤ q. Let T1 (resp. T2) be the subgraph of T that lies inside the yle
(a1, a2, . . . , ai, bj , . . . , bq, c2, . . . , cr) (resp. (ai, . . . , ap, b2, . . . , bj , ai)). By Lemma 2, T1 and T2are W-triangulations. Sine T has no hord axay, bxby, cxcy, or aibk with k > j, (a1, . . . , ai)-
(ai, bj , . . . , bq)-(c1, . . . , cr) (resp. (ai, bj)-(bj , . . . , b1)-(ap, . . . , ai)) is a 3-boundary of T1 (resp.
T2). Furthermore, sine b1b2 /∈ E(T1) and a1a2 /∈ E(T2), T1 and T2 have less edges than Tand Property 1 holds for T1 and T2 with the mentioned 3-boundaries. Let (Σ1, R1, F1) (resp.
(Σ2, R2, F2)) be an antilokwise (resp. lokwise) PS-representation ontained in the region τ1(resp. τ2) obtained for T1 (resp. T2), with F1 = Eo(T1) \ {a1a2} (resp. F2 = Eo(T2) \ {aibj}).In Figure 10 we show how to assoiate these two representations to obtain (Σ, R, F ), anantilokwise PS-representation of T ontained in τ . Note that in this onstrution the twostrings ai (resp. bj) from Σ1 and Σ2 have been linked.9
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Figure 10: Case 1.2: (Σ, R, F ).As in Case 1.1, we easily verify that (Σ, R, F ) satis�es Property 1.
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Figure 11: Case 1.3: Chord aicj .Case 1.3: There is a hord aicj, with 1 < i ≤ p and 1 < j < r (see Figure 11).If there are several hords aicj , we onsider one whih maximizes i, i.e., there is no hord
akcj with i < k ≤ p. Let T1 (resp. T2) be the subgraph of T that lies inside the yle
(a1, a2, . . . , ai, cj , . . . , cr) (resp. (cj , ai, . . . , ap, b2, . . . , bq, c2, . . . , cj)). By Lemma 2, T1 and T2are W-triangulations. Sine T has no hord axay, bxby, cxcy or akcj with k > i, (a1, . . . , ai)-
(ai, cj)-(cj , . . . , cr) (resp. (cj , ai, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cj)) is a 3-boundary of T1 (resp.
T2). Furthermore, sine b1b2 /∈ E(T1) and a1a2 /∈ E(T2), T1 and T2 have less edges than
T and Property 1 holds for T1 and T2 with the mentioned 3-boundaries. Let (Σ1, R1, F1)(resp. (Σ2, R2, F2)) be an antilokwise PS-representation ontained in the region τ1 (resp.
τ2) obtained for T1 (resp. T2), with F1 = Eo(T1) \ {a1a2} (resp. F2 = Eo(T2) \ {cjai}).In Figure 12 we show how to assoiate these two representations to obtain (Σ, R, F ), anantilokwise PS-representation of T ontained in τ . Note that in this onstrution the twostrings ai (resp. cj) from Σ1 and Σ2 have been linked.As in Case 1.1, we easily verify that (Σ, R, F ) satis�es Property 1.Case 1.4: There is no hord aibj, with 1 ≤ i ≤ p and 1 ≤ j ≤ q, and no hord aicj,with 1 ≤ i ≤ p and 1 ≤ j ≤ r (see Figure 13). In this ase we onsider the adjaent path
(d1, . . . , ds, a1) (see Figure 4) of T with respet to its 3-boundary, (a1, . . . , ap)-(b1, . . . , bq)-
(c1, . . . , cr). Consider the edge dsay, with 1 < y ≤ p and whih minimizes y. This edgeexists sine, by de�nition of the adjaent path, ds is adjaent to some vertex ay with y > 1.The W-triangulation Tdsay

having less edges than T (a1a2 /∈ E(Tdsay
)), Property 2 holds for10
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Figure 12: Case 1.3: (Σ, R, F ).
Tdsay

. Let (Σ′, R′, F ′) be an antilokwise PS-representation almost ontained in the region
τ ′ obtained for Tdsay

, with F ′ = Eo(Tdsay
) \ {dsay}.
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Figure 13: Case 1.4: No hord aibj or aicj .Now we distinguish two ases aording to the position of ay: either y = 2 (Case 1.4.1),or y > 2 (Case 1.4.2).Case 1.4.1: y = 2. In Figure 14, starting from (Σ′, R′, F ′), we show how to extend thestring a1 ∈ Σ′ (in order to ross ds and a2) and how to draw the (a1, a2, ds)-region a1a2ds toobtain (Σ, R, F ), an antilokwise PS-representation of T ontained in a region τ .One an verify on Figure 14 that (Σ, R, F ) satis�es Property 1.Case 1.4.2: y > 2. Let us denote e1, e2, . . . , et the neighbors of ds stritly inside the yle
(ds, a1, a2, . . . , ay, ds), going �from right to left� (see Figure 13). By minimality of y we have
ei 6= aj, for all 1 ≤ i ≤ t and 1 ≤ j ≤ y.Let T1 be the subgraph of T that lies inside the yle (a1, . . . , ay, e1, . . . , et, a1). ByLemma 2, T1 is a W-triangulation. Sine the W-triangulation T has no separating 3-yle
(ds, a1, ei), (ds, ay, ei) or (ds, ei, ej), there exists no hord a1ei, ayei or eiej in T1. So (a2, a1)-
(a1, et, . . . , e1, ay)-(ay, . . . , a2) is a 3-boundary of T1. Finally, sine T1 has less edges than
T (a1ds /∈ E(T1)), Property 1 holds for T1 with respet to the mentioned 3-boundary. Let
(Σ1, R1, F1) be a lokwise PS-representation ontained in the region τ1 obtained for T1, with
F1 = E0(T1) \ {a2a1}. 11



τ
′

cr

dsa1

ap

c2

c1 bq

b2

b1

a2

a2

a1a2ds

Figure 14: Case 1.4.1.In Figure 15, starting from (Σ′, R′, F ′) and (Σ1, R1, F1), we show how to join the strings
a1 (resp. ay) of Σ′ and Σ1, how to extend the strings ei, for 1 ≤ i ≤ t, and how to drawthe fae-regions aye1ds, eta1ds, and eiei−1ds, for 2 ≤ i ≤ t, in order to obtain (Σ, R, F ), anantilokwise PS-representation of T ontained in a region τ .

a1 ds

a1

a3
a2

ay

ay

cr

ay ay+1
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τ
′

et

e1τ1

dsa1et
dse1e2

dsaye1

Figure 15: Case 1.4.2.We verify that (Σ, R, F ) satis�es Property 1:
• Σ is a string representation of T \F with F = Eo(T ) \ {a1a2}. Indeed, sine V (Tdsay

)∪12



V (T1) = V (T ) and V (Tdsay
) ∩ V (T1) = {a1, ay}, every vertex v ∈ V (T ) has exatlyone string in Σ. Furthermore, sine E(T ) \ F = (E(Tdsay

) \ F ′) ∪ (E(T1) \ F1) ∪
{aye1, eta1, dsa1} ∪ {eiei−1 | i ∈ [2, t]} ∪ {dsei | i ∈ [1, t]}, Σ is a string representation of
T \ F .

• Σ is a 1-string representation. Indeed Tdsay
and T1 do not have ommon edges, and thenew rossings added orrespond to edges missing in both E(Tdsay

) \ F ′ and E(T1) \ F1.
• (Σ, R) is �strong�: The only inner-faes of T not in Tdsay

nor in T1 are the faes dsaye1,
dsa1et and dseiei+1, with 1 ≤ i < t. These faes orrespond to the new fae-regions.Finally we see in Figure 15 that point (b) of Property 1 is satis�ed.So Property 1 holds for any W-triangulation T with m edges and this onludes the proofof Case 1.Case 2: Proof of Property 2 for a W-triangulation Tdxay

with m edges. Re-all that the W-triangulation Tdxay
is a subgraph of a W-triangulation T with 3-boundary

(a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr). Moreover, T has no hord aibj or aicj and its adjaentpath is (d1, . . . , ds, a1), with s ≥ 1. We distinguish the ase where dxay = d1ap and the asewhere dxay 6= d1ap.
c1

ds

b1 = ap

b2

d1
a1

a2

T1

Figure 16: Case 2.1: Tdxay
= Td1ap

.Case 2.1: dxay = d1ap (see Figure 16). Let T1 be the subgraph of Td1ap
that lies insidethe yle (a1, ds, . . . , d1, b2, . . . , bq, c2, . . . , cr). By Lemma 2, T1 is a W-triangulation. ThisW-triangulation has no hord bibj, cicj , didj , or a1dj. We onsider two ases aording to theexistene of an edge d1bi with 2 < i ≤ q.

• If T1 has no hord d1bi then (d1, b2, . . . , bq)-(c1, . . . , cr)-(a1, ds, . . . , d1) is a 3-boundaryof T1.
• If T1 has a hord d1bi, with 2 < i ≤ q, note that q > 2 and that there annot be a hord

b2a1 or b2dj , with 1 < j ≤ s (this would violate the planarity of Tdxay
, see Figure 16)So in this ase, (b2, d1, . . . , ds, a1)-(cr, . . . , c1)-(bq, . . . , b2) is a 3-boundary of T1.Finally, sine T1 is a W-triangulation with less edges than Td1ap

(b1b2 /∈ E(T1)), Property 1holds for T1 with respet to at least one of the two mentioned 3-boundaries. Whihever 3-boundary we onsider, we obtain a PS-representation (Σ1, R1, F1) of T1 ontained in a region
τ1, with the same following harateristis: 13



• F1 = Eo(T ) \ {d1b2},
• in the boundary of τ1 we suessively meet the ends of d1, . . . ,ds,a1, cr, . . . , c1,bq, . . . ,

b2 (lokwise or antilokwise).In Figure 17 we modify (Σ1, R1, F1), by extending the strings d1 and b2 and by adding a newstring ap and a new fae-region d1b2ap. This leads to (Σ, R, F ), a PS-representation of Td1apontained in a region τ .
τ1

ap

d1b2ap

d1

b2

ds
a1

cr

bqc1

b1

Figure 17: Case 2.1: (Σ, R, F ).We verify that (Σ, R, F ) satis�es Property 2:
• Σ is a 1-string representation of Td1ap

\ F : Indeed, E(Td1ap
) \ F is the disjoint union of

E(T1) \ F1 and {apd1}.
• (Σ, R) is �strong�: The only inner-fae of Td1ap

that is not an inner-fae of T1 is d1apb2,whih orresponds to the new fae-region d1apb2.Finally we see in Figure 17 that the other points of Property 2 are satis�ed.Case 2.2: Tdxay
6= Td1ap

. In this ase we onsider an edge dzaw ∈ E(Tdxay
) suh that

dzaw 6= dxay. Among all the possible edges dzaw we hoose the one that �rst maximizes zand then minimizes w. Suh an edge neessarily exists and atually one an see that dz = dxor dz = dx−1. Indeed, if dx = d1 there is at least one edge d1aw with w > y, the edge d1ap.If x > 1, it is lear by de�nition of the adjaent path that the vertex dx−1 is adjaent to atleast one vertex aw with w ≥ y.By Lemma 2, Tdzaw
is a W-triangulation. Sine dxay /∈ E(Tdzaw

), the W-triangulation
Tdzaw

has less edges than Tdxay
, and so Property 2 holds for Tdzaw

. Let (Σ′, R′, F ′) be anantilokwise PS-representation almost ontained in the region τ ′ obtained for Tdzaw
, with

F ′ = Eo(Tdzaw
) \ {dzaw}.We distinguish 4 ases aording to the edge dzaw. When z = x we onsider the asewhere w = y + 1 and the ase where w > y + 1. When z = x − 1 we onsider the ase where

w = y and the ase where w > y.
14



Tdzaw

ay

dx = dz

a1 = cr

b1 = ap

c1 = bq

b1 = ap

c1 = bq

dz

aw

awFigure 18: Case 2.2.1: z = x and w = y + 1.
τ
′

cr

a1 ds

aw

ay

aw

c1

c2

dx

ayawdx

ap

b1

b2

bq

Figure 19: Case 2.2.1: (Σ, R, F ).Case 2.2.1: Tdxay
6= Td1ap

, z = x and w = y +1 (see Figure 18). In Figure 19 we modify
(Σ′, R′, F ′), by adding a new string ay and a new fae-region ayawdx. This leads to (Σ, R, F ),an antilokwise PS-representation of Tdxay

almost ontained in a region τ .We verify that (Σ, R, F ) satis�es Property 2:
• Σ is a 1-string representation of Tdxay

\ F : Indeed, E(Tdxay
) \ F is the disjoint union of

E(Tdzaw
) \ F ′ and {dxay}.

• (Σ, R) is �strong�: The only inner-fae of Tdxay
that is not an inner-fae of Tdzaw

is
dxayaw, whih orresponds to the new fae-region dxayaw.Finally we see in Figure 19 that the other points of Property 2 are satis�ed.Case 2.2.2: z = x − 1 and w = y (see Figure 20). In Figure 21, we modify (Σ′, R′, F ′)by extending the string dx and by adding a new fae-region dxdzay. This leads to (Σ, R, F ),an antilokwise PS-representation of Tdxay

almost ontained in a region τ .We verify that (Σ, R, F ) satis�es Property 2:
• Σ is a 1-string representation of Tdxay

\ F : Indeed, E(Tdxay
) \ F is the disjoint union of

E(Tdzaw
) \ F ′ and {dxdz, dxay}. 15



ay = aw

a1 = cr

Tdzaw

c1 = bqc1 = bq

dz

b1 = ap

dx

dx dz

ay = aw

Figure 20: Case 2.2.2: Tdxay
6= Td1ap

, z = x − 1 and w = y.
c1

c2

ap
ay

dxdzay

awdx
ds

a1

cr τ
′

dz
b1

b2

bq

Figure 21: Case 2.2.2: (Σ, R, F ).
• (Σ, R) is �strong�: The only inner-fae of Tdxay

that is not an inner-fae of Tdzaw
is

dxdzay, whih orresponds to the new fae-region dxdzay.Finally we see in Figure 21 that the other points of Property 2 are satis�ed.Case 2.2.3: z = x and w > y + 1 (see Figure 22). Let us denote e1, e2, . . . , et theneighbors of dx stritly inside the yle (dx, ay, . . . , aw, dx), going �from right to left� (seeFigure 22). Sine there is no hord aiaj we have t ≥ 1. Furthermore by minimality of w wehave ei 6= aj, for all 1 ≤ i ≤ t and y ≤ j ≤ w. Let T1 be the subgraph of Tdxay
that liesinside the yle (ay, . . . , aw, e1, . . . , et, ay). By Lemma 2, T1 is a W-triangulation. Sine theW-triangulation Tdxay

has no separating 3-yle (dx, aw, ei) or (dx, ei, ej), there exists no hord
awei or eiej in T1. With the fat that t ≥ 1, we know that (et, ay)-(ay, . . . , aw)-(aw, e1, . . . , et)is a 3-boundary of T1. Finally, sine T1 has less edges than Tdxay

(dxay /∈ E(T1)), Property 1holds for T1 with respet to the mentioned 3-boundary. Let (Σ1, R1, F1) be an antilokwise16



Tdzaw

c1 = bqc1 = bq

dz

aw

b1 = ap

a1 = cr

dx = dz

aw

e1
e2

T1ay

Figure 22: Case 2.2.3: Tdxay
6= Td1ap

, z = x and w > y + 1.PS-representation ontained in the region τ1 obtained for T1, with F1 = E0(T1) \ {etay}.In Figure 23, starting from (Σ′, R′, F ′) and (Σ1, R1, F1), we show how to join the strings
aw of Σ′ and Σ1, how to extend the string ay and the strings ei, for 1 ≤ i ≤ t, and howto draw the fae-regions ayetdx, e1awdx, and eiei−1dx, for 1 < i ≤ t, in order to obtain
(Σ, R, F ), an antilokwise PS-representation of Tdxay

ontained in a region τ .
dxe1e2

aw+1

τ
′

dxayet

et

ay

e1

aw
ay

cr

a1 ds dx

aw

aw

τ1

dxawe1

Figure 23: Case 2.2.3: (Σ, R, F ).We verify that (Σ, R, F ) satis�es Property 2:
• Σ is a 1-string representation of Tdxay

\F with F = Eo(Tdxay
)\{dxay}: Indeed, E(Tdxay

)\
F is the disjoint union of E(Tdzaw

) \ F ′, E(T1) \ F1, and {awe1, dxay} ∪ {eiei−1 | i ∈
[2, t]} ∪ {dxei | i ∈ [1, t]}.

• (Σ, R) is �strong�: The only inner-faes of Tdxay
that are not inner-faes in Tdzaw

or T1are dxayet, dxawe1, and the faes dxeiei−1, for 2 ≤ i ≤ t, whih orrespond to the newfae-regions.Finally we see in Figure 23 that the other points of Property 2 are satis�ed.17



Tdzaw

a1 = cr

dx dz

away

e1f2

c1 = bqc1 = bq

dz

aw

b1 = ap

dx

T1

f1 e2

Figure 24: Case 2.2.4: Tdxay
6= Td1ap

, z = x − 1 and w > y.Case 2.2.4: z = x − 1 and w > y (see Figure 24). Let us denote e1, e2, . . . , et theneighbors of dz stritly inside the yle (dz , dx, ay, . . . , aw, dz), going �from right to left� (seeFigure 24). By maximality of z, there is no edge dxaw, so t ≥ 1. Let us denote f1, . . . , fu theneighbors of dx stritly inside the yle (dx, ay, . . . , aw, dz, dx), going �from right to left� (seeFigure 24). Note that f1 = et and that by minimality of w, there is no edge dzay, so u ≥ 1.By minimality of w (resp. maximality of z) we have ei 6= aj (resp. fi 6= aj), for all
1 ≤ i ≤ t (resp. 1 ≤ i ≤ u) and y ≤ j ≤ w. Let T1 be the subgraph of Tdxay

that liesinside the yle (ay, . . . , aw, e1, . . . , et, f2, . . . , fu, ay). By Lemma 2, T1 is a W-triangulation.Sine the W-triangulation Tdxay
has no separating 3-yle (dz, aw, ei), (dz , ei, ej), (dx, fi, fj),or (dx, fi, ay), there exists no hord awei, eiej , fifj, or fiay in T1. With the fat that t ≥ 1and u ≥ 1, we know that (f1, f2, . . . , fu, ay)-(ay, . . . , aw)-(aw, e1, . . . , et) is a 3-boundary of

T1. Finally, sine T1 has less edges than Tdxay
(dxay /∈ E(T1)), Property 1 holds for T1 withrespet to the mentioned 3-boundary. Let (Σ1, R1, F1) be an antilokwise PS-representationontained in the region τ1 obtained for T1, with F1 = E0(T1) \ {f1f2}.In Figure 25, starting from (Σ′, R′, F ′) and (Σ1, R1, F1), we show how to join the strings

aw of Σ′ and Σ1, how to extend the string dx, ay, the strings ei for 1 ≤ i ≤ t, and thestrings fi for 2 ≤ i ≤ u, and how to draw the fae-regions dzawe1, dzeiei−1, for 2 ≤ i ≤ t,
dzdxet, dxfifi−1, for 2 ≤ i ≤ u, and dxayfu in order to obtain (Σ, R, F ), an antilokwisePS-representation of Tdxay

almost ontained in a region τ .We verify that (Σ, R, F ) satis�es Property 2:
• Σ is a 1-string representation of Tdxay

\F with F = Eo(Tdxay
)\{dxay}: Indeed, E(Tdxay

)\
F is the disjoint union of E(Tdzaw

)\F ′, E(T1)\F1, and {dxay, dxdz, awe1, ayfu}∪{dzei |
i ∈ [1, t]} ∪ {dxfi | i ∈ [1, u]} ∪ {eiei−1 | i ∈ [2, t]} ∪ {fifi−1 | i ∈ [2, u]}.

• (Σ, R) is �strong�: The only inner-faes of Tdxay
that are not inner-faes in Tdzaw

or T1are dzawe1, dzeiei−1 for 2 ≤ i ≤ t, dzdxet, dxfifi−1 for 2 ≤ i ≤ u, and dxayfu, whihorrespond to the new fae-regions.Finally we see in Figure 25 that the other points of Property 2 are satis�ed. So, Property 2holds for any W-triangulation Tdxay
with m edges and this ompletes the proofs of Property 1and Property 2. 218
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ds dx
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et

f2

dxayfu
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Figure 25: Case 2.2.4: (Σ, R, F ).4 Proof in the general aseTheorem 3 Every triangulation T admits an S-representation (Σ, R).Proof. We prove this result by indution on the number of separating 3-yles. Note thatany triangulation T is 3-onneted, and that if T has no separating 3-yle, then T is 4-onneted and is a W-triangulation. Consequently, if T is a 4-onneted triangulation whoseouter-verties are a, b, and c, then T is a W-triangulation 3-bounded by (a, b)-(b, c)-(c, a). ByProperty 1, T admits a PS-representation (Σ, R, F ), with F = {bc, ca}, that is ontained ina region τ . Furthermore, in the boundary of τ we suessively meet the ends of b,b, c, c,a.To obtain an S-representation of T , it is su�ient to extend a, b, and c outside of τ so that
c rosses a and b, as depited in Figure 26.

τ

c c

b

b

a

Figure 26: S-representation of T from (Σ, R, F ).Suppose now that T is a triangulation that ontains at least one separating 3-yle. Con-sider a separating 3-yle (a, b, c) suh that there is no other separating 3-yle lying inside.This implies that the triangulation T ′ indued by the verties on and inside (a, b, c) is 4-onneted.Let T1 be the triangulation obtained by removing the verties lying stritly inside (a, b, c).Let T2 be the subgraph of T indued by the verties lying stritly inside (a, b, c) (i.e., T2 =19



T ′ \{a, b, c}). In T1, the yle (a, b, c) is a fae of the triangulation and is no more a separating3-yle. Thus T1 has one separating yle less than T , and so we have by indution hypothesisthat T1 admits an S-representation (Σ1, R1). This S-representation ontains a fae-region abcorresponding to the fae abc. Without loss of generality, say that abc is an (a, b, c)-region,as depited in Figure 27.
(Σ1, R1)

c

a

b

abc
a

Figure 27: In the S-representation (Σ1, R1) of T1, the (a, b, c)-region abc.Sine T ′ is a triangulation with at least four verties, the neighbors of any vertex v ∈ V (T ′)indue a yle. Suppose that the vertex a (resp. b and c) has exatly one neighbor v thatlies inside (a, b, c). Then there exists a yle (b, v, c) (resp. (a, v, c) and (a, v, b)) in T ′ andonsequently v is a neighbor of a, b, and c in T ′. Suppose that there exists another vertex win T ′, then w lies either inside the yle (a, v, b), inside (a, v, c), or inside (b, v, c) and then oneof these yles is a separating 3-yle. This is impossible by de�nition of (a, b, c). So we andistinguish two ases (see Figure 28), (A) the ase where T2 is a single vertex, and (B) thease where eah of the verties a, b, and c has at least two neighbors inside (a, b, c).
b

c

a

b

c

a

Figure 28: The ases (A) and (B).Case (A): T2 is a single vertex v. To obtain an S-representation (Σ, R) of T (see Fig-ure 29), we add a string v in (Σ1, R1). Sine E(T ) \E(T1) = {va, vb, vc} this string v rosses
a,b, c. Moreover, we also de�ne three disjoint fae-regions acv,vb,vab that orrespondrespetively to the faes acv, vbc, vab.Sine (Σ1, R1) is an S-representation of T1 and sine v,av,vb,vab are drawn inside
abc, it is lear that (Σ ∪ {v}, (R \ {ab}) ∪ {av,vb,vab}) is an S-representation of T .Case (B): Eah of the verties a, b, and c has at least two neighbors inside (a, b, c).There exists a yle (c, a1, . . . , ap, b) (resp. (a, b1, . . . , bq, c) and (b, c1, . . . , cr, a)) in T ′ whoseverties are exatly the neighbors of a (resp. b and c). We already know that p > 1, q > 1, r > 1and that ap = b1, bq = c1, and cr = a1. Moreover, sine b1 and c (resp. c1 and a, and a1 and
b) are the only two ommon neighbors of a and b (resp. b and c, and a and c) in T ′ (otherwise20



v

vab

a

bc

acv

vbc

a

Figure 29: Case (A): Modi�ations inside abc.there would be a separating 3-yle) then (a1, . . . , ap = b1, . . . , bq = c1, . . . , cr = a1) is a yle.This implies from Lemma 2 that T2 is a W-triangulation.Suppose that there exists an edge aiaj (resp. bibj , cicj) with 1 < i+1 < j ≤ p (resp. 1 < i+
1 < j ≤ q, 1 < i+1 < j ≤ r). Then, the yle (a, ai, aj) (resp. (b, bi, bj), (c, ci, cj)) would be aseparating 3-yle of T ′. Consequently, T2 is 3-bounded by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr).With respet to this 3-boundary, T2 has an antilokwise PS-representation (Σ2, R2, F2), with
F2 = Eo \ {a1a2} (.f. Property 1). Let τ2 be a region of abc ontaining this representation.Sine abc is an (a, b, c)-region, on its boundary we suessively ross a,a,b,b, c,a and cwhen going antilokwise (by doing an axial symmetry if neessary).In Figure 30, starting from (Σ1, R1) and (Σ2, R2) we obtain (Σ, R). We extend the strings
a2, . . . ,ap,b1, . . . ,bq, c1, . . . , cr to obtain the rossings that orrespond to the edges in the set
E(T )\ (E(T1)∪ (E(T2)\F2)) = {aai | i ∈ [1, p]}∪{bbi | i ∈ [1, q]}∪{cci | i ∈ [1, r]}∪{aiai+1 |
i ∈ [2, p−1]}∪{bibi+1 | i ∈ [1, q−1]}∪{cici+1 | i ∈ [1, r−1]}. We also de�ne fae-regions for thefaes in the set {abb1, aca1, bcc1}∪{aaiai+1 | i ∈ [1, p−1]}∪{bbibi+1 | i ∈ [1, q−1]}∪{ccici+1 |
i ∈ [1, r − 1]}.Sine (Σ1, R1) is an S-representation of T1 and (Σ2, R2, F2) is a PS-representation of T2,
(Σ, R, F ) is an S-representation of T .

• Σ is a 1-string representation of T : Indeed, we added all the rossings orresponding tothe edges in E(T ) \ (E(T1) ∪ (E(T2) \ F2)).
• (Σ, R) is �strong�: Indeed, we added all the fae-regions orresponding to the inner-faesof T that are neither in T1 nor in T2.Consequently, every triangulation admits an S-representation, whih proves Theorem 3and then Theorem 2. 25 ConlusionThe �rst and the seond author reently improved the result presented in this artile byproving Conjeture 1 [2℄. For this they use the same deomposition of triangulation but theirnotion of fae-region is quite di�erent. One should also mention that their onstrution doesnot orrespond to a strething of the 1-string representation presented here.Finally, an interesting question is whether the result presented here holds for other surfaes.For example, does any graph embedded on a surfae S have a 1-string representation on S ?21
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