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eAbstra
tWe prove that every planar graph is an interse
tion graph of strings in the plane, su
hthat any two strings interse
t at most on
e.1 Introdu
tionA string s is a 
urve of the plane homeomorphi
 to a segment. A string s has two ends, thepoints of s that are not ends of s are internal points of s. Two strings s1 and s2 
ross if theyhave a 
ommon point p ∈ s1 ∩ s2 and if going around p we su

essively meet s1, s2, s1, and

s2. This means that a tangent point is not a �
rossing�. In the following we 
onsider stringsets without tangent points.In this paper, we 
onsider interse
tion models for simple planar graphs (i.e., planar graphswithout loops or multiple edges). A string representation of a graph G = (V,E) is a set Σ ofstrings in the plane su
h that every vertex v ∈ V maps to a string v ∈ Σ and su
h that uv ∈ Eif and only if the strings u and v 
ross (at least on
e). Similarly, a segment representation ofa graph G is a string representation of G in whi
h the strings are segments.These notions were introdu
ed by Ehrli
h et al. [3℄, who proved the following:Theorem 1 [3℄ Planar graphs have a string representation.In [9℄, Koebe proved that planar graphs are the 
onta
t graphs of disks in the plane.Note that in this model the 
urves bounding two adja
ent disks are tangent. However byin�ating these 
ir
les we obtain string representations for planar graphs. In his PhD thesis,S
heinerman [10℄ 
onje
tures a stronger result:Conje
ture 1 [10℄ Planar graphs have a segment representation.
∗An abstra
t of this paper appeared in the Pro
eedings of the eighteenth annual ACM-SIAM Symposiumon Dis
rete algorithms (SODA 2007). 1



Hartman et al. [8℄ and de Fraysseix et al. [4℄ proved Conje
ture 1 for bipartite planargraphs. Castro et al. [1℄ proved Conje
ture 1 for triangle-free planar graphs. Re
ently deFraysseix and Ossona de Mendez [6℄ extended this to planar graphs that have a 4-
oloringin whi
h every indu
ed 
y
le of length 4 uses at most 3 
olors. Observe that, sin
e parallelsegments never 
ross, a set of parallel segments in a segment representation of a graph indu
esa stable set of verti
es. The 
onstru
tion in [4, 8℄ (resp. [1℄) has the ni
e property that thereare only 2 (resp. 3) possible slopes for the segments. So the 
onstru
tion indu
es a 2-
oloring(resp. 3-
oloring) of G. Note that Castro et al. do not prove the 3-
olorability of triangle-free planar graphs, they use su
h 
oloring of the graphs (by Grötzs
h's Theorem) in their
onstru
tion. West [11℄ proposed a stronger version of Conje
ture 1 in whi
h only 4 slopes areallowed, thus using the fa
t that these graphs are 4-
olorable.Noti
e that two segments 
ross at at most one point, whereas in the 
onstru
tion of Theo-rem 1, strings may 
ross twi
e. Let us de�ne a 1-string representation as a string representationin whi
h any two strings 
ross at most on
e. Thus the following theorem is a step towardsConje
ture 1.Theorem 2 Planar graphs have a 1-string representation.Note that if we would allow and 
onsider tangent points, this theorem would dire
tlyfollow from Koebe's theorem. Theorem 2 answers an open problem of de Fraysseix andOssona de Mendez [5℄. In the same arti
le they noti
ed that Theorem 2 implies that anyplanar multigraph has a string representation su
h that the number of 
rossings between twostrings equals the number of edges between the two 
orresponding verti
es.In the next se
tion we provide some de�nitions and prove that it is su�
ient to provethis theorem for triangulations. Se
tion 3 is devoted to the study of string representations of4-
onne
ted triangulations. In this se
tion we use a de
omposition te
hnique of 4-
onne
tedtriangulations that is inspired on Whitney's work [12℄ and that was re
ently used by the se
ondauthor [7℄. Then in Se
tion 4 we �nally prove Theorem 2 for all triangulations.2 Preliminaries2.1 Restri
tion to triangulationsLemma 1 Every planar graph is an indu
ed subgraph of some planar triangulation.Proof. Let G be a planar graph embedded in the plane (i.e. a plane graph). The graph
h(G) is obtained from G by adding in every fa
e f of G a new vertex vf adja
ent to everyvertex in
ident to f in G. Noti
e that h(G) is also a plane graph and that G is an indu
edsubgraph of h(G). Moreover h(G) is 
onne
ted, h(h(G)) is 2-
onne
ted, and h(h(h(G))) is atriangulation.Note that we have to apply the h operator several times: if a fa
ial walk goes through thesame vertex several times, sin
e multiples edges are not allowed, we obtain a non-triangularfa
e. 2It is 
lear that a 1-string representation of a triangulation T indu
es a 1-string representa-tion for any of its indu
ed subgraphs. It is thus su�
ient to prove Theorem 2 for triangulations.
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2.2 String RepresentationsIn a plane graph G, the unbounded fa
e of G is 
alled the outer-fa
e and every other fa
e of
G is an inner-fa
e of G. An outer-vertex (resp. outer-edge) of G is a vertex (resp. edge) of
G in
ident to the outer-fa
e. The other verti
es (resp. edges) of G are inner-verti
es (resp.inner-edges). The set of outer-verti
es (resp. outer-edges, inner-verti
es, and inner-edges) of
G is denoted by Vo(G) (resp. Eo(G), Vi(G), and Ei(G)). A near-triangulation is a plane graphin whi
h all the inner-fa
es are triangles. An edge uv is a 
hord of some near-triangulation Tif uv is an inner-edge linking two outer-verti
es. From now on, we use the following notation:the strings 
orresponding to verti
es of a graph G are denoted by bold letters, i.e., for any
v ∈ V (G) we denote its 
orresponding string by v. We need that in a 1-string representationof a plane graph G, ea
h fa
e of G 
orresponds to some topologi
al region of the stringrepresentation.De�nition 1 Let G = (V,E) be a plane graph with a 1-string representation Σ. Given a fa
e
abc of G, 
onsider a triplet (a, b, c) of its in
ident verti
es. An (a, b, c)-region abc is a regionof the plane homeomorphi
 to a disk su
h that (see Figure 1):

• for any vertex v 6= a, b, and c we have abc ∩ v = ∅ (i.e., abc interse
ts only with
a,b, c),

• abc ∩ a ∩ b = ∅, abc ∩ b ∩ c = ∅, and abc ∩ c ∩ a = ∅ (i.e., a,b, c interse
t outside
abc),

• both abc ∩ b and abc ∩ c are 
onne
ted,
• the boundary of abc su

essively 
rosses (
lo
kwise or anti
lo
kwise) a, a, b, b, c, a, c.

c

a

b

abc

Figure 1: An (a, b, c)-region abc.Note that a

ording to this de�nition abc ∩ a has two 
omponents and one end of a is in
abc. Note that the order in the triplet (a, b, c) matters: a region τ of the plane 
annot be an
(a, b, c)-region and a (c, b, a)-region for example. A region abc of the plane is an {a, b, c}-region if it is either an (a, b, c)-region, an (a, c, b)-region, a (b, a, c)-region, a (b, c, a)-region, a
(c, a, b)-region, or a (c, b, a)-region. When the verti
es a, b, and c are not mentioned, we 
allsu
h a region a fa
e-region.De�nition 2 A strong 1-string representation (S-representation, for short) of a near-triangu-lation T is a pair (Σ, R) su
h that: 3



(1) Σ is a 1-string representation of T ,(2) R is a set of disjoint fa
e-regions su
h that for every inner-fa
e abc of T , R 
ontains an
{a, b, c}-region.A partial strong 1-string representation (PS-representation, for short) of a near-triangulation

T is a triplet (Σ, R, F ) in whi
h F ⊆ E(T ) and su
h that (Σ, R) is a strong 1-string represen-tation of T without the 
rossings 
orresponding to the edges of F .In a PS-representation (Σ, R, F ) of T , note that Σ is a 1-string representation of T \ Fand that ea
h inner-fa
e of T has a 
orresponding fa
e-region in R.2.3 Spe
ial TriangulationsIn a near-triangulation T , a separating 3-
y
le C is a 
y
le of length 3 su
h that some verti
esof T lie inside C whereas other verti
es lie outside. It is well known that a triangulation is4-
onne
ted if and only if it 
ontains no separating 3-
y
le. In [12℄, Whitney 
onsidered aspe
ial family of near-triangulations, it is why we 
all them W-triangulations.De�nition 3 A W-triangulation is a 2-
onne
ted near-triangulation 
ontaining no separating3-
y
le.In parti
ular, any 4-
onne
ted triangulation is a W-triangulation. Note that sin
e a W-triangulation has no 
ut vertex, its outer-edges indu
e a 
y
le. The following lemma gives asu�
ient 
ondition for a subgraph of a W-triangulation T to be a W-triangulation.Lemma 2 Let T be a W-triangulation and 
onsider a 
y
le C of T . The subgraph indu
ed bythe verti
es lying on and inside C is a W-triangulation.Proof. Consider the near-triangulation T ′ inside some 
y
le C of T . By de�nition, T hasno separating 3-
y
le and 
onsequently T ′ does not have any separating 3-
y
le. Sin
e T ′ is
learly 
onne
ted and has more than two verti
es, we prove that it is 2-
onne
ted by showingthat it does not 
ontain any 
ut vertex.Sin
e the 
y
le C delimits the outer-fa
e of T ′, any vertex v ∈ V (T ′) appears at most on
eon the outer fa
e. Sin
e the outerfa
e appears at most on
e around v and sin
e all its otherin
ident fa
es are triangles, T ′ 
ontains a path linking all the neighbors of v. This impliesthat T ′ \ v is 
onne
ted and thus T ′ has no 
ut vertex. 2De�nition 4 A W-triangulation T is 3-bounded if the outer-boundary of T is the union ofthree paths (a1, . . . , ap), (b1, . . . , bq), and (c1, . . . , cr) that satisfy the following 
onditions (seeFigure 2):
• a1 = cr, b1 = ap and c1 = bq.
• the paths are non-trivial, i.e., p ≥ 2, q ≥ 2 and r ≥ 2.
• there exists no 
hord aiaj , bibj or cicj .Su
h a 3-boundary of T will be denoted by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr).In the following, we will use the order on the three paths and their dire
tions, i.e.,

(a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr) will be di�erent from (b1, . . . , bq)-(c1, . . . , cr)-(a1, . . . , ap)and (ap, . . . , a1)-(cr , . . . , c1)-(bq, . . . , b1). 4



a1 = cr b1 = ap

c1 = bq

T

a2

b2

b3

c2

c3

Figure 2: 3-boundary of T .3 Proof for 4-
onne
ted triangulations.The following property des
ribes the shape of a PS-representation of a 3-bounded W-triangu-lation.Property 1 Consider a 3-bounded W-triangulation T with a 3-boundary (a1, . . . , ap)-(b1, . . . ,
bq)-(c1, . . . , cr). The W-triangulation T has Property 1 if T has a PS-representation (Σ, R, F )
ontained inside a region τ of the plane homeomorphi
 to the disk that satis�es the followingproperties (see Figure 3):(a) F = Eo(T )\{a1a2} (i.e., the missing 
rossings 
orrespond to the outer edges, ex
ept a1a2),(b) on the boundary of τ we su

essively have the ends of a2,a3, . . . ,ap,b1, . . . ,bq, c1, . . . , cr.If going 
lo
kwise (resp. anti
lo
kwise) around the boundary of τ , we 
ross the stringsin the order des
ribed in (b), we say that the PS-representation is 
lo
kwise (resp. anti
lo
k-wise). Note that by an axial symmetry, one 
an obtain a 
lo
kwise PS-representation froman anti
lo
kwise PS-representation, and vi
e versa. Observe that sin
e ap = b1, bq = c1, and
cr = a1, both ends of b1 and c1 lie on the boundary of τ , but it is not the 
ase for a1 or anyother string (i.e., all the strings appearing on the boundary of τ have an end inside τ ex
ept
b1 and c1).

a2

c1

ap

cr
b1

bq

τ

Figure 3: Property 1Before proving that ea
h 3-bounded W-triangulation has Property 1, we give some def-initions and we present Property 2. Consider a 3-bounded W-triangulation T 6= K3 whoseboundary is (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr) and su
h that T does not 
ontain any 
hord
aibj or aicj . Let D ⊆ Vi(T ) be the set of inner-verti
es of T that are adja
ent to some vertex
ai with i > 1 (the bla
k verti
es on the left of Figure 4). Sin
e T has at least 4 verti
es, no5



separating 3-
y
le, and no 
hord aiaj, aibj , or aicj , then a1 and a2 (resp. b1 and b2) haveexa
tly one 
ommon neighbor in Vi(T ) that will be denoted a (resp. d1).Sin
e there is no 
hord aiaj , aibj, or aicj , for ea
h vertex ai with i ∈ [2, p − 1], all theneighbors of ai (resp. ap) ex
ept ai−1 and ai+1 (resp. ap−1 and b2) are in D. Sin
e for ea
h
i ∈ [2, p], there is a path linking the neighbors of ai in D, and sin
e the verti
es ai and ai+1have a 
ommon neighbor in D, then the set D indu
es a 
onne
ted graph. Sin
e a is in D,the set D ∪ {a1} also indu
es a 
onne
ted graph.De�nition 5 The adja
ent path of T with respe
t to the 3-boundary (a1, . . . , ap)-(b1, . . . , bq)-
(c1, . . . , cr) is the shortest path linking d1 and a1 in T [D∪{a1}] (the graph indu
ed by D∪{a1}).This path will be denoted (d1, d2, . . . , ds, a1).Observation 1 There exists neither an edge didj with 2 ≤ i + 1 < j ≤ s, nor an edge a1diwith 1 ≤ i < s. Otherwise, (d1, d2, . . . ds, a1) would not be the shortest path between d1 and a1.

Td2a5

a1

a2

b2
ds d1d2

a3

c1 = bq

a4 a5 b1 = ap

a1

b2
ds d1d2

c1 = bq

a5 b1 = ap

TFigure 4: the adja
ent path of T and the graph Td2a5
.De�nition 6 For ea
h edge dxay ∈ E(T ) with x ∈ [1, s] and y ∈ [2, p], the graph Tdxay

is thegraph lying inside the 
y
le C = (a1, ds, . . . , dx, ay, . . . , ap, b2, . . . , bq, c2, . . . , cr) (see Figure 4).Note that sin
e D ⊆ Vi(T ), C is a 
y
le and by Lemma 2, Tdxay
is a W-triangulation. Thefollowing property des
ribes the shape of a PS-representation of Tdxay

.Property 2 Consider a 3-bounded W-triangulation T with a 3-boundary (a1, . . . , ap)-(b1, . . . ,
bq)-(c1, . . . , cr) that does not have any 
hord aibj or aicj and let (d1, d2, . . . , ds, a1) be itsadja
ent path. Consider an edge dxay ∈ E(T ) with y > 1. The W-triangulation Tdxay

hasProperty 2 if Tdxay
has a PS-representation (Σ, R, F ) satisfying the following properties (seeFigure 5):(a) F = Eo(G) \ {dxay},(b) Every string v ∈ Σ \ {dx,ay} is 
ontained in a region τ of the plane homeomorphi
 tothe disk. Furthermore dx and ay have their ends in τ (or on the boundary of τ) but they
ross ea
h other outside τ . 6



(
) ea
h fa
e-region of R is 
ontained inside τ ,(d) on the boundary of τ we su

essively have the ends of ay, . . . ,ap,b1, . . . ,bq, c1, . . . , cr,
a1,ds, . . . ,dx+1, and then we su

essively have internal points of dx,ay,dx, and ay.

cr

a1 ds

c2

c1

τ

dx ay

ay
ap

b1

b2

bq

Figure 5: Property 2.Here again, if going 
lo
kwise (resp. anti
lo
kwise) around the boundary of τ , we 
rossthe strings in the order des
ribed in (d), we say that the PS-representation is 
lo
kwise (resp.anti
lo
kwise). In the proof of Theorem 2, we only use Property 1. However, in order to proveProperty 1, we use Property 2. We prove these two properties by doing a �
rossed� indu
tion.Proof of Property 1 and Property 2We prove, by indu
tion on m ≥ 3, that the following two statements hold:- Property 1 holds if T has at most m edges.- Property 2 holds if Tdxay
has at most m edges.The initial 
ase, m = 3, is easy to prove sin
e there is only one W-triangulation having atmost 3 edges, K3. For Property 1, we have to 
onsider all the possible 3-boundaries of K3.All these 3-boundaries are equivalent, so let V (K3) = {a, b, c} and 
onsider the 3-boundary

(a, b)-(b, c)-(c, a). In Figure 6 there is a PS-representation (Σ, R, F ) of K3 with F = {bc, ac}that ful�lls Property 1. For Property 2, sin
e a W-triangulation Tdxay
has at least 4 verti
es,

a1, b1, c1, and d1, we have Tdxay
6= K3 and there is no W-triangulation Tdxay

with at most 3edges. So by va
uity, Property 2 holds for Tdxay
with at most 3 edges.The indu
tion step applies to both Property 1 and Property 2. This means that we proveProperty 1 (resp. Property 2) for the W-triangulations T (resp. Tdxay

) with m edges usingboth Property 1 and Property 2 on W-triangulations with less than m edges. We �rst provethe indu
tion for Property 1. 7



τ

c

a

b

abc

Figure 6: Initial 
ase for Property 1.Case 1: Proof of Property 1 for a W-triangulation T with m edges. Let (a1, . . . , ap)-
(b1, . . . , bq)-(c1, . . . , cr) be the 3-boundary of T 
onsidered. We distinguish di�erent 
asesa

ording to the existen
e of a 
hord aibj or aicj in T . We su

essively 
onsider the 
asewhere there is a 
hord a1bi, with 1 < i < q, the 
ase where there is a 
hord aibj, with
1 < i < p and 1 < j ≤ q, and the 
ase where there is a 
hord aicj , with 1 < i ≤ p and
1 < j < r. We then �nish with the 
ase where there is no 
hord aibj, with 1 ≤ i ≤ p and
1 ≤ j ≤ q (by de�nition of 3-boundary, T has no 
hord a1bq, aib1, or apbj), and no 
hord aicj ,with 1 ≤ i ≤ p and 1 ≤ j ≤ r (by de�nition of 3-boundary, T has no 
hord apc1, aicr, or a1cj).

b1 = ap

c1 = bq

bi

T2

T1

T

a1 = crFigure 7: Case 1.1: Chord a1bi.Case 1.1: There is a 
hord a1bi, with 1 < i < q (see Figure 7). Let T1 (resp. T2) be thesubgraph of T that lies inside the 
y
le (a1, bi, . . . , bq, c2, . . . , cr) (resp. (a1, a2, . . . , ap, b2, . . . , bi,
a1)). By Lemma 2, T1 and T2 are W-triangulations. Sin
e T has no 
hord axay, bxby, or
cxcy, (bi, a1)-(cr, . . . , c1)-(bq, . . . , bi) (resp. (a1, . . . , ap)-(b1, . . . , bi)-(bia1)) is a 3-boundary of
T1 (resp. T2). Furthermore, sin
e a1a2 /∈ E(T1) and c1c2 /∈ E(T2), T1 and T2 have lessedges than T and Property 1 holds for T1 and T2 with the mentioned 3-boundaries. Let
(Σ1, R1, F1) (resp. (Σ2, R2, F2)) be a 
lo
kwise (resp. anti
lo
kwise) PS-representation 
on-tained in the region τ1 (resp. τ2) obtained for T1 (resp. T2) with F1 = Eo(T1) \ {a1bi} (resp.
F2 = Eo(T2) \ {a1a2}). In Figure 8 we show how to asso
iate these two representations toobtain (Σ, R, F ), an anti
lo
kwise PS-representation of T 
ontained in τ . Note that the twostrings a1 (resp. bi) from Σ1 and Σ2 have been linked.We easily verify that (Σ, R, F ) satis�es Property 1:

• Σ is a string representation of T \ F with F = Eo(T ) \ {a1a2}. Indeed, sin
e V (T1) ∪
V (T2) = V (T ) and V (T1) ∩ V (T2) = {a1, bi}, every vertex v ∈ V (T ) has exa
tly one8



τ1

τ2

c1

a1

bi

a1

a2
ap

b1

bq

bi bicr

Figure 8: Case 1.1: (Σ, R, F ).string in Σ. Furthermore, sin
e (E(T1) \ F1) ∪ (E(T2) \ F2) = E(T ) \ F , Σ is a stringrepresentation of T \ F .
• Σ is a 1-string representation. The only edge that belongs to both T1 and T2 is a1bi.Sin
e a1 and bi 
ross ea
h other in Σ1 (a1bi /∈ F1) but not in Σ2 (a1bi ∈ F2), a1 and bi
ross exa
tly on
e in Σ.
• (Σ, R) is �strong�: Ea
h inner-fa
e of T is an inner-fa
e in T1 or T2 and the regions τ1and τ2 are disjoint (so the fa
e-regions in τ1 are disjoint from the fa
e-regions in τ2).Finally we see in Figure 8 that point (b) of Property 1 is satis�ed.

T

a1 = cr b1 = ap

c1 = bq

ai

bj

T2

T1

Figure 9: Case 1.2: Chord aibj.Case 1.2: There is a 
hord aibj, with 1 < i < p and 1 < j ≤ q (see Figure 9).If there are several 
hords aibj , we 
onsider one that maximizes j, i.e., there is no 
hord
aibk with j < k ≤ q. Let T1 (resp. T2) be the subgraph of T that lies inside the 
y
le
(a1, a2, . . . , ai, bj , . . . , bq, c2, . . . , cr) (resp. (ai, . . . , ap, b2, . . . , bj , ai)). By Lemma 2, T1 and T2are W-triangulations. Sin
e T has no 
hord axay, bxby, cxcy, or aibk with k > j, (a1, . . . , ai)-
(ai, bj , . . . , bq)-(c1, . . . , cr) (resp. (ai, bj)-(bj , . . . , b1)-(ap, . . . , ai)) is a 3-boundary of T1 (resp.
T2). Furthermore, sin
e b1b2 /∈ E(T1) and a1a2 /∈ E(T2), T1 and T2 have less edges than Tand Property 1 holds for T1 and T2 with the mentioned 3-boundaries. Let (Σ1, R1, F1) (resp.
(Σ2, R2, F2)) be an anti
lo
kwise (resp. 
lo
kwise) PS-representation 
ontained in the region τ1(resp. τ2) obtained for T1 (resp. T2), with F1 = Eo(T1) \ {a1a2} (resp. F2 = Eo(T2) \ {aibj}).In Figure 10 we show how to asso
iate these two representations to obtain (Σ, R, F ), ananti
lo
kwise PS-representation of T 
ontained in τ . Note that in this 
onstru
tion the twostrings ai (resp. bj) from Σ1 and Σ2 have been linked.9



bq

τ2

c1

b1

apai

bj

ai

ai
cr

bj

a2

τ1
bj

Figure 10: Case 1.2: (Σ, R, F ).As in Case 1.1, we easily verify that (Σ, R, F ) satis�es Property 1.
T

a1 = cr b1 = ap

c1 = bq

cj

ai

T2

T1

Figure 11: Case 1.3: Chord aicj .Case 1.3: There is a 
hord aicj, with 1 < i ≤ p and 1 < j < r (see Figure 11).If there are several 
hords aicj , we 
onsider one whi
h maximizes i, i.e., there is no 
hord
akcj with i < k ≤ p. Let T1 (resp. T2) be the subgraph of T that lies inside the 
y
le
(a1, a2, . . . , ai, cj , . . . , cr) (resp. (cj , ai, . . . , ap, b2, . . . , bq, c2, . . . , cj)). By Lemma 2, T1 and T2are W-triangulations. Sin
e T has no 
hord axay, bxby, cxcy or akcj with k > i, (a1, . . . , ai)-
(ai, cj)-(cj , . . . , cr) (resp. (cj , ai, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cj)) is a 3-boundary of T1 (resp.
T2). Furthermore, sin
e b1b2 /∈ E(T1) and a1a2 /∈ E(T2), T1 and T2 have less edges than
T and Property 1 holds for T1 and T2 with the mentioned 3-boundaries. Let (Σ1, R1, F1)(resp. (Σ2, R2, F2)) be an anti
lo
kwise PS-representation 
ontained in the region τ1 (resp.
τ2) obtained for T1 (resp. T2), with F1 = Eo(T1) \ {a1a2} (resp. F2 = Eo(T2) \ {cjai}).In Figure 12 we show how to asso
iate these two representations to obtain (Σ, R, F ), ananti
lo
kwise PS-representation of T 
ontained in τ . Note that in this 
onstru
tion the twostrings ai (resp. cj) from Σ1 and Σ2 have been linked.As in Case 1.1, we easily verify that (Σ, R, F ) satis�es Property 1.Case 1.4: There is no 
hord aibj, with 1 ≤ i ≤ p and 1 ≤ j ≤ q, and no 
hord aicj,with 1 ≤ i ≤ p and 1 ≤ j ≤ r (see Figure 13). In this 
ase we 
onsider the adja
ent path
(d1, . . . , ds, a1) (see Figure 4) of T with respe
t to its 3-boundary, (a1, . . . , ap)-(b1, . . . , bq)-
(c1, . . . , cr). Consider the edge dsay, with 1 < y ≤ p and whi
h minimizes y. This edgeexists sin
e, by de�nition of the adja
ent path, ds is adja
ent to some vertex ay with y > 1.The W-triangulation Tdsay

having less edges than T (a1a2 /∈ E(Tdsay
)), Property 2 holds for10



a2

cr

ai

ai

cj
cj

τ1

τ2cj

ci

bq

b1

apai

Figure 12: Case 1.3: (Σ, R, F ).
Tdsay

. Let (Σ′, R′, F ′) be an anti
lo
kwise PS-representation almost 
ontained in the region
τ ′ obtained for Tdsay

, with F ′ = Eo(Tdsay
) \ {dsay}.

b1 = ap

ds

ay

c1 = bq

cr = a1cr = a1

Tdsay e2

a2
a1 = cr a2

e1

ay

ds

cr−1

ds

cr−1

T1

Figure 13: Case 1.4: No 
hord aibj or aicj .Now we distinguish two 
ases a

ording to the position of ay: either y = 2 (Case 1.4.1),or y > 2 (Case 1.4.2).Case 1.4.1: y = 2. In Figure 14, starting from (Σ′, R′, F ′), we show how to extend thestring a1 ∈ Σ′ (in order to 
ross ds and a2) and how to draw the (a1, a2, ds)-region a1a2ds toobtain (Σ, R, F ), an anti
lo
kwise PS-representation of T 
ontained in a region τ .One 
an verify on Figure 14 that (Σ, R, F ) satis�es Property 1.Case 1.4.2: y > 2. Let us denote e1, e2, . . . , et the neighbors of ds stri
tly inside the 
y
le
(ds, a1, a2, . . . , ay, ds), going �from right to left� (see Figure 13). By minimality of y we have
ei 6= aj, for all 1 ≤ i ≤ t and 1 ≤ j ≤ y.Let T1 be the subgraph of T that lies inside the 
y
le (a1, . . . , ay, e1, . . . , et, a1). ByLemma 2, T1 is a W-triangulation. Sin
e the W-triangulation T has no separating 3-
y
le
(ds, a1, ei), (ds, ay, ei) or (ds, ei, ej), there exists no 
hord a1ei, ayei or eiej in T1. So (a2, a1)-
(a1, et, . . . , e1, ay)-(ay, . . . , a2) is a 3-boundary of T1. Finally, sin
e T1 has less edges than
T (a1ds /∈ E(T1)), Property 1 holds for T1 with respe
t to the mentioned 3-boundary. Let
(Σ1, R1, F1) be a 
lo
kwise PS-representation 
ontained in the region τ1 obtained for T1, with
F1 = E0(T1) \ {a2a1}. 11



τ
′

cr

dsa1

ap

c2

c1 bq

b2

b1

a2

a2

a1a2ds

Figure 14: Case 1.4.1.In Figure 15, starting from (Σ′, R′, F ′) and (Σ1, R1, F1), we show how to join the strings
a1 (resp. ay) of Σ′ and Σ1, how to extend the strings ei, for 1 ≤ i ≤ t, and how to drawthe fa
e-regions aye1ds, eta1ds, and eiei−1ds, for 2 ≤ i ≤ t, in order to obtain (Σ, R, F ), ananti
lo
kwise PS-representation of T 
ontained in a region τ .

a1 ds

a1

a3
a2

ay

ay

cr

ay ay+1

ds

τ
′

et

e1τ1

dsa1et
dse1e2

dsaye1

Figure 15: Case 1.4.2.We verify that (Σ, R, F ) satis�es Property 1:
• Σ is a string representation of T \F with F = Eo(T ) \ {a1a2}. Indeed, sin
e V (Tdsay

)∪12



V (T1) = V (T ) and V (Tdsay
) ∩ V (T1) = {a1, ay}, every vertex v ∈ V (T ) has exa
tlyone string in Σ. Furthermore, sin
e E(T ) \ F = (E(Tdsay

) \ F ′) ∪ (E(T1) \ F1) ∪
{aye1, eta1, dsa1} ∪ {eiei−1 | i ∈ [2, t]} ∪ {dsei | i ∈ [1, t]}, Σ is a string representation of
T \ F .

• Σ is a 1-string representation. Indeed Tdsay
and T1 do not have 
ommon edges, and thenew 
rossings added 
orrespond to edges missing in both E(Tdsay

) \ F ′ and E(T1) \ F1.
• (Σ, R) is �strong�: The only inner-fa
es of T not in Tdsay

nor in T1 are the fa
es dsaye1,
dsa1et and dseiei+1, with 1 ≤ i < t. These fa
es 
orrespond to the new fa
e-regions.Finally we see in Figure 15 that point (b) of Property 1 is satis�ed.So Property 1 holds for any W-triangulation T with m edges and this 
on
ludes the proofof Case 1.Case 2: Proof of Property 2 for a W-triangulation Tdxay

with m edges. Re-
all that the W-triangulation Tdxay
is a subgraph of a W-triangulation T with 3-boundary

(a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr). Moreover, T has no 
hord aibj or aicj and its adja
entpath is (d1, . . . , ds, a1), with s ≥ 1. We distinguish the 
ase where dxay = d1ap and the 
asewhere dxay 6= d1ap.
c1

ds

b1 = ap

b2

d1
a1

a2

T1

Figure 16: Case 2.1: Tdxay
= Td1ap

.Case 2.1: dxay = d1ap (see Figure 16). Let T1 be the subgraph of Td1ap
that lies insidethe 
y
le (a1, ds, . . . , d1, b2, . . . , bq, c2, . . . , cr). By Lemma 2, T1 is a W-triangulation. ThisW-triangulation has no 
hord bibj, cicj , didj , or a1dj. We 
onsider two 
ases a

ording to theexisten
e of an edge d1bi with 2 < i ≤ q.

• If T1 has no 
hord d1bi then (d1, b2, . . . , bq)-(c1, . . . , cr)-(a1, ds, . . . , d1) is a 3-boundaryof T1.
• If T1 has a 
hord d1bi, with 2 < i ≤ q, note that q > 2 and that there 
annot be a 
hord

b2a1 or b2dj , with 1 < j ≤ s (this would violate the planarity of Tdxay
, see Figure 16)So in this 
ase, (b2, d1, . . . , ds, a1)-(cr, . . . , c1)-(bq, . . . , b2) is a 3-boundary of T1.Finally, sin
e T1 is a W-triangulation with less edges than Td1ap

(b1b2 /∈ E(T1)), Property 1holds for T1 with respe
t to at least one of the two mentioned 3-boundaries. Whi
hever 3-boundary we 
onsider, we obtain a PS-representation (Σ1, R1, F1) of T1 
ontained in a region
τ1, with the same following 
hara
teristi
s: 13



• F1 = Eo(T ) \ {d1b2},
• in the boundary of τ1 we su

essively meet the ends of d1, . . . ,ds,a1, cr, . . . , c1,bq, . . . ,

b2 (
lo
kwise or anti
lo
kwise).In Figure 17 we modify (Σ1, R1, F1), by extending the strings d1 and b2 and by adding a newstring ap and a new fa
e-region d1b2ap. This leads to (Σ, R, F ), a PS-representation of Td1ap
ontained in a region τ .
τ1

ap

d1b2ap

d1

b2

ds
a1

cr

bqc1

b1

Figure 17: Case 2.1: (Σ, R, F ).We verify that (Σ, R, F ) satis�es Property 2:
• Σ is a 1-string representation of Td1ap

\ F : Indeed, E(Td1ap
) \ F is the disjoint union of

E(T1) \ F1 and {apd1}.
• (Σ, R) is �strong�: The only inner-fa
e of Td1ap

that is not an inner-fa
e of T1 is d1apb2,whi
h 
orresponds to the new fa
e-region d1apb2.Finally we see in Figure 17 that the other points of Property 2 are satis�ed.Case 2.2: Tdxay
6= Td1ap

. In this 
ase we 
onsider an edge dzaw ∈ E(Tdxay
) su
h that

dzaw 6= dxay. Among all the possible edges dzaw we 
hoose the one that �rst maximizes zand then minimizes w. Su
h an edge ne
essarily exists and a
tually one 
an see that dz = dxor dz = dx−1. Indeed, if dx = d1 there is at least one edge d1aw with w > y, the edge d1ap.If x > 1, it is 
lear by de�nition of the adja
ent path that the vertex dx−1 is adja
ent to atleast one vertex aw with w ≥ y.By Lemma 2, Tdzaw
is a W-triangulation. Sin
e dxay /∈ E(Tdzaw

), the W-triangulation
Tdzaw

has less edges than Tdxay
, and so Property 2 holds for Tdzaw

. Let (Σ′, R′, F ′) be ananti
lo
kwise PS-representation almost 
ontained in the region τ ′ obtained for Tdzaw
, with

F ′ = Eo(Tdzaw
) \ {dzaw}.We distinguish 4 
ases a

ording to the edge dzaw. When z = x we 
onsider the 
asewhere w = y + 1 and the 
ase where w > y + 1. When z = x − 1 we 
onsider the 
ase where

w = y and the 
ase where w > y.
14



Tdzaw

ay

dx = dz

a1 = cr

b1 = ap

c1 = bq

b1 = ap

c1 = bq

dz

aw

awFigure 18: Case 2.2.1: z = x and w = y + 1.
τ
′

cr

a1 ds

aw

ay

aw

c1

c2

dx

ayawdx

ap

b1

b2

bq

Figure 19: Case 2.2.1: (Σ, R, F ).Case 2.2.1: Tdxay
6= Td1ap

, z = x and w = y +1 (see Figure 18). In Figure 19 we modify
(Σ′, R′, F ′), by adding a new string ay and a new fa
e-region ayawdx. This leads to (Σ, R, F ),an anti
lo
kwise PS-representation of Tdxay

almost 
ontained in a region τ .We verify that (Σ, R, F ) satis�es Property 2:
• Σ is a 1-string representation of Tdxay

\ F : Indeed, E(Tdxay
) \ F is the disjoint union of

E(Tdzaw
) \ F ′ and {dxay}.

• (Σ, R) is �strong�: The only inner-fa
e of Tdxay
that is not an inner-fa
e of Tdzaw

is
dxayaw, whi
h 
orresponds to the new fa
e-region dxayaw.Finally we see in Figure 19 that the other points of Property 2 are satis�ed.Case 2.2.2: z = x − 1 and w = y (see Figure 20). In Figure 21, we modify (Σ′, R′, F ′)by extending the string dx and by adding a new fa
e-region dxdzay. This leads to (Σ, R, F ),an anti
lo
kwise PS-representation of Tdxay

almost 
ontained in a region τ .We verify that (Σ, R, F ) satis�es Property 2:
• Σ is a 1-string representation of Tdxay

\ F : Indeed, E(Tdxay
) \ F is the disjoint union of

E(Tdzaw
) \ F ′ and {dxdz, dxay}. 15



ay = aw

a1 = cr

Tdzaw

c1 = bqc1 = bq

dz

b1 = ap

dx

dx dz

ay = aw

Figure 20: Case 2.2.2: Tdxay
6= Td1ap

, z = x − 1 and w = y.
c1

c2

ap
ay

dxdzay

awdx
ds

a1

cr τ
′

dz
b1

b2

bq

Figure 21: Case 2.2.2: (Σ, R, F ).
• (Σ, R) is �strong�: The only inner-fa
e of Tdxay

that is not an inner-fa
e of Tdzaw
is

dxdzay, whi
h 
orresponds to the new fa
e-region dxdzay.Finally we see in Figure 21 that the other points of Property 2 are satis�ed.Case 2.2.3: z = x and w > y + 1 (see Figure 22). Let us denote e1, e2, . . . , et theneighbors of dx stri
tly inside the 
y
le (dx, ay, . . . , aw, dx), going �from right to left� (seeFigure 22). Sin
e there is no 
hord aiaj we have t ≥ 1. Furthermore by minimality of w wehave ei 6= aj, for all 1 ≤ i ≤ t and y ≤ j ≤ w. Let T1 be the subgraph of Tdxay
that liesinside the 
y
le (ay, . . . , aw, e1, . . . , et, ay). By Lemma 2, T1 is a W-triangulation. Sin
e theW-triangulation Tdxay

has no separating 3-
y
le (dx, aw, ei) or (dx, ei, ej), there exists no 
hord
awei or eiej in T1. With the fa
t that t ≥ 1, we know that (et, ay)-(ay, . . . , aw)-(aw, e1, . . . , et)is a 3-boundary of T1. Finally, sin
e T1 has less edges than Tdxay

(dxay /∈ E(T1)), Property 1holds for T1 with respe
t to the mentioned 3-boundary. Let (Σ1, R1, F1) be an anti
lo
kwise16



Tdzaw

c1 = bqc1 = bq

dz

aw

b1 = ap

a1 = cr

dx = dz

aw

e1
e2

T1ay

Figure 22: Case 2.2.3: Tdxay
6= Td1ap

, z = x and w > y + 1.PS-representation 
ontained in the region τ1 obtained for T1, with F1 = E0(T1) \ {etay}.In Figure 23, starting from (Σ′, R′, F ′) and (Σ1, R1, F1), we show how to join the strings
aw of Σ′ and Σ1, how to extend the string ay and the strings ei, for 1 ≤ i ≤ t, and howto draw the fa
e-regions ayetdx, e1awdx, and eiei−1dx, for 1 < i ≤ t, in order to obtain
(Σ, R, F ), an anti
lo
kwise PS-representation of Tdxay


ontained in a region τ .
dxe1e2

aw+1

τ
′

dxayet

et

ay

e1

aw
ay

cr

a1 ds dx

aw

aw

τ1

dxawe1

Figure 23: Case 2.2.3: (Σ, R, F ).We verify that (Σ, R, F ) satis�es Property 2:
• Σ is a 1-string representation of Tdxay

\F with F = Eo(Tdxay
)\{dxay}: Indeed, E(Tdxay

)\
F is the disjoint union of E(Tdzaw

) \ F ′, E(T1) \ F1, and {awe1, dxay} ∪ {eiei−1 | i ∈
[2, t]} ∪ {dxei | i ∈ [1, t]}.

• (Σ, R) is �strong�: The only inner-fa
es of Tdxay
that are not inner-fa
es in Tdzaw

or T1are dxayet, dxawe1, and the fa
es dxeiei−1, for 2 ≤ i ≤ t, whi
h 
orrespond to the newfa
e-regions.Finally we see in Figure 23 that the other points of Property 2 are satis�ed.17



Tdzaw

a1 = cr

dx dz

away

e1f2

c1 = bqc1 = bq

dz

aw

b1 = ap

dx

T1

f1 e2

Figure 24: Case 2.2.4: Tdxay
6= Td1ap

, z = x − 1 and w > y.Case 2.2.4: z = x − 1 and w > y (see Figure 24). Let us denote e1, e2, . . . , et theneighbors of dz stri
tly inside the 
y
le (dz , dx, ay, . . . , aw, dz), going �from right to left� (seeFigure 24). By maximality of z, there is no edge dxaw, so t ≥ 1. Let us denote f1, . . . , fu theneighbors of dx stri
tly inside the 
y
le (dx, ay, . . . , aw, dz, dx), going �from right to left� (seeFigure 24). Note that f1 = et and that by minimality of w, there is no edge dzay, so u ≥ 1.By minimality of w (resp. maximality of z) we have ei 6= aj (resp. fi 6= aj), for all
1 ≤ i ≤ t (resp. 1 ≤ i ≤ u) and y ≤ j ≤ w. Let T1 be the subgraph of Tdxay

that liesinside the 
y
le (ay, . . . , aw, e1, . . . , et, f2, . . . , fu, ay). By Lemma 2, T1 is a W-triangulation.Sin
e the W-triangulation Tdxay
has no separating 3-
y
le (dz, aw, ei), (dz , ei, ej), (dx, fi, fj),or (dx, fi, ay), there exists no 
hord awei, eiej , fifj, or fiay in T1. With the fa
t that t ≥ 1and u ≥ 1, we know that (f1, f2, . . . , fu, ay)-(ay, . . . , aw)-(aw, e1, . . . , et) is a 3-boundary of

T1. Finally, sin
e T1 has less edges than Tdxay
(dxay /∈ E(T1)), Property 1 holds for T1 withrespe
t to the mentioned 3-boundary. Let (Σ1, R1, F1) be an anti
lo
kwise PS-representation
ontained in the region τ1 obtained for T1, with F1 = E0(T1) \ {f1f2}.In Figure 25, starting from (Σ′, R′, F ′) and (Σ1, R1, F1), we show how to join the strings

aw of Σ′ and Σ1, how to extend the string dx, ay, the strings ei for 1 ≤ i ≤ t, and thestrings fi for 2 ≤ i ≤ u, and how to draw the fa
e-regions dzawe1, dzeiei−1, for 2 ≤ i ≤ t,
dzdxet, dxfifi−1, for 2 ≤ i ≤ u, and dxayfu in order to obtain (Σ, R, F ), an anti
lo
kwisePS-representation of Tdxay

almost 
ontained in a region τ .We verify that (Σ, R, F ) satis�es Property 2:
• Σ is a 1-string representation of Tdxay

\F with F = Eo(Tdxay
)\{dxay}: Indeed, E(Tdxay

)\
F is the disjoint union of E(Tdzaw

)\F ′, E(T1)\F1, and {dxay, dxdz, awe1, ayfu}∪{dzei |
i ∈ [1, t]} ∪ {dxfi | i ∈ [1, u]} ∪ {eiei−1 | i ∈ [2, t]} ∪ {fifi−1 | i ∈ [2, u]}.

• (Σ, R) is �strong�: The only inner-fa
es of Tdxay
that are not inner-fa
es in Tdzaw

or T1are dzawe1, dzeiei−1 for 2 ≤ i ≤ t, dzdxet, dxfifi−1 for 2 ≤ i ≤ u, and dxayfu, whi
h
orrespond to the new fa
e-regions.Finally we see in Figure 25 that the other points of Property 2 are satis�ed. So, Property 2holds for any W-triangulation Tdxay
with m edges and this 
ompletes the proofs of Property 1and Property 2. 218



dzawe1

dzdxet

τ
′

τ1

ay

fu

aw

cr

aw

aw

aw+1

e1

dz

ds dx
a1

et

f2

dxayfu

dxf2f1

Figure 25: Case 2.2.4: (Σ, R, F ).4 Proof in the general 
aseTheorem 3 Every triangulation T admits an S-representation (Σ, R).Proof. We prove this result by indu
tion on the number of separating 3-
y
les. Note thatany triangulation T is 3-
onne
ted, and that if T has no separating 3-
y
le, then T is 4-
onne
ted and is a W-triangulation. Consequently, if T is a 4-
onne
ted triangulation whoseouter-verti
es are a, b, and c, then T is a W-triangulation 3-bounded by (a, b)-(b, c)-(c, a). ByProperty 1, T admits a PS-representation (Σ, R, F ), with F = {bc, ca}, that is 
ontained ina region τ . Furthermore, in the boundary of τ we su

essively meet the ends of b,b, c, c,a.To obtain an S-representation of T , it is su�
ient to extend a, b, and c outside of τ so that
c 
rosses a and b, as depi
ted in Figure 26.

τ

c c

b

b

a

Figure 26: S-representation of T from (Σ, R, F ).Suppose now that T is a triangulation that 
ontains at least one separating 3-
y
le. Con-sider a separating 3-
y
le (a, b, c) su
h that there is no other separating 3-
y
le lying inside.This implies that the triangulation T ′ indu
ed by the verti
es on and inside (a, b, c) is 4-
onne
ted.Let T1 be the triangulation obtained by removing the verti
es lying stri
tly inside (a, b, c).Let T2 be the subgraph of T indu
ed by the verti
es lying stri
tly inside (a, b, c) (i.e., T2 =19



T ′ \{a, b, c}). In T1, the 
y
le (a, b, c) is a fa
e of the triangulation and is no more a separating3-
y
le. Thus T1 has one separating 
y
le less than T , and so we have by indu
tion hypothesisthat T1 admits an S-representation (Σ1, R1). This S-representation 
ontains a fa
e-region abc
orresponding to the fa
e abc. Without loss of generality, say that abc is an (a, b, c)-region,as depi
ted in Figure 27.
(Σ1, R1)

c

a

b

abc
a

Figure 27: In the S-representation (Σ1, R1) of T1, the (a, b, c)-region abc.Sin
e T ′ is a triangulation with at least four verti
es, the neighbors of any vertex v ∈ V (T ′)indu
e a 
y
le. Suppose that the vertex a (resp. b and c) has exa
tly one neighbor v thatlies inside (a, b, c). Then there exists a 
y
le (b, v, c) (resp. (a, v, c) and (a, v, b)) in T ′ and
onsequently v is a neighbor of a, b, and c in T ′. Suppose that there exists another vertex win T ′, then w lies either inside the 
y
le (a, v, b), inside (a, v, c), or inside (b, v, c) and then oneof these 
y
les is a separating 3-
y
le. This is impossible by de�nition of (a, b, c). So we 
andistinguish two 
ases (see Figure 28), (A) the 
ase where T2 is a single vertex, and (B) the
ase where ea
h of the verti
es a, b, and c has at least two neighbors inside (a, b, c).
b

c

a

b

c

a

Figure 28: The 
ases (A) and (B).Case (A): T2 is a single vertex v. To obtain an S-representation (Σ, R) of T (see Fig-ure 29), we add a string v in (Σ1, R1). Sin
e E(T ) \E(T1) = {va, vb, vc} this string v 
rosses
a,b, c. Moreover, we also de�ne three disjoint fa
e-regions acv,vb
,vab that 
orrespondrespe
tively to the fa
es acv, vbc, vab.Sin
e (Σ1, R1) is an S-representation of T1 and sin
e v,a
v,vb
,vab are drawn inside
abc, it is 
lear that (Σ ∪ {v}, (R \ {ab
}) ∪ {a
v,vb
,vab}) is an S-representation of T .Case (B): Ea
h of the verti
es a, b, and c has at least two neighbors inside (a, b, c).There exists a 
y
le (c, a1, . . . , ap, b) (resp. (a, b1, . . . , bq, c) and (b, c1, . . . , cr, a)) in T ′ whoseverti
es are exa
tly the neighbors of a (resp. b and c). We already know that p > 1, q > 1, r > 1and that ap = b1, bq = c1, and cr = a1. Moreover, sin
e b1 and c (resp. c1 and a, and a1 and
b) are the only two 
ommon neighbors of a and b (resp. b and c, and a and c) in T ′ (otherwise20



v

vab

a

bc

acv

vbc

a

Figure 29: Case (A): Modi�
ations inside abc.there would be a separating 3-
y
le) then (a1, . . . , ap = b1, . . . , bq = c1, . . . , cr = a1) is a 
y
le.This implies from Lemma 2 that T2 is a W-triangulation.Suppose that there exists an edge aiaj (resp. bibj , cicj) with 1 < i+1 < j ≤ p (resp. 1 < i+
1 < j ≤ q, 1 < i+1 < j ≤ r). Then, the 
y
le (a, ai, aj) (resp. (b, bi, bj), (c, ci, cj)) would be aseparating 3-
y
le of T ′. Consequently, T2 is 3-bounded by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr).With respe
t to this 3-boundary, T2 has an anti
lo
kwise PS-representation (Σ2, R2, F2), with
F2 = Eo \ {a1a2} (
.f. Property 1). Let τ2 be a region of abc 
ontaining this representation.Sin
e abc is an (a, b, c)-region, on its boundary we su

essively 
ross a,a,b,b, c,a and cwhen going anti
lo
kwise (by doing an axial symmetry if ne
essary).In Figure 30, starting from (Σ1, R1) and (Σ2, R2) we obtain (Σ, R). We extend the strings
a2, . . . ,ap,b1, . . . ,bq, c1, . . . , cr to obtain the 
rossings that 
orrespond to the edges in the set
E(T )\ (E(T1)∪ (E(T2)\F2)) = {aai | i ∈ [1, p]}∪{bbi | i ∈ [1, q]}∪{cci | i ∈ [1, r]}∪{aiai+1 |
i ∈ [2, p−1]}∪{bibi+1 | i ∈ [1, q−1]}∪{cici+1 | i ∈ [1, r−1]}. We also de�ne fa
e-regions for thefa
es in the set {abb1, aca1, bcc1}∪{aaiai+1 | i ∈ [1, p−1]}∪{bbibi+1 | i ∈ [1, q−1]}∪{ccici+1 |
i ∈ [1, r − 1]}.Sin
e (Σ1, R1) is an S-representation of T1 and (Σ2, R2, F2) is a PS-representation of T2,
(Σ, R, F ) is an S-representation of T .

• Σ is a 1-string representation of T : Indeed, we added all the 
rossings 
orresponding tothe edges in E(T ) \ (E(T1) ∪ (E(T2) \ F2)).
• (Σ, R) is �strong�: Indeed, we added all the fa
e-regions 
orresponding to the inner-fa
esof T that are neither in T1 nor in T2.Consequently, every triangulation admits an S-representation, whi
h proves Theorem 3and then Theorem 2. 25 Con
lusionThe �rst and the se
ond author re
ently improved the result presented in this arti
le byproving Conje
ture 1 [2℄. For this they use the same de
omposition of triangulation but theirnotion of fa
e-region is quite di�erent. One should also mention that their 
onstru
tion doesnot 
orrespond to a stret
hing of the 1-string representation presented here.Finally, an interesting question is whether the result presented here holds for other surfa
es.For example, does any graph embedded on a surfa
e S have a 1-string representation on S ?21
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Figure 30: Case (B): Modi�
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