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Abstract A proper vertex coloring of a graph G = (V, E) is acyclic if G con-
tains no bicolored cycle. A graph G is L-list colorable if for a given list assign-
ment L = {L(v) : v ∈ V }, there exists a proper coloring c of G such that
c(v) ∈ L(v) for all v ∈ V . If G is L-list colorable for every list assignment
with |L(v)| ≥ k for all v ∈ V , then G is said k-choosable. A graph is said to be
acyclically k-choosable if the coloring obtained is acyclic. In this paper, we study
the acyclic choosability of graphs with small maximum degree. In 1979, Burstein
proved that every graph with maximum degree 4 admits a proper acyclic color-
ing using 5 colors [Bur79]. We prove that (a) every graph with maximum degree
∆ = 3 is acyclically 4-choosable and (b) every graph with maximum degree
∆ = 4 is acyclically 5-choosable. The proof of (b) uses a backtracking greedy
algorithm and Burstein’s theorem.

1 Introduction

Let G be a graph. Let V (G) be its set of vertices and E(G) be its set of edges. A
proper vertex coloring of G is an assignment f of integers (or labels) to the vertices of
G such that f(u) ̸= f(v) if the vertices u and v are adjacent in G. A k-coloring is a
proper vertex coloring using k colors. A proper vertex coloring of a graph is acyclic if
there is no bicolored cycle. The acyclic chromatic number of G, χ a(G), is the smallest
integer k such that G is acyclically k-colorable. Acyclic colorings were introduced by
Grünbaum in [Grü73] and studied by Mitchem [Mit74], Albertson, Berman [AB77],
and Kostochka [Kos76]. In 1979, Borodin proved Grünbaum’s conjecture:

Theorem 1. [Bor79] Every planar graph is acyclically 5-colorable.

This bound is best possible: in 1973, Grünbaum gave an example of a 4-regular
planar graph [Grü73] which is not acyclically colorable with four colors. Moreover,
there exist bipartite 2-degenerate planar graphs which are not acyclically 4-colorable
[KM76].
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Borodin, Kostochka and Woodall improved this bound for planar graphs with a given
girth. We recall that the girth of a graph is the length of its shortest cycle.

Theorem 2. [BKW99]

1. Every planar graph with girth at least 7 is acyclically 3-colorable.
2. Every planar graph with girth at least 5 is acyclically 4-colorable.

In 1979, Burstein studied graphs with small maximum degree and proved :

Theorem 3. [Bur79] Every graph with maximum degree 4 is acyclically 5-colorable.

There are graphs with maximum degree 4 which need 5 colors, for exampleK 5.

A graph G is L-list colorable if for a given list assignment L = {L(v) : v ∈ V (G)}
there is a coloring c of the vertices such that c(v) ∈ L(v) and c(v) ̸= c(u) if u and v
are adjacent in G. If G is L-list colorable for every list assignment with |L(v)| ≥ k for
all v ∈ V (G), thenG is said k-choosable. In [Voi93], Voigt proved that there are planar
graphs which are not 4-choosable, and in [Tho94], Thomassen proved that every planar
graph is 5-choosable. In this paper we focus on acyclic choosability of graphs. This is,
for which value k, any list assignement L, with |L(v)| ≥ k for all v ∈ V (G), allow an
acyclic coloring of G. In [BFDFK+02], the following theorem is proved and the next
conjecture is given:

Theorem 4. [BFDFK+02] Every planar graph is acyclically 7-choosable.

This means that for any given list assignment L, with |L(v)| ≥ 7 for all v ∈ V (G),
there is an acyclic coloring c of G, such that it is possible to choose for each vertex v a
color in L(v). The acyclic list chromatic number of G, χ l

a(G), is the smallest integer k
such that G is acyclically k-choosable.

Conjecture 1. [BFDFK+02] Every planar graph is acyclically 5-choosable.

In 2004, Montassier, Ochem and Raspaud studied the acyclic choosability of graphs
with bounded maximum average degree. The maximum average degree, Mad(G), of
the graphG is defined as

Mad(G) = max{2|E(H)|/|V (H)|, H ! G}

Theorem 5. [MOR04]

1. Every graphG with Mad(G) < 8
3 is acyclically 3-choosable.

2. Every graphG with Mad(G) < 19
6 is acyclically 4-choosable.

3. Every graphG with Mad(G) < 24
7 is acyclically 5-choosable.

In [MS04], the authors gave an upper bound on χ l
a for the graphs with bounded degree

:

Theorem 6. [MS04] LetG be a graphwith maximum degree∆, thenχ l
a(G) ≤ ⌈50∆4/3⌉.



In this paper, we improve this bound for graphs with small maximum degree. The case
with∆ ≤ 2 is trivial. Indeed, trees (including paths) are clearly 2-choosable, and cycles
are 3-choosable. Our results are stated in the following theorems.

Theorem 7. Let G be a graph with maximum degree ∆ ≤ 3, then χ l
a(G) ≤ 4.

Theorem 8. Let G be a graph with maximum degree ∆ ≤ 4, then χ l
a(G) ≤ 5.

Note that Theorem 8 improves Burstein’s result on maximum degree four graphs. In
what follows, we call k-vertex a vertex of degree k. The next section is dedicated to the
proof of Theorem 7. In Section 3, we prove Theorem 8.

2 Proof of Theorem 7

Let H be a counterexample to Theorem 7 with minimum order. Let L = {L(v) :
v ∈ V (H)} be a list assignment such that there exists no extracted acyclic coloring.
Let c be a proper coloring of H , with c(v) ∈ L(v) for all v ∈ V (H), such that the
number a of bicolored cycles is minimal. There is such coloring, since cubic graphs are
4-choosable. Let C be a bicolored cycle. We prove that we can recolor a part of C such
that C is 3-colored and the total number of bicolored cycle is at most a−1. The coloring
obtained contradicts the minimality of a, completing the proof.

Claim. The counterexample H does not contain 1-vertices nor 2-vertices, so H is 3-
regular.

Proof. 1. Suppose thatH contains a 1-vertex u adjacent to a vertex v. By minimality
of H , the graph H ′ = H \ {u} is acyclically 4-choosable. Let c be an acyclic
coloring ofH ′ such that c(v) ∈ L(v) for all v ∈ V (H ′). We extend this coloring to
H by coloring u with any color in L(u) \ {c(v)}. Since u cannot be in a cycle, the
coloring obtained is an acyclic coloring ofH , contradicting the definition ofH .

2. Suppose that H contains a 2-vertex v adjacent to two other vertices u and w. By
minimality of H , the graph H ′ = (V (H) \ {v}, E(H) \ {uv, vw} ∪ {uw}) is
acyclically 4-choosable. There is an acyclic coloring c of H ′ which we can extend
toH by coloring v with a color in L(v) \ {c(u), c(w)}. Indeed, v cannot be part of
a bicolored cycle since c(u) ̸= c(w), u and v being adjacent inH ′.

Assume w.l.o.g. that the cycle C = x1x2x3 . . . xk with k ≥ 4 is bicolored using the
colors 1 and 2, with c(x1) = 1. Each vertex xi is adjacent to the vertices xi−1, xi+1, and
yi. Each vertex yi is adjacent to xi and to two other vertices zi, ti (see Figure 1). The
vertices xi, yj , zk, tl are not necessarily distinct. We consider two cases according to
the color of the vertex y3 : first case, y3 is colored with a color used in C, so c(y3) = 2;
second case, y3 is not colored 1 or 2, let c(y3) = 3.
1. Suppose that c(y3) = 2. We know that 1 ∈ L(x3). The vertex x3 cannot be colored

2 because its neighbours are colored 2. There is at most two other problematic col-
ors, say 3 and 4, because they create bicolored cycles passing through y 2, x2, x3, y3,
and z3 and through y4, x4, x3, y3, and t3. So we consider that L(x3) = {1, 2, 3, 4},
c(y2) = c(z3) = 3 and c(y4) = c(t3) = 4. In this case we have to modify c(y3).
We color y3 with a color in L(y3)\{2, 3, 4}. Then we finally color x3 with 3 or 4.
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2. Suppose that c(y3) = 3. We know that 1 ∈ L(x3). The vertex x3 cannot be colored
2 or 3 because its neighbours are colored 2 or 3. There is at most one other problem-
atic color, say 4, because it creates a bicolored cycle passing through y 2, x2, x3, x4,
and y4. So we consider that L(x3) = {1, 2, 3, 4} and c(y2) = c(y4) = 4. If there
was a color b ∈ L(x2)\{1, 2, 3, 4}, we could set c(x2) = b and c(x3) = 1. So
we consider that L(x2) = L(x4) = {1, 2, 3, 4}. In this case we can let c(x2) =
c(x4) = 3 and c(x3) = 2.

This completes the proof of Theorem 7.

3 Proof of Theorem 8

LetH be a counterexample to Theorem 8 with minimum order, andL a list assignment
such that there is no extracted acyclic coloring. In the first subsection, we prove some
structural properties ofH , that will allow us to use an algorithm (presented in the second
and in the third subsection) which gives an acyclic coloring ofH from L, contradicting
the definition of L.

3.1 Structural properties ofH

Claim. The counterexampleH is 4-regular.

Proof. 1. H does not contain any 1-vertices nor 2-vertices (see the first claim).
2. H does not contain any 3-vertices. Suppose that H contains a 3-vertex v adjacent
to three vertices x, y, z with d(x) ≥ 3, d(y) ≥ 3, d(z) ≥ 3. Let x1, x2, (x3 if
d(x) = 4) be the other neighbours of x (y1, y2, y3 for y and z1, z2, z3 for z). By
minimality of H , the graph H ′ = (V (H) \ {v}, E(H) \ {vx, vy, vz} ∪ {xy}) is
acyclically 5-choosable. So, there is an acyclic coloring c ofH ′. If c(x), c(y), c(z)
are all distinct, it is easy to extend the coloring c to H by coloring v with a color
different from c(x), c(y), c(z). Hence suppose that w.l.o.g. c(x) = c(z) = 1 and



c(y) = 2. Observe that ifL(v) ̸= {1, 2, c(x1), c(x2), c(x3)}, we can extend the col-
oring c to H . So, L(v) = {1, 2, c(x1), c(x2), c(x3)} and {c(x1), c(x2), c(x3)} =
{c(z1), c(z2), c(z3)} = {3, 4, 5}. IfL(x) ̸= {1, 2, 3, 4, 5}, we are done : we color x
with a color different from 1,2,3,4,5; the colors of x, y, z are all distinct and finally
we color v. For the same reason, L(z) = {1, 2, 3, 4, 5}. In this case, we recolor x
and z with 2 and we color v with 1.

Claim. All the cut vertices ofH are incident to a bridge.

Proof. By contradiction, let v be a cut vertex with neighbours x 1, x2, y1 and y2 such
that x1 and x2 (resp. y1 and y2) are in the same connected component of G\{v}. Let
G′ be the graph G\{v} with the edges x1x2 and y1y2. Since G′ is smaller than G it
has an acyclic coloring c where c(x1) ̸= c(x2) and c(y1) ̸= c(y2). If we consider this
coloring in the graph G, the only uncolored vertex is v and since it is a cut vertex,
whatever its assigned color we cannot create a bicolored cycle going through x ivyj .
Furthermore, since c(x1) ̸= c(x2) (resp. c(y1) ̸= c(y2)) we cannot create a bicol-
ored cycle going through x1vx2 (resp. y1vy2). So v can be colored with a color in
L(v)\{c(x1), c(x2), c(y1), c(y2)}.

Claim. The graphH contains an edge uv such that :

1. L(u) ̸= L(v).
2. The edge uv is not a bridge.
3. The vertex u is not incident to a bridge.

Proof. 1. If ∀v ∈ V (H), L(v) = {1, 2, 3, 4, 5}, then by Burstein’s Theorem, there
exists an acyclic coloring c of H , which contradicts the definition of H . Hence,
there exists an edge uv with L(u) ̸= L(v).

2. By contradiction, suppose that all the edges uv with L(u) ̸= L(v) are bridges. Let
S be the set of such edges. The graph obtained from H by removing the edges of
S is composed of several components C1, . . . , Ck with k ≥ 2 such that the lists of
the vertices of a same component are all equal, i.e. ∀v ∈ V (C i), L(v) = Li. By
minimality of H , the graph H ′ = H \ C1 is acyclically 5-choosable; so, we can
extract from the list assignment L an acyclic coloring c of H ′. Independently, we
can color C1 with Burstein’s Theorem (since ∀v ∈ V (C1), L(v1) = L1). Finally,
we can extend the coloring c ofH ′ toH by permuting two colors ofC1 if necessary.

3. We prove that H contains at most one bridge. By contradiction. Suppose that H
contains two bridges u1u2 and v2v3, which separate H into three components
C1, C2, C3, such that u1 ∈ C1, u2, v2 ∈ C2, v3 ∈ C3, and |C1| ≤ |C3|. By
minimality of H , the graph H ′ induced by the vertices of C2 and C3 is acycli-
cally 5-choosable. So, there exists an acyclic coloring cH′ of H ′. As well, the
graph H ′′ induced by the vertices of C1 admits an acyclic coloring cH′′ of H ′′.
Now, if the colors assigned to the endpoints of u1u2 are distinct, we can extend
the colorings cH′ and cH′′ to H . If not, this implies that all the acyclic color-
ings cH′′ of C1 verify cH′′ (u1) = a = cH′(u2). So, the graph F composed by
two copies of H ′′ and an edge linking the copies of u1 is a counterexample and
|V (F )| = 2|V (C1)| ≤ |V (C1)| + |V (C3)| < |V (H)| which contradicts the defi-
nition ofH .



From now, we suppose that we have an edge uv, which is not a bridge, with L(u) ̸=
L(v) and such that u is not a cut vertex.

Claim. There is an order x1, x2, . . . , xn on the vertices, such that x1 and xn are ad-
jacent, L(x1) ̸= L(xn), and the vertices xi, with i < n, have a neighbour xj with
j > i.

Proof. Since u is not a cut vertex, consider a spanning tree T of H \ {u} rooted in v.
Let x1 = u and order the others vertices from x2 to xn, according to a post order walk
on T . Notice that xn = v and for i < n, each xi has a father in T which is posterior in
the order.

In the next subsections, we use this order to acyclically color the vertices of H . We
will successively color x1, x2, . . . , xn. During this process, when we color xi, we may
change the color of xj , for 1 < j < i < n. Note that the color of x1 remains unchanged
until coloring xn. At the beginning there is no constraints; so, let the color of x1 be such
that c(x1) ∈ L(x1)\L(xn). In the next subsection we explain how to color the vertices
xi, for i < n. In the last subsection, we finally color xn; that will complete the proof of
Theorem 8.

3.2 The backtracking greedy algorithm : the coloring of x i, 1 < i < n

At Step 1, we colored x1 with a color a with a /∈ L(xn). The following Claim allow
us to color all the vertices until xn−1.

Claim. Let c be a partial acyclic coloring of H on the vertices {x1, . . . , xi−1}. Then,
there exists a partial acyclic coloring c′ ofH on the vertices {x1, . . . , xi}, i < n, which
do not modify the color of x1.

Proof. Let c be a partial acyclic coloring of H on the vertices {x1, . . . , xi−1}. We
would like to extend the coloring c to xi. We know that xi has at most three colored
neighbours by the definition of the order. Let x j , xk, xl be these vertices. We consider
two cases following the adjacency of xi to x1. However, the analysis are almost the
same.

1. The vertex xi is adjacent to x1, xj , xk. We recall that x1 is adjacent to xn which is
not colored. Let x1

1, x
2
1 be the other neighbours of x1. Let x1

j , x
2
j , x

3
j be the other

neighbours of xj (x1
k, x2

k, x3
k for xk). We consider the different cases following the

coloring of xj , xk.
1.1. The colors of xj , xk, x1 are all distinct. We just let c′(xi) ∈ L(xi) \ {c(xj),

c(xk), c(x1)}.
1.2. A color appears exactly twice on xj , xk, x1.
1.2.1. The color of x1 appears twice. W.l.o.g., suppose that c(x1) = c(xj) = a

and c(xk) = 1, a ̸= 1. We just let c′(xi) ∈ L(xi) \ {1, a, c(x1
1), c(x2

1)}
(we recall that x1 is adjacent to xn which is not colored).



1.2.2. A color different from c(x1) appears twice. Let c(xj) = c(xk) = 1 and
c(x1) = a, a ̸= 1. If L(xi) ̸= {1, a, c(x1

j), c(x2
j ), c(x3

j )}, we are done
: we could color xi with c′(xi) ∈ L(xi) \ {1, a, c(x1

j), c(x2
j ), c(x3

j )}.
Hence, L(xi) = {1, a, c(x1

j), c(x2
j ), c(x3

j )} and {c(x1
j), c(x2

j ), c(x3
j )} =

{c(x1
k), c(x2

k), c(x3
k}. Set {c(x1

k), c(x2
k), c(x3

k} = {2, 3, 4}. Now, we re-
color xj with a color different from 1, 2, 3, 4 and we get case 1.1 or 1.2.1.

1.3. A color appears three times. So, suppose that c(x1) = c(xj) = c(xk) = a. It
is easy to see that if we cannot color xi, this implies that all the neighbours of
x1 (resp. xj , xk) have distinct colors. So we recolor xj with a color different
from a, c(x1

j ), c(x2
j ), c(x3

j ) and we get case 1.2.1.
2. The vertex xi is not adjacent to x1. Let x1

j , x
2
j , x

3
j be the other neighbours of xj

(x1
k, x2

k, x3
k for xk and x1

l , x
2
l , x

3
l for xl). Following the coloring of the vertices of

xj , xk, xl, we consider the different cases :
2.1. The colors of xj , xk, xl are all distinct. We just color xi with (xi) ∈ L(xi) \

{c(xj), c(xk), c(xl)}.
2.2. A color appears exactly twice on xj , xk, xl. W.l.o.g. We suppose that c(xj) =

c(xk) = 1 and c(xl) = 2. If L(xi) ̸= {1, 2, c(x1
j), c(x2

j ), c(x3
j )}, we are done :

let c′(xi) ∈ L(xi)\{1, 2, c(x1
j), c(x2

j ), c(x3
j )}. So,L(xi) = {1, 2, c(x1

j), c(x2
j ),

c(x3
j )} and {c(x1

j ), c(x2
j ), c(x3

j )} = {c(x1
k), c(x2

k), c(x3
k)}; say {c(x1

j), c(x2
j ),

c(x3
j )} = {3, 4, 5}. Now, if L(xj) ̸= {1, 2, 3, 4, 5}, we recolor xj such that

c′(xj) ∈ L(xj)\{1, 2, 3, 4, 5} and let c′(xi) ∈ L(xi)\{c′(xj), c′(xk), c′(xl)}.
Consequently, L(xj) = {1, 2, 3, 4, 5} and for the same reason, L(xk) =
{1, 2, 3, 4, 5}. In this case, let c′(xj) = c′(xk) = 2, and c′(xi) = 1.

2.3. A color appears three times on xj , xk, xl. It is easy to observe that if we cannot
color xi, this implies that at least one vertex of xj , xk, xl has a neighbourhood
colored with three distinct colors. Hence we can recolor this vertex with a dif-
ferent color and get case 2.2.

3.3 The final step : the coloring of xn

At this point, we have a partial acyclic coloring such that c(x1) = a with a /∈ L(xn).
Let x1, u, v, w be the neighbourhoodN(xn) of xn. Let u1, u2, u3 be the other neigh-
bours of u (v1, v2, v3 for v, and w1, w2, w3 for w, and x1

1, x
2
1, x

3
1 for x1).

We show that we can extend the partial acyclic coloring to xn by recoloring if
necessary one or some vertices of N(xn). For this, we consider the different cases
according to the coloring ofN(xn) :

1. The vertices of N(xn) have all distinct colors. In this case, it is easy to extend the
coloring to xn by coloring xn with c(xn) ∈ L(xn) \ {c(u), c(v), c(w)} (recall that
c(x1) /∈ L(xn)).

2. Exactly one color appears twice in N(xn) :
2.1. Suppose that c(u) = c(v) ̸= a, c(w) ̸= c(u), c(w) ̸= a. If we can color xn

with a color different from c(u), c(w), c(u1), c(u2), c(u3) (a /∈ L(xn)), we
are done. Hence, L(xn) = {c(u), c(w), c(u1), c(u2), c(u3)}; the colors of the
ui are distincts, the colors of the vi are distinct and {c(u1), c(u2), c(u3)} =



{c(v1), c(v2), c(v3)}. Now, we color xn with c(u) and we recolor u and v with
a proper color. The coloring obtained is acyclic.

2.2. The color of x1, i.e. a, appears twice. Set c(u) = c(x1) = a, c(v) = b,
and c(w) = c (a, b, c are distinct). If L(xn) ̸= {b, c, c(u1), c(u2), c(u3)}, we
can color xn (with a color different from these of v, w, u1, u2, u3) and the
coloring obtained is an acyclic coloring. Otherwise, this implies that : the col-
ors of the ui are distinct (i = 1, 2, 3); the colors of the xi

1 are distinct; S =
{c(u1), c(u2), c(u3)} = {c(x1

1), c(x2
1), c(x3

1)}, a /∈ S, and L(xn) = {c(u1),
c(u2), c(u3), b, c}. Now, we recolor u with a color different from c(u1), c(u2),
c(u3), a. If this new color is equal to b or c, we have case 2.1, else, we have
case 1.

3. Exactly two colors appear twice.W.l.o.g., set c(u) = c(v) = 1 and c(w) = c(x1) =
a.

First, we show that L(xn) contains necessarily the color 1. If 1 /∈ L(xn), say
L(xn) = {2, 3, 4, 5, 6}. If we cannot color xn, this implies that there exists at least
one of the vertices u, v, w, x1 whose the neighbours have distinct colors; say u. So,
we recolor u with a color different from c(u1), c(u2), c(u3), 1. If this new color
is a, then we can color xn with a color of the neighbours of u according to the
coloring of the neighbours of w and x1, otherwise, we get case 2.2.

Hence, we suppose that 1 ∈ L(xn) and set L(xn) = {1, 2, 3, 4, 5}. If we
cannot color xn with 2, 3, 4, 5; this implies that by coloring xn with one of these
colors, we will create a bicolored cycle. So, each of the colors 2, 3, 4, 5 appears at
least twice among the colors c(ui), c(vi), c(wi), c(xi

1), i = 1, 2, 3.
3.1. Suppose that three bicolored cycles can be created (using one of the colors of

L(xn)), going through u and v; this implies that the colors of the neighbours of
u (resp. v) are distinct and {c(u1), c(u2), c(u3)} = {c(v1), c(v2), c(v3)}. Set,
w.l.o.g. c(u1) = 2, c(u2) = 3, c(u3) = 4 and c(w1) = c(x1

1) = 5 (if the color
5 does not appear in the neighbourhood of w and x 1, we can color xn with 5).
Now, if we can recolor u with a color different from 1, 2, 3, 4, a, we get case
2.2. So L(u) = {1, 2, 3, 4, a} and we set c(u) = a. Now, we can color xn with
one of the colors 2, 3, 4 following the colors of the neighbourhood of w (we
choose a color different from c(w2), c(w3)).

3.2. Suppose that two bicolored cycles going through u and v can be created by
choosing a color of xn in {2, 3, 4, 5} and two bicolored cycles going through
w and x1 can be created by choosing a color of xn in {2, 3, 4, 5}. So, we have
: c(u) = c(v) = 1, c(w) = c(x1) = a and w.l.o.g c(u1) = c(v1) = 2, c(u2) =
c(v2) = 3, c(w1) = c(x1

1) = 4 and c(w2) = c(x2
1) = 5.

Suppose c(u3) = b with b ̸= 2, b ̸= 3 (it may be that a = b). If we can
recolor u with a color different from 1, 2, 3, a, b, we get case 2.2. So, a ̸= b,
L(u) = {1, 2, 3, a, b}. If c(w3) ∈ {4, 5}, let c(u) = a and xn be colored 2 or
3, according to the color of w3. If c(w3) /∈ {4, 5}, similarly to u, we deduce
that w can be colored 1. So, let c(u) = a, c(w) = 1 and color xn with a color
not in {1, a, b, c(w3)}.

Hence, c(u3) ∈ {2, 3}, c(v3) ∈ {2, 3}, c(w3) ∈ {4, 5}, c(x3
1) ∈ {4, 5}.

W.l.o.g. set c(u3) = 2. Now, we will recolor u and/or v. If we can recolor u
with a color different from 1, 2, 3, we can color xn with 2 or 3.



So we must study the coloring of the neighbourhood of u (at distance 2).
Let u1

1, u
2
1, u

3
1 be the other neighbours of u1 (u1

2, u
2
2, u

3
2 for u2, and u1

3, u
2
3, u

3
3

for u3). We recall that at least one of u1
1, u

2
1, u

3
1 or u1

3, u
2
3, u

3
3 is colored by 1;

say u1
1 (as well, one of u1

2, u
2
2, u

3
2 is colored by 1; say u1

2). So, if we can recolor
u with a color different from 1, 2, 3, c(u2

1), c(u3
1), we are done. Assume that

L(u) = {1, 2, 3, b, c} (b ̸= c, b /∈ {1, 2, 3}, c /∈ {1, 2, 3}), c(u2
1) = c(u1

3) = b,
c(u3

1) = c(u2
3) = c. Since c(u1

1), c(u2
1), c(u3

1) are distinct, let us recolor u1.
Assign to u1 a color different from 1, 2, b, c. If its new color is different from
3, we are done (we can then easily recolor u with a color different from 1). So,
suppose that the new color of u1 is 3. Hence, we cannot recoloruwith a color in
{1, 2, 3, b, c}, i.e. with b or c, if and only if {c(u2

2), c(u3
2)} = {b, c}. However,

if L(u2) ̸= {1, 2, 3, b, c}, we can recolor u2, then u. Finally, this implies that
we have L(u) = L(u1) = L(u2) = {1, 2, 3, b, c}, {c(u1

1), c(u2
1), c(u3

1)} =
{c(u1

2), c(u2
2), c(u3

3)} = {1, b, c}. In this case, we assign the color 2 to u1 and
u2, the color 3 to u and the color 2 to xn.

4. Suppose that a color appears exactly three times. It is easy to observe that if we
cannot color xn, this implies that the neighbours of at least one of the vertices
u, v, w, x1 have distinct colors, say u. so we can recolor u and get case 2.2.

5. A color appears four times : there is only one possibility, i.e. c(u) = c(v) = c(w) =
c(x1) = a. Since a /∈ L(xn), if we cannot color xn, this implies that the neighbours
of at least one of the vertices u, v, w, x1 have distinct colors, say u. So, we can
recolor u and get case 4.
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