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Abstract

We prove that every planar graph is an intersection graph of strings in the plane, such
that any two strings intersect at most once.

1 Introduction

A string s is a curve of the plane homeomorphic to a segment. A string s has two ends, the
points of s that are not ends of s are internal points of s. Two strings s; and sg cross if they
have a common point p € s; N sg and if going around p we successively meet s1, sa, s1, and
s2. This means that a tangent point is not a “crossing”. In the following we consider string
sets without tangent points.

In this paper, we consider intersection models for simple planar graphs (i.e., planar graphs
without loops or multiple edges). A string representation of a graph G = (V, E) is a set ¥ of
strings in the plane such that every vertex v € V maps to a string v € X and such that uv € £
if and only if the strings u and v cross (at least once). Similarly, a segment representation of
a graph G is a string representation of GG in which the strings are segments.

These notions were introduced by Ehrlich et al. [3], who proved the following:

Theorem 1 /3] Planar graphs have a string representation.

In 9], Koebe proved that planar graphs are the contact graphs of disks in the plane.
Note that in this model the curves bounding two adjacent disks are tangent. However by
inflating these circles we obtain string representations for planar graphs. In his PhD thesis,
Scheinerman [10] conjectures a stronger result:

Conjecture 1 [10] Planar graphs have a segment representation.

*An abstract of this paper appeared in the Proceedings of the eighteenth annual ACM-SIAM Symposium
on Discrete algorithms (SODA 2007).



Hartman et al. [8] and de Fraysseix et al. [4] proved Conjecture 1 for bipartite planar
graphs. Castro et al. [1| proved Conjecture 1 for triangle-free planar graphs. Recently de
Fraysseix and Ossona de Mendez [6] extended this to planar graphs that have a 4-coloring
in which every induced cycle of length 4 uses at most 3 colors. Observe that, since parallel
segments never cross, a set of parallel segments in a segment representation of a graph induces
a stable set of vertices. The construction in [4, 8] (resp. [1]) has the nice property that there
are only 2 (resp. 3) possible slopes for the segments. So the construction induces a 2-coloring
(resp. 3-coloring) of G. Note that Castro et al. do not prove the 3-colorability of triangle-
free planar graphs, they use such coloring of the graphs (by Grotzsch’s Theorem) in their
construction. West [11] proposed a stronger version of Conjecture 1 in which only 4 slopes are
allowed, thus using the fact that these graphs are 4-colorable.

Notice that two segments cross at at most one point, whereas in the construction of Theo-
rem 1, strings may cross twice. Let us define a I-string representation as a string representation
in which any two strings cross at most once. Thus the following theorem is a step towards
Conjecture 1.

Theorem 2 Planar graphs have a 1-string representation.

Note that if we would allow and consider tangent points, this theorem would directly
follow from Koebe’s theorem. Theorem 2 answers an open problem of de Fraysseix and
Ossona de Mendez [5]. In the same article they noticed that Theorem 2 implies that any
planar multigraph has a string representation such that the number of crossings between two
strings equals the number of edges between the two corresponding vertices.

In the next section we provide some definitions and prove that it is sufficient to prove
this theorem for triangulations. Section 3 is devoted to the study of string representations of
4-connected triangulations. In this section we use a decomposition technique of 4-connected
triangulations that is inspired on Whitney’s work [12] and that was recently used by the second
author [7]. Then in Section 4 we finally prove Theorem 2 for all triangulations.

2 Preliminaries

2.1 Restriction to triangulations

Lemma 1 Ewvery planar graph is an induced subgraph of some planar triangulation.

Proof. Let G be a planar graph embedded in the plane (i.e. a plane graph). The graph
h(G) is obtained from G by adding in every face f of G a new vertex v; adjacent to every
vertex incident to f in G. Notice that h(G) is also a plane graph and that G is an induced
subgraph of h(G). Moreover h(G) is connected, h(h(QG)) is 2-connected, and h(h(h(G))) is a
triangulation.

Note that we have to apply the h operator several times: if a facial walk goes through the
same vertex several times, since multiples edges are not allowed, we obtain a non-triangular
face. O

It is clear that a 1-string representation of a triangulation 7" induces a 1-string representa-
tion for any of its induced subgraphs. It is thus sufficient to prove Theorem 2 for triangulations.



2.2 String Representations

In a plane graph G, the unbounded face of G is called the outer-face and every other face of
G is an inner-face of G. An outer-vertex (resp. outer-edge) of G is a vertex (resp. edge) of
G incident to the outer-face. The other vertices (resp. edges) of G are inner-vertices (resp.
inner-edges). The set of outer-vertices (resp. outer-edges, inner-vertices, and inner-edges) of
G is denoted by V,(G) (resp. E,(G), Vi(G), and E;(G)). A near-triangulation is a plane graph
in which all the inner-faces are triangles. An edge wv is a chord of some near-triangulation T
if uv is an inner-edge linking two outer-vertices. From now on, we use the following notation:
the strings corresponding to vertices of a graph G are denoted by bold letters, ¢.e., for any
v € V(G) we denote its corresponding string by v. We need that in a 1-string representation
of a plane graph G, each face of G corresponds to some topological region of the string
representation.

Definition 1 Let G = (V, E) be a plane graph with a 1-string representation 3. Given a face
abe of G, consider a triplet (a,b, c) of its incident vertices. An (a,b,c)-region abc is a region
of the plane homeomorphic to a disk such that (see Figure 1):

e for any vertex v # a, b, and ¢ we have abc Nv = ) (i.e., abc intersects only with
a? b? C)7

e abcnanb =10, abcnbnc =0, and abcNcNa=10 (i.e., a,b,c intersect outside
abc),

e both abc N'b and abc N ¢ are connected,

e the boundary of abc successively crosses (clockwise or anticlockwise) a, a, b, b, ¢, a, c.

abc

Figure 1: An (a,b, ¢)-region abc.

Note that according to this definition abc N a has two components and one end of a is in
abc. Note that the order in the triplet (a, b, ¢) matters: a region 7 of the plane cannot be an
(a, b, c)-region and a (c,b,a)-region for example. A region abc of the plane is an {a,b,c}-
region if it is either an (a, b, c)-region, an (a,c,b)-region, a (b, a,c)-region, a (b, ¢, a)-region, a
(c,a,b)-region, or a (c,b,a)-region. When the vertices a, b, and ¢ are not mentioned, we call
such a region a face-region.

Definition 2 A strong 1-string representation (S-representation, for short) of a near-triangu-
lation T is a pair (X, R) such that:



(1) ¥ is a 1-string representation of T,

(2) R is a set of disjoint face-regions such that for every inner-face abc of T, R contains an
{a, b, c}-region.

A partial strong 1-string representation (PS-representation, for short) of a near-triangulation
T is a triplet (X, R, F') in which F C E(T) and such that (X, R) is a strong 1-string represen-
tation of T" without the crossings corresponding to the edges of F.

In a PS-representation (X, R, F') of T, note that ¥ is a 1l-string representation of 7"\ F
and that each inner-face of 7" has a corresponding face-region in R.

2.3 Special Triangulations

In a near-triangulation T, a separating 3-cycle C'is a cycle of length 3 such that some vertices
of T lie inside C' whereas other vertices lie outside. It is well known that a triangulation is
4-connected if and only if it contains no separating 3-cycle. In [12], Whitney considered a
special family of near-triangulations, it is why we call them W-triangulations.

Definition 3 A W-triangulation is a 2-connected near-triangulation containing no separating
3-cycle.

In particular, any 4-connected triangulation is a W-triangulation. Note that since a W-
triangulation has no cut vertex, its outer-edges induce a cycle. The following lemma gives a
sufficient condition for a subgraph of a W-triangulation 7" to be a W-triangulation.

Lemma 2 Let T be a W-triangulation and consider a cycle C of T'. The subgraph induced by
the vertices lying on and inside C is a W-triangulation.

Proof. Consider the near-triangulation 7" inside some cycle C' of T. By definition, T' has
no separating 3-cycle and consequently 7" does not have any separating 3-cycle. Since T” is
clearly connected and has more than two vertices, we prove that it is 2-connected by showing
that it does not contain any cut vertex.

Since the cycle C delimits the outer-face of T”, any vertex v € V(T") appears at most once
on the outer face. Since the outerface appears at most once around v and since all its other
incident faces are triangles, 7" contains a path linking all the neighbors of v. This implies
that 7"\ v is connected and thus 7" has no cut vertex. O

Definition 4 A W-triangulation T is 3-bounded if the outer-boundary of T is the union of
three paths (ai,...,ap), (b1,...,by), and (c1,...,¢c.) that satisfy the following conditions (see
Figure 2):

® a1 =cp, by = a, and ¢ = by.
e the paths are non-trivial, i.e., p > 2, ¢ > 2 and r > 2.
e there exists no chord a;aj, bib; or cic;.
Such a 3-boundary of T' will be denoted by (a1, ...,ap)-(b1,...,bg)-(c1,...,¢r).

In the following, we will use the order on the three paths and their directions, i.e.,
(@1,..., ap)-(b1,...,by)-(c1,...,¢,) will be different from (by,...,by)-(c1,...,¢)-(a1,...,ap)
and (ap, Ce ,al)—(cr, ces ,Cl)—(bq, Ce ,bl).



Figure 2: 3-boundary of 7'

3 Proof for 4-connected triangulations.

The following property describes the shape of a PS-representation of a 3-bounded W-triangu-
lation.

Property 1 Consider a 3-bounded W-triangulation T with a 3-boundary (a1, ..., ap)-(b1,. ..,
bg)-(c1,...,¢). The W-triangulation T' has Property 1 if T has a PS-representation (X, R, F')
contained inside a region T of the plane homeomorphic to the disk that satisfies the following
properties (see Figure 3):

(a) F = E,(T)\{aiaz2} (i.e., the missing crossings correspond to the outer edges, except ayas),

(b) on the boundary of T we successively have the ends of ag,as,...,ap,b1,...,bg,C1,...,Cy.

If going clockwise (resp. anticlockwise) around the boundary of 7, we cross the strings
in the order described in (b), we say that the PS-representation is clockwise (resp. anticlock-
wise). Note that by an axial symmetry, one can obtain a clockwise PS-representation from
an anticlockwise PS-representation, and vice versa. Observe that since a, = b1, by = c1, and
¢ = a1, both ends of by and ¢y lie on the boundary of 7, but it is not the case for a; or any
other string (i.e., all the strings appearing on the boundary of 7 have an end inside 7 except
bl and Cl).

:;;:Qa
a1 Nap
EANER U W

Figure 3: Property 1

Before proving that each 3-bounded W-triangulation has Property 1, we give some def-
initions and we present Property 2. Consider a 3-bounded W-triangulation T # K3 whose
boundary is (ai,...,ap)-(b1,...,bq)-(c1,...,¢) and such that 7" does not contain any chord
a;bj or a;cj. Let D C V;(T') be the set of inner-vertices of 7" that are adjacent to some vertex
a; with ¢ > 1 (the black vertices on the left of Figure 4). Since T has at least 4 vertices, no



separating 3-cycle, and no chord a;aj, a;bj, or a;c;, then a; and as (resp. by and by) have
exactly one common neighbor in V;(T") that will be denoted a (resp. dy).

Since there is no chord a;a;, a;bj, or a;c;, for each vertex a; with i € [2,p — 1], all the
neighbors of a; (resp. ap) except a;—1 and a;41 (resp. a,—; and by) are in D. Since for each
i € [2,p], there is a path linking the neighbors of a; in D, and since the vertices a; and a;11
have a common neighbor in D, then the set D induces a connected graph. Since « is in D,
the set D U {a;} also induces a connected graph.

Definition 5 The adjacent path of T' with respect to the 3-boundary (aq,...,ap)-(b1,...,by)-
(c1,...,¢) is the shortest path linking di and ay in T[DU{a;}] (the graph induced by DU{a;}).
This path will be denoted (dy,ds,...,ds,a1).

Observation 1 There exists neither an edge d;d; with 2 < i+ 1 < j < s, nor an edge aid;
with 1 <1 < s. Otherwise, (di,da,...ds,a1) would not be the shortest path between dy and a.

Clzbq Clzbq

s da dy 1% §

T Ti,as
Figure 4: the adjacent path of 7" and the graph T}, .

Definition 6 For each edge d,a, € E(T) with v € [1,s] and y € [2,p], the graph Tgy,,, is the
graph lying inside the cycle C = (a1,ds, ... ,dg, 0y, ..., ap,ba, ... by, Ca,... cp) (see Figure 4).

Note that since D C V;(T), C'is a cycle and by Lemma 2, Ty 4, is a W-triangulation. The
following property describes the shape of a PS-representation of Ty, q,,-

Property 2 Consider a 3-bounded W-triangulation T with a 3-boundary (a1, ..., ap)-(b1,. ..,
bg)-(c1,...,¢) that does not have any chord a;b; or a;c; and let (dy,da,...,ds,a1) be its
adjacent path. Consider an edge dya, € E(T) with y > 1. The W-triangulation Ty, has
Property 2 if Ty,q, has a PS-representation (X, R, F) satisfying the following properties (see
Figure 5):

(a) F = Eo(G) \ {dzay},

(b) Every string v € ¥\ {dx,ay} is contained in a region 7 of the plane homeomorphic to
the disk. Furthermore dx and ay have their ends in T (or on the boundary of T) but they
cross each other outside T.



(¢) each face-region of R is contained inside T,

(d) on the boundary of T we successively have the ends of ay,...,ap,b1,...,bg,C1,...,Cp,
ay,ds,...,dxi1, and then we successively have internal points of dy, ay,dx, and ay.

Figure 5: Property 2.

Here again, if going clockwise (resp. anticlockwise) around the boundary of 7, we cross
the strings in the order described in (d), we say that the PS-representation is clockwise (resp.
anticlockwise). In the proof of Theorem 2, we only use Property 1. However, in order to prove
Property 1, we use Property 2. We prove these two properties by doing a “crossed” induction.

Proof of Property 1 and Property 2

We prove, by induction on m > 3, that the following two statements hold:
- Property 1 holds if 7" has at most m edges.
- Property 2 holds if Ty, 4, has at most m edges.

The initial case, m = 3, is easy to prove since there is only one W-triangulation having at
most 3 edges, K3. For Property 1, we have to consider all the possible 3-boundaries of Kjs.
All these 3-boundaries are equivalent, so let V(K3) = {a,b,c} and consider the 3-boundary
(a,b)-(b,c)-(c,a). In Figure 6 there is a PS-representation (3, R, F) of K3 with F' = {bc,ac}
that fulfills Property 1. For Property 2, since a W-triangulation Ty,,, has at least 4 vertices,
ai, by, ¢, and dy, we have Ty, 4, # K3 and there is no W-triangulation Ty, ,, with at most 3
edges. So by vacuity, Property 2 holds for T},,, with at most 3 edges.

The induction step applies to both Property 1 and Property 2. This means that we prove
Property 1 (resp. Property 2) for the W-triangulations T' (resp. Tq,q,) With m edges using
both Property 1 and Property 2 on W-triangulations with less than m edges. We first prove
the induction for Property 1.



Figure 6: Initial case for Property 1.

Case 1: Proof of Property 1 for a W-triangulation 7" with m edges. Let (a1,...,a;)-
(b1,...,bg)-(c1,...,¢,) be the 3-boundary of T' considered. We distinguish different cases
according to the existence of a chord a;b; or a;c; in T. We successively consider the case
where there is a chord a1b;, with 1 < i < ¢, the case where there is a chord a;b;, with
1 <i<pand1l < j < g, and the case where there is a chord a;c;, with 1 <7 < p and
1 < j < r. We then finish with the case where there is no chord a;b;, with 1 <14 < p and
1 < j < q (by definition of 3-boundary, 7" has no chord aybg, a;b1, or apb;), and no chord a;c;,
with 1 <¢ <pand 1< j <r (by definition of 3-boundary, T" has no chord a,c1, a;c,, or aic;).

Figure 7: Case 1.1: Chord a1b;.

Case 1.1: There is a chord a1b;, with 1 <i < ¢ (see Figure 7). Let Ty (resp. Ts) be the
subgraph of T" that lies inside the cycle (a1, b;, ..., bg, c2,..., ¢ ) (vesp. (a1, a2,...,ap, b2, ..., b;,
ai)). By Lemma 2, 77 and T are W-triangulations. Since 7" has no chord agay, b;b,, or
CeCy, (biyar)-(cr,...,c1)-(bg,...,b;) (vesp. (a1,...,ap)-(b1,...,b;)-(bjar)) is a 3-boundary of
Ty (resp. T»). Furthermore, since ajas ¢ E(T1) and cico ¢ E(T), Ty and T have less
edges than T and Property 1 holds for T} and 75 with the mentioned 3-boundaries. Let
(31, R1, F1) (resp. (X2, Ro, F»)) be a clockwise (resp. anticlockwise) PS-representation con-
tained in the region 71 (resp. 7o) obtained for T3 (resp. Tb) with Fy = E,(T1) \ {a1b;} (resp.
Fy = E,(T3) \ {a1a2}). In Figure 8 we show how to associate these two representations to
obtain (X, R, F'), an anticlockwise PS-representation of T' contained in 7. Note that the two
strings aj (resp. by) from 37 and X9 have been linked.

We easily verify that (X, R, F') satisfies Property 1:

e Y is a string representation of T'\ F' with F' = E,(T) \ {a1az2}. Indeed, since V(T1) U
V(Ty) = V(T) and V(T1) N V(T) = {a1,b;}, every vertex v € V(T') has exactly one



Figure 8: Case 1.1: (X, R, F).

string in 3. Furthermore, since (E(T7) \ F1) U (E(T2) \ F2) = E(T) \ F, X is a string
representation of 7'\ F.

e Y is a l-string representation. The only edge that belongs to both 77 and 75 is a1b;.
Since a; and by cross each other in X1 (a1b; ¢ F1) but not in ¥y (a1b; € F»), a3 and by
cross exactly once in X.

e (3, R) is “strong” Each inner-face of T is an inner-face in 77 or T and the regions 7y
and 7o are disjoint (so the face-regions in 71 are disjoint from the face-regions in 73).

Finally we see in Figure 8 that point (b) of Property 1 is satisfied.

Figure 9: Case 1.2: Chord a;b;.

Case 1.2: There is a chord a;bj, with 1 < i < p and 1 < j < ¢ (see Figure 9).
If there are several chords a;b;, we consider one that maximizes j, i.e., there is no chord
a;by with j < k < g. Let Ty (resp. T5) be the subgraph of T that lies inside the cycle
(a1,a2,...,a;,bj,...,bg,ca,...,¢) (resp. (ai,...,ap,ba,...,b;,a;)). By Lemma 2, T} and T
are W-triangulations. Since 7" has no chord agay, byby, cpcy, or a;b, with k > 7, (a1,...,a;)-
(@i, bj,...,bg)-(c1,...,¢r) (resp. (a;,bj)-(bj,...,b1)-(ap,...,a;)) is a 3-boundary of T} (resp.
T5). Furthermore, since biby ¢ E(T1) and ajas ¢ E(T), T1 and T, have less edges than T
and Property 1 holds for T} and T with the mentioned 3-boundaries. Let (X1, Ry, Fy) (resp.
(32, Ra, F3)) be an anticlockwise (resp. clockwise) PS-representation contained in the region 7
(resp. 72) obtained for Ty (resp. Ty), with Fy = Eo(T1) \ {a1az} (resp. Fo = E,(T3) \ {aib;}).
In Figure 10 we show how to associate these two representations to obtain (X, R, F), an
anticlockwise PS-representation of T' contained in 7. Note that in this construction the two
strings a; (resp. bj) from X; and ¥ have been linked.



Figure 10: Case 1.2: (X, R, F).

As in Case 1.1, we easily verify that (X, R, F) satisfies Property 1.

Figure 11: Case 1.3: Chord a;c;.

Case 1.3: There is a chord a;cj, with 1 <i < p and 1 < j < r (see Figure 11).
If there are several chords a;c;, we consider one which maximizes 4, i.e., there is no chord
agc; with i < k < p. Let Ti (resp. T5) be the subgraph of 7' that lies inside the cycle
(a1,a2,...,a;,¢5,...,¢) (vesp. (¢j,a,...,ap,b2,...,bg,C2,...,¢j)). By Lemma 2, T} and T
are W-triangulations. Since T" has no chord agzay, byby, cz¢, or agc; with k > i, (a1,...,a;)-
(ai,cj)-(¢j,...,cr) (resp. (cj,a4,...,ap)-(b1,...,bg)-(c1,...,¢j)) is a 3-boundary of T} (resp.
T). Furthermore, since bibe ¢ E(T1) and ajay ¢ E(T»), Th and T have less edges than
T and Property 1 holds for 77 and 75 with the mentioned 3-boundaries. Let (X1, Ry, F})
(resp. (X2, Ra, F»)) be an anticlockwise PS-representation contained in the region 7y (resp.
73) obtained for Ty (resp. T3), with Fy = E,(Th) \ {a1a2} (resp. Fy = Ey(Ts) \ {cja:}).
In Figure 12 we show how to associate these two representations to obtain (X, R, F'), an
anticlockwise PS-representation of T' contained in 7. Note that in this construction the two
strings a; (resp. ¢;) from ¥; and ¥, have been linked.
As in Case 1.1, we easily verify that (X, R, F) satisfies Property 1.

Case 1.4: There is no chord a;b;, with 1 <i <p and 1 < j < ¢, and no chord q;c;,
with 1 <i<pand 1< j<r (see Figure 13). In this case we consider the adjacent path
(di,...,ds,a1) (see Figure 4) of T with respect to its 3-boundary, (ai,...,ap)-(b1,...,bq)-
(¢1,...,¢7). Consider the edge dsa,, with 1 < y < p and which minimizes y. This edge
exists since, by definition of the adjacent path, d, is adjacent to some vertex a, with y > 1.
The W-triangulation Tjy,,, having less edges than T' (a1a2 ¢ E(Ty,q,)), Property 2 holds for
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Figure 12: Case 1.3: (X, R, F).

Ty,a,- Let (X', R', F') be an anticlockwise PS-representation almost contained in the region
7" obtained for Ty,,,, with F' = Ey(Ty,q,) \ {dsay}.

c1 = by

Figure 13: Case 1.4: No chord a;b; or a;c;.

Now we distinguish two cases according to the position of a,: either y = 2 (Case 1.4.1),
or y > 2 (Case 1.4.2).

Case 1.4.1: y = 2. In Figure 14, starting from (X', R', F’), we show how to extend the
string a3 € 3’ (in order to cross dg and az) and how to draw the (a1, ag, ds)-region ajazds to
obtain (X, R, F'), an anticlockwise PS-representation of 7' contained in a region 7.

One can verify on Figure 14 that (X, R, F) satisfies Property 1.

Case 1.4.2: y > 2. Let us denote ey, es, ..., e the neighbors of dg strictly inside the cycle
(ds,a1,as,...,ay,ds), going “from right to left” (see Figure 13). By minimality of y we have
eiF#aj,foralll<i<tand 1<j<y.

Let 71 be the subgraph of T that lies inside the cycle (ai,...,ay,e1,...,€e,a1). By
Lemma 2, T is a W-triangulation. Since the W-triangulation 7" has no separating 3-cycle
(ds,a1,€i), (ds,ay,e;) or (ds, e, e;), there exists no chord aje;, aye; or e;ej in T1. So (az,ar)-
(a1,e4...,€e1,ay)-(ay,...,a2) is a 3-boundary of Tj. Finally, since T} has less edges than
T (a1ds ¢ E(Ty)), Property 1 holds for T} with respect to the mentioned 3-boundary. Let
(X1, R1, F1) be a clockwise PS-representation contained in the region 7 obtained for 77, with

Fl = Eo(Tl) \ {agal}.

11



Figure 14: Case 1.4.1.

In Figure 15, starting from (X', R', F’) and (31, Ry, F}), we show how to join the strings
a; (resp. ay) of ¥/ and X, how to extend the strings e;, for 1 < i < ¢, and how to draw
the face-regions aye;ds, etaids, and ejej_1ds, for 2 < < ¢, in order to obtain (X, R, F'), an
anticlockwise PS-representation of T' contained in a region 7.

Figure 15: Case 1.4.2.

We verify that (X, R, F) satisfies Property 1:

e Y is a string representation of 7'\ F' with I' = E,(T) \ {araz}. Indeed, since V(Tg,q,) U

12



V(1) = V(T) and V(Ty,q,) NV (T1) = {a1,ay}, every vertex v € V(T) has exactly
one string in X. Furthermore, since E(T) \ F' = (E(Ty,q,) \ F') U (E(T1) \ F1) U
{ayer,erar,dsar } U {eje;—1 | i € [2,t]} U{dse; | i € [1,t]}, ¥ is a string representation of
T\F.

e 3 is a l-string representation. Indeed 7y, 4, and 77 do not have common edges, and the
new crossings added correspond to edges missing in both E(Ty,,,) \ F' and E(T1) \ F1.

e (X, R) is “strong™ The only inner-faces of 1" not in Ty,,, nor in T3 are the faces dsayer,
dsaie; and dge;e;qq, with 1 < i < t. These faces correspond to the new face-regions.

Finally we see in Figure 15 that point (b) of Property 1 is satisfied.
So Property 1 holds for any W-triangulation 7" with m edges and this concludes the proof
of Case 1.

Case 2: Proof of Property 2 for a W-triangulation Tjy,,, with m edges. Re-
call that the W-triangulation Tj,,, is a subgraph of a W-triangulation T" with 3-boundary
(a1,...,ap)-(b1,...,bg)-(c1,...,¢). Moreover, T has no chord a;b; or a;c; and its adjacent
path is (dq,...,ds,a1), with s > 1. We distinguish the case where d,a, = dya, and the case
where d,a, # dya,.

b
a1 ‘
a2 b1 =ap

Figure 16: Case 2.1: Ty, 4, = T4,4q,-

Case 2.1: d.a, = dia, (see Figure 16). Let 71 be the subgraph of Ty 4, that lies inside
the cycle (a1,ds,...,d1,ba,...,bg,c2,...,¢;). By Lemma 2, T} is a W-triangulation. This
W-triangulation has no chord b;b;, c;c;, d;dj, or a;d;. We consider two cases according to the
existence of an edge d1b; with 2 < i < ¢.

e If 77 has no chord dib; then (dy,ba,...,by)-(c1,...,¢)-(a1,ds,...,d1) is a 3-boundary
of Tl.

e If 77 has a chord dib;, with 2 < ¢ < ¢, note that ¢ > 2 and that there cannot be a chord
beay or bad;, with 1 < j < s (this would violate the planarity of Ty, q,, see Figure 16)
So in this case, (b, d1,...,ds,a1)-(¢r,...,c1)-(bg,-..,b2) is a 3-boundary of T7.

Finally, since T1 is a W-triangulation with less edges than Ty, 4, (b1b2 ¢ E(T1)), Property 1
holds for T} with respect to at least one of the two mentioned 3-boundaries. Whichever 3-
boundary we consider, we obtain a PS-representation (X1, Ry, F}) of T} contained in a region
71, with the same following characteristics:
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o Iy =Eo(T)\ {dibs},

e in the boundary of 71 we successively meet the ends of dy,...,ds,a1,¢p,...,¢1,bq, ...,
ba (clockwise or anticlockwise).

In Figure 17 we modify (31, Ry, F), by extending the strings dy and bg and by adding a new
string a;, and a new face-region dybaay,. This leads to (X, R, F), a PS-representation of Ty,
contained in a region 7.

T~ -
& Pa_
~. . -
~. - . e
a > 7—1 /
cr N ’b2
\\ T
a1“dsi =

Figure 17: Case 2.1: (X, R, F).

We verify that (X, R, F') satisfies Property 2:

e Y is a l-string representation of Ty 4, \ F': Indeed, E(Ty,,,) \ F is the disjoint union of
E(Tl) \ F1 and {apdl}.

e (X, R) is “strong” The only inner-face of Ty, ,, that is not an inner-face of T is dyaybs,
which corresponds to the new face-region diapba.

Finally we see in Figure 17 that the other points of Property 2 are satisfied.

Case 2.2: Ty, % Tdya,- In this case we consider an edge d.a, € E(szay) such that
d.a. # dga,. Among all the possible edges d.a,, we choose the one that first maximizes z
and then minimizes w. Such an edge necessarily exists and actually one can see that d, = d,
or d, = dy—1. Indeed, if d, = dy there is at least one edge dia,, with w > y, the edge d;a,,.
If z > 1, it is clear by definition of the adjacent path that the vertex d,_; is adjacent to at
least one vertex a,, with w > y.

By Lemma 2, Ty 4, is a W-triangulation. Since dya, ¢ E(Ty,4,), the W-triangulation
T4,a, has less edges than Tg,,,, and so Property 2 holds for Ty,q,. Let (X', R, F') be an
anticlockwise PS-representation almost contained in the region 7/ obtained for Tj_,, , with
F' = Eo(Ti.a,) \ {dzaw}

We distinguish 4 cases according to the edge d.a,,. When z = x we consider the case
where w = y + 1 and the case where w > y + 1. When z = z — 1 we consider the case where
w = y and the case where w > y.

14



Figure 18: Case 2.2.1: z =z and w =y + 1.

Figure 19: Case 2.2.1: (X, R, F).

Case 2.2.1: Ty,q, # Taya,s 2 =z and w = y+1 (see Figure 18). In Figure 19 we modify
(X, R, F'), by adding a new string ay and a new face-region ayawdy. This leads to (3, R, F),
an anticlockwise PS-representation of T4,a, almost contained in a region 7.

We verify that (X, R, F') satisfies Property 2:

e ¥ is a l-string representation of Ty, 4, \ F': Indeed, F(Ty,q,) \ F is the disjoint union of
E(T4,q,) \ F' and {day}.

e (X, R) is “strong”™ The only inner-face of Ty,,, that is not an inner-face of Ty g, is
dgaya,,, which corresponds to the new face-region dyayay,.

Finally we see in Figure 19 that the other points of Property 2 are satisfied.

Case 2.2.2: z =z — 1 and w = y (see Figure 20). In Figure 21, we modify (X', R', F")
by extending the string dx and by adding a new face-region dxd,ay. This leads to (3, R, F),
an anticlockwise PS-representation of Tj,,, almost contained in a region 7.

We verify that (X, R, F) satisfies Property 2:

e ¥ is a l-string representation of Ty 4, \ F': Indeed, F(Ty,q,) \ F is the disjoint union of
E(szaw) \ FI a‘nd {d.'ltdZ’ dxay}

15



Figure 20: Case 2.2.2: Ty 4, # Taya,, 2 =2 — 1 and w = y.

Figure 21: Case 2.2.2: (X, R, F).

e (X, R) is “strong”™ The only inner-face of Ty,,, that is not an inner-face of Ty_q, is
d.d.ay, which corresponds to the new face-region dyd,ay.

Finally we see in Figure 21 that the other points of Property 2 are satisfied.

Case 2.2.3: z = z and w > y + 1 (see Figure 22). Let us denote ej,es,...,e; the
neighbors of d, strictly inside the cycle (dg,ay,...,aw,d;), going “from right to left” (see
Figure 22). Since there is no chord a;a; we have ¢ > 1. Furthermore by minimality of w we
have e; # aj, for all 1 <4 < ¢ and y < j < w. Let T} be the subgraph of Ty,,, that lies
inside the cycle (ay,...,ay,€1,...,€,ay). By Lemma 2, T} is a W-triangulation. Since the
W-triangulation Tg, 4, has no separating 3-cycle (dz, ., €;) or (d, €;, €;), there exists no chord
awe; or eje; in T1. With the fact that ¢ > 1, we know that (e, ay)-(ay, ..., aw)-(Gw, €1, .., €)
is a 3-boundary of T7. Finally, since 71 has less edges than Ty, ,, (dea, ¢ E(T1)), Property 1
holds for 77 with respect to the mentioned 3-boundary. Let (31, Ry, F1) be an anticlockwise
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Figure 22: Case 2.2.3: Ty,a, # Ty, 2 = and w >y + 1.

PS-representation contained in the region 71 obtained for T, with Fy = Eo(T1) \ {esay}.

In Figure 23, starting from (X', R', F’) and (31, Ry, F1), we show how to join the strings
aw of ¥’ and 3, how to extend the string ay and the strings e;, for 1 < ¢ < ¢, and how
to draw the face-regions ayeidy, ejawdy, and ejej_1dy, for 1 < ¢ < ¢, in order to obtain
(X, R, F), an anticlockwise PS-representation of Ty, ,, contained in a region 7.

Figure 23: Case 2.2.3: (X, R, F).

We verify that (X, R, F) satisfies Property 2:

e Y isa l-string representation of Ty, 4, \F' with F' = E,(T4,q4,)\{dzay}: Indeed, E(Ty,q,)\
F is the disjoint union of E(Ty. 4, ) \ F', E(T1) \ I1, and {ayer,dyay} U {eiei1 | i €
[2,t]} U{dye; | 1 € [1,¢]}.

e (3, R) is “strong™ The only inner-faces of T4,a, that are not inner-faces in Ty q,, or Ty
are dgayet, dyamer, and the faces dye;e;—1, for 2 <4 < 't, which correspond to the new
face-regions.

Finally we see in Figure 23 that the other points of Property 2 are satisfied.
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A

Figure 24: Case 2.2.4: Ty, o, # Ty, 2 =2 — 1 and w > y.

Case 2.2.4: z = z— 1 and w > y (see Figure 24). Let us denote ej,es,...,e; the
neighbors of d, strictly inside the cycle (d,dy, ay, ..., ay,d), going “from right to left” (see
Figure 24). By maximality of z, there is no edge d,a,,, so t > 1. Let us denote fi,..., f, the
neighbors of d,, strictly inside the cycle (dg,ay,...,ay,d;,d;), going “from right to left” (see
Figure 24). Note that f; = e; and that by minimality of w, there is no edge d.ay, so u > 1.

By minimality of w (resp. maximality of z) we have e; # a; (resp. f; # a;), for all
1 <i<t(resp. 1 <i<w)andy < j < w. Let T1 be the subgraph of Ty,,, that lies
inside the cycle (ay,...,aw,€1,... €, fo,..., fu,ay). By Lemma 2, T} is a W-triangulation.
Since the W-triangulation Ty, ., has no separating 3-cycle (d., aw, €;), (d-, e, €5), (dz, fi, f;),
or (dg, fi,ay), there exists no chord aye;, eje;, fif;, or fia, in Ty. With the fact that ¢t > 1
and u > 1, we know that (fi, fa,..., fu,ay)-(ay,...,aw)-(aw,€1,...,€) is a 3-boundary of
Ty. Finally, since T has less edges than Ty, ,, (dza, ¢ E(T1)), Property 1 holds for 77 with
respect to the mentioned 3-boundary. Let (X1, Ry, F}) be an anticlockwise PS-representation
contained in the region 7 obtained for 77, with Fy = Eo(T1) \ {f1/f2}.

In Figure 25, starting from (X', R', F’) and (X1, Ry, F}), we show how to join the strings
aw of X' and X, how to extend the string dx, ay, the strings e; for 1 < i < ¢, and the
strings fj for 2 < i < u, and how to draw the face-regions d,awei, d ejej_1, for 2 < i < ¢,
d,dxet, dififi_q, for 2 < i < u, and dxayf, in order to obtain (X, R, F'), an anticlockwise
PS-representation of Ty, ,, almost contained in a region 7.

We verify that (X, R, F) satisfies Property 2:

e Y isa l-string representation of Ty, o, \F' with F' = E,(T4,q4,)\{dzay}: Indeed, E(Ty,q,)\
F is the disjoint union of E(Ty,4, )\ F', E(T1)\ F1, and {dyay, d.d., ayer, ay fu}U{de; |
i€ Lty U{dyfi|i€l,ul} U{eiei—1 i€ [2,t]}U{fifie1]i € [2,u]}.

e (3, R) is “strong™ The only inner-faces of T4,q, that are not inner-faces in Ty_q,, or T3
are d,ayer, dejei—q for 2 < i < t, d.dyeq, dyfifi—1 for 2 < i < wu, and dgayf,, which
correspond to the new face-regions.

Finally we see in Figure 25 that the other points of Property 2 are satisfied. So, Property 2
holds for any W-triangulation Ty, ,, with m edges and this completes the proofs of Property 1
and Property 2. O
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Figure 25: Case 2.2.4: (X, R, F).

4 Proof in the general case

Theorem 3 Every triangulation T admits an S-representation (3, R).

Proof. We prove this result by induction on the number of separating 3-cycles. Note that
any triangulation 7T is 3-connected, and that if 7" has no separating 3-cycle, then T is 4-
connected and is a W-triangulation. Consequently, if 7" is a 4-connected triangulation whose
outer-vertices are a, b, and ¢, then T' is a W-triangulation 3-bounded by (a, b)-(b, ¢)-(c,a). By
Property 1, T' admits a PS-representation (3, R, F), with F' = {bc, ca}, that is contained in
a region 7. Furthermore, in the boundary of 7 we successively meet the ends of b, b, c,c,a.
To obtain an S-representation of T, it is sufficient to extend a, b, and c outside of 7 so that
c crosses a and b, as depicted in Figure 26.

C

Figure 26: S-representation of 7" from (X, R, F').

Suppose now that T is a triangulation that contains at least one separating 3-cycle. Con-
sider a separating 3-cycle (a, b, ¢) such that there is no other separating 3-cycle lying inside.
This implies that the triangulation 7" induced by the vertices on and inside (a,b,c) is 4-
connected.

Let T3 be the triangulation obtained by removing the vertices lying strictly inside (a, b, ¢).
Let T, be the subgraph of T induced by the vertices lying strictly inside (a,b,c) (i.e., To =
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T'\{a,b,c}). In T1, the cycle (a, b, ) is a face of the triangulation and is no more a separating
3-cycle. Thus T has one separating cycle less than 7', and so we have by induction hypothesis
that 7} admits an S-representation (31, R1). This S-representation contains a face-region abc
corresponding to the face abe. Without loss of generality, say that abc is an (a, b, ¢)-region,
as depicted in Figure 27.

Figure 27: In the S-representation (31, Ry) of 71, the (a,b, c)-region abc.

Since T” is a triangulation with at least four vertices, the neighbors of any vertex v € V(T")
induce a cycle. Suppose that the vertex a (resp. b and ¢) has exactly one neighbor v that
lies inside (a,b,c). Then there exists a cycle (b,v,c) (resp. (a,v,c) and (a,v,b)) in T” and
consequently v is a neighbor of a, b, and ¢ in T”. Suppose that there exists another vertex w
in 77, then w lies either inside the cycle (a,v,b), inside (a, v, ¢), or inside (b, v,c) and then one
of these cycles is a separating 3-cycle. This is impossible by definition of (a,b,c). So we can
distinguish two cases (see Figure 28), (A) the case where T3 is a single vertex, and (B) the
case where each of the vertices a, b, and ¢ has at least two neighbors inside (a, b, c).

Figure 28: The cases (A) and (B).

Case (A): T; is a single vertex v. To obtain an S-representation (X, R) of T (see Fig-
ure 29), we add a string v in (X1, Ry). Since E(T) \ E(T1) = {va, vb,vc} this string v crosses
a,b,c. Moreover, we also define three disjoint face-regions acv,vbc,vab that correspond
respectively to the faces acv, vbe, vab.

Since (X1, Ry) is an S-representation of 77 and since v,acv,vbc,vab are drawn inside
abc, it is clear that (X U {v}, (R \ {abc}) U {acv,vbc,vab}) is an S-representation of 7.

Case (B): Each of the vertices a, b, and ¢ has at least two neighbors inside (a,b, ).
There exists a cycle (¢,aq,...,ap,b) (vesp. (a,by,...,bg,c) and (b,c1,...,¢r,a)) in T” whose
vertices are exactly the neighbors of a (resp. b and ¢). We already know that p > 1,¢ > 1,7 > 1
and that a, = b1, b; = ¢1, and ¢, = a;. Moreover, since b; and ¢ (resp. ¢; and a, and a; and
b) are the only two common neighbors of a and b (resp. b and ¢, and a and ¢) in T” (otherwise
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Figure 29: Case (A): Modifications inside abc.

there would be a separating 3-cycle) then (a1,...,a, =0b1,...,by =c1,...,¢ = ap) is a cycle.
This implies from Lemma 2 that 75 is a W-triangulation.

Suppose that there exists an edge a;a; (resp. b;bj, cicj) with 1 <i+1 < j < p (resp. 1 < i+
1<j<gq,1<i+1<j<r). Then, the cycle (a,a;,a;) (resp. (b,b;,b;), (¢,c;,c;)) would be a
separating 3-cycle of T'. Consequently, T5 is 3-bounded by (a1, ..., ap)-(b1,...,bg)-(c1,..., ¢ ).
With respect to this 3-boundary, T has an anticlockwise PS-representation (X9, Ry, F»), with
Fy = E, \ {ajaz} (c.f. Property 1). Let 75 be a region of abc containing this representation.

Since abc is an (a, b, ¢)-region, on its boundary we successively cross a,a, b, b, c,a and c
when going anticlockwise (by doing an axial symmetry if necessary).

In Figure 30, starting from (X1, R;) and (39, R2) we obtain (X, R). We extend the strings
az,...,ap,by,...,bq,c1,...,c; to obtain the crossings that correspond to the edges in the set
E(T)\ (E(T1)U(E(T2) \ F2)) = {aa; | i € [1,p]}U{bb; | i € [1,q]} U{ce; | € [1,r]} U{aiait |
i € [2,p—1]}U{bbiy1 | i € [1,q—1]}U{cici+1 | © € [1,r—1]}. We also define face-regions for the
faces in the set {abby, acay, beey }U{aaa;11 | i € [1,p—1]}U{bbibit1 | i € [1,q—1]}U{cciciy1 |
ie[l,r—1]}.

Since (X1, R1) is an S-representation of T} and (X9, Re, F5) is a PS-representation of 7%,
(3, R, F) is an S-representation of 7.

e Y is a l-string representation of T: Indeed, we added all the crossings corresponding to
the edges in E(T) \ (E(Th) U (E(T2) \ F2)).

e (X, R) is “strong”: Indeed, we added all the face-regions corresponding to the inner-faces
of T that are neither in 7} nor in T5.

Consequently, every triangulation admits an S-representation, which proves Theorem 3
and then Theorem 2. O

5 Conclusion

The first and the second author recently improved the result presented in this article by
proving Conjecture 1 [2]. For this they use the same decomposition of triangulation but their
notion of face-region is quite different. One should also mention that their construction does
not correspond to a stretching of the 1-string representation presented here.

Finally, an interesting question is whether the result presented here holds for other surfaces.
For example, does any graph embedded on a surface S have a 1-string representation on S 7
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Figure 30: Case (B): Modifications inside abc.
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