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Abstract

We solve a conjecture of Y. Roditty, B. Shoham and R. Yuster [2, 8] on the caterpillar
arboricity of planar graphs. We prove that for every planar graph G = (V, E), the edge set
E can be partitioned into four subsets (E;),.,., in such a way that G [E;], for 1 <i < 4,
is a forest of caterpillars. We also provide a linear-time algorithm which constructs for a
given planar graph G, four forests of caterpillars covering the edges of G.

1 Introduction

The arboricity a(G) of a graph G is defined as the minimum number of forests needed to
cover all the edges of G. In a similar way, the linear arboricity la(G) (resp. star arboricity
sa(G), caterpillar arboricity ca(G)) of G is the smallest number of forests needed to cover
all the edges of G such that each connected component of each forest is a path (resp. a
star, a caterpillar). A staris a tree in which all the edges are incident to the same vertex.
A caterpillar is a tree such that when removing all the vertices of degree one and all the
edges containing them, it yields a path.

Since stars are caterpillars (resp. caterpillars are trees), a decomposition of a graph G
into k forests of stars (resp. caterpillars) can be considered as a decomposition of G into
k forests of caterpillars (resp. trees). So, for any graph G :

a(G) < ca(G) < sa(G) (1)

Gyarfas and West [4] proved that the lower bound is tight in the case of complete bipartite
graphs. Actually, they showed that ca(Kp, ) = a(Km.n) = [mn/(m+n — 1)]. Here, we
show that the upper bound of this inequality is also tight. To achieve that, we exhibit a
family of graphs for which the equality holds. A k-tree is either a k-clique or a graph T'
with a vertex v of degree k, such that the neighbors of v form a k-clique and such that
T\{v} is a k-tree. A partial k-tree is a subgraph of a k-tree.

Theorem 1 For any k > 0, there is a partial k-tree Ty, such that sa(Ty) = ca(Ty) = k+1.

Nash-Williams [7] proved that a(G) = maxpca|[|En|/(|Va| — 1)]. Since a subgraph
of a planar graph is planar and since planar graphs with n vertices have at most 3n — 6
edges, planar graphs have arboricity at most three. The acyclic chromatic number of a
graph G, is the minimal number of colors needed to color the graph G properly and such
that the graph induced by the vertices colored a or b, for any pair of color a and b, is
acyclic. Hakimi, Mitchem and Schmeichel [5] proved that the star arboricity of a graph
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Figure 1: The graph H.

is upperbounded by its acyclic chromatic number. Borodin [1] showed that planar graphs
have acyclic chromatic number at most five. This implies that planar graphs have star
arboricity at most five. This upper bound is tight since there are planar graphs with
star arboricity at least five. We are interested in determining such upper bound for the
caterpillar arboricity of planar graphs. For any planar graph G, with arboricity 3 , we
have 3 = a(G) < ca(G) < sa(G) < 5, so this upper bound is either 3, 4 or 5. But the
graph H, in Figure 1, reduces the possible values to 4 and 5.

Theorem 2 ca(H) > 3.
The main result of this paper is the following theorem :
Theorem 3 For any planar graph G, we have ca(G) < 4.

In Section 2, we provide definitions of the main terms and prove Theorems 1 and 2. In
Section 3 we focus on planar graphs and prove Theorem 3. Section 4 is dedicated to
the description and the analysis of a linear-time algorithm which founds, for any planar
graph G on the input, four forests of caterpillars covering the edges of G. In Section 5, we
provide applications of this result in monotone paths and for the track number of planar
graphs.

2 Definitions

In a caterpillar, the set of feet vertices is a stable set of vertices of degree one, such that
by deleting all of them we obtain a path with at least one vertex. The other vertices are
the spine vertices. Note that a spine vertex can also have degree one and that there are
different subsets of vertices which could be the set of the feet vertices. For instance Ko
can have none or one foot vertex (see Figure 2). Since there are no edges linking two feet
vertices, the edges of a caterpillar are either feet edges if they link a foot vertex and a
spine vertex, or spine edges if they link two spine vertices. Consider the graph G = (V| E)
and let (E;),.,., be a partition of £ such that for all i the subgraph G[E;] is a forest

of caterpillars. The partially oriented graph G = (v, f) is the graph G where some
edges have been oriented. This partial orientation allows us to distinguish the feet vertices
(resp. feet edges) from the spine vertices (resp. spine edges) in G[E;]. The edges of el
are denoted {u,v}, if they are unoriented, and (u,v), if they are oriented from u to v. If
{u,v} € E; is a spine edge in G[E;] then the edge remains unoriented in ?’, and we have
{u,v} € E.If {u,v} € E; is a foot edge in G[E;] where v is the foot vertex, then the
edge {u,v} is oriented from u to v in ?, and we have (u,v) € E’. Remark that a vertex
can be a foot vertex (or spine vertex) in one of the forests of caterpillars (e.g. G[E1]), and
have any status, foot or spine vertex in the other forests of caterpillars (e.g. G[E;] with
i>1).
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Figure 2: Partial orientation of the edges in a forest of caterpillars.

If (i), < <y, is a k-partition of the edge set of G, such that for each i, 1 <i < k, G[E}]

is a forest of caterpillars and G is the resulting partial orientation of G, then the two
following rules hold.

e The feet preserving rule (Ry,) ensures that the feet vertices of the i'" forest of
caterpillars have degree one in G[E;]. This is that if (u,v) € E—i>, then for any
neighbor w of v in G we have either w = u or {v,w} ¢ E;.

o The spine preserving rule (Rsp) ensures that after removing all the feet vertices in
G|FE;] we obtain a forest of paths. To achieve that, the spine edges of E; have to
form a forest of paths, this is an acyclic graph with maximum degree two.

The reverse is true as well, if a k-partition (£;),.,., of £ and a partial orientation a

of G respect these two rules, this implies that for every i, 0 < i < k, G[E;] is a forest of
_—

caterpillars. Remark that these rules imply that in each G[E;] a vertex v is incident to at

most two edges which are not oriented from v to the other end of the edge. So considering

the k subgraphs G[E;] ,in G a vertex v is incident to at most 2k edges which are not

oriented from v to the other end of the edge.

Proof of Theorem 1. The case kK = 1 is obvious, so let us consider that & > 1.
Partial k-trees have acyclic chromatic number at most £+ 1. Since the star arboricity of a
graph is bounded by its acyclic chromatic number [5] we obtain that partial k-trees have
star arboricity at most k + 1. Since ca(G) < sa(G) we have to exhibit a partial k-tree T}
with ca(T}y) > k.

We construct T}, starting with a k-clique with vertices z1,...,2; and adding new
vertices. We denote by (a1, ...,a;) — b the adding of a new vertex b linked to [ vertices
ai,...,a; of a k-clique (I < k). First we add the vertex y; by (z1,...,zx) — y1 and the
vertices y; by (21, ..., Tk—1,yi—1) — y; for 1 < i < 4k(k—1)+2. Then we add the vertices
z; by (Yi—1,yi) — 2 for 1 < ¢ < 4k(k — 1) + 2. This graph is a partial k-tree, since we
construct it by adding vertices linked to a set of vertices included in some k-clique.

If ca(Ty) < k, T, would have a k-partition of its edges and a partial orientation
following the rules Ry, and R,. If the edges of T}, are partitionned into k subsets, any
vertex v would have at most 2k incident edges not oriented from v to the other end.
Let us consider the edges linking a vertex x; for 1 < j < k — 1 with a vertex y; for
0 <4 <4k(k—1)+2. Any z; has at most 2k such edges that are not oriented from x;
to the other end. Since we consider k — 1 vertices z;, there are at most 2k(k — 1) edges
linking these x;’s to the y;’s, that are not oriented from z; to y;. This implies that at
most 2k(k — 1) vertices y; have an incident edge {z;,y;}, for 0 < j < k — 1, which is
not oriented from x; to y;. Since there are 4k(k — 1) + 2 vertices y;, there are at least
2k(k — 1) + 2 vertices y; such that all the edges {z;,y;}, for 1 < j < k — 1, are oriented



from x; to y;. We say that these vertices are saturated vertices. Since there are at least
2k(k — 1) + 2 saturated vertices over the 4k(k — 1) + 2 vertices y;, there is a value i such
that y; and y;41 are two saturated vertices. By the feet preserving rule Ry, the k — 1
edges linking the z;’s to a saturated vertex v have to be in k — 1 distinct subsets of the
k-partition and all the other edges incident to v have to be in the remaining subset. Given
that y;(resp. y;11) is a saturated vertex the edges {v;, yi+1} and {y;, zi+1}(resp. {yi, yit1}
and {y;,zi+1}) have to be in the same subset of the partition. This implies that all the
edges of the cycle (y;, yi+1, zi+1) are in the same subset of the partition, contradicting the
fact that each subset induces a forest of caterpillars.

O

Proof of Theorem 2. Let the graph H = (V, E) be the graph depicted in Figure 1. If
ca(H) < 3, then there is a partial orientation H = (v, ?) and a 3-partition (E;)1<i<3
following the rules Ry, and Rs,. Since the edges of H are partitioned into 3 subsets,
there are at most 6 edges in H incident to the vertex a (resp. vertex b) that are not
oriented from a (resp. b) to the other end of the edge. So, there are at most 12 vertices
¢; such that at least one of the edges {a,c;} or {b,¢;} is not oriented to ¢; in H'. This
implies that at least 14 vertices ¢; over 26 have both edges {a,c;} and {b,c;} oriented
to ¢; in H . This implies that there are two consecutive such vertices. Let j be such
that (a,cj),(a,cjy1),(b,¢;) and (b,cjy1) € E’. Given the feet preserving rule Ryp, the
edges {a,c;} and {b,c;} (resp. {a,cj+1} and {b,c;y1}), have to be in different subsets
of the partition, and all the other edges incident to ¢; (resp. ¢;11), including {c;,c;jy1}
and {c;,d;} (resp. {cj,cj+1} and {c¢j11,d;}), have to be in the same remaining subset.
So all the edges of the cycle (c;,cj+1,d;) belong to the same subset of the partition,
contradicting the fact that each subset of the partition induces a forest of caterpillars.

O

3 Planar graphs

A triangulation G is a planar graph that has only triangular faces. Every planar graph
is the subgraph of some triangulation. Since a subgraph of a forest of caterpillars is also
a forest of caterpillars, we can restrict our work to triangulations. Our purpose here
is to prove that planar graphs have caterpillar arboricity at most four. We do that by
constructing a 4-partition of the edges and a partial orientation of G that follows Ry,
and R,p. To construct them for G we first do it for three subgraphs of G and then extend
them to G. To allow this extension, the partial orientations and the partitions of these
subgraphs have to follow two more rules. The following is the first one.

e The no saturated vertex rule (R,s,) imposes that each vertex v of G is a foot vertex
in at most two G[E;], 1 < i < 4. So each vertex v has at most two incident edges
oriented towards v.

Let G = (V, E) be a triangulation, with the vertices v, v and w on its outer boundary.
For an edge {u,v} on the outer boundary we define its partner vertex. Let the sequence
1, T2, ..., ¥y = w be the common neighbors of u and v ordered so that all the vertices
x; are inside the cycle (u,v,z;) for j < i (see Figure 3). The partner vertex of {u,v}
is the vertex z;—1. In a triangulation G with at least four vertices, for any edge {u, v}
the vertices u and v have at least two common neighbors, so the partner vertex is well
defined.
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Figure 3: The partner vertex z3 and a separating 3-cycle (u, v, x3).

e The external configuration rule, Re.(u,v,w,a,b,c), is defined for u, v and w being
the vertices on the outer boundary, and {a, b, ¢} being a set of size three included in
{1,2,3,4}. Let z be the partner vertex of the edge {u,v}. This rule imposes that
all the edges incident to u are in the same subset of the partition, E,. The edge
{u, z} has to be a spine edge (unoriented) and any other edge incident to u has to
be oriented from wu to the other end. All the edges incident to v, except {u,v}, are
oriented from v to the other end and belong to Ej. All the edges incident to w,
except for {u,w} and {v,w}, are oriented from w to the other end and belong to
E..

In a triangulation, a separating 3-cycle is a cycle of length three which does not delimit
a face, this is with at least one vertex in its interior and at least one other in its exterior.
A triangulation can be splited around a separating 3-cycle into two smaller triangulations
as in Figure 3 with the cycle (u,v,z3). We are going to prove the following theorem which
implies Theorem 3.

Theorem 4 Given an embedded triangulation G with vertices u, v and w on its outer
boundary and any 3-set {a,b,c} C {1,2,3,4}, there is a 4-partition of its edges and a
partial orientation ?, following the four rules Ryp, Rsp, Rnsv and Rec(u, v, w,a,b, c).

Proof. Without loss of generality we consider that a = 1, b = 2 and ¢ = 3. The proof
of Theorem 4 works by induction on the number of vertices. It clearly holds for K3, so
let G have at least four vertices, and denote by z the partner vertex of the edge {u,v}.

We distinguish another vertex of the graph. Consider the sequence of the neighbors
of u ordered as in the planar embedding, going from w to v. Denote by y the first vertex
of this sequence being also a neighbor of z. We know that y # v since u and z have at
least two common neighbors. On the other hand note that the vertex y may be equal to
w. If the cycle (u,v, z) (resp. (u,z,y)) is a separating 3-cycle, denote by G, (resp. G,)
the triangulation in its interior. The triangulation which is in the exterior of both cycles
is G. (see Figure 4). In G, the vertices u and v (resp. u and z) have only two common
neighbors, z and w (resp. v and y). So in G, the partner vertex of {u,v} is still z. We
construct G,,, from G, by deleting three edges, {v, 2}, {u, 2} and {y, 2}, and then merging
u and v into the same vertex u’. In Figure 5 we can see that since v and z had just v and
y as common neighbors the graph G,, is a well defined triangulation, without multiple
edges. This graph has the vertices v/, v and w on its outer boundary and has less vertices
than G..

The graphs Gy, G, and G,, having less vertices than G, we can apply the induction
hypothesis. In the next paragraph we extend G,,’s partition and partial orientation to G,
and in the last paragraph we show how to merge G;, G, and G.’s partitions and partial
orientations.
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Figure 4: The graph G splited into G;, G, and G..
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Figure 5: The graphs G, and G,,.
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Fﬂ)m Gy, to G¢ : By the induction hypothesis, the graph G,,, has a partial orientation
G, and a 4-partition (E!)), .., of its edges, following the four rules Ry,, Rep, Rnsv
and Re.(v/,v,w,1,2,3). We denote by z’ the partner vertex of the edge {u/,v} in the
graph G,,. Note that in G, the vertex 2z’ is a neighbor of z and not a neighbor of u, else
the cycle (u,v,2") would contain z, contradicting z’s definition. We construct a partial
orientation G, of G, and a 4-partition (E?) <;<y of its edges that follow the four rules
Rfps Rsps Ruso and Rec(u, v, w,1,2,3), proceeding as follows :

e All the edges different from {u,z}, {v,z} and {y,z} are oriented as in G,, and
belong to the same subset of the partition. So E, C E! for all i.

e The edge {u, z} is unoriented and belongs to E_.
e The edge {v, 2} is oriented from v to z and belongs to EZ.

e Since the vertex y is distinct from 2/, and according to the rule R (v, v, w,1,2,3)
in G,,, the edge {u,y} is oriented from u to y and belongs to E.,. So, y is a foot
vertex in G,,[E},]. Now, according to the rule R,.s,, ¥ is a spine vertex in G,,[E? ]
for at least two values i € {2,3,4}. So it is the case for a value i # 2, let say without
loss of generality that it is the case for ¢ = 3. Note that when y = w, since G,,
follow the rule R..(u',v,w,1,2,3) it is actually the case for i = 3. The edge {y, 2}
is oriented from y to z and belongs to E2.

Remark that all the vertices of G., except for u, v, z and y, have their incident edges
oriented and partitioned in the same way as in G,,. So, all these vertices respect the rules
Rfp, Rusv and Rec(u, v, w,1,2,3). In Figure 6 we note that v and v have their incident
edges as expected by Re.(u,v,w,1,2,3) and they consequently also follow Ry, and Ry,se.
The vertex z is not in the outer boundary and has one incoming edge in E? and one in
E2, two spine edges in E! and the rest of its incident edges are in E! and oriented to the
other end. So it follows these three rules. Since y is a spine vertex in G,,[E3 ] and we just



Figure 6: Partial orientation and 4-partition of G..

add it an incident edge oriented from y to the other end and belonging to E2, it follows
Ryp and Rpsy. In the case that y = w it also follows Re.(u,v,w, 1,2, 3).

We now deal with R,,. The vertices having their incident edges oriented and parti-
tioned in the same way as in G,, have at most two incident spine edges in the same E°.
According to our construction, the vertices v and y have no new incident spine edge, and
there are respectively one and two spine edges in the neighborhood of u and z. So the
spine edges in each E! induce a graph with maximal degree at most two. We now prove
that there is no cycle of spine edges all being in the same subset of the partition. If there
was such a cycle, not present in G,,, it should pass through the only new spine edge,
{u, z}. But since u has just one incident spine edge, {u, z} cannot be part of a cycle. So
there is no such cycle in G..

Merging G., G; and G, : None of the edges incident to z in G, are in EZ, so we
consider that z is a spine vertex of G.[E%]. By the induction hypothesis, let [ (resp.
G,) be the partial orientation of G; (resp. G,), and (E}),,., (resp. (E!),.,.,) be
the 4-partition of its edges such that the rules Ry, Rsp, Rnsy and Ree(z,u,v,4,1,2)
(resp. Rec(z,u,y,4,1,3)) are respected. Now we define a partial orientation G of G
and a 4-partition (E;),,., of its edges, such that the four rules R¢p,, Rsp, Rusv and
Ree(u,v,w, 1,2, 3) are respected (see Figure 7). If an edge e of G belongs to G, then e
is oriented as in @ and remains in the same subset of the partition, this means that
E! C E; for all i. All the remaining edges are either in G; or in G,.. We orient them as in
G, or G, and maintain them in the same subset of the partition, (Ef UE\E(G,) C E;.

Now we prove that G and (Ei)1<;<4 also follow the four rules. We first verify that
R p, Runsv and Rec(u,v,w,1,2,3) are followed in the neighborhood of every vertex.

e For all the vertices, except u, v, z and y, the set of their ajacent edges is the same
as in Gy, G, or G.. If a vertex z is different from u, v, z or y, all its incident edges
have exactly the same orientation and belong to the same subset of the 4-partition
as in Gy, G, or G.. Since these three rules where followed in the neighborhood of
these vertices in Gy, G, or GG, it is still the case in G.

Since G follow the rule R.(z,u,v,4,1,2) and G, the rule Re.(z,u,y,4,1,3), the edges
we add around u, v, z and y, passing from G, to GG, produce no violation of these rules :
e For u, the difference between the set of its incident edges in G, and in G is just that
we add more edges belonging to F; and oriented from u to the other end. Since the

partner vertex of {u,v} in G, and in G, is z in both cases, it is correct that {u, z}
remains a spine edge of Eq. So Ryfp, Rusv and Rec(u, v, w, 1,2, 3) are followed.



Figure 7: The merging of G., G; and G,..

e For v, we just add more edges oriented from v to the other end, and belonging to
FEs. Since v is a spine vertex of G.[E?] it produces no conflict with R, and Rys,.
Furthermore v still follows R..(u,v,w, 1,2, 3).

e For z, we add two spine edges, one from G; and one from G,, and many feet edges
oriented from z to the other end. All these new edges belong to E,. Since there was
no edges incident to z in E?, these new edges create no conflict with the rules.

e For y, we just add more edges oriented from y to the other end, and belonging to
Es. Since y is a spine vertex of G.[E?] it produces no conflict with R, and Rs,.
Furthermore if y = w, then w still follows R..(u, v, w,1,2,3).

We now deal with the rule Rs,. Since this rule is followed in G, G; and G, there could
be three incident spine edges in the same subset only in the neighborhood of the vertices
u, v, y or z. But we add no spine edges to u, v and y, when we reconstruct the graph
G from G.. In the neighborhood of z we add only two spine edges belonging to F, but
there was none previously. So the spine edges of each subset induce a graph of degree at
most two. A cycle of spine edges included in a subset E; should pass by the edges of at
least two of the graphs G., G; and G,.. This cycle should enter into G; or GG, by a vertex
on their outer boundary, and go out by another one. This is impossible since the vertices
u, v and y have no incident spine edges in G; and G,.. So our construction follows the
four rules and we proved the theorem.

O

This is a constructive proof based on a planar embedding of G. In the next section we
describe a linear-time algorithm that divides a planar graph into four forests of caterpillars.



4 The algorithm

Given a planar graph it is linear to find its planar embedding [6]. Then we can add
edges until having a triangulation. This is made in linear time since a planar graph with
n vertices has at most 3n — 6 edges. The algorithm proceeds as in the proof, partially
orienting the triangulation and assigning each edge a subset in such a way that the four
rules R¢p, Rop, Rnsv and Rec(u,v,w, 1,2, 3) are respected.

To represent this embedded triangulation G we use the set of its vertices, the set of its
edges and the vertices u, v, w and 2z (u, v and w being the vertices in its outer boundary
and z the partner vertex of {u,v}). For each vertex of G we have the cyclic list of its
incident edges ordered as in the embedding, two pointer respectively pointing « and v if
u or v are its neighbors and two integers i; and 4o indicating that this vertex is a spine
vertex in the ;" and in the i," subset of the partition. For each edge we have its end
vertices, its orientation and the subset of the partition it belongs to.

As in the proof we construct the graphs G,,, G; and G,., and we recusively apply the
algorithm for them. To do this we visit z’s neighbors in the clockwise order starting from
u. The last vertex before v being a neighbor of u (having a pointer to w) is the vertex
y and the first vertex being a neighbor of v (having a pointer to v) is the vertex 2/, the
partner vertex of {u’,v} in G,,. Since the vertex u will represent the vertex v’ of G,,,
for all 2’s neighbors strictly between y and v we set one of the pointers (one which is not
pointing v) to u. Then in «’s list of neighbors we cut the part strictly between y and v and
we replace it by the part of z’s list of neighbors strictly between y and v. For the vertex
y (resp. v) we cut in its list of neighbors the part going from z included to u excluded
(resp. from u excluded to z included). Now, with 2’ being the new partner vertex of {u, v}
we can apply recursively the algorithm to G, in order to have a partition and a partial
orientation that follow the rules Ry,, Rop, Rnso and Rec(u,v,w,1,2,3). Then we extend
this result to G. setting that the edges {v, z} and {u, z} in G are respectively a foot edge
of F> and a spine edge of E;. For the edge {y, 2}, according to the value of i; and iy for
the vertex y, we set that it is a foot edge of F5 or E4, let say F3. Then we can set that
the vertex z is a spine edge in F; and FE;. Now we want to apply the algorithm to G; so
that we follow the rule R..(z,u,v,4,1,2), so this time z, v and v have the neighbor list
corresponding to G; and we set one of the pointers of z’s neighbors to z (the pointer that
does not point to u, but that may point v). Then we can recursively apply the algorithm
and do the same for the graph G, following Re.(z,u,y,4,1,3).

Without considering the recusrsive calls this algorithm does O(deg(z)) operations.
Since the vertex z is no more an inner vertex (a vertex not in the outer boundary) in G,,,
G or G,, the complexity of the whole algorithm is bounded by O(>_ deg(v)), where the
sum is over all the inner vertices. In planar graphs this sum is bounded by O(n) where n
is the number of vertices of the graph.

5 Applications

An edge-ordered graph is a pair (G, f), where G = (V, E) is a graph and f is a bijective
function, f : E — {1,2,...,|E|}. The mapping f is called an edge ordering of G. A
monotone path of length k in (G, f) is a simple path Py : vg,v1,...,v; in G such that
fwi,vig1}) < f{vig1,viqg2}) for i =0,1,...,k — 2. To bound the length of monotone
paths, we bound the length of monotone trials, these being paths not necessarily simple.
Given a graph G denote by o/ (G) the minimum of the maximum length of a monotone trial
over all edge orderings of G. In [8] the authors show that for a partition of £ = U!_, E;, we
have o/ (G) < Zi:l o/ (G(V, E;)). For any tree T and any caterpillar C' we have o/ (T) < 3
and o/ (C') < 2. This implies that ¢/ (G) < 3xa(G) and that o/ (G) < 2xca(G). Given that
planar graphs have arboricity at most three, for any planar graph G, o/(G) is bounded



Figure 8: The counterexample.

by 3 x 3 = 9. Roditty’s conjecture about the caterpillar arboricity of planar graphs was
raised in [8] to improve this bound to 2 x 4 = 8. There is still a gap, since we know no
planar graphs having a monotone path of length at least 6 for all edge orderings.

Corollary 1 For a planar graph G, o/ (G) < 8.

We tried to decrease this bound by partitioning the set of edges of planar graphs into a
forest and two forests of caterpillars. This could have decreased the upper bound to seven
but the graph depicted in Figure 8 does not admit such partition for m sufficiently large.

An intersection representation f of a graph G is an assignement of sets to the vertices
so that vertices are adjacent if and only if the corresponding sets intersect. The interval
number i(G) is the minimum 4 such that G has an intersection representation in which,
each set is a union of at most ¢ intervals on the real line. The graphs with interval number
one are the interval graphs. Scheinerman and West [9] proved that planar graphs have
interval number at most three. A more restrictive intersection model is obtained by using
sets that consist of an interval from each of ¢ parallel lines. Such a representation of G is
a t-track representation, and the track number ¢(G) is the minimum ¢ such that G has a
t-track representation. An equivalent definition of the track number of G is the minimum
number of interval graphs whose union is G. Since caterpillars are interval graphs, we
have the following result.

Corollary 2 For a planar graph G, t(G) < 4.

Recently in [3] the authors proved that this bound is tight exhibiting a bipartite planar
graphs with track number at least 4.

6 Conclusion

These results raise new questions. Is it possible with a similar argument to obtain a
linear-time algorithm partitioning the edges of a planar graph into five forests of stars 7
We also wonder on how tight is our result. Could we partition the edges of planar graphs
in a more restrictive way ? For example into three forests of caterpillars and one forest
of stars. In [3] the authors give a first result, they show some planar graphs that have no
edge partition into four forests of bistars, trees of diameter at most three.
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