On Vertex Partitions and some Minor-Monotone Graph Parameters

D. Gonçalves

LIRMM UMR 5506, CNRS, Université Montpelier 2, 161 rue Ada, 34392 Montpellier Cedex 5, France

Abstract

We study vertex partitions of graphs according to some minor-monotone graph parameters. Ding et al. (DOS00) proved that for some of these parameters, we denote by $\mathcal{P}(G)$, any graph G with $\mathcal{P}(G) \geq k_{\mathcal{P}} + 1$ ($k_{\mathcal{P}}$ being a constant depending on \mathcal{P}) admits a vertex partition into two graphs with parameter \mathcal{P} at most $\mathcal{P}(G) - 1$. Here we prove for some of these parameters \mathcal{P} , that any graph G with $\mathcal{P}(G) \geq k_{\mathcal{P}} + 2$ admits a vertex partition into three graphs with parameter \mathcal{P} at most $\mathcal{P}(G) - 2$.

Key words: minor-monotone parameters, vertex partition

1 Introduction

A graph parameter ρ is *minor-monotone* if for any minor H of any graph G we have $\mu(H) \leq \mu(G)$). Let us define some minor-monotone parameters. The Hadwiger number $\eta(G)$ of a graph G is the smallest integer t such that G is K_{t+1} minor-free. The well-known Hadwiger's Conjecture states that any graph G is $\eta(G)$ -colorable. Since a k-coloring is a k-partition of the vertex set $V(G) = V_1 \cup \ldots \cup V_k$ into stable subsets, this conjecture is an example of relation between vertex partitions and a graph parameter.

Let π denote another similarly defined minor-monotone parameter. Given a graph G, $\pi(G)$ be the smallest integer t such that G is K_{t+1} and $K_{\lceil \frac{t+2}{2} \rceil, \lfloor \frac{t+2}{2} \rfloor}$ minor-free. Note that the graphs with π at most 2, 3 or 4 are respectively the forests, the outerplanar graphs and the planar graphs.

Email address: goncalves@lirmm.fr (D. Gonçalves).

In 1990, Y. Colin de Verdière (CdV90; CdV93) introduced an interesting minor-monotone parameter, $\mu(G)$ (see (HLS99) for a survey on μ). The parameter was motivated by the study of the maximum multiplicity of the second eigenvalue of certain Schrödinger operators. The parameter $\mu(G)$ is described in terms of properties of matrices related to G. Given a graph G with vertex set $V(G) = \{1, \ldots, n\}$, $\mu(G)$ is the largest corank of any real symmetric $n \times n$ matrix $M = (M_{i,j})$ such that:

- for all i, j with $i \neq j$: $M_{i,j} < 0$ if i and j are adjacent, and $M_{i,j} = 0$ if i and j are nonadjacent (there is no condition on the diagonal entries $M_{i,i}$);
- M has exactly one negative eigenvalue, of multiplicity 1;
- there is no nonzero real symmetric $n \times n$ matrix $X = (X_{i,j})$ such that MX = 0 and such that $X_{i,j} = 0$ whenever i = j or $M_{i,j} \neq 0$.

This parameter gives a characterization of well-known minor closed families of graphs. Indeed, the graphs with μ at most 1, 2, 3 or 4 are respectively the forests of paths, the outerplanar graphs, the planar graphs, and the linkless embeddable graphs. A graph G is linkless embeddable if it has an embedding in the 3-dimensional space in such a way that for any two disjoint cycles of G there is a topological 2-sphere separating them. Y. Colin de Verdière proposed the following conjecture.

Conjecture 1 (Colin de Verdière) For any graph G, $\chi(G) \leq \mu(G) + 1$.

Since $\mu(G) + 1 \leq \eta(G)$ for any G, this conjecture is a weaker version of Hadwiger's Conjecture.

The parameter $\lambda(G)$ (HLS95) is the largest d for which there exists a d-dimensional subspace X of $\mathbb{R}^{V(G)}$ such that:

(*) for each nonzero $x \in X$, $G[\text{supp}_+(x)]$ is a nonempty connected graph,

where $\operatorname{supp}_+(x)$ (the positive support of x) is the set $\{u \in V \mid x(u) > 0\}$. Several conjectures on vertex partitions are very similar.

Conjecture 2 For any parameter $\rho \in \{\eta, \pi, \mu, \lambda\}$, any graph G, and any integer $k \in \{1, \ldots, \eta(G)\}$, the graph G has a vertex k-partition $V(G) = V_1 \cup \ldots \cup V_k$, into k graphs $G[V_i]$ such that $\rho(G[V_i]) \leq \rho(G) + 1 - k$. for every $i \in \{1, \ldots, k\}$.

The case $\rho = \eta$ of the conjecture was proposed by Ding et al. (DOS00). Note that when $k = \eta(G)$ it corresponds to Hadwiger's conjecture. The case $\rho = \pi$ of the conjecture was proposed by Woodall in his survey (W90). Actually it is a "minor" reformulation of the so-called (m, n)-conjecture (CGH71) (which have been disproved (J89; HT94)). We propose the case $\rho = \mu$ of the conjecture

because it holds for small values of $\mu(G)$. Indeed:

- every outerplanar graph has a vertex partition into 2 forests of paths (M83; BM85; AEG89),
- every planar graph has a vertex partition into 2 outerplanar graphs (CGH71), and
- every planar graph has a vertex partition into 3 forests of paths (G91; P90).

We also propose the case $\rho = \lambda$ because it holds for some cases, the cases when k is small. These cases are the purpose of this article. It is clear that Conjectures 2 holds for k=1. Ding et al. (DOS00) proved a result that implies the conjecture for k=2. Since this result uses other terminology and for completeness we prove a similar result in Section 3. In this section we also provide a result that implies the case k=3. This implies for example that every linkless embeddable graph has a vertex partition into 3 outerplanar graphs. First let us focus on minor-monotone parameters.

2 Minor-monotone parameters

Let G + v be the graph obtained from G by adding a vertex v adjacent to all the vertices of G. Let us define what is a convenient graph parameter.

Definition 3 Given a graph parameter ρ and an integer k_{ρ} , the couple (ρ, k_{ρ}) is convenient if we have the following three properties:

- (1) Any minor H of G is such that $\rho(H) \leq \rho(G)$.
- (2) Any graph G is such that $\rho(G) \leq \max\{\rho(G+v) 1, k_{\rho}\}.$
- (3) For any paire of non-empty graphs G_1 and G_2 , the disjoint union of G_1 and G_2 , $G_1 \cup G_2$, is such that $\rho(G_1 \cup G_2) = \max\{\rho(G_1), \rho(G_2), k_\rho\}$.

Furthermore a convenient couple (ρ, k_{ρ}) is minimum if $(\rho, k_{\rho} - 1)$ is not convenient.

Lemma 4 The couples $(\eta, 1)$, $(\pi, 1)$, $(\mu, 1)$ and $(\lambda, 1)$ are convenient and minimal.

PROOF. By definition the graph parameters π and η are minor-monotone. Also by definition of π and η , it is clear that $(\pi, 1)$ and $(\eta, 1)$ satisfy property (3). Finally, if K_{t+1} is not a minor of G, then K_{t+2} cannot be a minor of G + v. So, $(\eta, 1)$ is convenient. Similarly, if none of K_{t+1} and $K_{\left\lceil \frac{t+2}{2} \right\rceil, \left\lceil \frac{t+2}{2} \right\rceil}$ is a minor of G, then none of K_{t+2} and $K_{\left\lceil \frac{t+2}{2} \right\rceil, \left\lceil \frac{t+2}{2} \right\rceil + 1} = K_{\left\lfloor \frac{(t+1)+2}{2} \right\rfloor, \left\lceil \frac{(t+1)+2}{2} \right\rceil}$ can be a minor of G + v. So, $(\pi, 1)$ is convenient. Here $k_{\pi} = k_{\eta} = 1$ because it is the

minimum possible value of $\pi(G)$ or $\eta(G)$. It is shown in (CdV90) that the couple $(\mu, 1)$ is convenient. Here $k_{\mu} = 1$ and not 0, because in property (2) we can have $\mu(G) = \mu(G+v) = 1$ for $G = \overline{K_2}$. In (HLS95)(c.f. Theorem 1 and 4) it is shown that $(\lambda, 1)$ satisfies property (1) and (3). For proving property (2), let $X \subseteq \mathbb{R}^V$ be a maximal subspace (of dimension d) that fulfills (*), and let x_1, \ldots, x_d be d vectors generating X. Now let the d+1 dimensional subspace X' of $\mathbb{R}^{V \cup \{v\}}$ be the subspace generated by $x'_1, \ldots, x'_d, x'_{d+1}$ where

$$x_i(u) \quad \text{for } 1 \le i \le d \text{ and } u \in V$$

$$x_i'(u) = \begin{cases} 0 & \text{for } 1 \le i \le d \text{ and } u = v \\ x_d(u) & \text{for } i = d+1 \text{ and } u \in V \end{cases}$$

$$1 \quad \text{for } i = d+1 \text{ and } u = v$$

The (d+1)-dimensional subspace $X \times \mathbb{R}^{\{v\}}$ of $\mathbb{R}^{V \cup \{v\}}$ fulfills (*) for G+v. Indeed, consider any point $x' \in X \times \mathbb{R}^{\{v\}}$. If x'(v) > 0, since v is adjacent to all the vertices of G, the graph $G[\operatorname{supp}_+(x')]$ is connected. If $x'(v) \leq 0$, since the projection of x' in \mathbb{R}^V is a point $x \in X$, we have $\operatorname{supp}_+(x') = \operatorname{supp}_+(x)$, and so the graph $G[\operatorname{supp}_+(x')]$ is nonempty and connected. So property (2) holds and $(\lambda, 1)$ is convenient.

Here $k_{\lambda} = 1$ and not 0, because in property (3) we have $\lambda(G_1 \cup G_2) = 1 > 0 = \max\{\lambda(G_1), \lambda(G_2)\}$ when G_1 and G_2 have only one vertex.

We could also mention that the treewidth is a convenient graph parameter but it is not relevant for the next section. Indeed, Ding et al. proved in (DOS98) that a graph of treewidth $k_1 + k_2 + 1$ admits a vertex partition into two graphs of treewidth at most k_1 and k_2 . It is also possible that Conjecture 2 is true but not tight for some parameter ρ . We have been unable to construct, for any k and n such that $k \leq n$, a graph $G_{k,n}$ with $\rho(G_{k,n}) = n$ and such that in any vertex partition, one of the induced subgraphs has parameter at least n+1-k.

3 Vertex partitions

The following theorem is similar to the Theorem 4.2 in (DOS00) but uses other terminology.

Theorem 5 Consider a convenient couple (ρ, k_{ρ}) . For any integer $k \geq k_{\rho}$, any graph G with $\rho(G) \leq k+1$, and any vertex $v_1 \in V(G)$, there is a vertex partition of G, $V(G) = V_1 \cup V_2$, such that:

```
(a) \rho(G[V_i]) \le k, for all i \in \{1, 2\}
(b) v_1 \in V_1 and \deg_{G[V_1]}(v_1) = 0
```

PROOF. Let G be a counter-example minimizing |V(G)|. It is clear that G is a connected graph with at least two vertices. Let G' be the graph obtained by contracting all the edges incident to v_1 in G. Denote v_2 the vertex of G' obtained from v_1 and its neighbors. Since G' is a minor of G, by property (1), we have $\rho(G') \leq \rho(G) \leq k+1$. Since |V(G')| < |V(G)|, by minimality of |V(G)|, there is a vertex partition of G', $V(G') = V'_1 \cup V'_2$, such that:

```
(a') \rho(G[V_i']) \leq k, for all i \in \{1, 2\}.

(b') v_2 \in V_2' and \deg_{G[V_2']}(v_2) = 0.
```

We extend this partition of G' to G. Let the vertices of $G' \setminus v_2$ remain in the same subset of the partition $(V_i' \setminus v_2 \subseteq V_i)$. Put the vertex v_1 in V_1 and all its neighbors, $N_G(v_1)$, in V_2 . Point (b) clearly holds so focus on point (a). Since $G[V_1] = G'[V_1'] \cup v_1$ it is clear, by point (a') and property (3) of ρ , that $\rho(G[V_1]) \leq k$. The graph induced by v_1 and $N_G(v_1)$ is a minor of G, so $\rho(G[\{v_1\} \cup N_G(v_1)]) \leq k+1$, and by property (2) we have that $\rho(G[N_G(v_1)]) \leq k$. Point (b') implies that there is no vertex in V_2' adjacent to a vertex of $N_G(v_1)$. By property (3) we have $\rho(G[V_2]) \leq k$ and point (a) holds. So there is no counter-example G and the theorem holds.

Theorem 6 Consider a convenient couple (ρ, k_{ρ}) . For any integer $k \geq k_{\rho}$, any graph G with $\rho(G) \leq k + 2$, and any edge $v_1v_2 \in E(G)$, there is a vertex partition of G, $V(G) = V_1 \cup V_2 \cup V_3$, such that:

```
(a) \rho(G[V_i]) \le k - 2, for all i \in \{1, 2, 3\}

(b) v_1 \in V_1 and \deg_{G[V_1]}(v_1) = 0

(c) v_2 \in V_2 and \deg_{G[V_2]}(v_2) = 0
```

PROOF. Let G be a counter-example minimizing |V(G)|.

Claim 7 The graph G is a 2-connected graph with at least three vertices.

If G is not 2-connected, let v be a separating vertex and let G_1 and G_2 be two non-empty graphs such that $G = G_1 \cup G_2$, $V(G_1) \cap V(G_2) = \{v\}$ and $v_1v_2 \in E(G_1)$. These graphs are minors of G, so $\rho(G_1)$ and $\rho(G_2) \leq \rho(G) \leq k+2$. By minimality of |V(G)| we can consider a vertex partition of G_1 that fulfills points (a), (b) and (c). W.l.o.g. we consider that $v \in V_1$. We apply now the induction hypothesis to G_2 with respect to any edge incident to v. Since $\deg_{G_2[V_1]}(v_1) = 0$, it is clear that the union of these two 3-partitions is a 3-partition of V(G) that fulfills points (a), (b) and (c). So the counter-example G is 2-connected.

Let u_1, \ldots, u_t and v_1 be the neighbors of v_2 . Contract any edge incident to v_1 that is not v_1v_2 or an edge v_1u_i . Repeat this process until having only edges v_1v_2 or v_1u_i incident to v_1 . The graph obtained, G', is a minor of G and so $\rho(G') \leq \rho(G) \leq k+2$. Consider that u_1, \ldots, u_d (resp. u_{d+1}, \ldots, u_t) are the neighbors of v_2 that are (resp. are not) adjacent to v_1 in G'.

Claim 8
$$\rho(G'[\{u_1, ..., u_d\}]) \le k$$

Indeed, the induced graph $G'[\{v_1, v_2, u_1, \dots, u_d\}]$ is a minor of G and so $\rho(G'[\{v_1, v_2, u_1, \dots, u_d\}]) \leq \rho(G) \leq k+2$. Then, since $G'[\{v_1, v_2, u_1, \dots, u_d\}] = ((G'[\{u_1, \dots, u_d\}] + v_1) + v_2)$, the claim is implied by property (2).

Let $G_{2,3}$ be the graph obtained from G' by contracting all the edges incident to v_1 . Denote v_3 the vertex of $G_{2,3}$ obtained from v_1 and its neighbors. The graph $G_{2,3}$ is a minor of G, so we have $\rho(G_{2,3}) \leq \rho(G) \leq k+2$. By minimality of |V(G)|, there is a vertex 3-partition of $G_{2,3}$ such that:

```
(a<sub>2,3</sub>) \rho(G_{2,3}[V_i]) \le k-2, for all i \in \{1, 2, 3\}
(b<sub>2,3</sub>) v_3 \in V_3 and \deg_{G_{2,3}[V_3]}(v_3) = 0
(c<sub>2,3</sub>) v_2 \in V_2 and \deg_{G_{2,3}[V_2]}(v_2) = 0
```

Let $G_{1,3}$ be the graph obtained from G by contracting all the edges in $G' \setminus v_1$. Denote v_3 the vertex of $G_{1,3}$ obtained from v_2 and the other vertices of $G' \setminus v_1$. The graph $G_{1,3}$ is a minor of G, so we have $\rho(G_{1,3}) \leq \rho(G) \leq k+2$. By minimality of |V(G)|, there is a vertex 3-partition of $G_{1,3}$ such that:

```
\begin{array}{ll} (\mathbf{a}_{1,3}) \ \rho(G_{1,3}[V_i]) \leq k-2, \ \text{for all} \ i \in \{1,2,3\} \\ (\mathbf{b}_{1,3}) \ v_1 \in V_1 \ \text{and} \ \deg_{G_{1,3}[V_1]}(v_1) = 0 \\ (\mathbf{c}_{1,3}) \ v_3 \in V_3 \ \text{and} \ \deg_{G_{1,3}[V_3]}(v_3) = 0 \end{array}
```

We consider the vertex 3-partition of G induced by the vertex 3-partitions of $G_{2,3}$ and $G_{1,3}$. In this partition the vertices u_1, \ldots, u_d are in V_3 . It is clear that $(b_{1,3})$ (resp. $(c_{2,3})$) implies (b) (resp. (c)). It is also clear that, since $\{u_1, \ldots, u_d\} \subseteq V_3$, none of the vertices in $G_{1,3}[V_1]$ (resp. $G_{1,3}[V_2]$) is adjacent to a vertex in $G_{2,3}[V_1]$ (resp. $G_{2,3}[V_2]$). So point (a) holds for i = 1 or 2. For i = 3, points $(b_{2,3})$ and $(c_{1,3})$ imply that $G[\{u_1, \ldots, u_d\}]$ is a connected component of $G[V_3]$. Finally Claim 8, points $(a_{1,3})$, $(a_{2,3})$ and property (3) imply point (a) for i = 3. So there is no counter-example G and the theorem holds.

4 Conclusion

The proofs of these theorems is similar to the proofs of the facts that forests of paths and outerplanar graphs are respectively 2-colorable and 3-colorable.

Unfortunately, it seems difficult to use the proof of the 4 Color Theorem to find a proof for the next step, k = 4. To prove this case (k = 4) for Conjecture ?? we could use a different technique. Given two graphs H and G, their lexicographic product, $H \times_{lex} G$, is the graph with vertex set $V(H) \times V(G)$ and such that (u, v)(u', v') is an edge of $H \times_{lex} G$ iff $uu' \in E(H)$ or if u = u' and $vv' \in E(G)$.

Conjecture 9 For any graph X and any integer $k \in [0...\mu(X)]$ there exist two graphs H and G, with $\mu(H) \leq k$ and $\mu(G) \leq \mu(X) - k$, such that the graph X is a subgraph of $H \times_{lex} G$.

Using the proofs in the previous section we see that Conjecture 9 holds for k < 3. Note that if for a given k Conjecture 1 holds for $\mu(G) = k$ and if Conjecture 9 holds, then Conjecture ?? holds for k. Since Conjecture 1 holds for $\mu(G) \le 4$, we could prove Conjecture ?? for k = 3 (resp. k = 4) by showing that Conjecture 9 holds for k = 3 (resp. k = 4). Note that this scheme of proof would also work for Conjectures ??, ?? and ??.

References

- [AEG89] J. Akiyama, H. Era, S.V. Gervacio and M. Watanabe, Path chromatic numbers of graphs, *J. Graph Theory* **13** (1989), 569–575.
- [BM85] I. Broere, C.M. Mynhardt, Generalized colorings of outerplanar and planar graphs, *In: Y. Alavi, et al. Graph Theory with Applications to Algorithms and Computer Science* New York: Wiley Intersci. Publ., John Wiley & Sons, Inc. (1985), 151–161.
- [CGH71] G. Chartrand, D. Geller and S. Hedetniemi, Graphs with forbidden subgraphs, *J. Combinatorial Theory Ser. B* **10** (1971), 12–41.
- [CdV90] Y. Colin de Verdière, Sur un nouvel invariant des graphes et un critère de planarité, J. Combin. Theory Ser. B **50** (1990) 1, 11–21.
- [CdV93] Y. Colin de Verdière, On a new graph invariant and a criterion for planarity, *Graph structure theory (Seattle, WA, 1991) Contemp. Math.* **147** (1993), 137–147.
- [DOS98] G. Ding, B. Oporowski, D.P. Sanders and D. Vertigan, Partitioning graphs of bounded tree-width, *Combinatorica*, **18** (1998) 1, 1–12.
- [DOS00] G. Ding, B. Oporowski, D.P. Sanders and D. Vertigan, Surfaces, treewidth, clique-minors, and partitions, J. Combin. Theory Ser. B, 79 (2000) 2, 221–246.
- [G91] W. Goddard, Acyclic colorings of planar graphs, *Discrete Math.* **91** (1991), 91–94.
- [HT94] D. Hanson and B. Toft, The (m, n)-conjecture is false, Bull. Inst. Combin. Appl. 11 (1994), 59–66.
- [HLS95] H. van der Holst, M. Laurent and A. Schrijver, On a Minor-Monotone Graph Invariant, J. Combin. Theory Ser. B 65 (1995) 2, 291–304.
- [HLS99] H. van der Holst, L. Lovász and A. Schrijver, The Colin de Verdière

- graph parameter, Graph theory and combinatorial biology (Balatonlelle, 1996) Bolyai Soc. Math. Stud. 7 (1999), 29–85.
- [J89] L. Jørgensen, Some probabilistic and extremal results on subdivisions and odd subdivisions of graphs, *J. Graph Theory* **13** (1989) 1, 75–85.
- [M83] P. Mihók, On vertex partition numbers of graphs, *In: M. Fiedler:* Graphs and Other Combinatorial Topics Leipzig: Teubner (1983), 183–188.
- [P90] K. S. Poh, On the linear vertex-arboricity of a planar graph, *J. Graph Theory* **14** (1990) 1, 73–75.
- [W90] D. Woodall Improper colourings of graphs *Graph colourings (Milton Keynes, 1988) Pitman Res. Notes Math. Ser.* **218** (1990), 45–63.