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Abstract5

In his PhD Thesis E.R. Scheinerman conjectured that planar graphs are in-6

tersection graphs of segments in the plane. This conjecture was proved with two7

different approaches by J. Chalopin and the author, and by the author, L. Isenmann,8

and C. Pennarun. In the case of 3-colorable planar graphs E.R. Scheinerman con-9

jectured that it is possible to restrict the set of slopes used by the segments to10

only 3 slopes. Here we prove this conjecture by using an approach introduced by11

S. Felsner to deal with contact representations of planar graphs with homothetic12

triangles.13

1 Introduction14

In this paper, we consider intersection representations for planar graphs. A segment15

representation of a graph G maps every vertex v ∈ V (G) to a segment v of the plane16

so that two segments u and v intersect if and only if uv ∈ E(G). Although this17

graph family is simply defined, it is not easy to manipulate. Actually, even if this class18

of graphs is small (there are less than 2O(n logn) such graphs with n vertices [16]) a19

segment representation may be long to encode (in the representations of some of these20

graphs the endpoints of the segments need at least 2
√
n bits to be coded [14]). There are21

also interesting open problems concerning this class of graphs. For example, we know22

that deciding whether a graph G admits a segment representation is NP-hard, actually23

it is even ∃R-complete [13], but it is still open whether this problem belongs to NP or24

not. Here we focus on segment representations for planar graphs.25

In his PhD Thesis, E.R. Scheinerman [17] conjectured that every planar graph has26

a segment representation. This conjecture attracted a lot of attention. H. de Fraysseix27

and P. Ossona de Mendez [6] proved it for a large family of planar graphs, the planar28

graphs having a 4-coloring in which every induced cycle of length 4 uses at most 329

colors. In particular, this implies the conjecture for 3-colorable planar graphs. Then30

J. Chalopin and the author finally proved this conjecture [2]. Recently, a much simpler31

∗This research is partially supported by the ANR GATO, under contract ANR-16-CE40-0009.
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Figure 1: The octahedron and a 3-slopes contact representation. It is unique, up to
vertex automorphism, up to scaling, and once the slopes are set.

proof was provided by the author, L. Isenmann, and C. Pennarun [10]. Here we focus32

on segment representations of planar graphs with further restrictions.33

In his PhD Thesis, E.R. Scheinerman [17] proved that every outerplanar graph has34

a segment representation where only 3 slopes are used, and where parallel segments35

do not intersect. Let us call such a representation a 3-slopes segment representation.36

This result led E.R. Scheinerman conjecture [18] (see also [6]) that such representation37

exists for every 3-colorable planar graph. Later, several groups proved a related result38

on bipartite planar graphs [3, 7, 11]. They proved that every bipartite planar graph has39

a 2-slopes segment representation, with the extra property that segments do not cross40

each other. Let us call such a representation a 2-slopes contact segment representation.41

More recently de Castro et al. [1] considered a particular class of 3-colorable planar42

graphs. They proved that every triangle-free planar graph has a 3-slopes contact seg-43

ment representation. Such a contact segment representation cannot be asked for any44

3-colorable planar graph. Indeed, up to isomorphism, the octahedron has only one 3-45

slopes contact segment representation depicted in Figure 1, and one can easily check46

that this representation does not extend to the (3-colorable) graph obtained after gluing47

a copy of an octahedron in each of its faces. However, we will use 3-slopes contact48

segment representations in the proof of our main result.49

Theorem 1 Every 3-colored planar graph has a 3-slopes segment representation such50

that parallel segments correspond to the color classes.51

A 3-slopes contact representation of a graph naturally induces such a representation52

for its induced subgraphs. As every 3-colored planar graph is the induced subgraph of53

some 3-colored triangulation we only consider the case of triangulations in the fol-54

lowing. In Section 2 we review some basic definitions. Section 3 is devoted to the55

so-called triangular contact schemes. It is shown that every 3-colorable triangulation56

admits such a scheme. Then, those schemes are used in Section 4 to build 3-slopes57

segment representations. Finally, we conclude with some remarks on 4-slopes segment58

representations.59
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2 Terminology60

A triangulation is a plane graph where every face has size three. A triangulation is61

simple if it has no loops nor multiple edges. Throughout the paper the considered62

triangulations are not necessarily simple, unless stated otherwise. A triangulation T63

is Eulerian if every vertex has even degree. It is folklore that these triangulations are64

the 3-colorable triangulations. Actually these triangulations are uniquely 3-colorable65

(up to color permutation). Hence their vertex set V (T ) is canonically partitioned into66

three independent sets A, B and C. In the following we will denote the vertices of67

these sets respectively ai with 0 ≤ i < |A|, bj with 0 ≤ j < |B|, and ck with68

0 ≤ k < |C|. In such a triangulation T any face is incident to one vertex ai, one vertex69

bj , and one vertex ck, and these vertices appear in this order either clockwisely or70

counterclockwisely. In the following, the vertices of the outerface are always denoted71

a0, b0 and c0, and they appear clockwisely in this order around T . As the orders of72

two adjacent faces are opposite, the dual graph of T is bipartite. Given an Eulerian73

triangulation T with face set F (T ), let us denote by F1(T ) and F2(T ) (or simply F174

and F2 if it is clear from the context) the face sets partitioning F (T ), such that no two75

adjacent faces belong to the same set, and such that F2(T ) contains the outer face. Note76

that by construction for any face f ∈ F1(T ) (resp. f ∈ F2(T )) its vertices ai, bj and ck77

appear in clockwise (resp. counterclockwise) order around f . Note that the vertices a0,78

b0 and c0 appear in clockwise order around T , but in counterclockwise order w.r.t. the79

outer face. Let n = |V (T )|. As T is a triangulation, by Euler’s formula it has 2n − 480

faces. Hence, as T ’s dual is bipartite and 3-regular, |F1(T )| = |F2(T )| = n− 2.81

In the following we build 3-slopes segment representations. The 3 slopes used are82

expected to be distinct, but apart from that the exact 3 slopes considered do not matter.83

Indeed, for any two triples of slopes, (s1, s2, s3) and (s′1, s
′
2, s
′
3), there exists an affine84

map of the plane turning any 3-slopes segment representation using slopes (s1, s2, s3)85

into a 3-slopes segment representation using slopes (s′1, s
′
2, s
′
3). We denote −→a ,

−→
b ,86

and −→c the vectors corresponding to slopes of the sets A, B , and C respectively. The87

magnitude of these vectors is chosen such that −→a +
−→
b +−→c =

−→
0 .88

3 TC-representations and TC-schemes89

We begin with the definition of particular 3-slopes contact representations illustrated90

in Figure 2.91

Definition 2 A Triangular 3-slopes Contact segment representation (TC-representation92

for short) is a 3-slopes contact segment representation using the same slopes as−→a ,
−→
b ,93

and −→c , and where:94

• Three segments a0, b0, and c0, form a triangle which contains all the other95

segments.96

• Every inner region is a triangle, whose each side is contained in a segment of the97

representation.98
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Figure 2: (left) Vectors −→a ,
−→
b , and −→c (middle) A TC-representation with various

types of intersection points. (right) Its induced graph, where gray faces are particular
degenerate faces. One has size six, and there are two faces of size three that correspond
to the same intersection point.

• Two parallel segments intersect on at most one point, their endpoint.99

Remark 3 In such a representation, an intersection point p is of one of the following100

four types (see Figure 2).101

• The intersection point of 2 outer segments;102

• the intersection point of 3 segments (with 3 distinct slopes) such that exactly two103

of them end at p;104

• the intersection point of 5 segments such that exactly four of them end at p (such105

a point will be generally considered as the merge of two intersection points of 3106

segments); or107

• the intersection point of 6 segments that have an end at p.108

Definition 4 Let the plane graph M(R) induced by a TC-representation R be the109

graph whose vertices correspond to the segments of the representation, and where two110

vertices are adjacent if and only if the corresponding segments form a corner of one of111

the inner triangles. The orders of the neighbors around a vertex v correspond to the112

order of the segments around the segment v.113

Note that the plane graph induced by a TC-representation has several properties.114

For example, two parallel segments correspond to non-adjacent vertices. The slopes115

hence define a 3-coloring of the graph. Note also that the dual graph of M(R) is bipar-116

tite. Indeed such a plane graph has two types of faces, one set contains the (triangular)117

faces corresponding to the inner regions of the TC-representation, and the other set118

contains the outerface and the faces corresponding to intersection points. Let us denote119

the latter faces degenerate faces, and note that those faces have size three or six. A size120
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Figure 3: From left to right. A TC-representation R; its induced plane graph M(R),
where gray faces are the degenerate faces; and two triangulations having R as TC-
scheme.

six face (ai, bj , ck, ai′ , bj′ , ck′) comes from the intersection point of six segments, and121

as those six segments go in distinct directions they do not intersect elsewhere, so this122

cycle has no chord in M(R). Finally note that going clockwise in any inner region one123

successively follows α−→a , α
−→
b , and then α−→c , for some not necessarily positive value124

α.125

Definition 5 A TC-representationR is a TC-scheme of an Eulerian triangulation T if126

M(R) is a subgraph of T with the same outer face as T , and such that the vertices and127

edges of V (T ) \ V (M(R)) lie inside degenerate faces of M(R) (see Figure 3).128

Actually as in M(R), the inner faces around any vertex alternate among degenerate129

and non-degenerate. This implies that every edge of M(R) bounds a non-degenerate130

face, and a face that is degenerate or that is the outerface. We thus have the following.131

Remark 6 A TC-representationR is a TC-scheme of T if and only if the non-degenerate132

faces of M(R) and its outerface are faces of T .133

The main ingredient in the proof of Theorem 1 is the following.134

Theorem 7 Every Eulerian triangulation T has a TC-scheme, and this scheme is135

unique.136

To prove this theorem we proceed by the following steps. We first model TC-137

schemes of T by means of a system of linear equations in Section 3.1. We then show138

in Section 3.2 that such a linear system always has a solution, and that this solution is139

unique (c.f. Lemma 8). Finally we show in Section 3.3 that the solution of this linear140

system defines a TC-scheme of T (c.f. Lemma 12).141

3.1 The linear system model142

In a TC-representation all the triangles are homothetic. Let us define the size of a143

triangle as its relative size with respect to the outer triangle. We may require that the144

outer triangle has size 1, the triangles with a corner on the left have positive sizes, while145
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Figure 4: (left) The size of the triangles around a0. (right) The size of the triangles
around some inner vertex bi.

the triangles with a corner on the right have negative sizes. The variables of our linear146

system correspond to the sizes of the triangular regions. So for each face f ∈ F1 we147

have a variable xf . Informally, the value of xf will prescribe the size and shape of the148

corresponding triangle in a TC-representation. If xf < 0, xf = 0, or if xf > 0 the149

corresponding triangle has a corner on the right, is missing, or has a corner on the left,150

respectively.151

Let us denote by F1(v) the subset of faces of F1 incident to v. As the outer triangle152

has size 1 and contains the other triangles, the faces in F1(a0) should have non-negative153

sizes, and they should sum up to 1 (see Figure 4, left). We hence consider the following154

constraint.155 ∑
f∈F1(a0)

xf = 1 (a0)

We add no constraint about the sign of these sizes. Note that similar constraints hold156

for b0 and c0.157 ∑
f∈F1(b0)

xf = 1 (b0)

158 ∑
f∈F1(c0)

xf = 1 (c0)

Similarly, around an inner segment of a TC-representation all the triangles on one159

side have same size sign, which is opposite to the other side. Furthermore, by summing160

all these sizes one should obtain 0 (see Figure 4, right). Hence, for any inner vertex u161

we consider the following constraint.162 ∑
f∈F1(u)

xf = 0 (u)

In the following, Equation (aj) will refer to Equation (u) where vertex u is replaced163

by aj . Note that every face f ∈ F1 is incident to exactly one vertex of A, one vertex164

of B, and one vertex of C. Hence by summing Equations (a0), (a1),. . . ,(a|A|), one165

obtains that
∑
f∈F1

xf = 1. The same holds with Equations (b0), (b1),. . . ,(b|B|), or166

with Equations (c0), (c1),. . . ,(c|C|). Equations (b0) and (c0) are hence implied by the167

others and thus we do not need to consider them anymore. Let us denote by L the168

obtained system of n− 2 linear equations on |F1| = n− 2 variables.169
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3.2 L has a unique solution170

Let us define the set V ′ = V \ {b0, c0} of size n − 2. Finding a solution to L is171

equivalent to finding a vector S ∈ RF1 (that is a vector indexed by elements of F1)172

such that MS = I , where M ∈ RV ′×F1 (a square matrix indexed by elements of173

V ′ × F1) and I ∈ RV ′ are defined by174

M(xi, f) =

{
1 if f ∈ F1(xi)
0 otherwise. I(xi) =

{
1 if xi = a0

0 otherwise.

Given some bijective mappings gV ′ : [1, . . . , n− 2] −→ V ′ and gF1 : [1, . . . , n−175

2] −→ F1, one can index the elements ofM by pairs (i, j) ∈ [1, . . . , n−2]×[1, . . . , n−176

2], and thus define the determinant of M . By the following lemma, L has a solution177

vector S, and this solution is unique.178

Lemma 8 The matrix M is non-degenerate, i.e. det(M) 6= 0.179

The proof of this lemma is inspired by the work of S. Felsner [4] on contact repre-180

sentations with homothetic triangles. See also [5] for another proof using the same181

approach.182

Proof. Let TM be the bipartite graph with independent sets V ′ and F1 such that183

v ∈ V ′ and f ∈ F1 are adjacent if and only if v and f are incident in T . Note that M is184

the biadjacency matrix of TM . From the embedding of T one can easily embed TM in185

such a way that all the inner faces have size 6, and such that a0 is on the outerboundary.186

Note that every perfect matching of TM (if any) corresponds to a permutation σ
on [1, . . . , n − 2] defined by σ(g−1

F1
(f)) = g−1

V ′ (v), for any edge vf of the perfect
matching. If the obtained permutation is even we call such perfect matching positive,
otherwise it is negative. From the Leibniz formula for the determinant,

det(M) =
∑

σ∈Sn−2

sgn(σ)
∏

i∈[1,...,n−2]

M(gV ′(σ(i)), gF1
(i))

one can see that det(M) counts the number of positive perfect matchings of TM minus187

its number of negative perfect matchings.188

Claim 9 The graph TM admits at least one perfect matching.189

Proof. As TM is bipartite, and as |V ′| = |F1|, it suffices to show that TM has an190

F1-saturating matching. This follows from Hall’s mariage theorem, and the fact that191

for any set X ⊆ F1 the set Y ⊂ V ′ of vertices incident to a face in X is such that192

|Y | ≥ |X|. Let us show this below for any X ⊆ F1.193

Consider the (planar) subgraph of T with all the edges and all the vertices incident
to a face of X . Then, triangulate this graph and denote TX the obtained triangulation.
Note that as any two faces of X are not adjacent in TX , this triangulation has at least
2|X| faces. Indeed, around each vertex there are at least twice as many faces as faces
ofX , and summing over every vertex one obtains the inequality. Together with the fact
that TX has 2|V (TX)| − 4 faces,

2|V (TX)| − 4 ≥ 2|X|
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and that V (TX) ⊆ Y ∪ {b0, c0},

|Y |+ 2 ≥ |V (TX)|

one obtains that

2|V (TX)| − 4 + 2|Y |+ 4 ≥ 2|X|+ 2|V (TX)|

|Y | ≥ |X|

. 2194

Given a graph G and a perfect matching M of G, an alternating cycle C is a cycle195

of G with edges alternating between M and E(G) \ M . Note that replacing in M196

the edges of M ∩ C by the edges of C \M yields another perfect matching. We call197

such operation a cycle exchange. It is folklore that the perfect matchings of a graph are198

linked by cycle exchanges. Indeed, given any perfect matching M1 of G one can reach199

any perfect matching M2, by a succession of cycle exchanges. Actually, for TM any200

such cycle has length congruent to 2 (mod4).201

Claim 10 For any perfect matchings of TM and any of its alternating cycles C, we202

have that the length `(C) of C is congruent to 2 (mod4).203

Proof. The subgraph G of TM induced by the vertices and edges on or inside C is
such that all the inner faces have length 6, and it is routine from Euler’s formula to
show that C has length congruent to 2 + 2|VG| (mod4), where VG is the vertex set of
G. Indeed,

`(C)− 6 + 6|FG| =
∑
f∈FG

`(f) = 2|EG| = 2|VG|+ 2|FG| − 4

`(C) ≡ 2|VG|+ 2 (mod4)

Finally, as the vertices of G are paired by the perfect matching we have that |VG| is204

even. 2205

The previous claim implies that all the perfect matchings of TM induce permuta-206

tions of the same sign. Indeed, performing a (4k+ 2)-cycle exchange does not change207

the sign of the permutation as it corresponds to performing 2k transpositions in the208

permutation. Hence, all the terms of det(M) have same sign, and this sum has at least209

one non-zero term (by Claim 9). Thus det(M) 6= 0. 2210

3.3 A solution of L defines a TC-scheme211

A TC-schemeR corresponds to a solution of L, the linear system defined for an Eule-212

rian triangulation T , ifR is a TC-scheme of T such that each face f ∈ F1 corresponds213

to an inner triangle of R of size xf , the solution of L, unless xf = 0. In other words,214

the inner regions ofR correspond to non-zero faces of F1. By the embedding ofM(R),215

note that the non-zero faces of F1 incident to a vertex v appear in the same order around216

v as in T . This implies the following.217
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Remark 11 If a vertex v has two neighbors u and w, that are consecutive in M(R)218

but not in T , then the vertices of T between u and w around v lie in a degenerate face219

of M(R) with at least u, v and w on its border. Furthermore this degenerate face220

corresponds to the intersection point of u, v, and w.221

Let us now proceed to the main result of this section.222

Lemma 12 Every Eulerian triangulation T admits a TC-scheme R that corresponds223

to the solution of its linear system L.224

Proof. Let us proceed by induction on the number of faces f ∈ F1 such that xf = 0.225

We start with the case where every face f ∈ F1 is such that xf 6= 0.226

If every face f ∈ F1 is such that xf 6= 0, we construct a TC-schemeR correspond-227

ing to the solution of L as follows. First let ∆ be a triangle formed by three vectors228

−→a ,
−→
b , and −→c in this order. The sides of ∆ correspond to a0, b0, and c0, respectively.229

For each face f ∈ F1, let ∆f be an homothetic copy of ∆ with ratio xf . The triangle230

∆f is thus obtained by following the vectors xf−→a , xf
−→
b , and xf−→c in this order. We231

are going to show that all these triangles ∆f can be arranged as a tiling of ∆, forming232

a TC-representation of T (i.e. such that T = M(R)).233

Note that a necessary condition for this to work is that (1) every face of f ∈ F1234

around a0, b0, or c0 is positive (i.e. xf > 0), and that (2) for any inner vertex v of T its235

positive (resp. negative) incident faces in F1 are consecutive around v. Otherwise this236

would result in overlapping triangles ∆f (see Figure 4). We first show that (1) and (2)237

are fulfilled, and then we show that this suffices to ensure the construction ofR.238

Consider the incidence graph I , between vertices of V (T ) and faces of F2. First239

note that this plane graph has only size six faces and that they are in bijection with240

the faces in F1. Let us orient the edges of I as follows. An edge vf of I , with v ∈241

V (T ) and f ∈ F2(T ), is oriented from v to f if and only if the incident faces (which242

correspond to faces in F1) have different signs. Note that for an inner vertex of T ,243

d+(v) ≥ 2k for some k ≥ 1 (as v is incident to positive and to negative faces in T ),244

and that d+(f) = 1 or 3 for a face f ∈ F2. The graph I has 2n − 2 vertices (3 outer245

vertices of T , n − 3 inner vertices of T , and n − 2 faces of F2) and 3n − 6 edges.246

The outerface of T , fo, has outdegree 3 in I . Otherwise, among the three faces of F1247

incident to a0b0, a0c0, or b0c0 there would be positive ones and negative ones. This248

would imply that two of a0, b0, and c0 have outdegree at least 2 in I . This would be249

impossible as 2+2+2(n−3)+(n−2) > 3n−6. We thus have that d+(fo) = 3, and250

a counting argument gives us that the other faces f of F2 have outdegree one, that the251

outer vertices have outdegree zero, and that inner vertices have outdegree two. Thus252

(1) and (2) are verified.253

To construct the TC-representation of T , we define a plane graph G∆ from I by254

replacing fo with three vertices (Step 1), and for each vertex v ∈ V (T ), by turning its255

neighborhood in I from a star into a path (Step 2).256

(Step 1) The vertex fo is replaced by three new vertices foa , fo
b

, and foc in such a257

way that foa is adjacent to b0 and c0 (see Figure 5). The six new edges are oriented258
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Figure 5: (a) Example of an Eulerian triangulation T (dashed lines), with incidence
graph I . The numbers correspond to the solution of L. (b) The graph I ′ obtained after
(Step 1). (C) The graph G∆.

towards the newly created vertices. Let us denote I ′ this new oriented graph. Note that259

now every vertex v ∈ V (T ) has outdegree two, and that by assigning size −1 to the260

outerface, all faces incident to v sum up to zero.261

(Step 2) For each vertex v ∈ V (T ), its neighborhood in I ′ is turned into a path Pv262

whose ends are the out-neighbors of v. The in-neighbors are ordered as follows in Pv .263

We first denote f+ (resp. f−) the out-neighbors of v such that the face following f+
264

(resp. f−), around v in clockwise order, has positive (resp. negative) size (i.e. solution265

in L). Two in-neighbors f, f ′ of v are ordered along Pv in such a way that f is closer266

to f+ than f ′, if and only if the sum of the face sizes going around v from f+ to f is267

lower than the sum from f+ to f ′. If the two sums are equal, then f and f ′ are merged268

into a single vertex (see Figure 6). As all the faces around v have non-zero sizes, and as269

positive sizes are consecutive, a vertex f is merged at most once. The obtained plane270

graph is denoted G∆. Note that the inner faces of G∆ correspond to a faces of F1, and271

we assign them the corresponding sizes. Note also that a face of G∆ corresponding272

to the face aibjck ∈ F1, is bordered by three subpaths of paths Pai , Pbj , and Pck .273

We now assign positive length to the edges of G∆ so that the length of these subpath274

corresponds to the size of the face, forgetting the sign. For an edge ff ′ of a path Pv275

we assign the absolute value of the sum of the face sizes between f and f ′ around v in276

I ′.277

By construction G∆ has three types of vertices:278

• The vertices foa , fo
b

, and foc , which have degree two. Indeed, e.g. the vertex foa279

is at the end of Pb0 and Pc0 .280

• The vertices originating from a single vertex f ∈ V (I) \ (V (T ) ∪ {fo}). As281

such f has in-degree two and out-degree one in I it is at the end of two paths and282

in the middle of a third one.283
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Figure 6: An example of (Step 2) with a merge of f and f ′.

• The vertices originating from two vertices f, f ′ ∈ V (I) \ (V (T ) ∪ {fo}). By284

construction, such vertex is in the middle of a path, and has two path ending on285

each side (corresponding to in-neighbors in I).286

From the orientation of I ′, note that the sign of the faces alternate around any of these287

vertices (see Figure 6). We now want to draw G∆ planarly, in such a way that its inner288

faces are all homothetic to the triangle formed by following the three vectors −→a ,
−→
b ,289

and −→c . More precisely, for a face f of size α that is bordered by subpaths P fa ⊆ Pai ,290

P fb ⊆ Pbj , and P fc ⊆ Pck , the subpath P fa , P fb and P fc should be mapped to vectors291

α−→a , α
−→
b , and α−→c , respectively, in such a way that the edge length along these paths292

are followed. Note that there is no local obstruction to the existence of such embedding.293

• Each and edge ff ′ of G∆ is consistently embedded. Indeed, the length of ff ′294

is set in G∆, and whatever the incident face considered (as these faces have295

different signs) the vector
−→
ff ′ has the same direction.296

• For the outer vertices foa , fo
b

, and foc , their incident inner faces form an angle297

smaller than π (e.g. for foa the angle is the one from −→c to −
−→
b ). For any other298

outer vertex f , which necessarily corresponds to a single vertex of I ′, its (three)299

incident inner faces form an angle of size exactly π. For example, if f is in the300

middle of the path Pa0 and at the end of paths Pbj and Pck , we know by (1)301

that the inner faces incident to Pa0 are positive, while the third one is negative302

because the edge fbj and fck are oriented towards f in I . Thus, the angles303

around f go from −→a , to −−→c , to
−→
b , and to −−→a .304

• For any inner vertex f corresponding to a single vertex of I ′, its (four) incident305

faces form an angle of size exactly 2π. For example, if f is in the middle of a306

path Pai and at the end of paths Pbj and Pck , as the four faces signs alternate,307

the angles around f go from −x−→a to x−→a , to −x−→c , to x
−→
b , and back to −x−→a ,308

for x ∈ {−1,+1}.309
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• Similarly, for an inner vertex f originating from two vertices of I ′ the sum of the310

6 angles is again 2π.311

From these observations a simple variant of Lemma 6 of [5] ensures the existence of312

such embedding. Alternatively, one could triangulate G∆ to use directly this lemma.313

Note that this embedding is such that for each vertex ai ∈ V (T ) (resp. bj ∈ V (T )314

and ck ∈ V (T )) the corresponding path Pai (resp. Pbj and Pck ) forms a segment315

parallel to −→a (resp.
−→
b and −→c ). As in G∆ a vertex f is in the middle of at most one316

path Pv , these segments do not cross. For any inner edge of T , say aibj incident to a317

face f ∈ F2(T ), the paths Pai and Pbj touch at the vertex f ofG∆. For the outer edges318

the contact points are foa , fo
b

, and foc . We thus have a TC-scheme of T .319

If some faces f ∈ F1 are such that xf = 0, consider a face aibjck ∈ F1 such that320

xaibjck = 0. Let a` ∈ A be the vertex such that a`ckbj is a face (of F2). Let T ′321

be the (non-necessarily simple) Eulerian triangulation obtained from T by deleting the322

edges bjck, a`bj and a`ck, and by merging ai and a`. The resulting vertex of T ′ is also323

denoted ai. Let L′ be the linear system defined for T ′. Note that a solution of L clearly324

induces a solution of L′. Indeed, every vertex v ∈ V (T ′)\{ai, bj , ck} is incident to the325

same faces as in T ′, so they sum up to 0 (or to 1 for outer vertices). For bj , or ck these326

vertices are incident to one less face of F1, the face aibjck, and as xaibjck = 0, their327

incident faces still sum up to 0 (or to 1) in T ′. Similarly, as the faces of F1 incident to328

ai in T ′ are the faces of F1 incident to ai or to a` in T , except aibjck, they sum up to329

0. As the solution of L′ has one less 0 entry we can apply the induction, and consider a330

TC-scheme R′ of T ′ corresponding to this solution of L′. We consider different cases331

according to whether ai and a` have non-zero incident faces in T .332

If ai and a` only have zero incident faces in T , then ai only has zero incident faces333

in T ′ and it lies inside a degenerate face of M(R′). The vertices bj and ck thus lie334

inside or on the border of the same degenerate face. Thus to go from T ′ to T , it suffices335

to change the interior of a degenerate face ofM(R′). The TC-representationR′ is thus336

a TC-scheme of T , which clearly follows L.337

If ai has non-zero incident faces, while a` only has zero incident faces in T , let338

f, f ′ ∈ F1 be the non-zero faces incident to ai that are closer to the face aibjck around339

ai. Let the faces f and f ′ appear respectively before and after aibjck, while going340

clockwise around ai, and let us denote cr and bs, the C-vertex of f and the B-vertex341

of f ′, respectively. Let us also denote p the intersection point of ai, cr, and bs in R′.342

By Remark 11 the neighbors of a` in T , that are neighbors of ai in T ′, lie inside or343

are on the border of the degenerate face of M(R′) corresponding to p (with at least bs,344

ai and cr on its border). Thus to go from T ′ to T , it suffices to change the interior of345

this degenerate face of M(R′). The TC-representation R′ is thus a TC-scheme of T ,346

which clearly follows L.347

The case where a` has non-zero incident faces, while ai only has zero incident348

faces in T is similar.349
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Figure 7: (left) A 3-slopes segment representation inside a hexagon. (right) A scheme
representing its shape.

If both ai and a` have non-zero incident faces in T , let us divide the segment a′i of350

R′ into two parts, one for each of ai and a`. Note that the faces ofF1\{aibjck} incident351

to ai (resp. a`) in T correspond to consecutive triangles arounds a′i. Furthermore as352

their sizes sum up to 0 there is a point p ∈ a′i that divides a′i into two parts, ai and353

a`, such that the faces of F1 \ {aibjck} incident to ai (resp. a`) in T correspond to354

triangles with a side contained inside ai (resp. a`). Let us denote R the obtained TC-355

representation. As every non-degenerate face f of R corresponds to a face of F1(T )356

whose size is xf , by Remark 6 we have that R is a TC-scheme of T following the357

solution of L. This concludes the induction step of the proof. 2358

4 3-slopes segment representations359

In this section we use Theorem 7 to prove the main theorem of the article, Theorem 1.360

As already mentioned, it is sufficent to prove it for Eulerian triangulations. Theorem 1361

follows from the following technical proposition.362

Proposition 13 For every 0 < ε < 1, every simple Eulerian triangulation T admits a363

3-slopes segment representationsR such that:364

• The segments a0, b0, and c0 form a triangle ∆ of size 1 (its sides are obtained365

by following −→a ,
−→
b , and −→c ).366

• Every segment is contained in the hexagon centered on ∆, obtained by succes-367

sively following (1− ε)−→a , −2ε−→c , (1− ε)
−→
b , −2ε−→a , (1− ε)−→c , and −2ε

−→
b (see368

Figure 7).369

• No three segments intersect at the same point.370

Given such representationR of a triangulation with some inner vertices, we define371

the shape of R as the triplet (sa, sb, sc) of sizes in R of the triangles corresponding372

to a1b0c0, a0b1c0, a0b0c1, respectively, where a1, b1 and c1 are the vertices forming373
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Figure 8: (left) A 3-degenerate point on V (middle) Small perturbation of R (right)
The addition of a representation inside the new triangle.

an inner face with vertices b0 and c0, with a0 and c0, and with a0 and b0, respectively.374

Note that as the segments a1, b1, and c1 are contained in the hexagon, we have that375

sa > 0, sb > 0, and sc > 0.376

377

Proof. We proceed by induction as we assume that the proposition holds for any378

simple Eulerian triangulation with less vertices. The initial case of this induction, when379

|V (T )| = 3 clearly holds.380

Given an Eulerian triangulation T with more vertices, we consider a TC-scheme381

R of T (given by Theorem 7), and by successively resolving degenerate points (i.e.382

intersection points of at least three segments) from left to right, we eventually reach383

the sought representation. Here resolving means that the segments of a 3-degenerate384

point (resp. a 6-degenerate point) are moved to form a triangle (resp. a polygon) inside385

which we are going to draw a 3-slopes representation of the graph corresponding to386

this degenerate face of M(R), this is possible by using the induction on this smaller387

graph. The degenerate points ofR are resolved from left to right. This means that at a388

given stage of this process there is a vertical line (parallel with
−→
b ) V such that on its389

left there is no intersection point of three or more segments. This implies that on the390

left of V the representation handles some small perturbations: one can slightly move391

the segments without changing the intersections.392

Let V be the leftmost vertical line containing degenerate points. We resolve those393

degenerate points by slightly moving segments on the left of or on V , while maintaining394

the right side of the representation unchanged. We consider different cases according395

to the degenerate points on V .396

If V contains a 3-degenerate point p in the interior of a (vertical) segment bj and397

at the end of two segments ai and ck lying on the left of V , the situation is rather398

simple. Move these segments a little to the left and slightly prolong them to intersect399

bj (see Figure 8). As there is no degenerate point on the left of V these moves can be400

done while maintaining the existing intersections and avoiding new intersections. If401

aibjck is not a face of T , consider the triangulation T ′ induced by the vertices in the402

cycle aibjck of T . By induction T ′ has a representation that can be drawn inside the403
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Figure 9: (left) A double 3-degenerate point on V (right) Small perturbation ofR.

Figure 10: (left) A 3-degenerate point on V (middle) Slightly moving bj to the right
(right) Slightly moving bj to the left.

newly formed triangle bordered by the segments ai, bj and ck.404

If V contains a double 3-degenerate point p in the interior of a (vertical) segment405

bj, the situation is similar to the previous one. Move the segments on the left of V406

as depicted in Figure 9. If the new triangle is not a face of T , we add a representation407

inside. We are now left with a simple 3-degenerate point at p. This corresponds to the408

following case.409

If V contains a 3-degenerate point p in the interior of a (vertical) segment bj and410

at the end of two segments, ai and ck, lying on the right of V , one can move bj411

slightly to the right or slightly to the left and resolve these points without changing412

the right part of the representation. The choice of moving bj to the right or to the413

left is explained in the next paragraph, but we can assume this move to be arbitrarily414

small. Whatever the direction bj is moved, one has to prolong ai and ck to have all the415

intersections, between these segments or with bj (see Figure 10). Note that in order416

to preserve the representation on the right of V the segments ai and ck are not moved,417

they are only prolonged around p. Again, if aibjck is not a face of T , we draw a418

representation inside the newly formed triangle. Note that if bj moves to the right, the419

triangle bordered by ai, bj and ck has negative size, but it suffices to apply a homothety420
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Figure 11: (left) A double 3-degenerate point on V (middle) & (right) Small moves that
resolve this point.

with negative ratio to obtain a representation that can be drawn inside.421

Consider now the degenerate points at the end of a (vertical) segment bj of V .422

Let b1,b2, . . . ,bt be a maximal sequence of segments on V such that bj and bj+1423

intersect on a point. We are going to move these segments alternatively to the right and424

to the left, for example the segments with even index are moved to the left while the425

ones with odd index are moved to the right. The exact magnitude of these moves will426

be set later, but first note that the 3-degenerate points in the interior of the segments bj427

with 1 ≤ j ≤ t can be dealt if the move of bj is sufficiently small (see previous cases).428

Consider the intersection point p between bj and bj+1. The case of b1 and bt’s end429

is similar and it is not detailed here.430

If there is a segment ai going through p. It is shown in Figure 11 how to resolve431

these two overlapped 3-degenerate points, in order to create two triangles, where one432

can add a small representation if needed. The case where there is a segment ck going433

through p is similar.434

Assume now that six segments intersect at p. Let bj be the one below p, and let435

a, c, bj+1, a′, and c′ be the other ones around p clockwisely. Let us assume w.l.o.g.436

that bj has to move to the left, while bj+1 has to move to the right. The degenerate437

face corresponding to p is bounded by these six vertices and there are several cases438

according to whether there are chords among them in T (see Figure 12).439

If there is no chord inside the cycle bjacbj+1a
′c′ we consider the subgraph of T440

induced by the vertices on and inside this cycle, add we add the edges abj+1, bj+1c
′,441

and ac′ outside the cycle, and we denote by T ′ the obtained simple Eulerian triangu-442

lation. By the induction we know that T ′ admits a 3-slope segment representation R′,443

and let (sa, sb, sc) be the shape ofR′. We resolve the point by moving the segments as444

depicted in Figure 12, and the magnitude of each of these moves is prescribed by the445

shape (sa, sb, sc) in order to allow us to copyR′ inside the triangle formed by a, bj+1,446

and c′. Then we shorten a, bj+1, and c′ to avoid intersections among them. Actually,447

the case where none of abj+1, bj+1c
′, or ac′ is a chord is identical.448

If none of bjc, ca′, or a′bj is a chord of bjacbj+1a
′c′ we proceed similarly. The449

only difference is that we add the edge bjc, ca′, or a′bj outside bjacbj+1a
′c′ to obtain450

T ′, and that we have to perform a homothety with negative ratio to includeR′.451
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c′

a′

bj+1

c

a

bj

Figure 12: From left to right : A 6-degenerate point on V . Resolution if there is no
chord in bjacbj+1a

′c′ with the shape of R′. Resolution if none of bjc, ca′, or a′bj is
a chord, with the shape of R′. Resolution if ac′ and ca′ are chords, with the shape of
R2.

Finally, if there are two opposite chords on bjacbj+1a
′c′, say ac′ and ca′, we con-452

sider two triangulations. Let T1 be the one inside the cycle c′bja and let T2 be the453

one obtained from the interior of the 5-cycle acbj+1a
′c′ by adding the edges abj+1454

and bj+1c
′. By the induction we know that T1 and T2 admit 3-slopes segment repre-455

sentations R1, and R2, and let (sa, sb, sc) be the shape of R2. We resolve the point456

by moving the segments as depicted in Figure 12, and the magnitude of each of these457

moves, except for bj, is prescribed by the shape (sa, sb, sc) in order to allow us to458

copyR2 inside the triangle formed by a, bj+1, and c′. Then we shorten a, and bj+1 to459

avoid the intersections corresponding to abj+1 and bj+1c
′. The segment bj is moved460

sufficiently to the left to avoid the interior of the triangle containing R2. Then R1 is461

drawn inside the triangle bordered by bj, a and c′. This is possible because R2 does462

not intersect this triangle.463

Finally note that the moves of bj and bj+1 are opposite but of proportional mag-464

nitudes (up to some constant depending on the shapes (sa, sb, sc) of R′ or R2). So it465

is clear that we can simultaneously move all the segments bj on V . This concludes the466

proof of the lemma. 2467

5 Conclusion468

Our result implies that for k ≤ 3, planar graphs that are k-colorable admit a k-slopes469

segment representation, where parallel segment induce an independent set. These470

graphs have a so-called PURE-k-DIR representation. Unfortunately this does not ex-471

tend to the final case k = 4 as conjectured by D. West [19]. Recently, the author [9]472

built a conter-example based on a construction of Kardoš and Narboni [12]. Their con-473

struction is an example of a signed planar graph that is not 4-colorable, in the sense of474

signed graphs, and it thus contradicts a conjecture of E. Máčajová, A. Raspaud, and M.475
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Škoviera [15].476

However, it remains open to know whether (4-colorable) planar graphs admit a477

PURE-k-DIR representation (resp. a non-necessarily pure one) for some k > 4 (resp.478

k > 2).479
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