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Abstract

We study vertex partitions of graphs according to some minor-monotone graph pa-
rameters. Ding et al. (DOS00) proved that for some of these parameters, we denote
by P(G), any graph G with P(G) > kp + 1 (kp being a constant depending on P)
admits a vertex partition into two graphs with parameter P at most P(G) — 1. Here
we prove for some of these parameters P, that any graph G with P(G) > kp + 2
admits a vertex partition into three graphs with parameter P at most P(G) — 2.
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1 Introduction

A graph parameter p is minor-monotone if for any minor H of any graph
G we have p(H) < u(QG)). Let us define some minor-monotone parameters.
The Hadwiger number 7(G) of a graph G is the smallest integer ¢ such that
G is K;y1 minor-free. The well-known Hadwiger’s Conjecture states that any
graph G is n(G)-colorable. Since a k-coloring is a k-partition of tha vertex
set V(G) =V U...UV, into stable subsets, this conjecture is an example of
relation between vertex partitions and a graph parameter.

Let m denote another similarly defined minor-monotone parameter. Given a
graph G, m(G) be the smallest integer ¢ such that G is K,y and K(#WL%J
minor-free. Note that the graphs with 7 at most 2, 3 or 4 are respectively the
forests, the outerplanar graphs and the planar graphs.

Email address: goncalves@lirmm.fr (D. Gongalves).

Preprint submitted to Elsevier Science February 27, 2008



In 1990, Y. Colin de Verdiére (CdV90; CdV93) introduced an interesting
minor-monotone parameter, p(G) (see (HLS99) for a survey on u). The pa-
rameter was motivated by the study of the maximum multiplicity of the second
eigenvalue of certain Schrodinger operators. The parameter p(G) is described
in terms of properties of matrices related to G. Given a graph G with vertex
set V(G) ={1,...,n}, u(G) is the largest corank of any real symmetric n x n
matrix M = (M, ;) such that :

- for all 7,7 with ¢ # j: M;; < 0 if i and j are adjacent, and M,; = 0
if 7 and j are nonadjacent (there is no condition on the diagonal entries
Mi,i);

- M has exactely one negative eigenvalue, of multiplicity 1;

- there is no nonzero real symmetric n x n matrix X = (X, ;) such that
MX =0 and such that X;; = 0 whenever ¢ = j or M, ; # 0.

This parameter gives a characterization of well-known minor closed families
of graphs. Indeed, the graphs with 4 at most 1, 2, 3 or 4 are respectively the
forests of paths, the outerplanar graphs, the planar graphs, and the linkless
embeddable graphs. A graph G is linkless embeddable if it has an embedding
in the 3-dimensional space in such a way that for any two disjoint cycles of G
there is a topological 2-sphere separating them. Y. Colin de Verdiére proposed
the following conjecture.

Conjecture 1 (Colin de Verdiére) For any graph G, x(G) < u(G) + 1.

Since u(G) +1 < n(G) for any G, this conjecture is a weaker version of
Hadwiger’s Conjecture.

The parameter A(G) (HLS95) is the largest d for which there exists a d-
dimensional subspace X of RV(%) such that:

(*) for each nonzero x € X, G[supp, (z)] is a nonempty connected graph,

where supp, (z) (the positive support of ) is the set {u € V | z(u) > 0}.
Several conjectures on vertex partitions are very similar.

Conjecture 2 For any parameter p € {n,m, u, A}, any graph G, and any
integer k € {1,...,n(G)}, the graph G has a vertex k-partition V(G) = Vi U
... U Vi, into k graphs G[V;] such that p(G]V;]) < p(G) + 1 — k. for every
ie{l,... k}.

The case p = 1 of the conjecture was proposed by Ding et al. (DOS00). Note
that when k& = n(QG) it corresponds to Hadwiger’s conjecture. The case p =7
of the conjecture was proposed by Woodall in his survey (W90). Actually it is a
“minor” reformulation of the so-called (m, n)-conjecture (CGH71) (which have
been disproved (J89; HT94)). We propose the case p = u of the conjecture



because it holds for small values of ;(G). Indeed:

- every outerplanar graph has a vertex partition into 2 forests of paths (M83;
BMS85; AEGR9),

- every planar graph has a vertex partition into 2 outerplanar graphs (CGH71),
and

- every planar graph has a vertex partition into 3 forests of paths (G91; P90).

We also propose the case p = A because it holds for some cases, the cases
when k is small. These cases are the purpose of this article. It is clear that
Conjectures 2 holds for & = 1. Ding et al. (DOS00) proved a result that
implies the conjecture for £ = 2. Since this result uses other terminology
and for completeness we prove a similar result in Section 3. In this section
we also provide a result that implies the case k = 3. This implies for example
that every linkless embeddable graph has a vertex partition into 3 outerplanar
graphs. First let us focus on minor-monotone parameters.

2 Minor-monotone parameters

Let G + v be the graph obtained from G by adding a vertex v adjacent to all
the vertices of GG. Let us define what is a convenient graph parameter.

Definition 3 Given a graph parameter p and an integer k,, the couple (p, k,)
s convenient if we have the following three properties :

(1) Any minor H of G is such that p(H) < p(G).

(2) Any graph G is such that p(G) < max{p(G +v) —1,k,}.

(3) For any paire of non-empty graphs Gy and Go, the disjoint union of G
and Gy, G1 UGy, is such that p(G1 U G2) = max{p(G1), p(G2), k,}.

Furthermore a convenient couple (p, k,) is minimum if (p, k, — 1) is not con-
venient.

Lemma 4 The couples (n,1), (7, 1), (n, 1) and (X, 1) are convenient and min-
imal.

PROOF. By definition the graph parameters © and n are minor-monotone.
Also by definition of 7 and 7, it is clear that (7, 1) and (7, 1) satisfy property
(3). Finally, if K;,; is not a minor of G, then K, 5 cannot be a minor of G +v.
So, (n,1) is convenient. Similarly, if none of K;,; and K[%WL%J is a minor

of G, then none of Kt+2 and K[%‘LL#J_H = KL(t+;)+2J7|’(t+;)+2‘| can be a

minor of G + v. So, (m,1) is convenient. Here k, = k, = 1 because it is the



minimum possible value of 7(G) or n(G). It is shown in (CdV90) that the
couple (g, 1) is convenient. Here k, = 1 and not 0, because in property (2) we
can have p(G) = u(G +v) = 1 for G = Ks. In (HLS95)(c.f. Theorem 1 and 4)
it is shown that (A, 1) satisfies property (1) and (3). For proving property (2),
let X C RY be a maximal subspace (of dimension d) that fulfills (x), and let
x1,...,2q be d vectors generating X. Now let the d + 1 dimensional subspace
X' of RV} be the subspace generated by @}, ..., %, 2}, where

zi(u) forl<i<dandueV
0 forl1<i<dand u=w
zg(u) fori=d+1andueV
1 fori=d+1and u=v

The (d + 1)-dimensional subspace X x R"} of RVV{} fulfills (%) for G + v.
Indeed, consider any point 2’ € X x R} If 2/(v) > 0, since v is adjacent to
all the vertices of G, the graph G|supp, (z’)] is connected. If 2’(v) < 0, since
the projection of 2’ in RV is a point # € X, we have supp, (') = supp, (),
and so the graph G[supp. (2’)] is nonempty and connected. So property (2)
holds and (A, 1) is convenient.

Here k), = 1 and not 0, because in property (3) we have A\(G; UGy) = 1 >
0 = max{A(G1), A(G2)} when G; and G5 have only one vertex.

We could also mention that the treewidth is a convenient graph parameter but
it is not relevant for the next section. Indeed, Ding et al. proved in (DOS98)
that a graph of treewidth k; + ko + 1 admits a vertex partition into two graphs
of treewidth at most k; and k. It is also possible that Conjecture 2 is true
but not tight for some parameter p. We have been unable to construct, for
any k and n such that k& < n, a graph Gy, with p(Gj,) = n and such that
in any vertex partition, one of the induced subgraphs has parameter at least
n+1—k.

3 Vertex partitions

The following theorem is similar to the Theorem 4.2 in (DOS00) but uses
other terminology.

Theorem 5 Consider a convenient couple (p,k,). For any integer k > k,,
any graph G with p(G) < k + 1, and any vertex v; € V(G), there is a vertex
partition of G, V(G) = V1 U Vs, such that:



(a) p(G[Vi]) <k, for all i€ {1,2}
(b) vi € Vi and deggpy(v1) =0

PROOF. Let G be a counter-example minimizing |V(G)|. It is clear that G
is a connected graph with at least two vertices. Let G’ be the graph obtained
by contracting all the edges incident to v; in G. Denote vy the vertex of G’
obtained from v; and its neighbors. Since G’ is a minor of G, by property (1),
we have p(G') < p(G) < k + 1. Since |V(G")| < |[V(G)|, by minimality of
|V (G)], there is a vertex partition of G', V(G') = V/ U VJ, such that :

(2)) p(GIV{]) <k, for all i € {1,2}.
(b") vy € V4 and deggyy (v2) = 0.

We extend this partition of G’ to G. Let the vertices of G’ \ vy remain in
the same subset of the partition (V' \ vo C V;). Put the vertex v; in V] and
all its neighbors, Ng(vy), in V,. Point (b) clearly holds so focus on point (a).
Since G[V4] = G'[V/] U v it is clear, by point (a’) and property (3) of p,
that p(G[V4]) < k. The graph induced by v; and Ng(v1) is a minor of G, so
p(G{v1}UNg(v1)]) < k+1, and by property (2) we have that p(G[Ng(v1)]) <
k. Point (b’) implies that there is no vertex in V; adjacent to a vertex of
N¢(v1). By property (3) we have p(G[Vz]) < k and point (a) holds. So there
is no counter-example G and the theorem holds.

Theorem 6 Consider a convenient couple (p,k,). For any integer k > k,,
any graph G with p(G) < k + 2, and any edge vive € E(G), there is a vertex
partition of G, V(G) = V1 U Vo U Vs, such that:

(a) p(G[V}]) < k—2, forallie{1,2,3}
(b) vi € Vi and deggpy,y(vi) =0
(¢) v2 € Vo and deggpy,)(v2) =0

PROOF. Let G be a counter-example minimizing |V (G)].
Claim 7 The graph G is a 2-connected graph with at least three vertices.

If G is not 2-connected, let v be a separating vertex and let Gy and Gy be
two non-empty graphs such that G = G U Gs, V(G1) N V(G2) = {v} and
v1vy € E(Gq). These graphs are minors of G, so p(G1) and p(Gs) < p(G) <
k + 2. By minimality of |V (G)| we can consider a vertex partition of G; that
fulfills points (a), (b) and (c). W.l.o.g. we consider that v € V;. We apply
now the induction hypothesis to GGy with respect to any edge incident to v.
Since deng[Vl](vl) = (, it is clear that the union of these two 3-partitions is a
3-partition of V'(G) that fulfills points (a), (b) and (c¢). So the counter-example
G is 2-connected.



Let uq,...,u; and v; be the neighbors of vy. Contract any edge incident to vy
that is not v1vy or an edge viu;. Repeat this process until having only edges
V109 or viu; incident to vy. The graph obtained, G’, is a minor of G and so
p(G") < p(G) < k + 2. Consider that uy,...,ug (resp. ugyq,...,u;) are the
neighbors of vy that are (resp. are not) adjacent to v; in G'.

Claim 8 p(G'[{u1,...,uq}]) <k

Indeed, the induced graph G'[{vi,vq,u1,...,uq}] is a minor of G and so
p(G'[{v1,v2,us, ..., uq}]) < p(G) < k+2. Then, since G'[{vy, va, U1, ..., uq}| =
((G'[{u1, - -, uq}] + v1) + v2), the claim is implied by property (2).

Let Gy 3 be the graph obtained from G’ by contracting all the edges incident
to v1. Denote v3 the vertex of Gy 3 obtained from v; and its neighbors. The
graph G5 3 is a minor of G, so we have p(Ga3) < p(G) < k+ 2. By minimality
of |V(G)|, there is a vertex 3-partition of G5 3 such that:

(ag3) p(Gas[Vi]) < k—2, forallie {1,2, 3}
(b273) U3 € ‘/3 and deng’S[VS] (1)3) =0
(c23) v2 € Vo and degg, ,(v,)(v2) =0

Let Gy 3 be the graph obtained from G by contracting all the edges in G”\ v;.
Denote v5 the vertex of Gy 3 obtained from v, and the other vertices of G\ v;.
The graph Gp3 is a minor of G, so we have p(G13) < p(G) < k + 2. By
minimality of |V(G)|, there is a vertex 3-partition of Gy 3 such that:

(a13) p(G13[Vi]) <k —2, forallie {1,2,3}
(b1,3) vi € Vi and degg, ;) (v1) = 0
(c1,3) v3 € V3 and degg, ,pv4)(v3) =0

We consider the vertex 3-partition of G induced by the vertex 3-partitions
of Gy 3 and G 3. In this partition the vertices u,,...,uq are in V3. It is clear
that (by3) (resp. (cg3)) implies (b) (resp. (c)). It is also clear that, since
{ui,...,uq} C V3, none of the vertices in Gy 3[Vi] (resp. G 3[V2]) is adjacent
to a vertex in Gay3[Vi] (resp. Ga3[V]). So point (a) holds for ¢ = 1 or 2.
For i = 3, points (by3) and (cy3) imply that G[{us,...,uq}] is a connected
component of G[V3]. Finally Claim 8, points (a;3), (a3) and property (3)
imply point (a) for i« = 3. So there is no counter-example G and the theorem
holds.

4 Conclusion

The proofs of these theorems is similar to the proofs of the facts that forests
of paths and outerplanar graphs are respectively 2-colorable and 3-colorable.



Unfortunately, it seems difficult to use the proof of the 4 Color Theorem to find
a proof for the next step, k& = 4. To prove this case (k = 4) for Conjecture ?? we
could use a different technique. Given two graphs H and G, their lexicographic
product, H X, G, is the graph with vertex set V(H) x V(G) and such that
(u,v)(u',v") is an edge of H X, G iff uv' € E(H) or if u = v/ and vv’ € E(G).

Conjecture 9 For any graph X and any integer k € [0...u(X)] there exist
two graphs H and G, with u(H) < k and u(G) < u(X) — k, such that the
graph X is a subgraph of H X, G.

Using the proofs in the previous section we see that Conjecture 9 holds for
k < 3. Note that if for a given k Conjecture 1 holds for u(G) = k and if
Conjecture 9 holds, then Conjecture ?? holds for k. Since Conjecture 1 holds
for (@) < 4, we could prove Conjecture ?? for k = 3 (resp. k = 4) by showing
that Conjecture 9 holds for k£ = 3 (resp. k = 4). Note that this scheme of proof
would also work for Conjectures 77, 77 and ?77.
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