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L’UNIVERSITÉ DE MONTPELLIER

Ecole Doctorale I2S

STUDY OF SCHNYDER WOODS AND INTERSECTION GRAPHS

Daniel GONÇALVES
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Foreword

This document is a long abstract of my research work on graph theory. This is an overview of my research

in the last 10 years (posterior to my PhD), and summarizes seven selected papers (included in the appendix)

which have been published or are submitted to international journals. It summarizes some results, gives ideas

of the proof for some of them, and presents the context of the different topics together with some interesting

open questions connected to them. This document is organized as follow. The first two chapters respectively

deal with Schnyder woods (and their extension on higher genus surfaces), and with intersection representations

of planar graphs. The third chapter is a research project for the 5-10 years to come. Finally in the appendix one

can find the full length papers which include all the proofs 1.

To conclude, I would like to mention that these papers are the result of different collaborations and each

result is then a collective work. I would like to thank all my co-authors as well as many more colleagues for

many nice and exciting moments doing research (or doing other things). I also warmly thank the members of

the jury (and in particular the reviewers) for kindly accepting to be a part of it, and for all the time spent on this.

1. As we uniformized notations from different publications, some notations differ between the manuscript and the papers.
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Prerequisite

We assume that the reader has basic notions in graph theory, but one should also have a few notion of

topology to read this manuscrpt. Let us give a few definitions to ensure that our terminology is clear. A graph

embedded on a surface S is called a map of this surface if all its faces are homeomorphic to open disks. A map is

a triangulation (resp. a quadrangulation) if all its faces are bordered by three edges (resp. four edges). A closed

curve on a surface is contractible if it can be continuously transformed into a single point. In this manuscript,

we only consider maps that do not have contractible cycles of size 1 or 2 (i.e. no contractible loops and no

contractible double edges). Note that this is a weaker assumption than the graph being simple, i.e. not having

any cycles of size 1 or 2 (i.e. no loops and no multiple edges).

We have a particular attention to plane graphs (i.e. graphs embedded on the plane). Such graphs have an

unbounded face called the outer face, while the other faces are called inner faces. Vertices and edges lying

on the outer face are outer vertices and outer edges. The other ones are inner vertices and inner edges. A

near-triangulation is a 2-connected plane graph such that every inner face is triangular. A separating triangle is

a cycle of length three such that both regions delimited by this cycle (the inner and the outer region) contain

some vertices. It is well known that a triangulation is 4-connected if and only if it contains no separating triangle.

If needed, the following textbooks on graph theory [16], embedded graphs [82], Schnyder woods [47],

topology [76], and homology [65] contain all the notions needed (and much more) to follow this manuscript.
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Chapitre 1

Schnyder Woods

Schnyder woods are nowadays one of the main tools in the area of planar graph representations. Among

their most prominent applications are the following : They provide a machinery to construct space-efficient

straight-line drawings [89, 35, 44, 79] ; they allow a characterization of planar graphs via the dimension of

their vertex-edge incidence poset [88, 44, 79] ; and they are used to encode triangulations [85, 10]. Further

applications lie in enumeration [19], representation by geometric objects [57, J13], or graph spanners [18].

The richness of these applications has stimulated research towards generalizing Schnyder woods to non-

planar graphs. For higher genus triangulated surfaces, a generalization of Schnyder woods has been proposed by

Castelli Aleardi et al. [21], with applications to encoding. In this definition, the simplicity and the symmetry of

the original definition of Schnyder woods are lost. This motivated us (with various co-authors) to find another

generalization of Schnyder woods.

After introducing basic definitions in Section 1.1, we extend Schnyder woods to toroidal maps (i.e. graphs

embedded on the torus) in Section 1.2. We then use these in Section 1.3 to design a drawing algorithm and

a bijection leading to a compact encoding of toroidal triangulations. In Section 1.4 we define generalizations

of Schnyder woods for (orientable) maps with higher genus, and we make some conjectures on their existence.

Towards one of these conjectures we study particular orientations of genus g triangulations in Section 1.5.

1.1 Introduction

Schnyder [88] introduced Schnyder woods for planar triangulations with the following local property :

Definition 1.1 (Schnyder property). Given a map G, a vertex v and an orientation and coloring 1 of the edges

incident to v with the colors 0, 1, 2, we say that v satisfies the Schnyder property, (see Figure 1.1.(a)) if v

satisfies the following local property :

— Vertex v has out-degree one in each color.

— The edges e0(v), e1(v), e2(v) leaving v in colors 0, 1, 2, respectively, occur in counterclockwise order.

— Each edge entering v in color i enters v in the counterclockwise sector from ei+1(v) to ei−1(v).

Definition 1.2 (Schnyder wood). Given a planar triangulation G, a Schnyder wood is an orientation and coloring

of the inner edges of G with the colors 0, 1, 2, where each inner vertex v satisfies the Schnyder property.

See Figure 1.1.(b) for an example of a Schnyder wood. Several authors [35, 44, 79] independently generalized

Schnyder woods by allowing edges to be oriented in one direction or in two opposite directions. The formal

definition is the following :

1. Throughout the manuscript colors and some of the indices are given modulo 3.
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Figure 1.1 – (a) The Schnyder property (b) A Schnyder wood of a planar triangulation (c) A Schnyder wood of

a planar map.

Definition 1.3 (Schnyder woods for planar maps). Given a planar map G. Let x0, x1, x2 be three distinct vertices

occurring in counterclockwise order on the outer face of G. The suspension Gσ is obtained by attaching a half-

edge that reaches into the outer face to each of these special vertices. A Schnyder wood rooted at x0, x1, x2 is

an orientation of the edges of Gσ, where every edge e is oriented in one direction or in two opposite directions,

and a coloring of these arcs (with colors 0, 1, 2) satisfying the following (see example of Figure 1.1.(c)) :

(P1) Every vertex satisfies Schnyder’s property 2 and the half-edge at xi is directed outwards and colored i .

(P2) There is no interior face the boundary of which is a monochromatic cycle.

A planar map G is internally 3-connected if there exists three vertices on the outer face such that the

graph obtained from G by adding a vertex adjacent to the three vertices is 3-connected. The maps admiting a

Schnyder wood are characterized as follows.

Theorem 1.4 (Felsner [44], and Miller [79]). A planar map admits a Schnyder wood if and only if it is internally

3-connected.

Schnyder woods have an auto-dual nature in the sense that a Schnyder wood of a planar map G (almost)

defines a Schnyder wood of its dual G∗, but actually this auto-dual nature is better expressed in the following

toroidal case.

1.2 Toroidal Schnyder Woods

This section mainly relies on [J18] and it is dedicated to an extension of Schnyder woods for toroidal maps.

We consider maps on the torus with no contractible loop and no homotopic multiple edges (i.e. contractible

cycles have length at least three). The torus is represented by a parallelogram in the plane whose opposite sides

are pairwise identified. This representation is called the flat torus. Given a graph G, let n denote the number of

vertices and m the number of edges. By Euler’s formula, a planar triangulation satisfies m = 3n−6. Thus there

is not enough edges in a planar triangulation to allow an orientation such that all vertices have out-degree three.

This explains why just some vertices (the inner ones) are required to verify Schnyder’s property in Definition 1.2.

The three outer vertices of the triangulation have a special role. For a toroidal triangulation, Euler’s formula

gives exactly m = 3n so we looked for a generalization of Schnyder woods satisfying the Schnyder property for

every vertex. In the following we will see that such definition exists and that these objects have many similarities

with “plane” Schnyder woods.

2. The intervals in Definition 1.1 are closed : If an edge is oriented in two directions, the arcs get different colors.
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Definition 1.5 (Schnyder woods for toroidal maps). Given a toroidal map G, a Schnyder wood of G is an

orientation and coloring of the edges of G with the colors 0, 1, 2, where every edge e is oriented in one direction

or in two opposite directions, satisfying the following (see example of Figure 1.2.(a)) :

(T1) Every vertex v satisfies the Schnyder property.

(T2) Every monochromatic cycle of color i intersects at least one monochromatic cycle of color i − 1 and

at least one monochromatic cycle of color i + 1.

(a) (b)

Figure 1.2 – (a) Example of a Schnyder wood of a toroidal map (b) The toroidal Schnyder wood corresponding

to the planar Schnyder wood of Figure 1.1.(c)

Our definition of Schnyder wood on toroidal maps generalizes the planar case. Let G be a planar map and x0,

x1, x2 be three distinct vertices occurring in counterclockwise order on the outer face of G. One can transform

Gσ into the following toroidal map G+ (see Figure 1.2.(b)) : Add a vertex v in the outer face of G. Add three

non-parallel and non-contractible loops on v . Connect the three half edges leaving xi to v such that there is no

two such edge entering v consecutively. Then we have the following.

Proposition 1.6. Schnyder woods of the planar map G rooted at x0, x1, x2 are in bijection with Schnyder woods

of the toroidal map G+.

The universal cover G∞ of a toroidal map G is the infinite planar graph obtained by replicating a flat torus

representation of G to tile the plane. Extending the notion of essentially 2-connectedness defined in [81], we

say that a toroidal map G is essentially 3-connected if its universal cover is 3-connected. We have the following.

Proposition 1.7. A planar map G is internally 3-connected if and only if there exist three vertices on the outer

face of G such that G+ is essentially 3-connected.

The following theorem thus generalizes Theorem 1.4.

Theorem 1.8. A toroidal map admits a Schnyder wood if and only if it is an essentially 3-connected toroidal

map.

We proved the existence of Schnyder woods by contracting edges until we obtain a graph with just one

vertex. Then the graph can be decontracted step by step to obtain a Schnyder wood of the original graph. The

two essentially 3-connected toroidal maps on one vertex are depicted in Figure 1.3 with a toroidal Schnyder

wood.
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(a) (b)

Figure 1.3 – Schnyder woods of the two essentially 3-connected toroidal maps on one vertex.

As the dual of an essentially 3-connected map is also essentially 3-connected, the auto-dual nature of these

Schnyder woods is clearer than in the plane.

Theorem 1.9. For any toroidal map G, the Schnyder woods of G are in bijection with the Schnyder woods of

G∗, and one can be constructed from the other by following the rules suggested in Figure 1.14 (in the middle

and in the right).

Let G be a plane or a toroidal map given with a Schnyder wood. Let Gi be the directed graph induced by

the edges of color i (including edges that are half-colored i). If G is plane each vertex, except xi , has exactly

one outgoing arc in Gi . Thus each Gi has exactly n − 1 edges, and actually each Gi is a spanning tree oriented

towards xi . In other words, for any vertex v , Gi contains a (unique) directed path colored i from v to xi . The

toroidal case is a bit different. If G is a toroidal map, every vertex has exactly one outgoing arc in Gi . Thus

each graph Gi has exactly n edges, so it does not induce a rooted tree like for planar maps. Note also that Gi
is not necessarily connected (e.g. the blue graph in Figure 1.2.(a)). But each components of Gi has exactly

one outgoing arc for each of its vertices, thus each connected component of Gi has exactly one cycle that is a

monochromatic cycle of color i . Starting from any vertex v one can perform an infinite walk in Gi by following

the outgoing arcs. In the universal cover of G such walk corresponds to an infinite path Pi(v) colored i (See

the left of Figure 1.4). These paths are used in Section 1.3.1.

Felsner [45] proved that (for planar maps) Schnyder woods are in bijection with Schnyder angle labellings.

For toroidal maps, a Schnyder wood defines an angle labeling with the following property : the angles at each

vertex and at each face form, in counterclockwise order, nonempty intervals of 0’s, 1’s, and 2’s. This is similar

to the planar case, but we did not found an elegant definition of Schnyder labeling that would be equivalent to

our definition of Schnyder woods (c.f. Definition 1.5). It seems that property (T2) is truly global unlike (P2).

Weaker definitions of Schnyder woods, based on angle labelings, are discussed in Section 1.4.

1.3 Applications of Toroidal Schnyder Woods

1.3.1 Drawing Algorithm

Let G be a toroidal map given with a Schnyder wood and consider the universal cover G∞ with the correspon-

ding orientation and coloring of the edges. This defines a sort of Schnyder wood in the infinite plane graph G∞,

and these Schnyder woods have several features of plane Schnyder woods. One of those is that for every vertex

v and color i , the two paths Pi−1(v) and Pi+1(v) have v as only common vertex. This implies that for every

vertex v , the three paths P0(v), P1(v), P2(v) divide G∞ into three unbounded regions R0(v), R1(v) and R2(v),

where Ri(v) denotes the region delimited by the two paths Pi−1(v) and Pi+1(v) (See the left of Figure 1.4).

This observation motivated us for trying to adapt Schnyder’s drawing algorithm (that is based on the existence

of similar regions in plane Schnyder woods) to design the first algorithm for straight-line drawing of toroidal

triangulations in a flat torus of polynomial size 3 (see [80] for an exponential size and [25, 36] for embedings

3. The size is understood as follows. Vertices are embedded on integer coordinates and the size of the flat torus (that is a

parallelogram) is given by its surface.
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P0(v)

vu
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−

Figure 1.4 – Regions corresponding to a vertex, and the differences between R1(u) and R1(v) when P0(u)

meets P0(v), and P2(u) meets P2(v).

that are partially straight-line). Actually we will describe a periodic drawing for the whole universal cover, but a

portion of it is sufficient to describe the drawing in a flat torus. Let us now recall Schnyder’s algorithm [88] that

was initially designed for triangulations and that was generalized to 3-connected planar maps independently by

Di Battista et al. [35], Felsner [44], and Miller [79].

Schnyder’s Barycentric Drawing Algorithm : In planar Schnyder woods, the paths Pi(v) and the regions

Ri(v) also exist, but they are finite. Paths Pi(v) end at xi , while regions Ri(v) are closed by the edge xi−1xi+1.

For each such region Ri(v), let us denote by ri(v) the number of faces in Ri(v). Each vertex v is embedded

in R3 at (r1(v), r2(v), r3(v)). Note that as the regions R1(v), R2(v), R3(v) partition the set of inner faces, we

have that all the vertices are embedded in the plane {x ∈ R3 | x1 + x2 + x3 = f }, where f is the number of

inner faces. Schnyder shows that drawing segments between adjacent vertices one obtains a planar drawing of

our map. The (orthogonal) projection of this drawing on the plane {x ∈ R3 | x3 = 0} is also a planar drawing

of T , and here a vertex v has coordinates (r1(v), r2(v), 0).

The first problem for generalizing this algorithm is that in the toroidal case one has to consider the universal

cover in order to define regions Ri(v), but these regions have an infinite number of faces, so we cannot deduce

the coordinates as in the planar case. We thus have to define the coordinates of vertices relatively to the other

vertices. For example, if for two vertices u, v the set of faces in Ri(u)4Ri(v) is finite (see the right of Figure 1.4),

then ui − vi is equal to the number of faces in Ri(u) \Ri(v) minus the number of faces in Ri(v) \Ri(u). Note

that Ri(u)4 Ri(v) is finite if and only if Pi−1(u) meets Pi−1(v), and Pi+1(u) meets Pi+1(v). If two vertices

have their three paths that meet, they lie on the same plane Pc = {x ∈ R3 | x1 + x2 + x3 = c}. Dealing with

infinite Ri(u)4Ri(v) is not too complicated, but afterwards the vertices lie on distinct planes Pc . The issue is

that this greatly increases the size of the flat torus we are working on. Another issue is that we could not prove

that this algorithm works for any (non-triangular) toroidal map equipped with a Schnyder wood. In the planar

case such drawings (of planar maps) are shown to be convex (i.e. every face forms a convex polygon) and this

is what we could not prove for toroidal maps. We do not explain how to prove that the algorithm works because

it is a rather tedious task. See Figure 1.5 for an illustration of the algorithm.

For a simple toroidal triangulation with n vertices, our algorithm leads to an embedding in a flat torus with

surface O(n4). The same problem was independently considered by Castelli Aleardi et al. [22], and their method

achieves a better size for the flat torus, O(n5/2). However, we believe that our approach could be improved to

reach a smaller flat torus (at least smaller than O(n4)) by considering Schnyder woods where some graphs Gi
are connected, or by restraining to embeddings in R3 which can be projected through vector −→v = (1, 1, 1) but

maybe not through any vector −→v = (x, y , z) with x, y , z ≥ 0 (as our approach allows).
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(a) (b)

Figure 1.5 – (a) Embedding of a toroidal map in R3 (We do not discuss the way edges are embedded in this

drawing. This is related to the so-called orthogonal surface and geodesic embeddings.) (b) Its projection on

some plane (with straigh-line edges).

1.3.2 Bijection & Encoding

The content of this section mainly relies on [J24] where we adapt an approach developped by Poulalhon et

al. [85] to obtain a bijection between planar triangulation and blossoming trees (embedded trees with “stems”).

This led to a bijection (c.f. Theorem 1.16) between toroidal quasi-triangulations (all the faces are triangular

except one which has size four), and toroidal blossoming unicellular maps (i.e. maps with stems and with a

unique face). Let us first discuss some properties of toroidal Schnyder woods.

It is shown in [S2] that similarly to the planar case [46], the set of Schnyder woods of a toroidal map has a

lattice structure 4. Similarly to the plane, one can get from any Schnyder wood to any other one by reversing a

succession of contractible directed cycles 5. The orientation of this lattice depends on the choice of a root face

f . Consider a contractible cycles C bounding a pseudo-disk D, such that C is oriented clockwisely around D. If

f ∈ D reversing the orientation of C we go higher in the lattice, lower if f /∈ D. Another important feature of

this lattice is that actually, some elements of this lattice are not Schnyder woods in the sense of Definition 1.5

as (T2) is not always fulfilled. On the other hand, note that satisfying (T1) is not a sufficient condition to be

an element of this lattice. We call this lattice the HTC-lattice 6

Let us focus on the case of toroidal triangulations. In that case the elements of the lattices can be seen as

3-orientations, that is orientations such that every vertex has outdegree 3. Indeed, once an edge is colored, by

satisfying (T1) this coloring propagates to the whole triangulation in a unique way.

Definition 1.10 (γ0 property). An orientation of a toroidal map has the γ0 property if for any non-contractible

cycle C the number of arcs leaving C (i.e. arcs uv such that u ∈ C) on one side equals the number of arcs

leaving C on the other side.

In a Schnyder wood of a toroidal triangulation, monochromatic cycles verify this property : for each vertex

there is one arc leaving on each side. This property characterizes the 3-orientations of the HTC lattice [S2].

Proposition 1.11. A 3-orientation of a toroidal triangulation T is an element of its HTC lattice if and only if

it has the γ0 property.

4. Actually both results can be deduced from [86].
5. Actually we are interested by null-homologous cycles but in the torus these correspond to contractible cycles. This will be

discussed a little more in Section 1.4.
6. HTC means “Homological To Crossing” as Schnyder woods have a crossing property (T2).

10



Figure 1.6 – The minimal 3-orientation of the HTC-lattice of K7 w.r.t. the shaded face. Every oriented contrac-

tible cycle is counter-clockwise w.r.t. the shaded face.

Poulalhon et al.’s algorithm on oriented surfaces

Here we introduce a reformulation of Poulalhon et al.’s original algorithm [85]. In an embedded graph G, a

stem is an embedded arc whose origin is a vertex of G while its other end is not considered as a vertex.

Algorithm PS

Input : An oriented map G on an oriented surface S, a root vertex v0 and a root edge e0 incident to v0.

Output : A graph U with stems, embedded on S.

The algorithm explores some of the edges of the map, marking one edge at each iteration.

1. Let v := v0, e := e0, U := ∅, Let all the edges being unmarked.

2. Let v ′ be the extremity of e different from v .

Case 1 : e is non-marked and entering v . Add e to U and let v := v ′.

Case 2 : e is non-marked and leaving v . Add a stem to U incident to v and corresponding to e.

Case 3 : e is already marked and entering v . Do nothing.

Case 4 : e is already marked and leaving v . Let v := v ′.

3. Mark e.

4. Let e be the next edge around v in counterclockwise order after the current e.

5. While (v , e) 6= (v0, e0) go back to 2.

6. Return U.

Let us stress the fact that the output of Algorithm PS is a graph embedded on the same surface as the

input map but that this embedded graph is not necessarily a map (i.e some faces may not be homeomorphic

to open disks). However, we showed that in a specific case the output U is an unicellular map, which is not the

case for any input.

We associate each couple (v , e) where e is incident to v , to the angle at v that is just before e in coun-

terclockwise order. We thus call angle such couple. The particular choice of v0 and e0 thus defines a root face

f0 : the face containing the angle (v0, e0), that is the face just before e0 going around v0 counter-clockwisely.

Figure 1.7 illustrates an execution of Algorithm PS . The condition in the while loop ensures that when the

algorithm terminates, if it does, the algorithm is back to the root angle. The following proposition shows that

the algorithm actually always terminates :

11
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Figure 1.7 – An execution of Algorithm PS on K7 given with the orientation corresponding to the minimal

HTC 3-orientation of Figure 1.6. Vertices are numbered in black. The root angle, (1, 17), is identified by a root

symbol and chosen in the face for which the orientation is minimal (i.e. the shaded face of Figure 1.6). The

magenta points correspond to the angles considered at each iteration of Algorithm PS and the magenta arrows

show the order in which those are considered. The output U is a toroidal unicellular map, represented here in

an hexagon where the opposite sides are identified.

Proposition 1.12. For every oriented map G on any oriented surface S and for any root angle (v0, e0), the

execution of Algorithm PS on (G, (v0, e0)) terminates.

From toroidal triangulations to unicellular maps

In the case of toroidal triangulations we know more on the behavior of Algorithm PS (See Figure 1.7).

Theorem 1.13. Consider a toroidal triangulation T , a root angle (v0, e0) such that v0 is not inside any separating

triangle 7, and the orientation of the edges of T corresponding to the minimal HTC 3-orientation w.r.t. the root

face f0. In this case, the output U of Algorithm PS is a toroidal spanning unicellular map, with the following

properties :

— Vertex v0 has three stems and the other vertices have two stems, but these values decrease by two for

a vertex v if it is contained in two edge-disjoint cycles of U, or by one for a vertex v if it is contained in

three (not necessarily edge-disjoint) cycles of U.

— While walking along the unique face of U counter-clockwisely (according to this face) and starting at

the root angle, at any moment, we have been along more edge sides (each edge of U has two sides on

this boundary) than the number of stems we have met.

— The orientation of U induced by the minimal HTC 3-orientation of T verifies the γ0 property (considering

the edges and the stems of U).

Note that every toroidal triangulation T has vertices that are not inside any separating triangles. Let us

explain why this condition is necessary. In a 3-orientation of a toroidal triangulation, by Euler’s formula, all the

edges that are incident to a separating triangle ∆ and in its interior are oriented towards the triangle. Thus if

one applies Algorithm PS from a vertex inside ∆, the algorithm will remain in the interior of ∆, that is it will

only consider angles (v , e) such that v is inside ∆. In this case the output cannot be spanning.

7. In other words, v0 does not belong to an open pseudo-disk of the torus whose boundary is a cycle of length three.
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Recovering the original triangulation

Let us now show how to recover the original triangulation from the output of Algorithm PS. The method is

very similar to [85] since like in the plane the output has only one face that is homeomorphic to an open disk.

Theorem 1.14. Consider a toroidal triangulation T , a root angle (v0, e0) such that v0 is not inside any separating

triangle and the orientation of the edges of T corresponding to the minimal HTC 3-orientation w.r.t. the root

face f0. From the output U of Algorithm PS applied on (T, (v0, e0)) one can reattach all the stems to obtain

T by starting at the root angle and walking along the face of U in counterclockwise order (according to this

face) : each time a stem is met, it is reattached in order to create a triangular face on its left side.

Figure 1.8 illustrates Theorem 1.14 on the example of Figure 1.7.

3

5

2 3

5

4

3

7

2

4

6

2

1

6

3

5

2 3

5

4

3

7

2

4

6

2

1

6

First step Second step

5

2 3

4

5

3

7

2

4

6

2

1

6

3

Final step

Figure 1.8 – How to recover the original toroidal triangulation from the output of Algorithm PS .

Bijections

Actually the properties of U in Theorem 1.13 almost describe the outputs of Algorithm PS .

Theorem 1.15. There is a bijection between n-vertex toroidal triangulations rooted at an angle (v0, e0) such

that v0 and e0 are not inside any separating triangle, and n-vertex unicellular maps verifying the properties of

Theorem 1.13 and such that their root edge e0 is a stem 8.

8. This comes from the fact that e0 is always outgoing v0 in the minimal HTC 3-orientation.
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Surprisingly, taking the outputs of Algorithm PS , removing their root stem and forgetting the orientation of

their edges one obtains an interesting familly of unrooted unicellular maps. We obtained the following bijection

on unrooted toroidal maps.

Theorem 1.16. There is a bijection between the set of n-vertex toroidal maps, where all the faces have length

three, except one that has length four and which is not inside a separating triangle, and the set of n-vertex

toroidal unicellular maps, with the following properties :

— Every vertex has two stems, but this value decreases by two for a vertex v if it is contained in two

edge-disjoint cycles, or by one for a vertex v if it is contained in three (not necessarily edge-disjoint)

cycles.

— Considering only the stems, the map verifies the γ0 property.

These unicellular maps are rather simple, and Theorem 1.16 can thus be used to compute the number of

such n-vertex quasi-triangulations 9, and maybe also to sample them. The only difficulty comparing to the planar

case is the γ0 property.

Conclusion

Note that Algorithm PS has been studied by other researchers [5, 11], in particular for maps embedded on

genus g ≥ 1 surfaces. Contrarily to [11] our maps T and U have the same genus. This is interesting as fixed

genus unicellular maps are getting better understood [29]. The key property that makes U and T have same

genus is that there is no non-contractible curve C of the torus such that all the arcs of T crossing C cross it in

the same direction. We proved [J22] that any simple triangulation of a genus g ≥ 1 orientable surface admits

an orientation of its edges such that every vertex has outdegree at least 3, and divisible by 3. The following

would ensure use that Algorithm PS behaves well (i.e. produces a spanning unicellular map).

Conjecture 1.17. A triangulation on a genus g ≥ 1 orientable surface admits an orientation of its edges such

that every vertex has outdegree at least 3, divisible by 3, and such that there is no non-contractible curve C of

the torus such that all the arcs crossing C cross it in the same direction.

If Conjecture 1.17 is true, one can consider a minimal orientation satisfying its conclusion 10 and apply

Algorithm PS to obtain a unicellular map of the same genus. Note that more efforts should be made to obtain

a bijection since there might be several minimal orientations 11 satisfying the conjecture and a particular one

has to be identified (as the minimal HTC 3-orientation in our case).

1.4 Extensions to (oriented) Surfaces with higher Genus

For higher genus triangulated surfaces, a generalization of Schnyder woods has been proposed by Castelli

Aleardi et al. [21], with applications to encoding. In this definition, the simplicity and the symmetry of the

original definition of Schnyder woods are lost. Here we propose an alternative generalization of Schnyder woods

for higher genus that generalizes the one proposed in [J18] for the toroidal case.

We consider finite maps. Denote by n, m and f the number of vertices, the number of edges, and the

number of faces of a map. Euler’s formula says that any map on an orientable surface of genus g satisfies

n − m + f = 2 − 2g. This implies that a triangulation of genus g has exactly 3n + 6(g − 1) edges. So to

generalize Schnyder woods for all g ≥ 2 there are too many edges to force all vertices to have outdegree exactly

three. This problem can be overcome by allowing vertices to fulfill the Schnyder property (cf Definition 1.1)

“several times”, i.e. such vertices have outdegree 6, 9, etc. with the color property of Figure 1.1.(a) repeated

several times (see Figure 1.9).

9. This was not included in [J24] but should appear in a paper by É. Fusy and B. Lévêque.
10. Note that reversing contractible directed cycles preserves the properties of Conjecture 1.17.
11. Each of these orientations being the unique minimal element in their lattice.
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Outdegree six Outdegree nine

Figure 1.9 – The Schnyder property repeated several times around a vertex.

Figure 1.10 is an example of such a Schnyder wood on a triangulation of the double torus. The double

torus is represented by in an octagon whose sides are pairwisely identified as indicated. All the vertices of the

triangulation have outdegree three except two vertices, the circled ones, that have outdegree six. Each of the

latter appear twice in the representation.

D
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B

D

C

B

A

A

Figure 1.10 – A Schnyder wood of a triangulation of the double torus.

We formalized in [S2] a concept of weak Schnyder woods 12 for general maps (not only triangulations) on

arbitrary orientable surfaces. These are defined via angle labelings in Section 1.4.1. Then in Section 1.4.2, we

characterize the orientations that correspond to these weak Schnyder woods. While every map admits a “trivial”

Schnyder wood, the existence of a non-trivial one remains open but leads to interesting conjectures.

12. We call them weak Schnyder woods in this manuscript because for the torus the definition will be weaker than Definition 1.5.
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1.4.1 Angle labelings

Consider a map G on an orientable surface. An angle is a face corner at a vertex, and an angle labeling

of G is a labeling of its angles with colors 0, 1, 2. More formally, we denote an angle labeling by a function

` : A → Z3, where A is the set of angles of G. Given an angle labeling, we define several properties of vertices,

faces and edges that generalize the notion of Schnyder angle labeling in the planar case [47].

Consider an angle labeling ` of G. A vertex or a face v is of type k , for k ≥ 1, if the labels of the angles

around v form, in counterclockwise order, 3k nonempty intervals such that in the j-th interval all the angles

have color (j mod 3). A vertex or a face v is of type 0, if the labels of the angles around v are all of color i for

some i in {0, 1, 2}.
An edge e is of type 1 or 2 if the labels of the four angles incident to this edge are, in clockwise order, i −1,

i , i , i + 1 for some i in {0, 1, 2}. The edge e is of type 1 if the two angles with the same color are incident to

the same extremity of e and of type 2 if the two angles are incident to the same side of e. An edge e is of type

0 if the labels of the four angles incident to e are all i for some i in {0, 1, 2} (See Figure 1.11).

If every vertex (resp. edge, or face) x of G is of type f (x), for some function f : X → N, we say that `

is VERTEX (resp. EDGE, or FACE). If every vertex (resp. edge, or face) x of G is of type 1, we say that ` is

1-VERTEX (resp. 1-EDGE, or 1-FACE). If every vertex (resp. face) x of G is of type f (x), for some function

f : X → N∗ = N \ {0}, we say that ` is N∗-VERTEX (resp. N∗-FACE). The following lemma expresses that

property EDGE is the central notion here.

Lemma 1.18. Any EDGE angle labeling is VERTEX and FACE.

Thus we define weak Schnyder labeling and weak Schnyder woods as follows :

Definition 1.19 (weak Schnyder labeling). Given a map G on an orientable surface, a weak Schnyder labeling

of G is an EDGE angle labeling of G. A weak Schnyder wood is an orientation and coloring of the edges of

G with edges oriented in one direction or in two opposite directions if it is obtained by applying the rules of

Figure 1.11 from a weak Schnyder labeling of G.

1 1

11 0

1

1

2 2

1 1

0

Type 0 Type 1 Type 2

Figure 1.11 – Correspondence between EDGE angle labelings and some bi-orientations and colorings of the

edges.

Any map (on any orientable surface) admits a trivial EDGE angle labeling : the one with all angles labeled i

(and thus all edges, vertices, and faces are of type 0). A natural non-trivial case, that is also symmetric for the

duality, is to consider EDGE, N∗-VERTEX, N∗-FACE angle labelings of general maps. In planar Schnyder woods

only type 1 and type 2 edges are used. Here we allow type 0 edges because they seem unavoidable for some

maps (see discussion below). Figure 1.10 is an example of a weak Schnyder wood obtained from an EDGE,

N∗-VERTEX, N∗-FACE angle labelings.

For every g ≥ 2, there are genus g maps, with vertex degrees and face degrees at most five. Figure 1.12

depicts how to construct such maps, for all g ≥ 2. For these maps, type 0 edges are unavoidable. Indeed, take

such a map with an angle labeling that has only type 1 and type 2 edges. Around a type 1 or type 2 edge there

are exactly three changes of labels, so in total there are exactly 3m such changes. As vertices and faces have

degree at most five, they are either of type 0 or 1, hence the number of label changes should be at most 3n+3f .

Thus, 3m ≤ 3n + 3f , which contradicts Euler’s formula for g ≥ 2. Furthermore, note that the maps described

in Figure 1.12, as well as their dual maps, are 3-connected. Actually they can be modified to be 4-connected
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and of arbitrary large face-width 13. Note that these maps admit EDGE, N∗-VERTEX, N∗-FACE angle labelings

(using type 0 edges), but those are not described in this manuscript.

if’ fi

f’ fGi i i

Figure 1.12 – A toroidal map Gi with two distinguished faces, fi and f ′i . Take g copies Gi with 1 ≤ i ≤ g and

glue them by identifying fi and f ′i+1 for all 1 ≤ i < g. Faces f1 and f ′g are filled to have only vertices and faces

of degree at most five.

The planar maps that admit a planar Schnyder wood ar exactly the internally 3-connected ones (c.f. Theo-

rem 1.4). We similarly showed that a toroidal map admits a Schnyder wood, if and only if it is essentially

3-connected (c.f. Theorem 1.8). We showed the following for weak Schnyder labelings.

Theorem 1.20. If a map G on a genus g ≥ 1 orientable surface admits an EDGE, N∗-VERTEX, N∗-FACE

angle labeling, then G is essentially 3-connected.

We conjecture that this characterizes the maps that admit such angle labelings.

Conjecture 1.21. A map on a genus g ≥ 1 orientable surface admits an EDGE, N∗-VERTEX, N∗-FACE angle

labeling if and only if it is essentially 3-connected.

As we will see in Section 1.5, and as already mentioned, every simple triangulation on a genus g ≥ 1 orientable

surface admits an orientation of its edges such that every vertex has outdegree at least three, and divisible by

three. This suggests the existence of 1-EDGE angle labelings with no sinks, i.e. 1-EDGE, N∗-VERTEX angle

labelings. One can easily check that in a triangulation, a 1-EDGE angle labeling is also 1-FACE. Thus we can

hope that a triangulation on a genus g ≥ 1 orientable surface admits a 1-EDGE, N∗-VERTEX, 1-FACE angle

labeling. Note that a 1-EDGE, 1-FACE angle labeling of a map implies that faces have size three. So we propose

the following conjecture, whose “only if” part follows from the previous sentence :

Conjecture 1.22. A map on a genus g ≥ 1 orientable surface admits a 1-EDGE, N∗-VERTEX, 1-FACE angle

labeling if and only if it is a triangulation.

Conjecture 1.21 implies Conjecture 1.22 since for a triangulation every face would be of type 1, and thus

every edge would be of type 1. Conjecture 1.21 is proved for g = 1 [J18] whereas both conjectures are open for

g ≥ 2.

13. For many problems, maps with high face-width are easier to handle. The face-width of a map G is the smallest number k

such that there is a non-contractible closed curve that intersects G in k points.
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1.4.2 Orientations of weak Schnyder woods

It was shown by de Fraysseix et al. [58], that for any planar triangulation every orientation of its inner edges

where every inner vertex has outdegree three corresponds to a Schnyder wood. Thus, any orientation with the

proper outdegree corresponds to a Schnyder wood and there is a unique way, up to symmetry of the colors, to

assign colors to the oriented edges in order to fulfill the Schnyder property at every inner vertex. This is not

true in higher genus as already in the torus, there exist orientations that do not correspond to any Schnyder

wood (see Figure 1.13), not even to a weak Schnyder wood.

Figure 1.13 – Two different orientations of a toroidal triangulation. Only the one on the right corresponds to a

(weak) Schnyder wood.

Consider a map G on an orientable surface of genus g. The orientation of G defined by a weak Schnyder

woods can be defined more naturally in the primal-dual-completion of G, as there is no more edges oriented in

two directions. The primal-dual-completion Ĝ is the map obtained from simultaneously embedding G and G∗

such that vertices of G∗ are embedded inside faces of G and vice-versa. Moreover, each edge crosses its dual

edge in exactly one point in its interior, which also becomes a vertex of Ĝ. Hence, Ĝ is a bipartite graph with one

part consisting of primal-vertices and dual-vertices and the other part consisting of edge-vertices (of degree

four). Each face of Ĝ is a quadrangle incident to one primal-vertex, one dual-vertex and two edge-vertices.

Actually, the faces of Ĝ are in correspondance with the angles of G. This means that angle labelings of G

correspond to face labelings of Ĝ.

Given α : V → N, an orientation of G is an α-orientation [46] if for every vertex v ∈ V its outdegree d+(v)

equals α(v). We call an orientation of Ĝ a mod 3-orientation if it is an α-orientation for a function α satisfying :

α(v) ≡

{
0 (mod3) if v is a primal- or dual-vertex,

1 (mod3) if v is an edge-vertex.

Note that an EDGE angle labeling (i.e. a weak Schnyder wood) of G corresponds to a mod3-orientation

of Ĝ, by the mapping of Figure 1.14, where the three types of edges are represented. Type 0 corresponds

to an edge-vertex of outdegree four. Type 1 and type 2 both correspond to an edge-vertex of outdegree 1 ;

in type 1 (resp. type 2) the outgoing edge goes to a primal-vertex (resp. dual-vertex). In all cases we have

d+(v) ≡ 1 (mod3) if v is an edge-vertex. By Lemma 1.18, the labeling is also VERTEX and FACE. Thus,

d+(v) ≡ 0 (mod3) if v is a primal- or dual-vertex.

As mentioned earlier, de Fraysseix et al. [58] showed for planar triangulations, that every internal 3-

orientations corresponds to a Schnyder wood. Felsner [46] generalized this result for planar Schnyder woods and

orientations of the primal-dual completion having prescribed out-degrees. The situation is more complicated in

higher genus (see Figure 1.13). It is not enough to prescribe outdegrees in order to characterize orientations

corresponding to weak Schnyder woods. We call an orientation of Ĝ corresponding to a weak Schnyder wood

of G a weak Schnyder orientation. In the following we show how to characterize these orientations.

Consider a (not necessarily directed) cycle C of G together with a direction of traversal. We associate to C

its corresponding cycle in Ĝ denoted by Ĉ. We define γ(C) by :

γ(C) = # edges of Ĝ leaving Ĉ on its right−# edges of Ĝ leaving Ĉ on its left
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Figure 1.14 – How to map a weak Schnyder labeling to a mod3-orientation of the primal-dual completion.

Primal-vertices are black, dual-vertices are white and edge-vertices are gray.

Theorem 1.23. Consider a map G on an orientable surface of genus g. Let {B1, . . . , B2g} be a set of cycles

of G that forms a basis for the homology. An orientation of Ĝ is a weak Schnyder orientation if and only if it is

a mod3-orientation such that γ(Bi) ≡ 0 (mod3), for all 1 ≤ i ≤ 2g.

For a given map G, the set of weak Schnyder orientations of Ĝ with same values γ(B1), . . . , γ(B2g) has a

lattice structure. The elements (orientations of Ĝ) are linked if they differ only on a directed closed walk W that

is null-homologous. If W is a directed separating cycle (which is thus null-homologous), it crosses Bi from left

to right as many times as it crosses it from right to left. It is thus clear (in this case) that reversing the edges of

W does not change γ(Bi). In Section 1.3.2 we used the fact that for toroidal triangulations, all the orientations

of Ĝ corresponding to (non-weak) Schnyder woods belong to the same lattice. This lattice is the one for which

γ(Bi) = 0, for all 1 ≤ i ≤ 2g. Note that this does not depend on the choice of the basis {B1, . . . , B2g} as in

this case γ(C) = 0 for every non-contractible cycle C.

1.5 (0 mod 3)-Orientations

This section is devoted to the following theorem [J22] that was conjectured by Barát et al. [9].

Theorem 1.24. Every simple triangulation T of a surface of Euler genus 14 k ≥ 2 has an orientation such that

each outdegree is at least 3, and divisible by 3.

Barát et al.’s proved it for small Euler genus, and for any Euler genus, they proved a weaker version where

sinks (i.e. outdegree zero vertices) are allowed. Their conjecture was originally motivated in the context of

claw-decompositions of graphs, since given an orientation with the claimed properties the outgoing edges of

each vertex can be divided into claws, such that every vertex is the center of at least one claw. Our motivation

was more related to Conjecture 1.22, as Theorem 1.24 may be a step towards proving this conjecture. Similarly,

answering to the following conjecture would be a step towards Conjecture 1.21 .

Conjecture 1.25. Given an essentially 3-connected map G, its primal-dual-completion Ĝ has an orientation

where primal- and dual-vertices have non-zero outdegrees divisible by three, and where edge-vertices have

indegrees divisible by three, that is indegree 0 or 3 (i.e. outdegree 4 or 1).

Recall also that Conjecture 1.17 asks for an improvement of Theorem 1.24 towards obtaining orientations of

triangulations that behave well with respect to Algorithm PS . Before going into the proof of Theorem 1.24 let

us define induced submaps. Given a triangulation T and a set of vertices X ⊆ V (T ), the induced submap T [X]

is simply the maximal submap with vertex set X. In other words this submap has edge set {uv ∈ E(T ) | u ∈
X and v ∈ X}, and face set {uvw ∈ F (T ) | u ∈ X, v ∈ X, and w ∈ X}. Note that submaps are thus embedded

graphs with (a few) faces, that are a subset of the embedded graph’s faces.

14. The Euler genus of a map is 2− n +m − f , where n, m and f stand for the number of vertices, edges, and faces.
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1.5.1 Proof of Theorem 1.24

We consider a triangulation T that is a minimal counter example. Then there are several stages. We first

prove that one can partition the edges of the triangulation T into the following graphs :

— The initial graph I, which is an induced submap containing a non-contractible cycle. Furthermore, I

contains an edge uv such that the map I \ uv is a maximal outerplanar graph with only two degree two

vertices, u and v . See Figure 1.15 for an illustration.

u

v

Figure 1.15 – Example of a submap I.

— The correction graph B (with blue edges), which is oriented acyclically in such a way that each vertex

of V (T ) \ V (I) has outdegree 2, while the other vertices have outdegree 0,

— The last correction path G (with green edges), which is a {u, v}-path.

— The non-zero graph R (with red edges), which is oriented in such a way that all vertices in (V (T ) \ V (G))∪
{u, v} have out-degree at least 1.

Finding the submap I

We do not explain this not very interesting part of the proof.

Constructing B, G, and R

Starting from I we incrementally explore the whole triangulation T by stacking the vertices one by one (this

procedure is inspired by [21]). At each step, we will assign the newly explored edges to B, G or R, and we will

orient those assigned to B or R. At each step the explored region is a submap of T induced by some vertex set

X. Such explored region is denoted by T [X] and its boundary ∂T [X] (See Figure 1.16 for an illustration).
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Figure 1.16 – Different types of stacking a vertex c on an induced submap M (grey region). Left : one neighboring

path P1 = (u, a, b, v , w). Middle : three neighboring paths P1 = (u, a, b, v), P2 = (w, x), P3 = (y). Right : A

boundary cycle C = (u, v , w, b, a).

During the exploration we maintain the following invariants :

(I) The graphs I, B, G, and R partition the edges of T [X].

(II) All interior vertices of T [X] (i.e. in X \ V (∂T [X])) have at least one outgoing R-arc, or two incident

G-edges. Furthermore G either is an {u, v}-path, or is the union of two vertex disjoint paths Gu and Gv ,

going from u to u∗, and from v to v∗, respectively, for some vertices u∗ and v∗ on ∂T [X].

Here the vertices u∗ and v∗ may coincide with vertices u and v , respectively, if Gu or Gv is trivial.

(III) The graph B is acyclically oriented in such a way that the vertices of I have outdegree 0, while the

other vertices of T [X] have outdegree 2.

Furthermore, to help us in properly finishing the construction of the graphs B, G and R in the further steps,

we introduce the notion of requests on the angles 15 of ∂T [X]. There are two types of requests, G-requests

and R-request. An angle is allowed to have at most one request, and an angle having no request is called free.

Informally, a G-request (resp. an R-request) for an angle â means that in a further step an edge inside this

angle will be added in G (resp. in R and oriented from a to the other end).

(IV) Every vertex of (∂T [X] \ {u∗, v∗})∪{u, v} having (still) no outgoing R-arc, has an incident angle with

an R-request.

(V) If G is not a {u, v}-path (yet), the vertices u∗ and v∗ (at the end of Gu and Gv , respectively), have

one incident angle each, say û∗ and v̂∗, that are consecutive on ∂T [X], and that have a G-request.

Furthermore, there are no other G-requests.

(VI) If there is an unexplored disk D 16 , then there are at least three free angles (of ∂T [X]) around D.

One can observe that if these invariants are maintained until the end of the exploration, we obtain the

desired partition of the edges.

15. Here an angle is a triplet (e, v , e ′) of consecutive elements of ∂T [X].
16. An unexplored disk D is an open pseudo disk that does not intersect T [X] but whose border is contained in T [X].
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u

v

Figure 1.17 – Assigning requests to I in order to satisfy the invariants. G-requests are green, R-requests are

red.

The exploration starts with T [X] = I with the following setting of requests on the angles (see Figure 1.17).

Set the angles of consecutive appearance of u, v as G-requests, while all the other angles are assigned R-

requests. Then one can check that (I)-(VI) are satisfied. We do not explain here how to choose the next vertex

to stack, how to partition and color the new edges, nor how to assign requests to the new angles.

Reorienting B

Here we use the same approach as in the proof of Theorem 4.5 in [9]. Given a partial orientation O of T

we define the demand of a vertex v as demO(v) := −δ+
|O(v) mod 3, where δ+

|O(v) denotes the outdegree of v

with respect to O. We want to find an orientation of T with all demands 0.

We do not modify the orientation on R, and this guarantees that all vertices in (V (T ) \ V (G)) ∪ {u, v}
have non-zero outdegrees. Furthermore, as G will be oriented either entirely forward or backwards (this will be

chosen later), all its interior vertices will have non-zero outdegrees. Hence every vertex of T [X] has non-zero

outdegree. Suppose that G is entirely oriented forward.

Now we linearly order vertices in V (T ) \ V (I) = (v1, . . . , v`) such that with respect to B every vertex has

its two outgoing B-neighbors among its predecessors and I (this corresponds to the order the stacking was

performed). Denote by Bi the subgraph of B induced by the arcs leaving vi , . . . , v` (before the reorienting).

We process V (T ) \ V (I) from the last to the first element. At a given vertex vi we look at demG∪R∪Bi (vi)

and reorient the two originally outgoing B-arcs of vi in such a way that afterwards demG∪R∪Bi (vi) = 0 (i.e.

δ+
|G∪R∪Bi (vi) ≡ 0 mod 3). As these B-arcs were heading at I or at a predecessor, the demand on the vertices

vj , with j > i , is not modified and hence remains 0. Denote by O the obtained partial orientation of T .

Orienting G and I

Now pick an orientation of G (either all forward or all backward) and of uv such that for the resulting

partial orientation O′ we have demO′(v) = 1. Let ∆ be the triangle of I containing v . Since I \ uv is a maximal

outerplanar graph it can be peeled by removing degree two vertices until reaching ∆. When a vertex x is removed

orient its two incident edges so that demO′(x) = 0 (as for B-arcs). We obtain a partial orientation O′′, such that
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all vertices have non-zero outdegree, and such that all vertices except the ones of ∆ have outdegree divisible

by 3. Since the number of edges of T , and the number of edges of ∆ are divisible by 3, the number of edges of

T \ ∆ is divisible by 3. As this number equals the sum of the outdegrees in O′′, and as every vertex out of ∆

has outdegree divisible by 3, then the outdegree of ∆’s vertices sum up to a multiple of 3. Hence their demands

sum up to 0, 3 or 6. As demO′′(v) = demO′(v) = 1, the demands of the other two vertices of ∆ are either both

1, or 0 and 2. It is easy to see that in either case ∆ can be oriented to satisfy all three demands.
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Chapitre 2

Intersection Representations for Planar
Graphs

2.1 Introduction

Intersection graphs form a large part of nowadays studied classes of graphs. This chapter will only cover

a small part of this broad research area. We will only consider intersection graphs of connected shapes in the

plane. Research on representations of (planar) graphs by contact or intersection of predefined shapes in the

plane started with the work of Koebe in 1936 [71].

Given a shape 1 X, an X-intersection representation is a collection of X-shaped geometrical objects in the

plane. The X-intersection graph described by such a representation has one vertex per geometrical object, and

two vertices are adjacent if and only if the corresponding objects intersect. An intersection representation of a

graph G = (V, E) is thus an intersection representation C = {c(v) : v ∈ V }, such that two geometrical objects,

c(u) and c(v), intersect if and only if their corresponding vertices are adjacent, i.e. uv ∈ E. The shapes that

are homeomorphic to a segment or to a disk are respectively referred to as pseudo-segments or as pseudo-disks.

If the shape X is a pseudo-segment (resp. a pseudo-disk), an X-contact representation is an X-intersection

representation such that if an intersection occurs between two objects, then it occurs at a single point that is

the endpoint of one of them (resp. it occurs on their boundary). We say that a graph G is an X-contact graph

if it is the X-intersection graph of an X-contact representation.

2.1.1 Pseudo-disks

The case of shapes homeomorphic to discs has been widely studied ; see for example the literature for

disks [71, 6, 33], triangles [57, J13], homothetic triangles [69, 92], rectangles [97, 54], squares [91, 74],

hexagons [63], convex bodies [90], or (non-convex) axis aligned polygons [4]. Most of these works actually deal

with contact representations.

A contact point of a contact representation is a point that is in the intersection of (at least) two shapes.

A contact representation is said simple if for any two intersecting shapes there is a contact point contained

by these two shapes only. Observe that a simple contact representation by pseudo-disks C = {c(v) : v ∈ V }
necessarily represents a plane graph. Indeed, one can draw the represented graph by choosing any point pv inside

c(v), for representing each vertex v , and by drawing curves from pv to the “private” contact points around

c(v) to represent the edges incident to v .

The circle packing theorem of Koebe [71] states that every planar graph admits a contact representation by

circles. Here, vertices are represented by homothetic objects, circles. Another case has been explored, the case

1. We do not provide a formal definition of shape, but a shape characterizes a family of connected geometric objects in the

plane.
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of squares, using different tools [91, 74]. Both papers show that 5-connected planar triangulations minus one

edge are contact graphs of axis parallel squares.

Several works considered contact representations by shapes that are not necessarily homothetic. Koebe’s

theorem implies that every planar graph has a contact representation by convex polygons, and de Fraysseix et

al. [57] strengthened this by showing that every planar graph admits a contact representation by triangles.

Thomassen [97] considered the contact graphs of axis parallel rectangles. One can observe that such contact

representation provides (following the procedure described above) a plane graph where each triangle bounds an

inner face. Thomassen proved that this property characterizes these contact graphs. In other words these

contact graphs are exactly the proper subgraphs (i.e. strict subgraphs) of 4-connected planar triangulations.

The subgraphs being proper one can draw them so that the outerface has length at least four, and the 4-

connectedness ensures that every triangle bounds an inner face. Fusy [61, 62] then studied the structures

(named transversal structures) defined by such contact representations, and used those to design new bijections

(linking triangulations and loopless maps) and a drawing algorithm.

Gansner et al. [63] proved that every planar graph has a contact representation with convex hexagons which

sides use only 3 slopes (i.e. hexagons with two horizontal sides and which angles are all 2
3π) and where the

intersection between two shapes is a segment (not a single point).

Using non-combinatorial arguments Schramm proved a powerfull and very general result, sometimes referred

to as the monster packing theorem. This theorem deals with any kind of convex shapes [90].

Theorem 2.1 (monster packing theorem [90]). Let T be a planar triangulation with outerface abc . Let C be

a simple closed curve in the plane, and let c(a), c(b), c(c) be three arcs composing C, which are determined

by three distinct points of C. For each vertex v ∈ V (T ) \ {a, b, c}, let there be a prototype Pv , which is a

convex shape in the plane containing more than one point. Then there is a contact representation in the plane

C = {c(v) : v ∈ V (T )}, where each c(v) for v ∈ V (T )\{a, b, c} is either degenerated to a point or (positively)

homothetic to Pv , and such that T is a subgraph of the contact graph induced by C.

We will see in Section 2.2 how this led us to prove the following theorem that was conjectured by Krato-

chv́ıl [73] (see also [8]).

Theorem 2.2. Every 4-connected planar triangulation admits a contact representation by homothetic triangles.

Then we will use this result as a building block for proving the following result.

Theorem 2.3. A graph is planar if and only if it is the intersection graph of homothetic triangles, where the

intersection of any three triangles is empty.

This answers a conjecture of Lehmann that planar graphs are max-tolerance graphs (as max-tolerance graphs

have shown to be exactly the intersection graphs of homothetic triangles [69]).

There are also many works dealing with contact representations by non-convex shapes such as axis aligned

polygons. In order to bypass the limitations of rectangular cartograms [96], researcher studied cartograms for

visualization purposes (e.g. for geographical data) [4]. These cartograms are actually contact representations

by polygons which sides are axis parallel. From Thomassen’s characterization of contact representations by

rectangles, it follows that every 4-connected triangulation admits a contact representation by L-shaped hexagons.

We improved this a bit by restraining ourselves to L-shaped hexagons drawn on the integer grid so that the

branches of each L are one unit thick (i.e. the topmost and rightmost sides have length one), and so that two

touching L’s touch on a segment 2. We call such a representation a thick L contact representation.

Theorem 2.4. Every 4-connected triangulation admits a thick L contact representation.

We will sketch the proof of this result in Section 2.5.2.

2. This deviate’s a little from the original result in [C25] where L’s can intersect on a single point.
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A primal-dual contact representation (V,F) of a planar map G is a pair of contact representations V =

{c(v) : v ∈ V (G)} and F = {c(f ) : f ∈ V (G∗)}, such that V is a contact representation of G, and F is a

contact representation of G∗, the dual of G, and for every edge uv , bordering faces f and g, the intersection

between c(u) and c(v) equals the intersection between c(f ) and c(g). Andre’ev [6] strengthened Koebe’s

theorem as follows :

Theorem 2.5 (Andre’ev [6]). Every 3-connected planar map admits a primal-dual contact representation by

circles.

We proved an analogous result concerning contact representations by triangles. We say that a primal-dual

contact representation by triangles is tiling if the triangles corresponding to vertices and those corresponding

to inner faces form a tiling of the triangle corresponding to the outer face (see Figure 2.1).

Figure 2.1 – A tiling primal-dual contact representation by triangles

Theorem 2.6. Every internally 3-connected planar map admits a tiling primal-dual contact representation by

triangles.

In [64], Gansner et al. study representation of graphs by triangles where two vertices are adjacent if and

only if their corresponding triangles are intersecting on a segment (they call them touching representation by

triangles). Theorem 2.6 shows that for 3-connected planar graphs, the incidence graph between vertices and

faces admits a touching representation by triangles. We will sketch the proof of Theorem 2.6 in Section 2.3.

2.1.2 Pseudo-segments

In his PhD thesis [87], Scheinerman conjectured that every planar graph has an intersection representation

by segments. Several results partially confirmed this conjecture. Hartman et al. [66], de Fraysseix et al. [41], and

Czyzowicz et al. [34] proved it for bipartite planar graphs. The case of triangle-free planar graphs was proved

by de Castro et al. [23] and more recently de Fraysseix et al. [43] proved it for every planar graph that has

a 4-coloring in which every induced cycle of length 4 uses at most 3 colors. We provided two proofs of this

conjecture [C12, C25], the most recent one being much simpler that the former one. In this manuscript we will
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sketch both proofs (in Section 2.4.3 and in Section 2.5), and we will explain intermediate results that led us to

these proofs. To explain these intermediate results, we need a few definitions.

Here, we focus on intersection and contact representations of planar graphs with different types of pseudo-

segments. The more general representations of this type are the intersection or contact representations with

pseudo-segments (also known as strings in this context). It is known that every planar graph has an intersection

representation by strings [38]. Indeed, one just has to take a contact representation by circles, and cut the

circles to turn them into strings. If one wants to avoid tangent points it suffices to inflate the circles a little. In

this case, a pair of strings can cross each other at most twice.

Definition 2.7. A 1-string representation of a graph is an intersection representation by strings where (1)

strings cannot intersect tangentially, and where (2) every two strings intersect at most once.

Seeking a proof of Scheinerman’s conjecture, it was suggested [42, 72] to first prove it for slack segments,

with the idea in a second time to stretch them and obtain a segment representation. Thus condition (1) and (2)

of Definition 2.7 are necessary. This approach of Scheinerman’s conjecture was decisive since we first proved

that every planar graph has a 1-string representation [J9], and then we manage to improve this proof to obtain

the first proof of Scheinerman’s conjecture [C12].

Theorem 2.8. Every planar graph has a 1-string representation.

Theorem 2.9. Every planar graph has a segment intersection representation.

However, note that the latter construction is not a stretching of the former one. One difficulty in these

constructions is that the obtained representations somehow violate the original embedding of the planar graph.

Actually, Biedl et al. [15] showed that some planar graphs, like planar 3-trees, do not have an order-preserving

1-string representation (that is a representation where the order of the crossings allong a string follow the order

of the edges around the corresponding vertex).

In order to introduce the second proof of Scheinerman’s conjecture we need to define the following graph

classes. A graph is said to be a VPG-graph (Vertex-Path-Grid) if it has a contact or intersection representation

in which each vertex is assigned to a path of vertical and horizontal segments (see [2, 32]). Asinowski et al. [7]

showed that the class of VPG-graphs is equivalent to the class of graphs admitting a string representation. They

also defined the class Bk -VPG, which contains all VPG-graphs for which each vertex is represented by a path

with at most k bends (see [55] for the determination of the value of k for some classes of graphs). It is known

that Bk -VPG ( Bk+1-VPG, and that the recognition of graphs of Bk -VPG is an NP-complete problem [26].

These classes have interesting algorithmic properties (see [77] for approximation algorithms for independence

and domination problems in B1-VPG graphs), but most of the literature studies their combinatorial properties.

Chaplick et al. [28] proved that planar graphs are B2-VPG graphs. This result was recently improved by

Biedl et al. [13], as they showed that planar graphs have a 1-string B2-VPG representation.

Various classes of graphs have been shown to have 1-string B1-VPG representations, such as planar partial

3-trees [12] and Halin graphs [40]. In these representations, each vertex is assigned to a path formed by at most

one horizontal and one vertical segment. There are different types of such paths. For example, the x shape

defines paths where the vertical segment is above and to the left of the horizontal one. Interestingly, it has been

shown that the class of simple segment contact graphs is equivalent to the one of B1-VPG contact graphs [70].

This implies in particular that triangle-free planar graphs are B1-VPG contact graphs. This has been improved

by Chaplick et al. [28] as they showed that triangle-free planar graphs are in fact {x, p, |,−}-contact graphs

(that is without using the shapes y and q). In the following, we will always precise when | or − shapes are

allowed. This is particularly important as for example some {x, |,−}-contact graphs, like the triangular prism,

are not x-contact graphs.

The restriction of B1-VPG to x-intersection or x-contact graphs has been much studied (see for example

[55]) and it has been shown that they are in relation with other structures such as Schnyder realizers, canonical

orders or edge labelings [27]. The same authors also proved that the recognition of x-contact graphs can be done
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in quadratic time, and that this class is equivalent to the one restricted to equilateral x shapes. The x-contact

graphs where the corners lie on a straight line are called monotone or linear x-contact graphs. Those graphs

have been recently studied further, in particular in relation with MPT (Max-Point Tolerance) graphs [24, 3].

In section 2.5 we will prove the following theorems that were both conjectured by Chaplick et al. [28] 3.

Theorem 2.10. Every triangle-free planar graph has a (simple) {x, |,−}-contact representation.

Theorem 2.11. Every planar graph has an x-intersection representation.

In both cases, one cannot restrict the representation to | and − shaped paths. Indeed, any {|,−}-intersection

representation of a triangle-free planar graph defines a vertex partition of the graph into two forests of paths

(one induced by the vertical paths and the other induced by the horizontal ones), but such partition is not always

possible [93].

As a contact graph of a simple string representation with n vertices has at most 2n edges and as a triangle-

free planar graph may have up to 2n − 4 edges, Theorem 2.10 cannot be extended to much denser graphs.

However, for planar Laman graphs (a large family of planar graphs with at most 2n − 3 edges and which are

B1-VPG intersection graphs [55]), the question of whether these graphs have a {x, |,−}-contact representation

is open, up to our knowledge. The question whether triangle-free planar graphs are {x, |}-contact graphs is

also open. Theorem 2.11 implies that planar graphs are 1-string B1-VPG, improving the results of Biedl and

Derka [13] stating that planar graphs are 1-string B2-VPG. Since an {x, p, |,−}-intersection representation

can be turned into a segment intersection representation [78], Theorem 2.11 provides a rather simple proof of

Scheinerman’s conjecture.

2.2 Representations by Homothetic Triangles

Theorem 2.1 is the building block for the results presented in this section. As already observed, simple contact

representations produce planar graphs, so by ensuring that the representation C produced by Theorem 2.1, from

a triangulation T , is (almost) simple we obtain that the contact graph of C is actually T itself (by maximality of

planar triangulations). We ensure this “almost simplicity” of C by adding a natural condition on the prototypes :

In a contact representation by pseudo-disks, one can draw the induced graph by choosing an arbitrary point

in each set and drawing the edges uv between the corresponding points, inside the region c(u)∪c(v) and hence

passing through a contact point of c(u) and c(v). With such a drawing one can see that the graph induced by

the contact representation is a planar graph where some faces are turned into complete graphs (such a complete

graph on k ≥ 4 vertices corresponds to k shapes intersecting at a given point). With such a complete graph on

k ≥ 4 vertices, the contact graph is generally non-planar. We are hence going to forbid k intersecting shapes

for k ≥ 4, and even for k = 3 in some cases.

Theorem 2.12. Consider a k-connected triangulation T , for k ∈ {3, 4, 5}, and a set of prototypes {Pv : v ∈
V (T )}, that are convex and with more than one point. If every non-facial cycle (v1, . . . , vl), with l ≥ k is such

that homothets of Pv1 , . . . ,Pvl cannot intersect at a single point, then T has a planar contact representation

C = {c(v) : v ∈ V (T )}, where each c(v) is a positive homothet of Pv .

Note that one cannot drop the 4-connectedness (to 3-connectedness) from Theorem 2.2. Indeed, in every

contact representation of K2,2,2 by homothetic triangles, there are three triangles intersecting in a point (see

the left of Figure 2.2). This implies that the triangulation (not 4-connected) obtained from K2,2,2 by adding a

degree three vertex in every face does not admit a contact representation by homothetic triangles.

Theorem 2.2 immediately follows from Theorem 2.12, with k = 4, by setting the prototype to the same

triangle. Indeed, we cannot have four interior disjoint homothetic triangles intersecting at a single point. Note

that Theorem 2.12 also implies other results like the already known existence of contact representations by

3. In fact, Theorem 2.10 has been proven in the master thesis (written in german) of B. Kappelle in 2015 [68] but never

published.
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squares for 5-connected planar graphs [91, 74], or the existence of contact representations by homothetic regular

pentagons for all planar graphs. The latter, such as Theorem 2.2, is considered by Felsner et al. [51, 56] as

they seek a combinatorial proof of these results, and a polynomial algorithm constructing these representations.

Recently Schrezenmaier [92] found a more combinatorial proof of Theorem 2.2, while not fully combinatorial

yet. This proof uses the link between contact representations by triangles and Schnyder woods.

Figure 2.2 – A 4-connected planar triangulation, K2,2,2, with a contact representation by homothetic triangles,

and a contact representation which contact graph has non-following Schnyder woods.

Given a triangulation T and a contact representation by triangles T = {t(v) : v ∈ V (T )} of T , we say

that a Schnyder wood (see Definition 1.2 in Chapter 1) follows T if each time t(u) ∩ t(v) is not a corner of

t(v) we have that the edge uv is oriented from u to v in the Schnyder wood. If T is simple (i.e. at most two

triangles intersect at a point), then the orientation of every (inner) edge is specified, and there is at most one

Schnyder wood following T , and actually such Schnyder wood always exists [57]. When the triangles of T are

homothetic, the intersections are either simple, and the orientation of the corresponding edge is specified, or

it is the intersection of three triangle corners (as in Figure 2.2), and in this case one can choose any of the

cyclic orientation for the corresponding triangle of T (clockwise or counter-clockwise), the resulting orientation

corresponds to a Schnyder wood. Note that there exist examples of Schnyder woods not following a contact

representation by homothetic triangles. This is the case with the representation on the right of Figure 2.2.

Looking at this example it seems likely, but it is an open question to know whether contact representations by

homothetic triangles are unique or not.

The use of Theorem 2.1 makes the proof of Theorem 2.2 non-constructive. Felsner [51] has proved that

given a Schnyder wood, one can define a system of linear equation that has a positive solution if and only if

this Schnyder wood follows a contact representation by homothetic triangles. From a positive solution of that

system, it is easy to construct the representation. So by enumerating all Schnyder woods of a given 4-connected

triangulation, one can compute a representation. However the number of Schnyder woods of a triangulation

may be exponential so this approach is not very efficient. Felsner [51] suggested to use cycle flips (i.e. reversal

of oriented cycles) in Schnyder woods to change the considered Schnyder wood and eventually end up with a

convenient one. The correctness of this method is still open.

Felsner et al. [50] showed that any Schnyder wood following a contact representation by homothetic triangles,

can be embedded on an orthogonal surface where edge-points are coplanar, if one allows degenerate patterns

(for each point that is the intersection of three triangles). This point of view allowed Felsner et al. [53] to prove

that Theorem 2.2 implies that every planar graph has a contact representation by cubes in R3.

For any two triangles ∆ and ∆′ there exists a linear mapping of the plane that maps any triangle homothetic

to ∆ into a triangle homothetic to ∆′. This implies that any intersection representation by triangles homothetic

to ∆ can be turned into an intersection representation by triangles homothetic to ∆′. From now on we consider

a Cartesian coordinate system, and we let the triangle ∆ be the triangle with corners at coordinates (0, 0), (0, 1)

and (1, 0). Thus the homothets of ∆ have corners of the form (x, y), (x, y + h) and (x + h, y) with h > 0, and

we call (x, y) their right corner and h their height (See Figure 2.3.(a)).
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It is clear that the intersection graph of a set of triangles where no three of them intersect is a planar graph

(Put vertex v in t(v) \ ∪u∈V (T )\{v}t(u) and then draw a curve from v towards t(v)∩ t(u) for each u ∈ N(v)).

For proving Theorem 2.3 it thus suffices to construct an intersection representation by homothets of ∆ for

any planar graph G. In fact we restrict ourselves to triangulations because any such G is an induced subgraph

of a triangulation T (an intersection representation of T thus contains a representation of G). The following

proposition thus implies Theorem 2.3.

(1,0)(0,0)

(0,1)

pt(u)
t(v)

t(w)

(a) (b)

Figure 2.3 – (a) The triangle ∆ (b) The triangles t(u), t(v) and t(w).

Proposition 2.13. For any triangulation T with outer vertices a, b and c , for any three triangles t(a), t(b),

and t(c) homothetic to ∆, that pairewise intersect but do not intersect (i.e. t(a) ∩ t(b) ∩ t(c) = ∅), and for

any ε > 0, there exists an intersection representation T = {t(v) : v ∈ V (T )} of T by homothets of ∆ such

that :

(a) No three triangles intersect.

(b) The representation is bounded by t(a), t(b), and t(c) and the inner triangles intersecting those outer

triangles intersect them on a point or on a triangle of height less than ε.

As we did not published this proof previously, we provide it in full length here.

Proof. Let us first prove the proposition for 4-connected triangulations. Theorem 2.2 tells us that 4-connected

triangulations have such a representation if we relax condition (a) by allowing 3 triangles t(u), t(v) and t(w) to

intersect if they pairewise intersect in the same single point p (t(u)∩t(v) = t(u)∩t(w) = t(v)∩t(w) = p). We

call (a’) this relaxation of condition (a), and we call “bad points”, the points at the intersection of 3 triangles.

Let us now reduce their number (to zero) as follows (and thus fulfill condition (a)).

Note that the corners of the outer triangles do not intersect inner triangles. This property will be preserved

along the construction below.

Let p = (xp, yp) be the highest (i.e. maximizing yp) bad point. If there are several bad points at the same

height, take among those the leftmost one (i.e. minimizing xp). Then let t(u), t(v) and t(w) be the three

triangles pairewise intersecting at p. Let us denote the coordinates of their right corners by (xu, yu), (xv , yv )

and (xw , yw ), and their height by hu, hv and hw . Without loss of generality we let p = (xu +hu, yu) = (xv , yv ) =

(xw , yw + hw ) (see Figure 2.3.(b)). By definition of p it is clear that p is the only bad point around t(u). Note

also that none of t(u), t(v) and t(w) is an outer triangle.

Step 1 : By definition of p and t(u), the corner q = (xu, yu+hu) of t(u) is not a bad point. Now inflate t(u) in

order to have its right angle in (xu− ε′, yu) and height hu + ε′, for a sufficiently small ε′ > 0 (see Figure 2.4.(a)).

Here ε′ is sufficiently small to avoid new pairs of intersecting triangles, new triples of intersecting triangles, or

an intersection between t(u) and an outer triangle on a too big triangle (with height ≥ ε). Since the new t(u)

contains the old one, the triangles originally intersected by t(u) are still intersected. Hence, t(u) intersects the

same set of triangles, and the new representation is still a representation of T . Since there was no bad point
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q

pt(u)
t(v)

t(w)

p

q

t(z)

t(u)
t(v)

t(w)

(a) (b)

Figure 2.4 – (a) Step 1 (b) Step 2

distinct from p around t(u), it is clear by the choice of ε′ > 0 that the new representation still fulfills (a’) and

(b). After this step we have the following.

Claim 2.14. The top corner of t(u) is not a contact point.

Step 2 : For every triangle t(z) that intersects t(u) on a single point of the open segment ]p, q[ do the

following. Denote (xz , yz) the right corner of t(z), and hz its height. Note that t(z) is an inner triangle of the

representation and that by definition of p there is no bad point involving t(z). Now inflate t(z) in order to have

its right corner at (xz , yz − ε′), and height hz + ε′, for a sufficiently small ε′ > 0 (See Figure 2.4.(b)). Here ε′

is again sufficiently small to avoid new pairs or new triples of intersecting triangles, and to preserve (b). Since

t(z) was not involved in a bad point, the new representation still fulfills (a’). Since the new t(z) contains the

old one, the triangles originally intersected by t(z) are still intersected. Hence, t(z) intersects the same set of

triangles, and the new representation is still a representation of T . After doing this to every t(z) we have the

following.

Claim 2.15. There is no contact point on ]p, q].

p

q

t(u)
t(v)

t(w)

(a) (b)

Figure 2.5 – (a) Step 3 (b) Condition (c)

Step 3 : Now translate t(u) downwards in order to have its right corner in (xu − ε′, yu), and inflate t(v) in

order to have its right angle in (xv−ε′, yv ), and height hv +ε′, for a sufficiently small ε′ > 0 (See Figure 2.5.(a)).
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Here ε′ is again sufficiently small to avoid new pairs or triples of intersecting triangles, and to preserve (b) but

it is also sufficiently small to preserve the existing pairs of intersecting triangles. This last requirement can be

fulfilled because the only intersections that t(u) could loose would be contact points on ]p, q], which do not

exist.

After these three steps, it is clear that the new representation has one bad point less and induces the same

graph. This proves the proposition for 4-connected triangulations. The conditions (a) and (b) imply the following

property.

(c) For every inner face xyz of T , there exists a triangle t(xyz), negatively homothetic to ∆, which interior

is disjoint to any triangle t(v) but which 3 sides are respectively contained in the sides of t(x), t(y) and

t(z). Furthermore, there exists an ε′ > 0 such that any triangle t homothetic to ∆ of height ε′ with

a side in t(x) ∩ t(xyz) does not intersect any triangle t(v) with v 6= x , and similarly for y and z (see

Figure 2.5.(b)).

We are now ready to prove the proposition for any triangulation T . We prove this by induction on the number

of separating triangles. We just proved the initial case of that induction, when T has no separating triangle

(i.e. when T is 4-connected). For the inductive step we consider a separating triangle (u, v , w) and we call Tin
(resp. Tout) the triangulation induced by the edges on or inside (resp. on or outside) the cycle (u, v , w). By

induction hypothesis Tout has a representation fulfilling (a), (b), and (c). Here we choose arbitrarily the outer

triangles and ε. Since uvw is an inner face of Tout there exists a triangle t(uvw) and an ε′ > 0 (with respect to

the inner face uvw) as described in (c). Then it suffices to apply the induction hypothesis for Tin (which outer

vertices are u, v and w), with the already existing triangles t(u), t(v), and t(w) , and for ε′′ = min(ε, ε′). Then

one can easily check that the obtained representation fulfills (a), (b), and (c). This completes the proof of the

proposition. �

Müller et al. [83] considered intersection representations of homothetic triangles which corners have integer

coordinates. They proved that for some planar graphs, the representation needs a grid of size 2Ω(n) × 2Ω(n) to

contain them (where n is the number of vertices).

2.3 Primal-Dual representations with Triangles

This section is devoted to the proof of Theorem 2.6 [J13]. To prove it we construct a contact representation

by strings, based on a Schnyder wood, and show that this representation by strings is stretchable. When the

strings are stretched into segments, this representation gives the seeked primal-dual contact representation by

triangles.

face F

Figure 2.6 – Blue string in face F
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Given a planar map equipped with a Schnyder wood we draw a contact representation as follows. For any face

F of the map, draw three colored strings (a blue, a green, and a red one) inside F as shown in Figure 2.6. Then

we merge any two touching strings with the same color (coming from different faces). Figure 2.7 illustrates

the procedure that leads to the primal-dual representation of Figure 2.1. This representation is obtained by

stretching 4 the contact representation by strings previously constructed. To prove that this is always possible,

we use a characterization of stretchable contact representation by strings [59] (See also [1] for sufficient

conditions that make this contact representation stretchable).

(a) (b) (c)

Figure 2.7 – (a) A Schnyder wood (b) The construction (c) The corresponding contact representation by strings

De Fraysseix et al. [57] proved that strict 5 contact representations by triangles of a planar triangulation

are, up to homeomorphism and up to the three outer triangles, in one-to-one correspondence with its Schnyder

woods. We showed that tiling primal-dual contact representations by triangles of a planar map are in one-to-one

correspondence with its Schnyder woods.

Theorem 2.16. The tiling primal-dual contact representations by triangles of a planar map are, up to homeo-

morphism, in one-to-one correspondence with its Schnyder woods.

Particular types of triangles The construction given by de Fraysseix et al. [57] to obtain a strict contact

representation by triangles of a planar triangulation can be slightly modified to give a strict tiling primal-dual

contact representation by triangles (the three triangles corresponding to the outer face have to be modified to

obtain the tiling property). In de Fraysseix et al.’s construction, all the triangles have a horizontal side at their

bottom and moreover it is possible to require that all the triangles are right (with the right angle on the left

extremity of the horizontal side). This leads us to conjecture the following.

Conjecture 2.17. Every 3-connected planar map admits a strict tiling primal-dual contact representation by

right triangles where all triangles have a horizontal and a vertical side and where the right angle is bottom-left

for primal vertices and the outer face and top-right otherwise.

One may wonder if it is possible to obtain primal-dual contact representations by homothetic triangles ? Such

a representation is a representation where vertex-triangles and the outer-face-triangle are positively homothetic

to a given triangle ∆ and inner-face-triangles are negatively homothetic to ∆. The 4-connected planar triangu-

lation on the left of Figure 2.2 has a unique contact representation by homothetic triangles (for a fixed size of

the external triangles). The central face corresponds to an empty triangle and there are some extra contacts

between non adjacent faces. So it is not possible to have a primal-dual contact representation by homothetic

triangles for this graph.

4. A contact representation by strings is said stretchable if there exists a homeomorphism which transforms it into a contact

representation by segments.
5. A contact representations by triangles is strict if we never have two triangle corners that intersect.
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2.4 1-String Representations

This section is devoted to the proof of Theorem 2.8 [J9]. As already mentionned, every planar graph is the

induced subgraph of some planar triangulation. It is thus sufficient to prove Theorem 2.8 for triangulations. The

proof proceeds by induction on the number of separating triangles. In the following we provide some definitions,

then Section 2.4.1 is devoted to 1-string representations of a family of near-triangulations that includes 4-

connected triangulations. In this section we use a decomposition technique of 4-connected triangulations that

is inspired on Whitney’s work [99] and that we already used to partition the edges of planar graphs into two

outerplanar graphs [C3]. Then in Section 2.4.2 we finally prove Theorem 2.8 for all triangulations. We will

finally give in Section 2.4.3 a partial idea of the modifications performed in this proof to obtain the first proof

of Theorem 2.9.

We need that in a 1-string representation of a near-triangulation T , each inner face of T corresponds to

some topological region of the string representation.

Definition 2.18. Let T = (V, E) be a near-triangulation with a 1-string representation T . Given an inner face

abc of T , an (a, b, c)-region is a pseudo-disk that only intersects the strings of a, b, or c as shown in Figure 2.8.

This region does not contain intersection points between these strings, and going around its border (clockwisely

or not) one successively meets a, a, b, b, c , a, and c . When the vertices a, b, and c are not mentionned, we

call such a region a face-region.

a

b

abc

c

Figure 2.8 – An (a, b, c)-region abc .

As it should be clear from the context, from now on we use the same notation, to denote a vertex or a face

and the corresponding string or face-region. Note that according to this definition the region abc intersects the

string a twice and one end of a is in abc .

Definition 2.19. A strong 1-string representation (S1SR for short) of a near-triangulation T is a 1-string

representation of T together with a set of disjoint face-regions, one for each inner face of T . A partial S1SR

of a near-triangulation T is an S1SR where the crossings corresponding to some edges of T are missing (but

no face-region is missing).

In [99], Whitney considered a special family of near-triangulations, it is why we call them W-triangulations.

Definition 2.20. A W-triangulation is a 2-connected near-triangulation containing no separating triangle, and

which outer boundary is the union of three induced paths (a1, . . . , ap), (b1, . . . , bq), and (c1, . . . , cr ), with

a1 = cr , b1 = ap and c1 = bq, and with p ≥ 2, q ≥ 2 and r ≥ 2 (see Figure 2.9.(a)).

Note that by cutting its outer boundary into three paths of length one, every 4-connected triangulation is a

W-triangulation.

2.4.1 Proof for 4-connected triangulations.

The following proposition describes the shape of a partial S1SR of a W-triangulation.
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a1 = cr b1 = ap

c1 = bq

T

a2

b1

b2

c1

c2

c1

ap

cr

b1

bq

τ

a2

τ

c

a

b

abc

(a) (b) (c)

Figure 2.9 – (a) 3-boundary of T (b) Proposition 2.21 (c) Initial case of the induction

Proposition 2.21. Every W-triangulation T , bounded by (a1, . . . , ap), (b1, . . . , bq), and (c1, . . . , cr ) has a partial

S1SR contained inside a pseudo-disk τ that satisfies the following properties (see Figure 2.9.(b)) :

(a) The missing crossings are all the outer edges, except a1a2.

(b) On the boundary of τ we successively have the ends of a2, a3, . . . , ap, b1, . . . , bq, c1, . . . , cr .

Observe that since ap = b1, bq = c1, and cr = a1, both ends of strings b1 and c1 lie on the boundary of τ ,

but it is not the case for a1 or any other string.

We prove Proposition 2.21 by induction on n, the number of vertices in T . The initial case n = 3 is easy to

prove since there is only one W-triangulation having at most 3 vertices, K3. See Figure 2.9.(c) for an illustration.

For the induction, we successively consider the case where there is a chord a1bi , with 1 < i < q, the case where

there is a chord aibj , with 1 < i < p and 1 < j ≤ q, and the case where there is a chord aicj , with 1 < i ≤ p
and 1 < j < r . We then finish with the case where there is no such chords. We do not sketch this latter case

in this manuscript. The three first cases are similar in the sense that for each of them the considered chord

cuts T into two smaller W-triangulations, on which we apply the induction, and we finish by combining the two

obtained partial S1SR into a partial S1SR of T . Figures 2.10, 2.11, and 2.12 illustrate these three cases.

a1 = cr b1 = ap

c1 = bq

bi

T2

T1

T τ1

τ2

c1

c1

a1

bi

a1

a2
ap

b1

bq

bi bi

Figure 2.10 – Case where there is a chord a1bi , with 1 < i < q.

a1 = cr b1 = ap

c1 = bq

ai

bj

T2

T1

T

τ2

c1

b1

apai

bj

ai

ai
cr

bj

a2

bq

τ1
bj

Figure 2.11 – Case where there is a chord aibj , with 1 < i < p and 1 < j ≤ q. If there are several chords aibj ,

we consider one which maximizes j (i.e. there is no chord aibk with j < k ≤ q).
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a1 = cr b1 = ap

c1 = bq

cj

ai

T2
T1

T

τ1

τ2cj

ci
bq

b1

apai

cj cj

ai

cr

a2 ai

Figure 2.12 – Case where there is a chord aicj , with 1 < i ≤ p and 1 < j < r . If there are several chords aicj ,

we consider one which maximizes i (i.e. there is no chord akcj with i < k < r).

2.4.2 Proof in the general case

Theorem 2.22. Every triangulation T admits an S1SR.

Proof. We prove this result by induction on the number of separating triangles. Note that if T has no separating

triangle, and has a, b, and c , as outer vertices then T is a W-triangulation bounded by the paths (a, b), (b, c),

and (c, a). By Proposition 2.21, T admits a partial S1SR in a pseudo-disk τ which missing crossings are those

corresponding to edges ac and bc . To obtain an S1SR of T it is sufficient to extend a, b, and c outside τ so

that c crosses a and b, as depicted in Figure 2.13.

τ

c c

b

b

a

Figure 2.13 – S1SR of T obtained from the partial S1SR of Proposition 2.21.

Suppose now that T is a triangulation that contains at least one separating triangle. Consider a separating

triangle (a, b, c) such that there is no other separating triangle lying inside. Let T1 be the triangulation obtained

by removing the vertices lying strictly inside (a, b, c). Let T2 be the subgraph of T induced by the vertices lying

strictly inside (a, b, c). In T1, the cycle (a, b, c) is a face of the triangulation and is no more a separating triangle.

Thus T1 has one separating triangle less than T , and so we have by induction hypothesis that T1 admits an

S1SR. This S1SR contains a face-region for abc as depicted in the left of Figure 2.15. One can show that by

the choice of abc , T2 is either a single vertex, or a W-triangulation (where the bordering paths (a1, . . . , ap),

(b1, . . . , bq), and (c1, . . . , cr ), respectively correspond to the neighbors of a, b, and c).

If T2 is a single vertex v we add a string v inside the face-region abc , as depicted in the right of Figure 2.15.

As abc is not a face of T this region is available. We also add the face-regions for the three new faces of T .

If T2 is a W-triangulation we add its partial S1SR, given by Proposition 2.21, inside the face-region abc ,

as depicted in Figure 2.16. As abc is not a face of T this region is available. We also have to add several

face-regions for the faces of T that are not faces of T1 nor of T2.

This concludes the proof of Theorem 2.22. �
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b

c

a

b

c

a

Figure 2.14 – T2 is either a single vertex, or a W-triangulation.

a

c

a
b

abc

v

a

c

a

b

acv

vbc

vab

Figure 2.15 – The face-region abc and its modification to insert v .

τ2

a2
ap

a

c
cr

a

c1

b1

b

c1bc

bq

aca1

a2a1a

c2cc1

b2bb1

b1ab

Figure 2.16 – Addition of a partial S1SR of T2 inside the face-region abc .
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2.4.3 Improvements for getting segment intersection representations

We here only provide a very partial idea of the modifications we did to obtain the first proof of Theo-

rem 2.9 [C12]. The paper in full length was never submitted for publication, and thus never properly reviewed.

It is however available in Jérémie Chalopin’s homepage and in mine. Here face-regions are replaced by face-

segments.

Definition 2.23. Let T = (V, E) be a near-triangulation with a segment intersection representation. Given a

face abc of T , an (a, b, c)-segment is a segment [p, q] that only intersects segments a, b, and c , at points p,

p, and q respectively. The points p and q are respectively called the cross-end and the flat-end of segment abc .

There are analogues of S1SR, and partial S1SR.

Definition 2.24. A strong segment representation (SSR for short) of a near-triangulation T is a segment

intersection representation of T together with a set of (almost) disjoint 6 face-segments, one for each inner

face of T . A partial SSR of a near-triangulation T is an SSR where the crossings corresponding to some edges

of T are missing, as well as some face-segments.

As for 1-strings we prove the following proposition for W-triangulations using the same decomposition.

Proposition 2.25. For any triplet (A,B, C) of non-aligned points, every W-triangulation T (bounded by

(a1, . . . , ap), (b1, . . . , bq), and (c1, . . . , cr )) has a partial SSR contained inside the quadrilateral ABCD, for

some point D in the triangle ABC, and that satisfies the following properties (see Figure 2.17).

(a) If p = 2 then A = D, otherwise it is in the interior of ABC.

(b) The segment a1 is of the form ]C, p[, and contains D.

(c) Each segment ai , with i ≥ 2, is of the form ]A, p[, and a2 contains D.

(d) Each segment bi is of the form ]B, p[.

(e) Each segment ci is of the form ]C, p[.

(f) The missing crossings are at the closure of several open segments, on the border of ABCD (for example

at points A, B, and C where several segments converge).

B

bq b1

b2

d1 a2

Dds

cr = a1

c2
c1

C C A

cr = a1

a2

a3

apD
c2

c1

b1
b2

bq

B

Figure 2.17 – Proposition 2.25 for one W-triangulation T with p = 2 and one with p > 2.

Then Theorem 2.9 is proved by induction on the number of separating triangles.

6. Two face-segments are only allowed to intersect at their cross-end.
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2.5 L-Representations

This section is devoted to the proofs of Theorem 2.4, and Theorem 2.11 [C25]. The common ingredient

of these proofs is what we call 2-sided near-triangulations. In Section 2.5.1, we present the 2-sided near-

triangulations, allowing us to provide a new decomposition of planar 4-connected triangulations (see [14] and [99]

for other decompositions of 4-connected triangulations). This decomposition is simpler than the one provided

by Whitney [99] that is used in [C12]. In Section 2.5.2, we show that every 2-sided near-triangulation admits

a contact representation with thick L’s (i.e. Theorem 2.4). A variant of this result (where some configurations

are not allowed), and the observation that every triangle free planar graph is an induced subgraph of some

4-connected triangulation, imply Theorem 2.10 [C25]. Then in Section 2.5.3 we use 2-sided near-triangulations

to prove Theorem 2.11.

2.5.1 2-sided near-triangulations

Definition 2.26. A 2-sided near-triangulation is a 2-connected near-triangulation T without separating triangles,

such that going clockwise on its outer face, the vertices are denoted a1, a2, . . . , ap, bq, . . . , b2, b1, with p ≥ 1

and q ≥ 1, and such that there is neither a chord aiaj nor bibj (that is an edge aiaj or bibj such that |i− j | > 1).

a1
b1

a2

a3

b2

b3

x

Figure 2.18 – Example of a 2-sided near-triangulation.

Remark that 4-connected triangulations being the triangulations without separating triangles, 4-connected

triangulations are 2-sided near-triangulations. The structure of the 2-sided near-triangulations allows us to

describe the following decomposition.

Lemma 2.27. Given a 2-sided near-triangulation T with at least 4 vertices, one can always perform one of the

following operations :

— (ap-removal) This operation applies if p > 1, if ap has no neighbor bi with i < q, and if none of the

inner neighbors (i.e. neighbors that do not lie on the outer face) of ap has a neighbor bi with i < q. This

operation consists in removing ap from T , and in denoting bq+1, . . . , bq+r the new vertices on the outer

face in anti-clockwise order, if any. This yields a 2-sided near-triangulation T ′ (see Figure 2.19a).

— (bq-removal) This operation applies if q > 1, if bq has no neighbor ai with i < p, and if none of the

inner neighbors of bq has a neighbor ai with i < p. This operation consists in removing bq from T , and

in denoting ap+1, . . . , ap+r the new vertices on the outer face in clockwise order, if any. This yields a

2-sided near-triangulation T ′. This operation is strictly symmetric to the previous one.

— (cutting) This operation applies if p > 1, q > 1 and if the unique common neighbor of ap and bq,

denoted d , has a neighbor ai with i < p, and a neighbor bj with j < q. This operation consists in cutting

T into three 2-sided near-triangulations T ′, Ta and Tb (see Figure 2.19b) :

— T ′ is the 2-sided near-triangulation contained in the cycle formed by vertices (a1, . . . , ai , d, bj , . . . , b1),

and the vertex d is renamed ai+1.

— Ta (resp. Tb) is the 2-sided near-triangulation contained in the cycle (ai , . . . , ap, d) (resp. (d, bq, . . . , bj)),

where the vertex d is denoted b1 (resp. a1).
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b1

b2

bq

ap

bq+r

ap−1

bq−1

a2

a1

T ′

(a)

b1

bq

ap

ap−1

bq−1

a1

T ′
bj

ai

Tb
Ta

d

(b)

Figure 2.19 – Illustrations of (a) the ap-removal operation and (b) the cutting operation.

2.5.2 Thick x-contact representations

A thick x is an x shape where the two segments are turned into thick rectangles (see the left of Figure 2.20).

Here we do not allow thick | or −, so going clockwise around a thick x from the bottom-right corner, we call its

sides bottom, left, top, vertical interior, horizontal interior, and right. We draw them in the integer grid, that

is such that their bend points have integer coordinates, and we ask the two rectangles to be of thickness one,

and of length at least two.

d

c

a b

c+ 1

a+ 1

b1

b2

b3

d

a1a2a3

Figure 2.20 – A thick xand a TLCR of the near-triangulation from Figure 2.18.

Definition 2.28. A Thick x-Contact Representation (TLCR for short) is a contact representation by thick x’s
such that two touching thick x’s touch on a segment 7.

We now show that every 2-sided near-triangulation has a TLCR (see the right part of Figure 2.20 for an

illustration).

Theorem 2.29. Every 2-sided near-triangulation T has a TLCR with the following properties :

— Every thick x is included in the positive quadrant {(x, y) : x ≥ 0, y ≥ 0}.
— The thick x’s of vertices ai have their bottom side on the (y = 0)-line and they appear in decreasing

order from left to right. Furthermore their horizontal interior side does not intersect any other thick x’s
side.

— The thick x’s of vertices bi have their left side on the (x = 0)-line and they appear in decreasing order

from bottom to top. Furthermore their vertical interior side does not intersect any other thick x’s side.

7. This deviate’s a little from the original result in [C25] where L’s can intersect on a single vertex
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Proof. We proceed by induction on the number of vertices. The theorem clearly holds for the 2-sided near-

triangulation with three vertices. Let T be a 2-sided near-triangulation ; it can thus be decomposed using one

of the three operations described in Lemma 2.27. We go through the these operations successively (we skip the

(bq-removal) as it is purely symmetrical to the (ap-removal)).

(ap-removal) Let T ′ be the 2-sided near-triangulation resulting from an ap-removal operation on T . By the

induction hypothesis, T ′ has a TLCR with the required properties (see Figure 2.21a). We can now modify this

TLCR slightly in order to obtain a TLCR of T (thus adding a thick x corresponding to vertex ap).

b1

bq

bq+1

bq+r

b2

a1a2ap−1

(a) TLCR of T ′

b1

bq

bq+1

bq+r

b2

a1a2ap−1ap

(b) TLCR of T

Figure 2.21 – The (ap-removal) operation for a TLCR. Here, the grey region contains the corners of the inner

vertices of T ′.

b1

b2

bj−1

bj

bj+1

bq−1

bq

ap ap−1 ai+1 ai a2 a1

bj

bj+1

bq−1

bq

ap ap−1 ai+1 ai

b1

b2

bj−1

bj

ai a2 a1

d
d

d
d

T T ′

Tb

Ta

Figure 2.22 – The (cutting) operation for a TLCR.

(cutting) Let T ′, Ta and Tb be the three 2-sided near-triangulations resulting from the cutting operation

described in Lemma 2.27. By induction hypothesis, each of them has a TLCR satisfying Theorem 2.29. We

modify the TLCR of T ′ in order to include the ones of Ta and Tb, as they are given by the induction (see

Figure 2.22). �
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2.5.3 The x-intersection representations

Using Theorem 2.29, one can prove that every 4-connected triangulation has an x-intersection represen-

tation. To allow us to work on every triangulation (not only the 4-connected ones) we need to enrich the

x-intersection representations with the notion of anchor 8, an analogue of the face regions of Section 2.4.

Consider a near-triangulation T , and any inner face abc of T . Note that if the x’s of a, b and c do not

intersect at a common point or segment, then their horizontal (resp. vertical) subpaths lie on three different

lines. They thus form a rectangle whose top side belongs to the x with the up-most corner, whose right side

belongs to the x with the right-most corner, and whose other sides belong to the third x.

a

b

c

a

b

c

a

c

b
d

a

b

c

d

Figure 2.23 – The two possible anchors for the three x corresponding to a face abc . An example of a triangulation

and a corresponding FLIR (the anchors are drawn in gray).

Definition 2.30. Given an x-intersection representation of a near-triangulation T , and an inner face abc of T ,

an anchor for abc is a union of three segments intersecting the x’s of a, b and c and no other x, and such that

the middle corner is in the rectangle described by a, b and c as depicted in Figure 2.23.

Definition 2.31. A full x-intersection representation (FLIR) of a near-triangulation T is an x-intersection

representation of T together with a set of pairwise disjoint anchors, one for each inner face of T .

Let us now prove that every 2-sided near-triangulation admits a FLIR.

b1

b2

b3

bq

ap
a3

a2
a1

b1

ap

a3
a2

a1

ap−1

b1

b2

b3

bq

a1

bq−1

Figure 2.24 – Illustration of Proposition 2.32 when p > 1 and q > 1, when p > 1 and q = 1, and when p = 1

and q > 1.

Proposition 2.32. Every 2-sided near-triangulation has a FLIR such that among the corners of the x paths and

of the anchors :

— from left to right, the first corners are those of vertices b1, b2, . . . bq and the last one is the corner of

vertex a1, and

— from bottom to top, the first corners are those of vertices a1, a2, . . . ap and the last one is the corner of

vertex b1.

8. The notion was introduced in [55] under the name of private region.
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As the x of ai and ai+1 (resp. bi and bi+1) intersect, the FLIR is rather constrained. This is illustrated in

Figure 2.24, where the grey region contains the inner part of the representation. Proposition 2.32 is proved by

decomposing the 2-sided near-triangulation as indicated in Lemma 2.27. Figure 2.25 and Figure 2.26 respectively

illustrate what is done for the (ap-removal) operation and for the (cutting) operation.

b1

bq

bq+r

a2

b2

ap−1

ap−2

b2

b1

bq

bq+r

ap−1
ap−2

a2
a1a1

ap

Figure 2.25 – The (ap-removal) operation.

b1

bj

bj−1

bq

bq−1

ai
ai−1

ap
ap−1

a1

bj

bq

bq−1

ai

ap
ap−1

b1

bj

bj−1

ai
ai−1

a1

dd

dd

d

T T ′Tb

Ta

Figure 2.26 – The (cutting) operation.

We can now prove Theorem 2.11 by showing the following.

Proposition 2.33. Every triangulation T with outer vertices x, y , z has a FLIR such that among the corners

of the x paths and of the anchors :

— the corner of x is the top-most and left-most,

— the corner of y is the second left-most, and

— the corner of z is the bottom-most and right-most.

Note that in this proposition there is no constraint on x, y , z , so by renaming the outer vertices, other FLIRs

can be obtained. As in Section 2.4.2 this proposition is proved by induction on the number of separating triangles

in T . The initial case where T has no separating triangle follows from Proposition 2.32. For the induction case,

consider a separating triangle (a, b, c) such that there is no other separating triangle lying inside. Let T1 (resp.
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x

y

z

z

x
y

Figure 2.27 – Illustration of Proposition 2.33, and the FLIR obtained after reflection with respect to a line of

slope 1.

T2) be the triangulation obtained by removing the vertices lying strictly inside (a, b, c) (resp. strictly outside

(a, b, c)). In T1, the cycle (a, b, c) is an inner face of the triangulation and is no more a separating triangle,

and T2 has no separating triangle. Thus T1 and T2 have less separating triangles than T , and so by induction

hypothesis they have a FLIR. The FLIR of Tout contains an anchor for the face abc as depicted in Figure 2.28a.

Figure 2.28b illustrates the FLIR of Tin and Figure 2.28c shows how it can be included in the FLIR of Tout
instead of abc ’s anchor.

b

c

a

a

Tout

(a) The vertical anchor

of abc in the FLIR of

Tout

b

c

a

Tin

(b) The FLIR of Tin

b

c

a

a

Tin

Tout

(c) The inclusion of the FLIR

of Tin in the FLIR of Tout

Figure 2.28 – Merging the FLIRs of Tin and Tout .
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Chapitre 3

Research Project

This chapter gathers recent unpublished results (most of them not fully written yet), and several questions

I am interested in. These will probably form a large part of my researches in the next five or ten years.

3.1 Schnyder woods in higher genus

We recently proved that every triangulation admits a 1-EDGE angle labeling. We have seen that this labeling

is thus 1-FACE, but there may be vertices of type 0. The proof is not included here.

This result does not answer Conjecture 1.22, but notice that every vertex incident to a loop is of type k for

some k ≥ 1. So Conjecture 1.22 holds for the triangulations such that every vertex is incident to a loop, like

triangulations with only one vertex.

We wonder whether one could build a 1-EDGE, N∗-VERTEX, 1-FACE angle labeling for a triangulation (c.f.

Conjecture 1.22) starting from a 1-EDGE, 1-FACE angle labeling. The difficulty here remains in getting ride of

the sinks, by changing the orientations of some edges into another weak Schnyder orientation with less sinks.

Looking at the difference, ∆, between the given weak Schnyder orientation and one given by Theorem 1.24

(with outdegrees at least three and divisible by three) indicates how to get rid of some sinks, but the problem

is that maybe ∆ has no subgraph that is null-homological (this would ensure us that after reverting the edges

of this subgraph we still have a weak Schnyder orientation).

I am also very interested in Conjecture 1.21 and in its weakening, Conjecture 1.25. Actually we wonder

for every essentially 3-connected map G, if the map Ĝ has three disjoint perfect matchings ? Orienting the

edge of these matchings from primal- and dual-vertices towards edge-vertices, and orienting the other edges

in the other direction would give an orientation fulfilling Conjecture 1.25 where primal- and dual-vertices have

outdegree exactly three (while edge-vertices have indegree 0 or 3).

We have seen with K. Knauer that some other orientations of bipartite quadragulations 1 are easy to

construct. Those are orientations where every vertex has a positve even outdegree. Similar orientations in

the plane [66, 41, 34] and on the torus [81] are linked to contact representations by horizontal and vertical

segments (in the plane and on the flat torus respectively). This is one of the motivations for the following topic.

1. Ĝ is a (bipartite) quadrangulation, that is a map where all faces have length four.
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3.2 Intersection graphs on surfaces

Our work with K. Knauer leads to a contact representation of every quadrangulation embedded on a surface

S, by pseudo-segments and a few (at most gE − 2, where gE is the Euler genus of S) polygons with an even

number of sides, drawn on S.

It would be interesting also to construct contact representations by (straight) triangles in the flat torus.

Probably the easiest way towards such construction would be to adapt the study of stretchable contact repre-

sentations by pseudo-segments done by Aerts et al. [1]. Indeed such contact representation (even a primal dual

one) with pseudo-segments, is easy to construct from a toroidal Schnyder wood.

Another interesting question about contact representations on the flat torus is whether every essentially

4-connected toroidal triangulation 2 has a contact representation by rectangles with aligned sides. This would

extend the planar case [97]. Recently Bonichon et al. showed that these triangulations admit “toroidal” trans-

versal structures 3, but to achieve the contact representation one needs an extra property : there should be no

bridge in each of the two colored graphs.

One could also wonder whether the toroidal counterpart of Scheinerman’s conjecture holds on the flat torus.

Conjecture 3.1. Every toroidal graph has an intersection representation by segments drawn on the flat torus.

It is also open to know whether these graphs have a intersection representation by L’s on the flat torus. In

this case this may not lead to an answer of the previous question, as we do not know if intersection represen-

tation by L’s can be turned into intersection representation by segments on the flat torus.

On the flat torus, one could also ask for intersection or contact representations by segments with constrained

slopes. For exemple, does any k-chromatic toroidal graph admit a segment intersection representation where

segments use at most k different slopes, and where parallel segments do not intersect (and thus induce an

independent set in the graph). We will discuss more this type of questions in the next section.

It is well known that the graph obtained by subdividing each edge of a non-planar graph does not have a

1-string representation in the plane. Actually this holds for any surface S : A subdivision of a graph G that

cannot be embedded on S, does not have a 1-string representation on S. On the other hand, can Theorem 2.8

be extended to any surface ?

Conjecture 3.2. Every graph embedded on a surface S has a 1-string representation drawn on the surface S.

For the torus, this would be a first step towards Conjecture 3.1. It is worth mentionning that one should

probably slightly modify the definition of face-region (see Definition 2.18) as each face-regions contains a string

end, but there are only 2n of them versus 2n− 4 + 4g faces, for an n-vertex triangulation of genus g. My sug-

gestion would be to modify this definition so that going around the border of an (a, b, c)-region one successively

meets string a, a, b, b, c, a, a, and c. An “old” face region always contains such face region, and these new face

regions also allow the addition of a vertex or of a W-triangulation in a way that is similar to the ones depicted

in Figure 2.15 and Figure 2.16.

2. As already observed such representation is not possible if there is a separating triangle.
3. A toroidal counterpart of the “planar” transversal structures which are in bijection with contact representations by rectangles

with aligned sides in the plane.
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3.3 Slope constraints for segment intersection graphs

In [66, 34, 41] (resp. [23]) it is shown that bipartite (resp. triangle-free) planar graphs admit a contact

representation by segments where only 2 (resp. 3) slopes are allowed for the segments, and where parallel

segments do not intersect. So these constructions induce a 2-coloring (resp. 3-coloring) of the vertices. Note

that Castro et al. do not prove the 3-colorability of triangle-free planar graphs, they use such coloring of the

graphs (by Grötzsch’s theorem) in their construction. West [98] proposed a stronger version of Scheinerman’s

conjecture in which only 4 slopes are allowed, thus using the fact that these graphs are 4-colorable.

We proved (manuscript under progress) that 3-colorable planar graphs have an intersection representation

with segments whose slopes are determined by the color of the corresponding vertices. This was done trough

contact representations with three slopes, and generalizing this approach for West’s conjecture asks for particular

4-colorings of planar graphs.

Conjecture 3.3. Every planar triangulation admits a four coloring with colors {1, 2, 3, 4} in such a way that

there is no induced 4-cycle colored 1, 2, 3 and 4 clockwisely.

3.4 Extensions to Rd through Simplicial Complexes

Abstract simplicial complexes generalize the notion of graphs. An abstract simplicial complex ∆ with vertex

set V is a set of subsets of V which is closed by inclusion (i.e. ∀Y ∈ ∆, X ⊆ Y ⇒ X ∈ ∆). An element of ∆ is

called a face. A maximal element of ∆ according to the inclusion order is called a facet.

B

A
C

D
E

F

G

Figure 3.1 – An abstract simplicial complex whose facets are {A,B, C,D}, {C,D,E}, {C, F}, {E, F}, {F,G}

The notion of Dushnik-Miller dimension of a poset has been introduced by Dushnik and Miller [37]. It is

also known as the order dimension of a poset. This notion of dimension can be applied to an abstract simplicial

complex as follows.

Definition 3.4. Let ∆ be an abstract simplicial complex. The inclusion poset of ∆ is the poset (⊂,∆). The

Dushnik-Miller dimension dimDM(∆) of ∆ is the Dushnik-Miller dimension of the inclusion poset of ∆.

Low dimensions are well known :

— dimDM(∆) = 1 if and only if ∆ is a vertex.

— dimDM(∆) ≤ 2 if and only if ∆ is a union of paths.

— dimDM(∆) ≤ 3 if and only if ∆ is planar (i.e. embeddable in R2).

There are complexes with arbitrarily high Dushnik-Miller dimension : for any integer n, dimDM(Kn) = O(log log n)

where Kn denotes the complete graph on n vertices [67]. Similarly dimDM(K∗n) = n where K∗n denotes the

complete simplex on n vertices. The following theorem shows that the Dushnik-Miller dimension in higher

dimensions also captures some geometrical properties.

Theorem 3.5 (Bayer et al. [17], and Ossona de Mendez [84]). Any simplicial complex ∆ such that

dimDM(∆) ≤ d + 1 has a straight line embedding in Rd .
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Figure 3.2 – An abstract simplicial complex with facets {A,B,D} and {B,C,D}, and its inclusion poset.

For d = 2, this theorem states that if a simplicial complex has dimension at most 3 then it is planar.

Brightwell and Trotter [20] proved that the converse also holds (for d = 2). For higher d , the converse is false :

take for example Kn the complete graph which has a straight line embedding in R3 (and therefore in Rd for

d ≥ 3) and which has Dushnik-Miller dimension O(log log n).

We would like to extend (as much as possible) properties of planar triangulations to simplicial complexes with

fixed Dushnik-Miller dimension. One goal would be also to study (non-simplicial) cell complexes as the case of

dimension three corresponds to internally 3-connected planar maps [20, 44, 79], and it is already well understood.

In [C23, S4] we study variants of Delaunay complexes in Rd . TD-Delaunay graphs have been introduced

by Chew et al. [31], and this notion generalizes naturally to higher dimensions. For a set P of points of Rd in

“general position”, there is a TD-Delaunay complex TDD(P). It is easy to see that for any point set P of Rd in

general position, TDD(P) is an abstract simplicial complex with Dushnik-Miller dimension at most d + 1. The

reciprocal statement holds for d ≤ 3 in the sense that every simplicial complex ∆ with Dushnik-Miller dimension

d ≤ 3 is contained in TDD(P) for some point set P. This naturally raised the question to know if this extends

to greater d [75, 39]. Actually, with Mary [75] we proved this when ∆ already admits some particular embedding,

but finally we recently showed [S4] that this statement fails already for d = 4.

Similar Delaunay type graphs, R-Delaunay graphs, were defined by Felsner [49]. He showed that those graphs

can have a quadratic number of edges. Chen et al.s [30] showed that R-Delaunay graphs can have arbitrarily

large chromatic number. We proved that the class of R-Delaunay graphs is strictly included in the class TD-

Delaunay complexes of R3.

In another work (See [C24] for a preliminary version) we study contact representation by d-dimensional boxes

in Rd . We showed that the complexes admiting such representation have Dushnik-Miller dimension at most d+1.

This extends the case d = 2 [97]. Formally we showed that tilings of Rd with d-dimensional boxes, such that

there are 2d infinite boxes and such that at most d+ 1 boxes intersect at any point, induce simplicial complexes

with Dushnik-Miller dimension d + 1. This raises the question of an exact characterization of these complexes.

It raises also the question of characterizing the complexes defined from a contact representation of axis aligned

rectangles in R3 (extending [66, 41, 34]). We conjectured for a while that those are charcaterized by their

Dushnik-Miller dimension equal to 4, by their 3-colorability (parallel rectangle are not allowed to intersect), and

by their Helly property (tree pairwise intersecting rectangles intersect), but we recently found a counter-example.

With L. Isenmann, we are currently studying additional properties to correct this.
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[C14] D. Gonçalves, and E.J. Kim. On Exact Algorithms for Permutation CSP. International Workshop on

Approximation, Parameterized and EXact algorithms (APEX 2012).
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[C1] D. Gonçalves. Caterpillar arboricity of planar graphs. 2nd European conference on Combinatorics, Graph

Theory and Applications (EUROCOMB 2003).

Submitted articles
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Abstract A Schnyder wood is an orientation and coloring of the edges of a pla-
nar map satisfying a simple local property. We propose a generalization of Schnyder
woods to graphs embedded on the torus with application to graph drawing. We prove
several properties on this new object. Among all we prove that a graph embedded on
the torus admits such a Schnyder wood if and only if it is an essentially 3-connected
toroidal map. We show that these Schnyder woods can be used to embed the uni-
versal cover of an essentially 3-connected toroidal map on an infinite and periodic
orthogonal surface. Finally we use this embedding to obtain a straight-line flat torus
representation of any toroidal map in a polynomial size grid.

Keywords Schnyder woods · Toroidal graphs · Embedding

1 Introduction

A closed curve on a surface is contractible if it can be continuously transformed into
a single point. Given a graph embedded on the torus, a contractible loop is an edge
forming a contractible cycle. Two homotopic multiple edges are two edges with the
same extremities such that their union forms a contractible cycle. In this paper, we
will almost always consider graphs embedded on the torus with no contractible loop
and no homotopic multiple edges. We call these graphs toroidal graphs for short and
keep the distinction with graph embedded on the torus that may have contractible
loops or homotopic multiple edges. A map on a surface is a graph embedded on this
surface where every face is homeomorphic to an open disk. A map embedded on the
torus is a graph embedded on the torus that is a map (it may contains contractible
loops or homotopic multiple edges). A toroidal map is a toroidal graph that is a map
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Fig. 1 Schnyder property

(it has no contractible loop and no homotopic multiple edges). A toroidal triangu-
lation is a toroidal map where every face has size three. A general graph (i.e., not
embedded on a surface) is simple if it contains no loop and no multiple edges. Since
some loops and multiple edges are allowed in toroidal graphs, the class of toroidal
graphs is larger than the class of simple toroidal graphs.

The torus is represented by a parallelogram in the plane whose opposite sides are
pairwise identified. This representation is called the flat torus. The universal cover
G∞ of a graph G embedded on the torus is the infinite planar graph obtained by
replicating a flat torus representation of G to tile the plane (the tiling is obtained by
translating the flat torus along two vectors corresponding to the sides of the parallel-
ogram). Note that a graph G embedded on the torus has no contractible loop and no
homotopic multiple edges if and only if G∞ is simple.

Given a general graph G, let n be the number of vertices and m the number of
edges. Given a graph embedded on a surface, let f be the number of faces. Euler’s
formula says that any map on a surface of genus g satisfies n − m + f = 2 − 2g,
where the plane is the surface of genus 0, and the torus the surface of genus 1.

Schnyder woods were originally defined for planar triangulations by Schny-
der [26].

Definition 1 (Schnyder wood, Schnyder property) Given a planar triangulation G,
a Schnyder wood is an orientation and coloring of the edges of G with the colors 0,
1, 2 where each inner vertex v satisfies the Schnyder property (see Fig. 1 where each
color is represented by a different type of arrow):

• Vertex v has outdegree one in each color.
• The edges e0(v), e1(v), e2(v) leaving v in colors 0, 1, 2, respectively, occur in

counterclockwise order.
• Each edge entering v in color i enters v in the counterclockwise sector from

ei+1(v) to ei−1(v) (where i + 1 and i − 1 are understood modulo 3).

For higher genus triangulated surfaces, a generalization of Schnyder woods has
been proposed by Castelli Aleardi et al. [3], with applications to encoding. Unfortu-
nately, in this definition, the simplicity and the symmetry of the original Schnyder
wood are lost. Here we propose an alternative generalization of Schnyder woods for
toroidal graphs, with application to graph drawings.

By Euler’s formula, a planar triangulation satisfies m = 3n − 6. Thus, there are
not enough edges in the graph for all vertices to be of outdegree three. This explains
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Fig. 2 Example of a Schnyder wood of a toroidal graph

why just some vertices (inner ones) are required to satisfy the Schnyder property.
For a toroidal triangulation, Euler’s formula gives exactly m = 3n, so there is hope
for a nice object satisfying the Schnyder property for every vertex. This paper shows
that such an object exists. Here we do not restrict ourselves to triangulations and we
directly define Schnyder woods in a more general framework.

Felsner [7, 8] (see also [20]) has generalized Schnyder woods to 3-connected pla-
nar maps by allowing edges to be oriented in one direction or in two opposite direc-
tions. We also allow edges to be oriented in two directions in our definition.

Definition 2 (Toroidal Schnyder wood) Given a toroidal graph G, a (toroidal) Schny-
der wood of G is an orientation and coloring of the edges of G with the colors 0, 1,
2, where every edge e is oriented in one direction or in two opposite directions (each
direction having a distinct color), satisfying the following (see example of Fig. 2):

(T1) Every vertex v satisfies the Schnyder property (see Definition 1)
(T2) Every monochromatic cycle of color i intersects at least one monochromatic

cycle of color i − 1 and at least one monochromatic cycle of color i + 1.

Note that in this definition each vertex has exactly one outgoing arc in each color.
Thus, there are monochromatic cycles and the term “wood” has to be handled with
care here. The graph induced by one color is not necessarily connected, but each
connected component has exactly one directed cycle. We will prove that all the
monochromatic cycles of one color have the same homotopy.

In the case of toroidal triangulations, m = 3n implies that there are too many edges
to have bi-oriented edges. Thus, we can use this general definition of Schnyder wood
for toroidal graphs and keep in mind that when restricted to toroidal triangulations all
edges are oriented in one direction only.
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Fig. 3 Rules for the dual Schnyder wood

Fig. 4 Dual Schnyder wood of the Schnyder wood of Fig. 2

Extending the notion of essentially 2-connectedness [23], we say that a toroidal
graph G is essentially k-connected if its universal cover is k-connected. Note that an
essentially 1-connected toroidal graph is a toroidal map. We prove that essentially
3-connected toroidal maps are characterized by the existence of Schnyder woods.

Theorem 1 A toroidal graph admits a Schnyder wood if and only if it is an essentially
3-connected toroidal map.

The dual of a Schnyder wood is the orientation and coloring of the edges of G∗
obtained by the rules represented on Fig. 3.

Our definition supports duality and we have the following results.

Theorem 2 There is a bijection between Schnyder woods of a toroidal map and
Schnyder woods of its dual.

The dual Schnyder wood of the Schnyder wood of Fig. 2 is represented on Fig. 4.
In our definition of Schnyder woods, two properties are required: a local one (T1)

and a global one (T2). This second property is important for using Schnyder woods

68



Discrete Comput Geom (2014) 51:67–131 71

Fig. 5 Geodesic embedding of the toroidal map of Fig. 2

to embed toroidal graphs on orthogonal surfaces, as has been done in the plane by
Miller [20] (see also [8]).

Theorem 3 The universal cover of an essentially 3-connected toroidal map admits a
geodesic embedding on an infinite and periodic orthogonal surface.

A geodesic embedding of the toroidal map of Fig. 2 is represented on Fig. 5. The
black parallelogram represents a copy of the graph of Fig. 2; this is the basic tile that
is used to fill the plane.

A straight-line flat torus representation of a toroidal map G is the restriction to a
flat torus of a periodic straight-line representation of G∞. The problem of finding a
straight-line flat torus representation of a toroidal map was previously solved on ex-
ponential size grids [21]. There are several works that represent a toroidal map inside
a parallelogram in a polynomial size grid [5, 6], but in these representations the op-
posite sides of the parallelogram do not perfectly match. In the embeddings obtained
by Theorem 3, vertices are not coplanar, but we prove that for toroidal triangulations
one can project the vertices on a plane to obtain a periodic straight-line representation
of G∞. This gives the first straight-line flat torus representation of any toroidal map
in a polynomial size grid.

Theorem 4 A toroidal graph admits a straight-line flat torus representation in a
polynomial size grid.

In Sect. 2, we explain how our definition of Schnyder woods in the torus gen-
eralizes the planar case. In Sect. 3, we show that our Schnyder woods are of two
fundamentally different types. In Sect. 4, we study the behavior of Schnyder woods
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in the universal cover; we define the notion of regions and show that the existence
of Schnyder woods for a toroidal graph implies that the graph is an essentially 3-
connected toroidal map. In Sect. 5, we define the angle labeling and the dual of a
Schnyder wood. In Sect. 6, we show how the definition of Schnyder woods can be
relaxed for one of the two types of Schnyder wood. This relaxation is used in the next
sections for proving the existence of a Schnyder wood. In Sect. 7, we use a result of
Fijavz [13] on the existence of non-homotopic cycles in simple toroidal triangulations
to obtain a short proof of existence of Schnyder woods for simple triangulations. In
Sect. 8, we prove a technical lemma showing how a Schnyder wood of a graph G

can be derived from a Schnyder wood of the graph G′, where G′ is obtained from
G by contracting an edge. This lemma is then used in Sect. 9 to prove the existence
of Schnyder woods for any essentially 3-connected toroidal maps. In Sect. 10, we
use Schnyder woods to embed the universal cover of essentially 3-connected toroidal
maps on periodic and infinite orthogonal surfaces by generalizing the region vec-
tor method defined in the plane. In Sect. 11, we show that the dual map can also
be embedded on this orthogonal surface. In Sect. 12, we show that, in the case of
toroidal triangulations, this orthogonal surface can be projected on a plane to obtain
a straight-line flat torus representation.

2 Generalization of the Planar Case

Felsner [7, 8] has generalized planar Schnyder woods by allowing edges to be ori-
ented in one direction or in two opposite directions. The formal definition is the fol-
lowing:

Definition 3 (Planar Schnyder wood) Given a planar map G, let x0, x1, x2 be three
distinct vertices occurring in counterclockwise order on the outer face of G. The
suspension Gσ is obtained by attaching a half-edge that reaches into the outer face
to each of these special vertices. A (planar) Schnyder wood rooted at x0, x1, x2 is an
orientation and coloring of the edges of Gσ with the colors 0, 1, 2, where every edge
e is oriented in one direction or in two opposite directions (each direction having a
distinct color), satisfying the following (see the example of Fig. 6):

(P1) Every vertex v satisfies the Schnyder property and the half-edge at xi is directed
outwards and colored i

(P2) There is no monochromatic cycle.

In the definition given by Felsner [8], property (P2) is in fact replaced by “There
is no interior face the boundary of which is a monochromatic cycle”, but the two are
equivalent by results of [7, 8].

With our definition of Schnyder woods for toroidal graphs, the goal is to generalize
the definition of Felsner. In the torus, property (P1) can be simplified as every vertex
plays the same role: there are no special outer vertices with a half-edge reaching into
the outer face. This explains property (T1) in our definition. Then if one asks that
every vertex satisfies the Schnyder property, there are necessarily monochromatic
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Fig. 6 Example of a Schnyder wood of a planar map

Fig. 7 An orientation and coloring of the edges of a toroidal triangulation satisfying (T1) but not (T2), as
there is no pair of intersecting monochromatic cycles

cycles and (P2) is not satisfied. This explains why (P2) has been replaced by (T2) in
our generalization to the torus.

It would have been possible to replace (P2) by “there is no contractible monochro-
matic cycles”, but this is not enough to suit our needs. Our goal is to use Schnyder
woods to embed universal covers of toroidal graphs on orthogonal surfaces, as has
been done in the plane by Miller [20] (see also [8]). The difference is that our surface
is infinite and periodic. In such a representation the three colors 0, 1, 2 correspond to
the three directions of the space. Thus, the monochromatic cycles with different col-
ors have to intersect each other in a particular way. This explains why property (T2)
is required. Figure 7 gives an example of an orientation and coloring of the edges of
a toroidal triangulation satisfying (T1) but not (T2), as there is no pair of intersecting
monochromatic cycles.

Let G be a toroidal graph given with a Schnyder wood. Let Gi be the directed
graph induced by the edges of color i. This definition includes edges that are half-
colored i, and in this case, the edges get only the direction corresponding to color i.
Each graph Gi has exactly n edges, so it does not induce a rooted tree (contrarily to
planar Schnyder woods). Note also that Gi is not necessarily connected (for example,
in the graph of Fig. 8, every Schnyder wood has one color whose corresponding
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Fig. 8 A toroidal graph where
every Schnyder wood has one
color whose corresponding
subgraph is not connected

subgraph is not connected). But each component of Gi has exactly one outgoing
arc for each of its vertices. Thus, each connected component of Gi has exactly one
directed cycle that is a monochromatic cycle of color i, or i-cycle for short. Note that
monochromatic cycles can contain edges oriented in two directions with different
colors, but the orientation of an i-cycle is the orientation given by the (half-)edges of
color i. The graph G−1

i is the graph obtained from Gi by reversing all its edges. The
graph Gi ∪ G−1

i−1 ∪ G−1
i+1 is obtained from the graph G by orienting edges in one or

two directions depending on whether this orientation is present in Gi , G−1
i−1, or G−1

i+1.
The following lemma shows that our property (T2) in fact implies that there are no
contractible monochromatic cycles.

Lemma 1 The graph Gi ∪ G−1
i−1 ∪ G−1

i+1 contains no contractible directed cycle.

Proof Suppose there is a contractible directed cycle in Gi ∪ G−1
i−1 ∪ G−1

i+1. Let C be
such a cycle containing the minimum number of faces in the closed disk D bounded
by C. Suppose by symmetry that C turns clockwise around D. Then, by (T1), there
is no edge of color i − 1 leaving the closed disk D. So there is an (i − 1)-cycle in D,
and this cycle is C by minimality of C. Then, by (T1), there is no edge of color i

leaving D. So, again by minimality of C, the cycle C is an i-cycle. Thus, all the
edges of C are oriented clockwise in color i and counterclockwise in color i − 1.
Then, by (T1), all the edges of color i + 1 incident to C have to leave D. Thus, there
is no (i + 1)-cycle intersecting C, a contradiction to property (T2). �

Let G be a planar map and let x0, x1, x2 be three distinct vertices occurring in
counterclockwise order on the outer face of G. One can transform Gσ into the fol-
lowing toroidal map G+ (see Fig. 9): Add a vertex v in the outer face of G. Add three
non-parallel and non-contractible loops on v. Connect the three half-edges leaving xi

to v such that there are no two such edges entering v consecutively. Then we have
the following.

Theorem 5 The Schnyder woods of a planar map G rooted at x0, x1, x2 are in
bijection with the Schnyder woods of the toroidal map G+ (where the orientation of
one of the loops is fixed).

Proof (�⇒) We are given a Schnyder wood of the planar graph G, rooted at x0,
x1, x2. Orient and color the graph G+ as in the example of Fig. 9, i.e., the edges of
the original graph G have the same color and orientation as in Gσ , the edge from

72



Discrete Comput Geom (2014) 51:67–131 75

Fig. 9 The toroidal Schnyder wood corresponding to the planar Schnyder wood of Fig. 6

xi to v is colored i and leaving xi , and the three loops around v are colored and
oriented appropriately so that v satisfies the Schnyder property. Then it is clear that
all the vertices of G+ satisfy (T1). By (P2), we know that Gσ has no monochromatic
cycles. All the edges between G and v are leaving G, so there is no monochromatic
cycle of G+ involving vertices of G. Thus, the only monochromatic cycles of G+ are
the three loops around v and they satisfy (T2).

(⇐�) Given a Schnyder wood of G+, the restriction of the orientation and col-
oring to G and the three edges leaving v gives a Schnyder wood of Gσ . The three
loops around v are three monochromatic cycles corresponding to three edges leav-
ing v; thus, they have different colors by (T1). Thus, the three edges between G and
v are entering v with three different colors. The three loops around v have to leave
v in counterclockwise order 0,1,2 and we can assume the colors such that the edge
leaving xi is colored i. Clearly, all the vertices of Gσ satisfy (P1). By Lemma 1, there
are no contractible monochromatic cycles in G+, so Gσ satisfies (P2). �

A planar map G is internally 3-connected if there exist three vertices on the outer
face such that the graph obtained from G by adding a vertex adjacent to the three
vertices is 3-connected. Miller [20] (see also [7]) proved that a planar map admits a
Schnyder wood if and only if it is internally 3-connected. The following results show
that the notion of essentially 3-connected is the natural generalization of internally
3-connected to the torus.

Theorem 6 A planar map G is internally 3-connected if and only if there exist three
vertices on the outer face of G such that G+ is an essentially 3-connected toroidal
map.

73



76 Discrete Comput Geom (2014) 51:67–131

Proof (�⇒) Let G be an internally 3-connected planar map. By definition, there
exist three vertices x0, x1, x2 on the outer face such that the graph G′ obtained from
G by adding a vertex adjacent to these three vertices is 3-connected. Let G′′ be the
graph obtained from G by adding three vertices y0, y1, y2 that form a triangle and
by adding the three edges xiyi . It is not difficult to check that G′′ is 3-connected.
Since G∞ can be obtained from the (infinite) triangular grid, which is 3-connected,
by gluing copies of G′′ along triangles, G∞ is clearly 3-connected. Thus, G+ is an
essentially 3-connected toroidal map.

(⇐�) Suppose there exist three vertices on the outer face of G such that G+ is
an essentially 3-connected toroidal map, i.e., G∞ is 3-connected. A copy of G is
contained in a triangle y0y1y2 of G∞. Let G′′ be the subgraph of G∞ induced by
this copy plus the triangle, and let xi be the unique neighbor of yi in the copy of G.
Since G′′ is connected to the rest of G∞ by a triangle, G′′ is also 3-connected. Let us
now prove that this implies that G is internally 3-connected for x0, x1, and x2. This
is equivalent to saying that the graph G′, obtained by adding a vertex z connected
to x0, x1, and x2, is 3-connected. If G′ had a separator {a, b} or {a, z}, with a, b ∈
V (G′) \ {z}, then {a, b} or {a, yi}, for some i ∈ [0,2], would be a separator of G′′.
This would contradict the 3-connectedness of G′′. So G is internally 3-connected. �

3 Two Different Types of Schnyder Woods

Two non-contractible closed curves are homotopic if one can be continuously trans-
formed into the other. Homotopy is an equivalence relation, and as we are on the torus
we have the following.

Lemma 2 Let C1,C2 be two non-contractible closed curves on the torus. If C1,C2
are not homotopic, then their intersection is non-empty.

Two non-contractible oriented closed curves on the torus are fully homotopic if
one can be continuously transformed into the other by preserving the orientation. We
say that two monochromatic directed cycles Ci,Cj of different colors are reversal if
one is obtained from the other by reversing all the edges (Ci = C−1

j ). We say that two
monochromatic cycles are crossing if they intersect but are not reversal. We define
the right side of an i-cycle Ci , as the right side while “walking” along the directed
cycle by following the orientation given by the edges colored i.

Let G be a toroidal graph given with a Schnyder wood.

Lemma 3 All i-cycles are non-contractible, non-intersecting, and fully homotopic.

Proof By Lemma 1, all i-cycles are non-contractible. If there exist two such dis-
tinct i-cycles that are intersecting, then there is a vertex that has two outgoing edges
of color i, a contradiction to (T1). So the i-cycles are non-intersecting. Then, by
Lemma 2, they are homotopic.

Suppose that there exist two i-cycles Ci,C
′
i that are not fully homotopic. By the

first part of the proof, cycles Ci,C
′
i are non-contractible, non-intersecting, and ho-

motopic. Let R be the region between Ci and C′
i situated on the right of Ci . Suppose
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Fig. 10 The two types of Schnyder woods on toroidal graphs

by symmetry that C−1
i is not an (i + 1)-cycle. By (T2), there exists a cycle Ci+1

intersecting Ci and thus Ci+1 is crossing Ci . By property (T1), Ci+1 is entering Ci

from its right side and so it is leaving the region R when it crosses Ci . To enter the
region R, the cycle Ci+1 has to enter Ci or C′

i from their left side, a contradiction to
property (T1). �

Lemma 4 If two monochromatic cycles are crossing, then they are of different colors
and they are not homotopic.

Proof By Lemma 3, two crossing monochromatic cycles are not of the same color.
Suppose that there exist two monochromatic cycles Ci−1 and Ci+1, of color i − 1
and i + 1, that are crossing and homotopic. By Lemma 1, the cycles Ci−1 and Ci+1

are not contractible. Since Ci−1 
= C−1
i+1 and Ci−1 ∩ Ci+1 
= ∅, the cycle Ci+1 is

leaving Ci−1. It is leaving Ci−1 on its right side by (T1). Since Ci−1 and Ci+1 are
homotopic, the cycle Ci+1 is entering Ci−1 at least once from its right side. This is
in contradiction with (T1). �

Let Ci be the set of i-cycles of G. Let (Ci )
−1 denote the set of cycles ob-

tained by reversing all the cycles of Ci . By Lemma 3, the cycles of Ci are non-
contractible, non-intersecting, and fully homotopic. So we can order them as follows:
Ci = {C0

i , . . . ,C
ki−1
i }, ki ≥ 1, such that, for 0 ≤ j ≤ ki − 1, there is no i-cycle in the

region R(C
j
i ,C

j+1
i ) between C

j
i and C

j+1
i containing the right side of C

j
i (super-

script understood modulo ki ).
We show that Schnyder woods are of two different types (see Fig. 10):

Theorem 7 Let G be a toroidal graph given with a Schnyder wood. Then all i-cycles
are non-contractible, non-intersecting, and fully homotopic, and either:
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• For every pair of two monochromatic cycles Ci,Cj of different colors i, j , the two
cycles Ci and Cj are not homotopic and thus intersect (we say the Schnyder wood
is of Type 1);

or

• There exists a color i such that Ci−1 = (Ci+1)
−1 and for any pair of monochromatic

cycles Ci,Cj of colors i, j , with j 
= i, the two cycles Ci and Cj are not homotopic
and thus intersect (we say the Schnyder wood is of Type 2, or Type 2.i if we want
to specify the color i).

Moreover, if G is a toroidal triangulation, then there are no edges oriented in two
directions and the Schnyder wood is of Type 1.

Proof By Lemma 3, all i-cycles are non-contractible, non-intersecting, and fully ho-
motopic. Suppose that there exist a (i − 1)-cycle Ci−1 and a (i + 1)-cycle Ci+1 that
are homotopic. We prove that the Schnyder wood is of Type 2.i. We first prove that
Ci−1 = (Ci+1)

−1. Let C′
i−1 be any (i − 1)-cycle. By (T2), C′

i−1 intersects an (i + 1)-
cycle C′

i+1. By Lemma 3, C′
i−1 (resp. C′

i+1) is homotopic to Ci−1 (resp. Ci+1).
So C′

i−1 and C′
i+1 are homotopic. By Lemma 4, C′

i−1 and C′
i+1 are reversal. Thus,

Ci−1 ⊆ (Ci+1)
−1 and so by symmetry Ci−1 = (Ci+1)

−1. Now we prove that for any
pair of monochromatic cycles C′

i ,C
′
j of colors i, j , with j 
= i, the two cycles C′

i and

C′
j are not homotopic. By (T2), C′

j intersects an i-cycle Ci . Since Ci−1 = (Ci+1)
−1,

cycle C′
j is bi-oriented in color i − 1 and i + 1, and thus we cannot have C′

j = C−1
i .

So C′
j and Ci are crossing and by Lemma 4, they are not homotopic. By Lemma 3,

C′
i and Ci are homotopic. Thus, C′

j and C′
i are not homotopic. Thus, the Schnyder

wood is of Type 2.i.
If there are no two monochromatic cycles of different colors that are homotopic,

then the Schnyder wood is of Type 1.
For toroidal triangulation, m = 3n by Euler’s formula, so there are no edges ori-

ented in two directions, and thus only Type 1 is possible. �

Note that in a Schnyder wood of Type 1, we may have edges that are in two
monochromatic cycles of different colors (see Fig. 2).

We do not know if the set of Schnyder woods of a given toroidal graph has a kind of
lattice structure as in the planar case [9]. De Fraysseix et al. [15] proved that Schnyder
woods of a planar triangulation are in one-to-one correspondence with the orientation
of the edges of the graph where each inner vertex has outdegree three. It is possible
to retrieve the coloring of the edges of a Schnyder wood from the orientation. The
situation is different for toroidal triangulations. There exist orientations of toroidal
triangulations where each vertex has outdegree three but there is no corresponding
Schnyder wood. For example, if one considers a toroidal triangulation with just one
vertex, the orientations of edges that satisfy (T1) are the orientations where there are
not three consecutive edges leaving the vertex (see Fig. 11).
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Fig. 11 Two different orientations of a toroidal triangulation. Only the second one corresponds to a Schny-
der wood

4 Schnyder Woods in the Universal Cover

Let G be a toroidal graph given with a Schnyder wood. Consider the orientation and
coloring of the edges of G∞ that correspond to the Schnyder wood of G.

Lemma 5 The orientation and coloring of the edges of G∞ satisfy the following:

(U1) Every vertex of G∞ satisfies the Schnyder property
(U2) There is no monochromatic cycle in G∞.

Proof Clearly, (U1) is satisfied. Now we prove (U2). Suppose by contradiction that
there is a monochromatic cycle U of color i in G∞. Let C be the closed curve of
G corresponding to edges of U . If C self-intersects, then there is a vertex of G with
two edges leaving v in color i, a contradiction to (T1). So C is a monochromatic
cycle of G. Since C corresponds to a cycle of G∞, it is a contractible cycle of G,
a contradiction to Lemma 1. �

One can remark that properties (U1) and (U2) are the same as in the definition of
Schnyder woods for 3-connected planar graphs (properties (P1) and (P2)). Note that if
the orientation and coloring of the edges of G∞, corresponding to an orientation and
coloring of the edges of G, satisfy properties (U1) and (U2), we do not necessarily
have a Schnyder wood of G. For example, the graph G∞ obtained by replicating the
graph G of Fig. 7 satisfies (U1) and (U2), whereas the orientation and coloring of G

do not make a Schnyder wood as (T2) is not satisfied.
Recall that the notation Ci = {C0

i , . . . ,C
ki−1
i } denotes the set of i-cycles of G

such that there is no i-cycle in the region R(C
j
i ,C

j+1
i ). As monochromatic cycles

are not contractible by Lemma 1, a directed monochromatic cycle C
j
i corresponds to

a family of infinite directed monochromatic paths of G∞ (infinite in both directions
of the path). This family is denoted Lj

i . Each element of Lj
i is called a monochromatic

line of color i, or i-line for short. By Lemma 3, all i-lines are non-intersecting and
oriented in the same direction. Given any two i-lines L, L′, the unbounded region
between L and L′ is noted R(L,L′). We say that two i-lines L,L′ are consecutive if
no i-lines are contained in R(L,L′).

Let v be a vertex of G∞. For each color i, vertex v is the starting vertex of a unique
infinite directed monochromatic path of color i, denoted Pi(v). Indeed this is a path
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Fig. 12 Regions corresponding
to a vertex

since there is no monochromatic cycle in G∞ by property (U2), and it is infinite (in
one direction of the path only) because every reached vertex of G∞ has exactly one
edge leaving in color i by property (U1). As Pi(v) is infinite, it necessarily contains
two vertices u,u′ of G∞ that are copies of the same vertex of G. The subpath of
Pi(v) between u and u′ corresponds to an i-cycle of G and thus is part of an i-line
of G∞. Let Li(v) be the i-line intersecting Pi(v).

Lemma 6 The graph G∞
i ∪ (G

∞
i−1)

−1 ∪ (G
∞
i+1)

−1 contains no directed cycle.

Proof Suppose there is a contractible directed cycle C in G∞
i ∪ (G

∞
i−1)

−1 ∪
(G

∞
i+1)

−1. Let D be the closed disk bounded by C. Suppose by symmetry that C

turns around D clockwise. Then, by (U1), there is no edge of color i − 1 leaving the
closed disk D. So there is an (i − 1)-cycle in D, a contradiction to (U2). �

Lemma 7 For every vertex v and color i, the two paths Pi−1(v) and Pi+1(v) only
intersect on v.

Proof If Pi−1(v) and Pi+1(v) intersect on two vertices, then G∞
i−1 ∪ (G

∞
i+1)

−1 con-
tains a cycle, contradicting Lemma 6. �

By Lemma 7, for every vertex v, the three paths P0(v), P1(v), P2(v) divide G∞
into three unbounded regions R0(v), R1(v), and R2(v), where Ri(v) denotes the re-
gion delimited by the two paths Pi−1(v) and Pi+1(v). Let R◦

i (v) = Ri(v)\(Pi−1(v)∪
Pi+1(v)) (see Fig. 12).

Lemma 8 For all distinct vertices u, v, we have:

(i) If u ∈ Ri(v), then Ri(u) ⊆ Ri(v).
(ii) If u ∈ R◦

i (v), then Ri(u) � Ri(v).
(iii) There exists i and j with Ri(u) � Ri(v) and Rj(v) � Rj (u).

Proof (i) Suppose by symmetry that the Schnyder wood is not of Type 2.(i +1). Then
in G, i-cycles are not homotopic to (i − 1)-cycles. Thus in G∞, every i-line crosses
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every (i −1)-line. Moreover an i-line crosses an (i −1)-line exactly once and from its
right side to its left side by (U1). Vertex v is between two consecutive monochromatic
(i − 1)-lines Li−1,L

′
i−1, with L′

i−1 situated on the right of Li−1. Let R be the region
situated on the right of Li−1, so v ∈ R.

Claim 1 For any vertex w of R, the path Pi(w) leaves the region R.

Proof of Claim 1 The i-line Li(w) has to cross Li−1 exactly once and from right to
left; thus, Pi(w) leaves the region R. This proves Claim 1. �

The path Pi+1(v) cannot leave the region R as this would contradict (U1). Thus,
by Claim 1 for w = v, we have Ri(v) ⊆ R and so u ∈ R. Moreover, the paths
Pi−1(u) and Pi+1(u) cannot leave region Ri(v) as this would contradict (U1). Thus
by Claim 1 for w = u, the path Pi(u) leaves the region Ri(v) and so Ri(u) ⊆ Ri(v).

(ii) By (i), Ri(u) ⊆ Ri(v), so the paths Pi−1(u) and Pi+1(u) are contained
in Ri(v). Then none of them can contain v as this would contradict (U1). So all
the faces of Ri(v) incident to v are not in Ri(u) (and there is at least one such face).

(iii) By symmetry, we prove that there exists i with Ri(u) � Ri(v). If u ∈ R◦
i (v)

for some color i, then Ri(u) � Ri(v) by (ii). Suppose now that u ∈ Pi(v) for some i.
By Lemma 7, at least one of the two paths Pi−1(u) and Pi+1(u) does not contain v.
Suppose by symmetry that Pi−1(u) does not contain v. As u ∈ Pi(v) ⊆ Ri+1(v), we
have Ri+1(u) ⊆ Ri+1(v) by (i), and as none of Pi−1(u) and Pi(u) contains v, we
have Ri+1(u) � Ri+1(v). �

Lemma 9 If a toroidal graph G admits a Schnyder wood, then G is essentially 3-
connected.

Proof Let u,v, x, y be any four distinct vertices of G∞. Let us prove that there exists
a path between u and v in G∞ \{x, y}. Suppose by symmetry, that the Schnyder wood
is of Type 1 or Type 2.1. Then the monochromatic lines of color 0 and 2 form a kind
of grid; i.e., the 0-lines intersect all the 2-lines. Let L0,L

′
0 be 0-lines and L2, L′

2 be
2-lines, such that u,v, x, y are all in the interior of the bounded region R(L0,L

′
0) ∩

R(L2,L
′
2).

By Lemma 7, the three paths Pi(v), for 0 ≤ i ≤ 2, are disjoint except on v. Thus,
there exists i, such that Pi(v)∩{x, y} = ∅. Similarly there exists j , such that Pj (u)∩
{x, y} = ∅. The two paths Pi(v) and Pj (u) are infinite, so they intersect the boundary
of R(L0,L

′
0) ∩ R(L2,L

′
2). Thus, Pi(v) ∪ Pj (u) ∪ L0 ∪ L′

0 ∪ L2 ∪ L′
2 contains a path

from u to v in G∞ \ {x, y}. �

By Lemma 9, if G admits a Schnyder wood, then it is essentially 3-connected, so
it is a map and each face is a disk.

Note that if (T2) is not required in the definition of Schnyder woods, then Lemma 9
is false. Figure 13 gives an example of an orientation and a coloring of the edges of
a toroidal graph satisfying (T1), such that there are no contractible monochromatic
cycles, but where (T2) is not satisfied as there is a 0-cycle not intersecting any 2-cycle.
This graph is not essentially 3-connected; indeed, G∞ is not connected.
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Fig. 13 An orientation and a coloring of the edges of a toroidal graph satisfying (T1) but not essentially
3-connected

Fig. 14 Angle labeling around vertices and edges

5 Duality of Schnyder Woods

We are given a planar map G, and x0, x1, x2, three distinct vertices occurring in
counterclockwise order on the outer face of G. A Schnyder angle labeling [7] of G

with respect to x0, x1, x2 is a labeling of the angles of Gσ satisfying the following:

(L1) The label of the angles at each vertex form, in counterclockwise order, non-
empty intervals of 0’s, 1’s, and 2’s. The two angles at the half-edge at xi have
labels i + 1 and i − 1

(L2) The label of the angles at each inner face form, in counterclockwise order, non-
empty intervals of 0’s, 1’s, and 2’s. At the outer face the same is true in clock-
wise order.

Felsner [8] proved that, for planar maps, Schnyder woods are in bijection with
Schnyder angle labellings. In the toroidal case, we do not see a simple definition
of Schnyder angle labeling that would be equivalent to our definition of Schnyder
woods. This is due to the fact that, unlike (P2) which is local and can be checked just
by considering faces, (T2) is global. Nevertheless, we have one implication.

The angle labeling corresponding to a Schnyder wood of a toroidal map G is a
labeling of the angles of G such that the angles at a vertex v in the counterclockwise
sector between ei+1(v) and ei−1(v) are labeled i (see Fig. 14).

Lemma 10 The angle labeling corresponding to a Schnyder wood of a toroidal map
satisfies the following: the angles at each vertex and at each face form, in counter-
clockwise order, non-empty intervals of 0’s, 1’s, and 2’s.
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Proof Clearly, the property is true at each vertex by (T1). To prove that the property
is true at each face, we count the number of color changes around vertices, faces, and
edges. This number of changes is denoted d . For a vertex v there are exactly three
changes, so d(v) = 3 (see Fig. 14). For an edge e, that can be either oriented in one or
two directions, there are also exactly three changes, so d(e) = 3 (see Fig. 14). Now
consider a face F . Suppose we cycle counterclockwise around F ; then an angle col-
ored i is always followed by an angle colored i or i + 1. Consequently, d(F ) must
be a multiple of 3. Suppose that d(F ) = 0; then all its angles are colored with one
color i. In that case the cycle around face F would be completely oriented in coun-
terclockwise order in color i + 1 (and in clockwise order in color i − 1). This cycle
being contractible, this would contradict Lemma 1. So d(F ) ≥ 3.

The sum of the changes around edges must be equal to the sum of the changes
around faces and vertices. Thus 3m = ∑

e d(e) = ∑
v d(v) + ∑

F d(F ) = 3n +∑
F d(F ). Euler’s formula gives m = n + f , so

∑
F d(F ) = 3f and this is possi-

ble only if d(F ) = 3 for every face F . �

There is no converse to Lemma 10. Figure 7 gives an example of a coloring and
orientation of the edges of a toroidal triangulation not satisfying (T2) but where the
angles at each vertex and at each face form, in counterclockwise order, non-empty
intervals of 0’s, 1’s, and 2’s.

Let G be a toroidal graph given with a Schnyder wood. By Lemma 9, G is an
essentially 3-connected toroidal map, and thus the dual G∗ of G has no contractible
loop and no homotopic multiple edges. Let G̃ be a simultaneous drawing of G and
G∗ such that only dual edges intersect.

The dual of the Schnyder wood is the orientation and coloring of the edges of G∗
obtained by the following method (see Figs. 3 and 4): Let e be an edge of G and
e∗ the dual edge of e. If e is oriented in one direction only and colored i, then e∗
is oriented in two directions, entering e from the right side in color i − 1 and from
the left side in color i + 1 (the right side of e is the right side while following the
orientation of e). Symmetrically, if e is oriented in two directions in colors i + 1 and
i − 1, then e∗ is oriented in one direction only and colored i such that e is entering e∗
from its right side in color i − 1.

Lemma 11 Let G be a toroidal map. The dual of a Schnyder wood of a toroidal map
G is a Schnyder wood of the dual G∗. Moreover we have:

(i) On the simultaneous drawing G̃ of G and G∗, the i-cycles of the dual Schnyder
wood are homotopic to the i-cycles of the primal Schnyder wood and oriented in
opposite directions.

(ii) The dual of a Schnyder wood is of Type 2.i if and only if the primal Schnyder
wood is of Type 2.i.

Proof In every face of G̃, there is exactly one angle of G and one angle of G∗. Thus
a Schnyder angle labeling of G corresponds to an angle labeling of G∗. The dual of
the Schnyder wood is defined such that an edge e is leaving F in color i if and only
if the angle at F on the left of e is labeled i − 1 and the angle at F on the right of
e is labeled i + 1, and such that an edge e is entering F in color i if and only if at
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Fig. 15 Rules for the dual Schnyder wood and angle labeling

least one of the angles at F incident to e is labeled i (see Fig. 15). By Lemma 10,
the angles at a face form, in counterclockwise order, non-empty intervals of 0’s, 1’s,
and 2’s. Thus, the edges around a vertex of G∗ satisfy property (T1).

Consider G̃ with the orientation and coloring of primal and dual edges.
Let C be a i-cycle of G∗. Suppose, by contradiction, that C is contractible. Let

D be the disk delimited by C. Suppose by symmetry that C is going anticlockwise
around D. Then all the edges of G that are dual to edges of C are entering D in color
i − 1. Thus, D contains an (i − 1)-cycle of G, a contradiction to Lemma 1. Thus,
every monochromatic cycle of G∗ is non-contractible.

The dual of the Schnyder wood is defined in such a way that an edge of G and
an edge of G∗ of the same color never intersect in G̃. Thus the i-cycles of G∗ are
homotopic to i-cycles of G. Consider a i-cycle Ci (resp. C∗

i ) of G (resp. G∗). The two
cycles Ci and C∗

i are homotopic. By symmetry, we assume that the primal Schnyder
wood is not of Type 2.(i −1). Let Ci+1 be an (i + 1)-cycle of G. The two cycles Ci

and Ci+1 are not homotopic and Ci is entering Ci+1 on its left side. Thus, the two
cycles C∗

i and Ci+1 are not homotopic, and by the dual rules C∗
i is entering Ci+1 on

its right side. So Ci and C∗
i are homotopic and going in opposite directions.

Suppose the Schnyder wood of G is of Type 1. Then two monochromatic cycles
of G of different colors are not homotopic. Thus, the same is true for monochro-
matic cycles of the dual. So (T2) is satisfied and the dual of the Schnyder wood is a
Schnyder wood of Type 1.

Suppose now that the Schnyder wood of G is of Type 2. Assume by symmetry
that it is of Type 2.i. Then all monochromatic cycles of color i and j , with j ∈ {i − 1,

i + 1}, intersect. Now suppose, by contradiction, that there is a j -cycle C∗, with j ∈
{i −1, i +1}, that is not equal to a monochromatic cycle of color in {i −1, i +1}\{j}.
By symmetry we can assume that C∗ is of color i − 1. Let C be the (i − 1)-cycle of
the primal that is the first on the right side of C∗ in G̃. By definition of Type 2.i,
C−1 is an (i + 1)-cycle of G. Let R be the region delimited by C∗ and C situated on
the right side of C∗. Cycle C∗ is not an (i + 1)-cycle, so there is at least one edge
of color i + 1 leaving a vertex of C∗. By (T1) in the dual, this edge is entering the
interior of the region R. An edge of G∗ of color i + 1 cannot intersect C and cannot
enter C∗ from its right side. So in the interior of the region R there is at least one
(i + 1)-cycle C∗

i+1 of G∗. Cycle C∗
i+1 is homotopic to C∗ and going in the opposite

direction (i.e., C∗
i+1 and C∗ are not fully homotopic). If C∗

i+1 is not an (i − 1)-cycle,
then we can define R′ � R the region delimited by C∗

i+1 and C situated on the left
side of C∗

i+1 and as before we can prove that there is an (i − 1)-cycle of G∗ in the
interior of R′. So in any case, there is an (i − 1)-cycle C∗

i−1 of G∗ in the interior of
R and C∗

i−1 is fully homotopic to C∗. Let R′′ � R be the region delimited by C∗ and
C∗

i−1 situated on the right side of C∗. Clearly, R′′ does not contain C. Thus, by the
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definition of C, the region R′′ does not contain any (i −1)-cycle of G. But R′′ is non-
empty and contains at least one vertex v of G. The path Pi−1(v) cannot leave R′′, a
contradiction. So (T2) is satisfied and the dual Schnyder wood is of Type 2.i. �

By Lemma 11, we have Theorem 2.

6 Relaxing the Definition

In the plane, the proof of existence of Schnyder woods can be done without too much
difficulty, as the properties to be satisfied are only local. In the toroidal case, things
are much more complicated, as property (T2) is global. The following lemma shows
that property (T2) can be relaxed a bit in the case of Schnyder woods of Type 1.

Lemma 12 Let G be a toroidal graph given with an orientation and coloring of the
edges of G with the colors 0, 1, 2, where every edge e is oriented in one direction or
in two opposite directions. The orientation and coloring is a Schnyder wood of Type 1
if and only if it satisfies the following:

(T1’) Every vertex v satisfies the Schnyder property.
(T2’) For each pair i, j of different colors, there exists an i-cycle intersecting a j -

cycle.
(T3’) There are no monochromatic cycles Ci,Cj of different colors i, j such that

Ci = C−1
j .

Proof (�⇒) If we have a Schnyder wood of Type 1, then property (T1’) is satis-
fied, as it is equal to property (T1). Property (T1) implies that there always exist
monochromatic cycles of each color, and thus property (T2’) is a relaxation of (T2).
Property (T3’) is implied by definition of Type 1 (see Theorem 7).

(⇐�) Conversely, suppose we have an orientation and coloring satisfying (T1’),
(T2’), (T3’). We prove several properties.

Claim 2 All i-cycles are non-contractible, non-intersecting, and homotopic.

Proof of Claim 2 Suppose there is a contractible monochromatic cycle. Let C be
such a cycle containing the minimum number of faces in the closed disk D bounded
by C. Suppose by symmetry that C turns around D clockwise. Let i be the color
of C. Then, by (T1’), there is no edge of color i − 1 leaving the closed disk D. So
there is an (i − 1)-cycle in D and this cycle is C by minimality of C, a contradiction
to (T3’).

If there exist two distinct i-cycles that are intersecting, then there is a vertex that
has two outgoing edges of color i, a contradiction to (T1’). So the i-cycles are non-
intersecting. Then, by Lemma 2, they are homotopic. This proves Claim 2. �

Claim 3 If two monochromatic cycles are intersecting, then they are not homotopic.
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Fig. 16 An orientation and
coloring of the edges of toroidal
graph satisfying (T1’) and (T2’)
but that is not a Schnyder wood

Proof of Claim Suppose by contradiction that there exist C,C′, two distinct directed
monochromatic cycles that are homotopic and intersecting. By Claim 2, they are not
contractible and of different color. Suppose C is an (i − 1)-cycle and C′ an (i + 1)-
cycle. By (T1’), C′ is leaving C on its right side. Since C,C′ are homotopic, the
cycle C′ is entering C at least once from its right side, a contradiction with (T1’).
This proves Claim 3. �

We are now able to prove that (T2) is satisfied. Let Ci be any i-cycle of color i.
We have to prove that Ci intersects at least one (i − 1)-cycle and at least one (i + 1)-
cycle. Let j be either i − 1 or i + 1. By (T2’), there exists an i-cycle C′

i intersecting
a j -cycle C′

j of color j . The two cycles C′
i ,C

′
j are not reversal by (T3’); thus, they

are crossing. By claim (3), C′
i and C′

j are not homotopic. By Claim 2, Ci and C′
i are

homotopic. Thus, by Lemma 2, Ci and C′
j are not homotopic and intersecting.

Thus, (T1) and (T2) are satisfied, and the orientation and coloring are a Schnyder
wood. By (T3’) and Theorem 7 it is a Schnyder wood of Type 1. �

Note that for toroidal triangulations, there are no edges oriented in two directions
in an orientation and coloring of the edges satisfying (T1’), by Euler’s formula. So
(T3’) is automatically satisfied. Thus, in the case of toroidal triangulations it is suffi-
cient to have properties (T1’) and (T2’) to have a Schnyder wood. This is not true in
general, as shown by the example of Fig. 16 that satisfies (T1’) and (T2’) but that is
not a Schnyder wood. There is a monochromatic cycle of color 1 that is not intersect-
ing any monochromatic cycle of color 2, so (T2) is not satisfied.

7 Existence for Simple Triangulations

In this section we present a short proof of existence of Schnyder woods for simple
triangulations. Sections 8 and 9 contain the full proof of existence for essentially
3-connected toroidal maps.

Fijavz [13] proved a useful result concerning the existence of particular non-
homotopic cycles in toroidal triangulations with no loop and no multiple edges. (Re-
call that in this paper we are less restrictive, as we allow non-contractible loops and
non-homotopic multiple edges.)

Theorem 8 ([13]) A simple toroidal triangulation contains three non-contractible
and non-homotopic cycles that all intersect on one vertex and that are pairwise dis-
joint otherwise.
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Fig. 17 A toroidal triangulation
that does not contain three
non-contractible and
non-homotopic cycles that all
intersect on one vertex and that
are pairwise disjoint otherwise

Theorem 8 is not true for all toroidal triangulations, as shown by the example on
Fig. 17.

Theorem 8 can be used to prove the existence of particular Schnyder woods for
simple toroidal triangulations. We first need the following lemma.

Lemma 13 If G is a connected near-triangulation (i.e., all inner faces are triangles)
whose outer boundary is a cycle, and with three vertices x0, x1, x2 on its outer face
such that the three outer paths between the xi are chordless, then G′ is internally
3-connected for vertices xi .

Proof Let G′ be the graph obtained from G by adding a vertex z adjacent to the three
vertices xi . We have to prove that G′ is 3-connected. Let S be a separator of G′ of
minimum size and suppose by contradiction that 1 ≤ |S| ≤ 2. Let G′′ = G′ \ S.

For v ∈ S, the vertices of NG′(v) \ S should appear in several connected com-
ponents of G′′, otherwise S \ {v} is also a separator of G′. Since G is a near-
triangulation, the neighbors of an inner vertex v of G form a cycle, and thus there
are at least two vertex-disjoint paths between any two vertices of N(v) in G′ \ {v}. So
S contains no inner vertex of G. Similarly, the three neighbors of z in G′ belong to a
cycle of G′ \ {z} (the outer boundary of G), so S does not contain z. Thus, S contains
only vertices that are on the outer boundary of G.

Let v ∈ S. Vertex v is on the outer face of G, so its neighbors in G form a path P

where the two extremities of P are the two neighbors of v on the outer face of G. So
S contains an inner vertex u of P . Vertex u is also on the outer face of G, so uv is a
chord of the outer cycle of G. As the three outer paths between the xi are chordless,
we have that u,v lie on two different outer paths between pairs of xi . But then all the
vertices of P \ {u} are in the same components of G′′ because of z, a contradiction. �

Theorem 9 A simple toroidal triangulation admits a Schnyder wood with three
monochromatic cycles of different colors all intersecting on one vertex and that are
pairwise disjoint otherwise.

Proof Let G be a simple toroidal triangulation. By Theorem 8, let C0,C1,C2 be three
non-contractible and non-homotopic cycles of G that all intersect on one vertex x and
that are pairwise disjoint otherwise. By eventually shortening the cycles Ci , we can
assume that the three cycles Ci are chordless. By symmetry, we can assume that the
six edges ei, e

′
i of the cycles Ci incident to x appear around x in the counterclockwise

order e0, e
′
2, e1, e

′
0, e2, e

′
1 (see Fig. 18). The cycles Ci divide G into two regions,

denoted R1,R2 such that R1 is the region situated in the counterclockwise sector
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between e0 and e′
2 of x and R2 is the region situated in the counterclockwise sector

between e′
2 and e1 of x. Let Gi be the subgraph of G contained in the region Ri

(including the three cycles Ci ).
Let G′

1 (resp. G′
2) be the graph obtained from G1 (resp. G2) by replacing x by

three vertices x0, x1, x2, such that xi is incident to the edges in the counterclockwise
sector between ei+1 and e′

i (resp. e′
i and ei−1) (see Fig. 19). The two graphs G′

1
and G′

2 are near-triangulation and the Ci are chordless, so by Lemma 13, they are
internally 3-connected planar maps for vertices xi . The vertices x0, x1, x2 appear in
counterclockwise order on the outer face of G′

1 and G′
2. By a result of Miller [20] (see

also [7, 8]), the two graphs G′
i admit planar Schnyder woods rooted at x0, x1, x2. Ori-

ent and color the edges of G that intersect the interior of Ri by giving them the same
orientation and coloring as in a planar Schnyder wood of G′

i . Orient and color the
cycle Ci in color i such that it is entering x by edge e′

i and leaving x by edge ei . We
claim that the orientation and the coloring that are obtained form a toroidal Schnyder
wood of G (see Fig. 19).

Clearly, any interior vertex of the region Ri satisfies (T1). Let us show that (T1)
is also satisfied for any vertex v of a cycle Ci distinct from x. In a Schnyder wood
of G′

1, the cycle Ci is oriented in two directions, from xi−1 to xi in color i and from
xi to xi−1 in color i − 1. Thus the edge leaving v in color i + 1 is an inner edge of
G′

1 and vertex v has no edges entering in color i + 1. Symmetrically, in G′
2 the edge

leaving v in color i − 1 is an inner edge of G′
2 and vertex v has no edges entering in

color i − 1. Then one can paste G′
1 and G′

2 along Ci , orient Ci in color i, and see that
v satisfies (T1). The definition of the G′

i and the orientation of the cycles are done so
that x satisfies (T1). The cycles Ci being pairwise intersecting, (T2’) is satisfied, so
by Lemma 12, the orientation and coloring form a Schnyder wood. �

Note that in the Schnyder wood obtained by Theorem 9, we do not know if there
are several monochromatic cycles of one color or not. So given any three monochro-
matic cycles of different color, they might not all intersect on one vertex. But for
any two monochromatic cycles of different color, we know that they intersect exactly
once. We wonder whether Theorem 9 can be modified as follows: Does a simple

Fig. 18 Notation of the proof
of Theorem 9
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toroidal triangulation admit a Schnyder wood such that there is just one monochro-
matic cycle per color? Moreover, can one require that the monochromatic cycles of
different colors pairwise intersect exactly once? Or, as in Theorem 9, that they all
intersect on one vertex and that they are pairwise disjoint otherwise?

8 The Contraction Lemma

We prove the existence of Schnyder woods for essentially 3-connected toroidal maps
by contracting edges until we obtain a graph with just a few vertices. Then the graph
can be decontracted step by step to obtain a Schnyder wood of the original graph.

Given a toroidal map G, the contraction of a non-loop edge e of G is the operation
consisting of continuously contracting e until its two ends are merged. We denote the
obtained graph as G/e. On Fig. 20 the contraction of an edge e is represented. We
consider three different cases corresponding to whether the faces adjacent to the edge
e are triangles or not. Note that only one edge of each set of homotopic multiple edges
that is possibly created is preserved.

The goal of this section is to prove the following lemma, which plays a key role in
the proof of Sect. 9.

Lemma 14 If G is a toroidal map given with a non-loop edge e whose extremities
are of degree at least three and such that G/e admits a Schnyder wood of Type 1,
then G admits a Schnyder wood of Type 1.

The proof of Lemma 14 is long and technical. In the planar case, an analogous
lemma can be proved without too much difficulty (see Sect. 2.6 of [12]), as there are
special outer vertices where the contraction can be done to reduce the case analysis
and as properties (P1) and (P2) are local and not too difficult to preserve during the
decontraction process.

Fig. 19 Gluing two planar Schnyder woods into a toroidal one to prove Theorem 9
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Fig. 20 The contraction operation

In the toroidal case there is a huge case analysis for the following reasons. One has
to consider the three different kinds of contractions depicted on Fig. 20. For each of
these cases, one must consider the different ways that the edges can be oriented and
colored (around the contraction point) in G/e. For each of these cases, one must show
that the Schnyder wood G/e can be extended to a Schnyder wood of G. This would
be quite easy if one just has to satisfy (T1), which is a local property, but satisfying
(T2) is much more complicated. Instead of proving (T2), that is considering intersec-
tions between every pair of monochromatic cycles, we prove (T2’) and (T3’), which
is equivalent for our purposes by Lemma 12. Property (T2’) is simpler than (T2), as it
considers just one intersection for each pair of colors instead of all the intersections.
Even with this simplification, proving (T2’) is the main difficulty of the proof. For

88



Discrete Comput Geom (2014) 51:67–131 91

each considered case, one has to analyze the different ways in which the monochro-
matic cycles go through the contracted vertex or not and show that there always exist
a coloring and orientation of G where (T2’) is satisfied. Some cases are non-trivial
and involve the use of lemmas like Lemmas 15 and 16.

Lemma 15 Let G be a toroidal map given with a Schnyder wood and let y,w be
two vertices of G such that ei(y) is entering w. Suppose that there is a directed
path Qi−1 of color i − 1 from y to w, and a directed path Qi+1 of color i + 1
from y to w. Consider the two directed cycles Ci−1 = Qi−1 ∪ {ei(y)}−1 and Ci+1 =
Qi+1 ∪ {ei(y)}−1. Then Ci−1 and Ci+1 are not homotopic.

Proof By Lemma 1, the cycles Ci−1 and Ci+1 are not contractible. Suppose that
Ci−1 and Ci+1 are homotopic. The path Qi+1 is leaving Ci−1 at y on the right side
of Ci−1. Since Ci−1 and Ci+1 are homotopic, the path Qi+1 is entering Ci−1 at least
once from its right side. This is in contradiction with (T1). �

The sector [e1, e2] of a vertex w, for e1 and e2 two edges incident to w, is the
counterclockwise sector of w between e1 and e2, including the edges e1 and e2. The
sectors ]e1, e2], [e1, e2[, and ]e1, e2[ are defined analogously by excluding the corre-
sponding edges from the sectors.

Lemma 16 Let G be a toroidal map given with a Schnyder wood and let w,x, y

be three vertices such that ei−1(x) and ei+1(y) are entering w. Suppose that there
is a directed path Qi−1 of color i − 1 from y to w, entering w in the sector
[ei(w), ei−1(x)], and a directed path Qi+1 of color i + 1 from x to w, entering
w in the sector [ei+1(y), ei(w)]. Consider the two directed cycles Ci−1 = Qi−1 ∪
{ei+1(y)}−1 and Ci+1 = Qi+1 ∪ {ei−1(x)}−1. Then either Ci−1 and Ci+1 are not
homotopic or Ci−1 = C−1

i+1.

Proof By Lemma 1, the cycles Ci−1 and Ci+1 are not contractible. Suppose that Ci−1
and Ci+1 are homotopic and that Ci−1 
= C−1

i+1. Since Ci−1 
= C−1
i+1, the cycle Ci+1

is leaving Ci−1. By (T1) and the assumption on the sectors, Ci+1 is leaving Ci−1 on
its right side. Since Ci−1 and Ci+1 are homotopic, the path Qi+1 is entering Ci−1 at
least once from its right side. This is in contradiction with (T1). �

We are now able to prove Lemma 14.

Proof of Lemma 14 Let u,v be the two extremities of e. Vertices u and v are of
degree at least three. Let x, y (resp. z, t) be the neighbors of u (resp. v) such that
x, v, y (resp. z,u, t) appear consecutively and in counterclockwise order around u

(resp. v) (see Fig. 20(c)). Note that u and v are distinct by the definition of edge
contraction, but that x, y, z, t are not necessarily distinct, nor necessarily distinct from
u and v. Depending on whether the faces incident to e are triangles or not, we are,
by symmetry, in one of the three cases of Fig. 20(a, b, c). Let G′ = G/e and consider
a Schnyder wood of Type 1 of G′. Let w be the vertex of G′ resulting from the
contraction of e.
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Fig. 21 Decontraction rules for case (a)

For each case (a), (b), (c), there are different cases corresponding to the different
possibilities of orientation and coloring of the edges ewx, ewy, ewz, ewt in G′. For
example, for case (a), there should be 6 cases depending on if ewx and ewy are both
entering w, both leaving w, or one entering w and one leaving w (3 cases), multiplied
by the coloring, both of the same or not (2 cases). The case where w has two edges
leaving in the same color is impossible by (T1). So, by symmetry, only 5 cases remain
represented by figures a.k.0, for k = 1, . . . ,5, on Fig. 21 (in the notation α.k.l, a.k

indicates the line on the figures and � the column). For cases (b) and (c), there are
more cases to consider, but the analysis is similar. These cases are represented in the
first columns of Figs. 22 and 23. On these figures, a dotted half-edge represents the
possibility for an edge to be unidirected or bidirected. In the last case of each figure,
we have indicated where the edge is leaving in color 1, as there are two possibilities
(up or down).

In each case α.k, α ∈ {a, b, c}, we show how one can color and orient the edges of
G to obtain a Schnyder wood of G from the Schnyder wood of G′. Only the edges e,
eux , euy , evt , evz of G have to be specified; all the other edges of G keep the orien-
tation and coloring of their corresponding edge in G′. In each case α.k, there might
be several possibilities for coloring and orienting these edges to satisfy (T1). Only
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Fig. 22 Decontraction rules for case (b)

some of these possibilities, the ones that are useful for our purpose, are represented
on figures α.k.�, � ≥ 1, of Figs. 21 through 23. A dotted half-edge represents the fact
that the edge is unidirected or bidirected like the corresponding half-edge of G′.

In each case α.k, α ∈ {a, b, c}, we show that one of the colorings α.k.�, � ≥ 1,
gives a Schnyder wood of Type 1 of G. By Lemma 12, we just have to prove that,
in each case α.k, there is one coloring satisfying (T1’), (T2’), and (T3’). Properties
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Fig. 23 Decontraction rules for case (c)

(T1’) and (T3’) are satisfied for any colorings α.k.�, � ≥ 1, but this is not the case for
property (T2’). This explains why several possible colorings of G must be considered.

(T1’) One can easily check that in all the cases α.k.�, property (T1’) is satisfied
for every vertex of G. To do so one can consider the angle labeling around vertices w,
x, y, (z), (t) of G′ in the case α.k.0. Then one can see that this angle labeling ex-
ports well around vertices u,v, x, y, (z), (t) of G and thus the Schnyder property is
satisfied for these vertices. On Fig. 24, an example is given on how the angle labeling
is modified during the decontraction process. It corresponds to case c.2.1 where the
dotted half-edge is unidirected. We do not discuss this part in more detail, as it is easy
to check.
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Fig. 24 Example of (T1’) preservation during decontraction

Fig. 25 Example of (T3’) preservation during decontraction

(T3’) One can easily check that in all the cases α.k.�, property (T3’) is satisfied
for G. If (T3’) is not satisfied in G after applying one of the colorings α.k.�, then
there exist two monochromatic cycles C,C′ of different colors that are reversal. By
property (T3’) of Lemma 12, there are no reversal cycles in G′. Thus C,C′ have to
use a bidirected edge e′ of the figures that is newly created and distinct from edge e

and distinct from the half-dotted edges (otherwise the cycles are still reversal when e

is contracted). Only some cases have such an edge, and one can note that, for all these
cases, the cycle, after entering u or v by edge e′, must use the edge e that is either
unidirected or bidirected with different colors than e′, a contradiction. For example,
in case c.2.1 of Fig. 25, two reversal cycles of G that do not correspond to reversal
cycles when e is contracted, have to use edge evt . Then one of the two cycles is
entering v by evt in color 1 and thus has to continue by using the only edge leaving v

in color 1, edge e. As e and evt are colored differently, this is not possible. We do not
further detail this part, which is easy to check.

(T2’) Proving property (T2’) is the main difficulty of the proof. For each case α.k,
there is a case analysis considering the different ways in which the monochromatic
cycles of G′ go through w or not. We say that a monochromatic cycle C of G′ is safe
if C does not contain w. Depending on whether there are safe monochromatic cycles
or not for each color, there may be a different case α.k.� and a different argument that
is used to prove that property (T2’) is preserved.
• Case a.1: ewx and ewy are entering w in different colors.

We can assume by symmetry that ewx = e0(x) and ewy = e2(y) (case a.1.0 of
Fig. 21). We apply one of the colorings a.1.1, a.1.2, and a.1.3 of Fig. 21.
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We have a case analysis corresponding to whether there are monochromatic cycles
of G′ that are safe.
� Subcase a.1.{0,1,2}: There are safe monochromatic cycles of colors {0,1,2}.

Let C′
0,C

′
1,C

′
2 be safe monochromatic cycles of color 0,1,2 in G′. As the Schny-

der wood of G′ is of Type 1, they pairwise intersect in G′. Apply the coloring a.1.1
on G. As C′

0,C
′
1,C

′
2 do not contain vertex w, they are not modified in G. Thus, they

still pairwise intersect in G. So (T2’) is satisfied.
� Subcase a.1.{0,2}: There are safe monochromatic cycles of colors exactly {0,2}.

Let C′
0,C

′
2 be safe monochromatic cycles of color 0,2 in G′. Let C′

1 be a 1-cycle
in G′. As the Schnyder wood of G′ is of Type 1, C′

0,C
′
1,C

′
2 pairwise intersect in G′.

None of those intersections contains w as C′
0 and C′

2 do not contain w. By (T1), the
cycle C′

1 enters w in the sector ]ewx, ewy[ and leaves in the sector ]ewy, ewx[. Apply
the coloring a.1.1 on G. The cycle C′

1 is replaced by a new cycle C1 = C′
1 \ {w} ∪

{u,v}. The cycles C′
0,C

′
1,C

′
2 were intersecting outside w in G′ so C′

0,C1,C
′
2 are

intersecting in G. So (T2’) is satisfied.
� Subcase a.1.{1,2}: There are safe monochromatic cycles of colors exactly {1,2}.

Let C′
1,C

′
2 be safe monochromatic cycles of color 1,2 in G′. Let C′

0 be a 0-cycle
in G′. The cycles C′

0,C
′
1,C

′
2 pairwise intersect outside w. The cycle C′

0 enters w in
the sector [e1(w), ewx[, [ewx, ewx], or ]ewx, e2(w)]. Apply the coloring a.1.2 on G.
Depending on which of the three sectors C′

0 enters, it is replaced by one of the three
following cycles: C0 = C′

0 \{w}∪{u,v}, C0 = C′
0 \{w}∪{x, v}, C0 = C′

0 \{w}∪{v}.
In any of the three possibilities, C0,C

′
1,C

′
2 are intersecting in G. So (T2’) is satisfied.

� Subcase a.1.{0,1}: There are safe monochromatic cycles of colors exactly {0,1}.
This case is completely symmetric to the case a.1.{1,2}.

� Subcase a.1.{2}: There are safe monochromatic cycles of color 2 only.
Let C′

2 be a safe 2-cycle in G′. Let C′
0,C

′
1 be monochromatic cycles of color 0,1

in G′.
Suppose that there exists a path Q′

0 of color 0 from y to w such that this path
does not intersect C′

2. Suppose also that there exists a path Q′
1 of color 1 from y to w

such that this path does not intersect C′
2. Let C′′

0 = Q′
0 ∪ {ewy} and C′′

1 = Q′
1 ∪ {ewy}.

By Lemma 1, C′′
0 ,C′′

1 ,C′
2 are not contractible. Both C′′

0 ,C′′
1 do not intersect C′

2, so
by Lemma 2, they are both homotopic to C′

2. Thus, cycles C′′
0 ,C′′

1 are homotopic to
each other, contradicting Lemma 15 (with i = 2,w,y,Q′

0,Q
′
1). So we can assume

that one of Q′
0 or Q′

1 as above does not exist.
Suppose that in G′, there does not exist a path of color 0 from y to w such that

this path does not intersect C′
2. Apply the coloring a.1.1 on G. Cycle C′

1 is replaced
by C1 = C′

1 \ {w} ∪ {u,v}, and intersects C′
2. Let C0 be a 0-cycle of G. Cycle C0 has

to contain u or v or both, otherwise it is a safe cycle of G′ of color 0. In any case it
intersects C1. If C0 contains v, then C′

0 = C0 \ {v} ∪ {w}, and so C0 is intersecting
C′

2 and (T2’) is satisfied. Suppose now that C0 does not contain v. Then C0 contains
u and y, the extremity of the edge leaving u in color 0. Let Q0 be the part of C0
consisting of the path from y to u. The path Q′

0 = Q0 \ {u} ∪ {w} is from y to w.
Thus, by assumption, Q′

0 intersects C′
2. So C0 intersects C′

2 and (T2’) is satisfied.
Suppose now that in G′, there does not exist a path of color 1 from y to w such that

this path does not intersect C′
2. Apply the coloring a.1.2 on G. Depending on which

of the three sectors C′
0 enters, [e1(w), ewx[, [ewx, ewx], or ]ewx, e2(w)], it is replaced
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by one of the following three cycles: C0 = C′
0 \ {w} ∪ {u,v}, C0 = C′

0 \ {w} ∪ {x, v},
C0 = C′

0 \ {w}∪ {v}. In any of the three possibilities, C0 contains v and intersects C′
2.

Let C1 be a 1-cycle of G. Cycle C1 has to contain u or v or both, otherwise it is a
safe cycle of G′ of color 1. Vertex u has no edge entering it in color 1, so C1 does not
contain u and thus it contains v and intersects C0. Then C1 contains y, the extremity
of the edge leaving v in color 1. Let Q1 be the part of C1 consisting of the path
from y to v. The path Q′

1 = Q1 \ {v} ∪ {w} is from y to w. Thus, by assumption, Q′
1

intersects C′
2. So C1 intersects C′

2 and (T2’) is satisfied.
� Subcase a.1.{0}: There are safe monochromatic cycles of color 0 only.

This case is completely symmetric to the case a.1.{2}.
� Subcase a.1.{1}: There are safe monochromatic cycles of color 1 only.

Let C′
1 be a safe 1-cycle in G′. Let C′

0 and C′
2 be monochromatic cycles of color

0 and 2 in G′.
Suppose C′

0 is entering w in the sector ]ewx, e2(w)]. Apply the coloring a.1.3
on G. The 0-cycle C′

0 is replaced by C0 = C′
0 \ {w} ∪ {v} and thus contains v and

still intersects C′
1. Depending on which of the three sectors C′

2 enters, [e0(w), ewy[,
[ewy, ewy], or ]ewy, e1(w)], it is replaced by one of the following three cycles: C2 =
C′

2 \{w}∪{v}, C2 = C′
2 \{w}∪{y, v}, C2 = C′

2 \{w}∪{u,v}. In any case, C2 contains
v and still intersects C′

1. Cycle C0 and C2 intersect on v. So (T2’) is satisfied.
The case where C′

2 is entering w in the sector [e0(w), ewy[ is completely symmet-
ric and we apply the coloring a.1.2 on G.

It remains to deal with the case where C′
0 is entering w in the sector [e1(w), ewx]

and C′
2 is entering w in the sector [ewy, e1(w)]. Suppose that there exists a path

Q′
0 of color 0, from y to w, entering w in the sector [e1(w), ewx], such that this

path does not intersect C′
1. Suppose also that there exists a path Q′

2 of color 2, from
x to w, entering w in the sector [ewy, e1(w)], such that this path does not inter-
sect C′

1. Let C′′
0 = Q′

0 ∪ {ewy} and C′′
2 = Q′

2 ∪ {ewx}. By Lemma 1, C′′
0 ,C′

1,C
′′
2 are

not contractible. Cycles C′′
0 ,C′′

2 do not intersect C′
1, so by Lemma 2 they are homo-

topic to C′
1. Thus, cycles C′′

0 ,C′′
2 are homotopic to each other. Thus, by Lemma 16

(with i = 1,w,x, y,Q′
0,Q

′
2), we have C′′

0 = (C′′
2 )−1, contradicting (T3’) in G′. So

we can assume that one of Q′
0 or Q′

2 as above does not exist. By symmetry, sup-
pose that in G′ there does not exist a path of color 0, from y to w, entering w in
the sector [e1(w), ewx], such that this path does not intersect C′

1. Apply the col-
oring a.1.3 on G. Depending on which of the two sectors C′

2 enters, [ewy, ewy] or
]ewy, e1(w)], it is replaced by one of the following two cycles: C2 = C′

2 \{w}∪{y, v},
C2 = C′

2 \ {w} ∪ {u,v}. In any case, C2 still intersects C′
1. Let C0 be a 0-cycle of G.

Cycle C0 has to contain u or v or both, otherwise it is a safe cycle of G′ of color 0.
Suppose C0 does not contain u; then C′

0 = C0 \ {v} ∪ {w} and C′
0 is not entering w in

the sector [e1(w), ewx], a contradiction. So C0 contains u. Thus, C0 contains y, the
extremity of the edge leaving u in color 0, and it intersects C2. Let Q0 be the part of
C0 consisting of the path from y to u. The path Q′

0 = Q0 \ {u} ∪ {w} is from y to w

and entering w in the sector [e1(w), ewx]. Thus, by assumption, Q′
0 intersects C′

1. So
C0 intersects C′

1 and (T2’) is satisfied.
� Subcase a.1.{}: There are no safe monochromatic cycles.

Let C′
0,C

′
1,C

′
2 be monochromatic cycles of color 0,1,2 in G′. They all pairwise

intersect on w.
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Suppose first that C′
0 is entering w in the sector ]ewx, e2(w)]. Apply the coloring

a.1.3 on G. The 0-cycle C′
0 is replaced by C0 = C′

0 \ {w} ∪ {v} and thus contains v.
Depending on which of the three sectors C′

2 enters, [e0(w), ewy[, [ewy, ewy], or
]ewy, e1(w)], it is replaced by one of the following three cycles: C2 = C′

2 \ {w} ∪ {v},
C2 = C′

2 \ {w} ∪ {y, v}, C2 = C′
2 \ {w} ∪ {u,v}. In any case, C2 contains v. Let C1

be a 1-cycle in G. Cycle C1 has to contain u or v or both, otherwise it is a safe cycle
of G′ of color 1. Vertex u has no edge entering it in color 1, so C1 does not contain u

and thus it contains v. So C0,C1,C2 all intersect on v and (T2’) is satisfied.
The case where C′

2 is entering w in the sector [e0(w), ewy[ is completely symmet-
ric and we apply the coloring a.1.2 on G.

It remains to deal with the case where C′
0 is entering w in the sector [e1(w), ewx]

and C′
2 is entering w in the sector [ewy, e1(w)]. Apply the coloring a.1.1 on G. Cycle

C′
1 is replaced by C1 = C′

1 \ {w} ∪ {u,v}. Let C0 be a 0-cycle in G. Cycle C0 has
to contain u or v or both, otherwise it is a safe cycle of G′ of color 0. Suppose
C0 ∩ {v, x} = {v}; then C0 \ {v} ∪ {w} is a 0-cycle of G′ entering w in the sector
]ewx, e2(w)], contradicting the assumption on C′

0. Suppose C0 contains u; then C0
contains y, the extremity of the edge leaving u in color 0. So C0 contains {v, x}
or {u,y}. Similarly, C2 contains {v, y} or {u,x}. In any case, C0,C1,C2 pairwise
intersect. So (T2’) is satisfied.
• Case a.2: ewx and ewy have the same color; one is entering w, the other is leav-
ing w.

We can assume by symmetry that ewx = e1(x) and ewy = e1(w) (case a.2.0 of
Fig. 21). We apply one of the colorings a.2.1 and a.2.2 of Fig. 21.

We have a case analysis corresponding to whether there are monochromatic cycles
of G′ that are safe.
� Subcase a.2.{0,1,2}: There are safe monochromatic cycles of colors {0,1,2}.

Let C′
0,C

′
1,C

′
2 be safe monochromatic cycles of color 0,1,2 in G′. They pairwise

intersect in G′. Apply the coloring a.2.1 on G. C′
0,C

′
1,C

′
2 still pairwise intersect in G.

So (T2’) is satisfied.
� Subcase a.2.{0,2}: There are safe monochromatic cycles of colors exactly {0,2}.

Let C′
0,C

′
2 be safe monochromatic cycles of color 0,2 in G′. Let C′

1 be a 1-cycle
in G′. Cycles C′

0,C
′
2 still intersect in G. Apply the coloring a.2.1 on G. Depending

on which of the three sectors C′
1 enters, [e2(w), ewx[, [ewx, ewx], or ]ewx, e0(w)],

it is replaced by one of the following three cycles: C1 = C′
1 \ {w} ∪ {u,y}, C1 =

C′
1 \ {w} ∪ {x, v, y}, C1 = C′

1 \ {w} ∪ {v, y}. In any of the three possibilities, C1 still
intersects both C′

0,C
′
2. So (T2’) is satisfied.

� Subcase a.2.{1,2}: There are safe monochromatic cycles of colors exactly {1,2}.
Let C′

1,C
′
2 be safe monochromatic cycles of color 1,2 in G′. Let C′

0 be a 0-cycle
in G′. Cycles C′

1,C
′
2 still intersect in G. Apply the coloring a.2.2 on G. Depending

on which of the two sectors C′
0 enters, [ewy, ewy] or ]ewy, e2(w)], it is replaced by

one of the following two cycles: C0 = C′
0 \ {w} ∪ {y, v}, C0 = C′

0 \ {w} ∪ {u,v}. In
either of the two possibilities, C0 still intersects both C′

1,C
′
2. So (T2’) is satisfied.

� Subcase a.2.{0,1}: There are safe monochromatic cycles of colors exactly {0,1}.
This case is completely symmetric to the case a.2.{1,2}.

� Subcase a.2.{2}: There are safe monochromatic cycles of color 2 only.
Let C′

2 be a safe 2-cycle in G′. Let C′
0,C

′
1 be monochromatic cycles of color 0,1

in G′.
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Apply the coloring a.2.2 on G. Depending on which of the three sectors C′
1 enters,

[e2(w), ewx[, [ewx, ewx], or ]ewx, e0(w)], it is replaced by one of the following three
cycles: C1 = C′

1 \ {w} ∪ {u,y}, C1 = C′
1 \ {w} ∪ {x,u, y}, C1 = C′

1 \ {w} ∪ {v, y}.
Depending on which of the two sectors C′

0 enters, [ewy, ewy] or ]ewy, e2(w)], it is
replaced by one of the following two cycles: C0 = C′

0 \ {w} ∪ {y, v}, C0 = C′
0 \

{w} ∪ {u,v}. In any case, C0 and C1 intersect each other and intersect C′
2. So (T2’)

is satisfied.
� Subcase a.2.{0}: There are safe monochromatic cycles of color 0 only.

This case is completely symmetric to the case a.2.{0}.
� Subcase a.2.{1}: There are safe monochromatic cycles of color 1 only.

Let C′
1 be a safe 1-cycle in G′. Let C′

0,C
′
2 be monochromatic cycles of color 0,2

in G′. Suppose that there exists a path Q′
0 of color 0, from x to w, that does not

intersect C′
1. Suppose also that there exists a path Q′

2 of color 2, from x to w, that
does not intersect C′

1. Let C′′
0 = Q′

0 ∪ {ewx} and C′′
2 = Q′

2 ∪ {ewx}. By Lemma 1,
C′′

0 ,C′
1,C

′′
2 are not contractible. Both of C′′

0 ,C′′
2 do not intersect C′

1, so by Lemma 2,
they are both homotopic to C′

1. Thus, cycles C′′
0 ,C′′

2 are homotopic to each other,
contradicting Lemma 15 (with i = 1,w,x,Q′

0,Q
′
2). So we can assume that one of

Q′
0 or Q′

2 as above does not exist.
By symmetry, suppose that in G′ there does not exist a path of color 0, from x

to w, that does not intersect C′
1. Apply the coloring a.2.1 on G. Depending on which

of the two sectors C′
2 enters, [e1(w), ewy[, [ewy, ewy], it is replaced by one of the

following two cycles: C2 = C′
2 \ {w} ∪ {v,u}, C2 = C′

2 \ {w} ∪ {y,u}. In either of
the two possibilities C2 intersects C′

1. Let C0 be a 0-cycle of G. Cycle C0 has to
contain u or v or both, otherwise it is a safe cycle of G′ of color 0. Vertex v has no
edge entering it in color 0, so C0 does not contain v and so it contains u and x, the
extremity of the edge leaving u in color 0. Thus, C0 intersects C2. Let Q0 be the part
of C0 consisting of the path from x to u. The path Q′

0 = Q0 \ {u} ∪ {w} of G′ is from
x to w, and thus by assumption Q′

0 intersects C′
1. So C0 intersects C′

1 and (T2’) is
satisfied.
� Subcase a.2.{}: There are no safe monochromatic cycles.

Let C′
0,C

′
1,C

′
2 be monochromatic cycles of color 0,1,2 in G′.

Suppose C′
1 is entering w in the sector [e2(w), ewx]. Apply the coloring a.2.1

on G. Cycle C′
1 is replaced by C1 = C′

1 \ {w} ∪ {u,y} or C1 = C′
1 \ {w} ∪ {x, v, y}.

Cycle C′
0 is replaced by C0 = C′

0 \ {w} ∪ {u,x} or C0 = C′
0 \ {w} ∪ {y,u, x}. Cycle

C′
2 is replaced by C2 = C′

2 \ {w} ∪ {v,u} or C2 = C′
2 \ {w} ∪ {y,u}. So C0,C1,C2 all

intersect each other and (T2’) is satisfied.
The case where C′

1 is entering w in the sector [ewx, e0(w)] is completely symmet-
ric, and we apply the coloring a.2.2 on G.
• Cases a.3, a.4, a.5:

The proof is simpler for the remaining cases (cases a.3.0, a.4.0, a.5.0 on Fig. 21).
For each situation, there is only one way to extend the coloring to G in order to pre-
serve (T1’) and this coloring also preserves (T2’). Indeed, in each coloring of G, for
cases a.3.1, a.4.1, a.5.1 on Fig. 21, one can check that every non-safe monochromatic
cycle C′ is replaced by a cycle C with C′ \ {w} ∪ {u} ⊆ C. Thus, all non-safe cycles
intersect on u and a non-safe cycle of color i intersects all safe cycles of colors i − 1
and i + 1. So (T2’) is always satisfied.
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Fig. 26 (a) The graph obtained by contracting the edge e of the graph (b). It is not possible to color and
orient the black edges of (b) to obtain a Schnyder wood

It remains to analyze the situation for the decontraction cases (b) and (c). The
colorings that are needed are represented on Figs. 22 and 23. The proofs are similar
to those for case (a) and we omit them. �

Note that we are not able to prove a lemma analogous to Lemma 14 for Type 2
Schnyder woods. In the example of Fig. 26, it is not possible to decontract the
graph G′ (Fig. 26(a)) and extend its Schnyder wood to G (Fig. 26(b)) without modi-
fying the edges that are not incident to the contracted edge e. Indeed, if we keep the
edges non-incident to e unchanged, there are only two possible ways to extend the
coloring in order to preserve (T1), but none of them fulfills (T2).

9 Existence for Essentially 3-Connected Toroidal Maps

We are given a map G embedded on a surface. The angle map [22] of G is a map
A(G) on this surface whose vertices are the vertices of G plus the vertices of G∗
(i.e., the faces of G), and whose edges are the angles of G, each angle being incident
with the corresponding vertex and face of G. Note that if G contains no homotopic
multiple edges, then every face of G has degree at least three in A(G).

Mohar and Rosenstiehl [23] proved that a map G is essentially 2-connected if and
only if the angle map A of G has no pair of (multiple) edges bounding a disk (i.e.,
no walk of length 2 bounding a disk). As every face in an angle map is a quadrangle,
such a disk contains some vertices of G. The following claim naturally extends this
characterization to essentially 3-connected toroidal maps.

Lemma 17 A toroidal map G is essentially 3-connected if and only if the angle map
A(G) has no walk of length at most 4 bounding a disk which is not a face.
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Proof In G∞ any minimal separator of size 1 or 2, S = {v1} or S = {v1, v2},
corresponds to a separating cycle of length 2 or 4 in A(G∞), C = (v1, f1) or
C = (v1, f1, v2, f2), i.e., a cycle of length at most 4 bounding a disk D which is
not a face.

(�⇒) Any walk in A(G) of length at most 4 bounding a disk which is not a face
lifts to a cycle of length at most 4 bounding a disk which is not a face in A(G∞).
Thus, such a walk implies the existence of a small separator in G∞, contradicting its
3-connectedness.

(⇐�) According to [23], if G is essentially 2-connected, A(G) has no walk of
length 2 bounding a disk. Let us now show that if G is essentially 2-connected but
not essentially 3-connected, A(G) has a walk of length 4 bounding a disk which is
not a face.

If G is essentially 2-connected but not essentially 3-connected, then A(G∞) has
a cycle C of length 4 bounding a disk which is not a face, and this cycle corresponds
to a contractible walk W of length 4 in A(G). Since W is contractible, it contains
a subwalk bounding a disk. A(G) being bipartite, this subwalk has even length, and
since A(G) is essentially 2-connected, it has no such walk of length 2. Thus, W

bounds a disk. Finally, this disk is not a single face, since otherwise C would bound
a single face in A(G∞). �

A non-loop edge e of an essentially 3-connected toroidal map is contractible if
the contraction of e keeps the map essentially 3-connected. We have the following
lemma.

Lemma 18 An essentially 3-connected toroidal map that is not reduced to a single
vertex has a contractible edge.

Proof Let G be an essentially 3-connected toroidal map with at least 2 vertices. Note
that for any non-loop e, the map A(G/e) has no walk of length 2 bounding a disk
which is not a face; otherwise, A(G) contains a walk of length at most 4 bounding a
disk which is not a face and thus, by Lemma 17, G is not essentially 3-connected.

Suppose by contradiction that contracting any non-loop edge e of G yields a non-
essentially 3-connected map G/e. By Lemma 17, it means that the angle map A(G)

has no walk of length at most 4 bounding a disk which is not a face. For any non-
loop e, let W4(e) be the 4-walk of A(G/e) bounding a disk, which is maximal in
terms of the faces it contains. Among all the non-loop edges, let e be the one such that
the number of faces in W4(e) is minimum. Let W4(e) = (v1, f1, v2, f2) and assume
that the endpoints of e, say a and b, are contracted into v2 (see Fig. 27(a)). Note
that, by maximality of W4(e), v1 and v2 do not have any common neighbor f out
of W4(e), such that (v1, f, v2, f1) bounds a disk.

Assume one of f1 or f2 has a neighbor inside W4(e). By symmetry, assume v3
is a vertex inside W4(e) such that there is a face F = (v1, f1, v3, fw) in A(G/e),
with eventually fw = f2. Consider now the contraction of the edge v1v3. Let
P(v1, v3) = (v1, fx, vy, fz, v3) be the path from v1 to v3 corresponding to W4(v1v3)

and P(a, b) = (a, f2, v1, f1, b) the path corresponding to W4(e). Suppose that
fz = f2; then (v1, f2, v3, fw) bounds a face by Lemma 17 and fw has degree two
in A(G), a contradiction. So fz 
= f2.
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Fig. 27 Notation of the proof of Lemma 18

Fig. 28 Notation of the proof
of Lemma 18

Suppose that all the faces of W4(v1v3) are in W4(e). Then with F , W4(e) contains
more faces than W4(v1v3), a contradiction to the choice of e. So in A(G), P(v1, v3)

must cross the path P(a, b). Then vy or fz must intersect P(a, b). Suppose fz 
= f1.
Then vy = a or b. In this case, (v1, fx, v2, f1) bounds a disk, a contradiction. Thus,
fz = f1 and the cycle (v1, fx, vy, f1) bounds a face by Lemma 17. This implies that
W4(v1v3) bounds a face, a contradiction.

Assume now that neither f1 nor f2 has a neighbor inside W4(e). Let f ′
1, f ′

2, f3,
and f ′

3 be vertices of A(G) such that (v1, f1, b, f ′
1), (v1, f2, a, f ′

2), and (a, f3, b, f ′
3)

are faces (see Fig. 28). Suppose f ′
1 = f ′

2 = f ′
3. Then in A(G/e), the face f ′

1 is deleted
(of the two homotopic multiple edges between v1, v2 that are created, only one is
kept in G/e). Then W4(e) bounds a face, a contradiction. Thus, there exists some i

such that f ′
i 
= f ′

i+1. Assume that i = 1 (resp. i = 2 or 3), and let v3 and f ′′ be such
that there is a face (v1, f

′
1, v3, f

′′) in A(G) (resp. (a, f ′
2, v3, f

′′) or (b, f ′
3, v3, f

′′)).
As above, considering the contraction of the edge v1v3 (resp. av3 or bv3) yields a
contradiction. �

100



Discrete Comput Geom (2014) 51:67–131 103

Fig. 29 The two essentially 3-connected toroidal maps on one vertex

Fig. 30 The family of basic toroidal maps, having only Schnyder woods of Type 2

Fig. 31 The brick, an
essentially 3-connected toroidal
map with two vertices

Lemma 18 shows that an essentially 3-connected toroidal map can be contracted
step by step by keeping it essentially 3-connected until a map with just one vertex
is obtained. The two essentially 3-connected toroidal maps on one vertex are repre-
sented on Fig. 29 with a Schnyder wood. The graph of Fig. 29(a), the 3-loops, admits
a Schnyder wood of Type 1, and the graph of Fig. 29(b), the 2-loops, admits a Schny-
der wood of Type 2.

It would be convenient if one could contract any essentially 3-connected toroidal
map to obtain one of the two graphs of Fig. 29 and then decontract the graph to obtain
a Schnyder wood of the original graph. Unfortunately, for Type 2 Schnyder woods
we are not able to prove that property (T2) can be preserved during the decontraction
process (see Sect. 8). Fortunately, most essentially 3-connected toroidal maps admit
Schnyder woods of Type 1. A toroidal map is basic if it consists of a non-contractible
cycle on n vertices, n ≥ 1, plus n homotopic loops (see Fig. 30). We prove in this
section that non-basic essentially 3-connected toroidal maps admit Schnyder woods
of Type 1. For this purpose, instead of contracting these maps to one of the two graphs
of Fig. 29, we contract them to the graph of Fig. 29(a) or to the graph of Fig. 31, the
brick. (One can draw the universal cover of the brick to understand its name.)
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Lemma 19 A non-basic essentially 3-connected toroidal map can be contracted to
the 3-loops (Fig. 29(a)) or to the brick (Fig. 31).

Proof Let us prove the lemma by induction on the number of edges of the map. As
the 3-loop and the brick are the only non-basic essentially 3-connected toroidal maps
with at most 3 edges, the lemma holds for the maps with at most 3 edges. Consider
now a non-basic essentially 3-connected toroidal map G with at least 4 edges. As
G has at least 2 vertices, it has at least one contractible edge by Lemma 18. If G

has a contractible edge e whose contraction yields a non-basic map G′, then by the
induction hypothesis on G′ we are done. Let us prove that such an edge always exists.
We assume, by contradiction, that the contraction of any contractible edge e yields a
basic map G′. Let us denote vi , with 1 ≤ i ≤ n, the vertices of G′ in such a way that
(v1, v2, . . . , vn) is a cycle of G′. We can assume that v1 is the vertex resulting from
the contraction of e. Let u and v be the endpoints of e in G.

Suppose first that u or v is incident to a loop in G. By symmetry, we can assume
that v is incident to a loop and that u is in the cylinder between the loops around
v and vn (note that if n = 1 then vn = v), and note that u is the only vertex here.
Since G is non-basic and u has at least 3 incident edges, 2 of them go to the same
vertex but are non-homotopic. Since after the contraction of e there is only one edge
left in the cylinder, we can deduce that u has at least 2 edges in common with v. On
the other side since G is essentially 3-connected u has an edge e′ with vn. This edge
e′ is contractible, since its contraction yields a graph containing the basic graph on
n vertices. But since this graph has 2 non-homotopic edges linking (uvn) and v, it
is non-basic. So G has a contractible edge whose contraction produces a non-basic
graph, contradicting our assumption.

Suppose now that u and v do not have an incident loop; we thus have that G

contains a cycle C of length 2 containing e. Let e′ be the other edge of C. Since G

is essentially 3-connected, both u and v have at least degree three, and at least one of
them has an incident edge on the left (resp. right) of C. If n = 1, since G has at least 4
edges, there are 2 (non-homotopic) edges, say f1 and f2 between u and v and distinct
from e and e′. In this case, since the cycles (e, f1) and (e, f2) were not homotopic,
the edges f1 and f2 remain non-homotopic in G′. So in this case G has one vertex
and 3 edges, and it is thus non-basic. Assume now that n ≥ 2. In this case, u and
v are contained in a cylinder bordered by the loops at v2 and at vn (with eventually
n = 2). In this case, we can assume that u has at least one incident edge f1 on the
left of C to vn, and that v has at least one incident edge f2 on the right of C to v2.
In this case, one can contract f1 and note that the obtained graph, which contains
at least 3 non-homotopic edges around v (e, e′ and f2), is essentially 3-connected
and non-basic. So G has a contractible edge whose contraction produces a non-basic
graph, contradicting our assumption. �

Lemma 20 A basic toroidal map admits only Schnyder woods of Type 2.

Proof A basic toroidal map admits Schnyder woods of Type 2, as shown by Fig. 30.
Suppose that a basic toroidal map G on n vertices admits a Schnyder wood of Type 1.
Consider one of the vertical loops e and suppose by symmetry that it is oriented
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upward in color 1. In a Schnyder wood of Type 1, all the monochromatic cycles
of different colors are not homotopic; thus, all the loops homotopic to e are also
oriented upward in color 1 and they are not bi-oriented. There remains just a cycle on
n vertices for edges of color 0 and 2. Thus, the Schnyder wood is the one of Fig. 30,
a contradiction. �

We are now able to prove the following theorem.

Theorem 10 A toroidal graph admits a Schnyder wood of Type 1 if and only if it is
an essentially 3-connected non-basic toroidal map.

Proof (�⇒) If G is a toroidal graph given with a Schnyder wood of Type 1, then, by
Lemma 9, G is essentially 3-connected and by Lemma 20, G is not basic.

(⇐�) Let G be a non-basic essentially 3-connected toroidal map. By Lemma 19,
G can be contracted to the 3-loops or to the brick. Both of these graphs admit Schny-
der woods of Type 1 (see Figs. 29(a) and 31). So by Lemma 14 applied successively,
G admits a Schnyder wood of Type 1. �

Theorem 10 and Lemma 20 imply Theorem 1. One related open problem is to
characterize which essentially 3-connected toroidal maps have Schnyder woods of
Type 2.

Here is a remark about how to compute a Schnyder wood for an essentially 3-
connected toroidal triangulation. Instead of looking carefully at the technical proof
of Lemma 14 to determine which coloring of the decontracted graph must be chosen
among the possible choices, one can try the possible cases α.k.�, � ≥ 1, and then
check which obtained coloring is a Schnyder wood. To do so, one just has to check
if (T2’) is satisfied. Checking that (T2’) is satisfied can be done by the following
method: start from any vertex v, walk along P0(v),P1(v),P2(v), and mark the three
monochromatic cycles C0,C1,C2 reached by the three paths Pi . Property (T2’) is
then satisfied if the cycles C0,C1,C2 pairwise intersect.

The existence of Schnyder woods for toroidal triangulations implies the following
theorem.

Theorem 11 A toroidal triangulation contains three non-contractible and non-
homotopic cycles that are pairwise edge-disjoint.

Proof One just has to apply Theorem 10 to obtain a Schnyder wood of Type 1 and
then, for each color i, choose arbitrarily an i-cycle. These cycles are edge-disjoint
as, by Euler’s formula, there are no bi-oriented edges in Schnyder woods of toroidal
triangulations. �

The conclusion of Theorem 11 is weaker than the one of Theorem 8, but it is
not restricted to simple toroidal triangulations. Recall that Theorem 8 is not true for
general toroidal triangulations, as shown by the graph of Fig. 17.

A non-empty family R of linear orders on the vertex set V of a simple graph G is
called a realizer of G if for every edge e, and every vertex x not in e, there is some
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order <i∈ R so that y <i x for every y ∈ e. The dimension [10] of G is defined as
the least positive integer t for which G has a realizer of cardinality t . Realizers are
usually used on finite graphs, but here we allow G to be an infinite simple graph.

Schnyder woods were originally defined by Schnyder [26] to prove that a finite
planar graph G has dimension at most three. A consequence of Theorem 1 is an
analogous result for the universal cover of a toroidal graph.

Theorem 12 The universal cover of a toroidal graph has dimension at most three.

Proof By eventually adding edges to G, we may assume that G is a toroidal trian-
gulation. By Theorem 1, it admits a Schnyder wood. For i ∈ {0,1,2}, let <i be the
order induced by the inclusion of the regions Ri in G∞. That is, u <i v if and only if
Ri(u) � Ri(v). Let <′

i be any linear extension of <i and consider R = {<′
0,<

′
1,<

′
2}.

Let e be any edge of G∞ and v be any vertex of G∞ not in e. Edge e is in a region
Ri(v) for some i; thus, Ri(u) ⊆ Ri(v) for every u ∈ e by Lemma 8(i). As there are
no edges oriented in two directions in a Schnyder wood of a toroidal triangulation,
we have Ri(u) 
= Ri(v) and so u <i v. Thus R is a realizer of G∞. �

10 Orthogonal Surfaces

Given two points u = (u0, u1, u2) and v = (v0, v1, v2) in R3, we note u ∨ v =
(max(ui, vi))i=0,1,2 and u ∧ v = (min(ui, vi))i=0,1,2. We define an order ≥ among
the points in R3, in such a way that u ≥ v if ui ≥ vi for i = 0,1,2.

Given a set V of pairwise incomparable elements in R3, we define the set of ver-
tices that dominates V as DV = {u ∈ R3 | ∃v ∈ V such that u ≥ v}. The orthogonal
surface SV generated by V is the boundary of DV . (Note that orthogonal surfaces
are well defined even when V is an infinite set.) If u,v ∈ V and u ∨ v ∈ SV , then SV
contains the union of the two line segments joining u and v to u ∨ v. Such arcs are
called elbow geodesics. The orthogonal arc of v ∈ V in the direction of the standard
basis vector ei is the intersection of the ray v + λei with SV .

Let G be a planar map. A geodesic embedding of G on the orthogonal surface SV
is a drawing of G on SV satisfying the following:

(D1) There is a bijection between the vertices of G and V .
(D2) Every edge of G is an elbow geodesic.
(D3) Every orthogonal arc in SV is part of an edge of G.
(D4) There are no crossing edges in the embedding of G on SV .

Miller [20] (see also [8, 11]) proved that a geodesic embedding of a planar map
G on an orthogonal surface SV induces a Schnyder wood of G. The edges of G are
colored with the direction of the orthogonal arc contained in the edge. An orthogonal
arc intersecting the ray v + λei corresponds to the edge leaving v in color i. Edges
represented by two orthogonal arcs correspond to edges oriented in two directions.

Conversely, it has been proved that a Schnyder wood of a planar map G can be
used to obtain a geodesic embedding of G. Let G be a planar map given with a
Schnyder wood. The method is the following (see [8] for more details): For every
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vertex v, one can divide G into the three regions bounded by the three monochromatic
paths going out from v. The region vector associated to v is the vector obtained by
counting the number of faces in each of these three regions. The mapping of each
vertex on its region vector gives the geodesic embedding. (Note that in this approach,
the vertices are all mapped on the same plane, as the sum of the coordinates of each
region vector is equal to the total number of inner faces of the map.)

Our goal is to generalize geodesic embedding to the torus. More precisely, we
want to represent the universal cover of a toroidal map on an infinite and periodic
orthogonal surface.

Let G be a toroidal map. Consider any flat torus representation of G in a parallel-
ogram P . The graph G∞ is obtained by replicating P to tile the plane. Given any of
these parallelograms Q, let Qtop (resp. Qright) be the copy of P just above (resp. on
the right of) Q. Given a vertex v in Q, we denote vtop (resp. vright) its copies in Qtop

(resp. Qright).
A mapping of the vertices of G∞ in Rd , d ∈ {2,3}, is periodic with respect to

vectors S and S′ of Rd , if there exists a flat torus representation P of G such that for
any vertex v of G∞, vertex vtop is mapped on v + S and vright is mapped on v + S′.
A geodesic embedding of a toroidal map G is a geodesic embedding of G∞ on SV∞ ,
where V∞ is a periodic mapping of G∞ with respect to two non-collinear vectors
(see example of Fig. 5).

As in the plane, Schnyder woods can be used to obtain geodesic embeddings of
toroidal maps. For that purpose, we need to generalize the region vector method. The
idea is to use the regions Ri(v) to compute the coordinates of the vertex v of G∞.
The problem is that, contrarily to the planar case, these regions are unbounded and
contain an infinite number of faces. The method is thus generalized by the following.

Let G be a toroidal map, given with a Schnyder wood and a flat torus representa-
tion in a parallelogram P .

Recall that Ci = {C0
i , . . . ,C

ki−1
i } denotes the set of i-cycles of G such that there is

no i-cycle in the region R(C
j
i ,C

j+1
i ). Recall that Lj

i denotes the set of i-lines of G∞

corresponding to C
j
i . The positive side of an i-line is defined as the right side while

“walking” along the directed path by following the orientation of the edges colored i.

Lemma 21 For any vertex v, the two monochromatic lines Li−1(v) and Li+1(v)

intersect. Moreover, if the Schnyder wood is of Type 2.i, then Li+1(v) = (Li−1(v))−1

and v is situated on the right of Li+1(v).

Proof Let j, j ′ be such that Li−1(v) ∈ Lj

i−1 and Li+1(v) ∈ Lj ′
i+1. If the Schnyder

wood is of Type 1 or Type 2.j with j 
= i, then the two cycles C
j

i−1 and C
j ′
i+1 are not

homotopic, and so the two lines Li−1(v) and Li+1(v) intersect.
If the Schnyder wood is of Type 2.i, we consider the case where v ∈ Li−1(v), and

the case where v does not belong to either Li−1(v) or Li+1(v). Then v lies between
two consecutive (i + 1)-lines (which are also (i − 1)-lines). Let us denote those two
lines Li+1 and L′

i+1, such that L′
i+1 is situated on the right of Li+1 and v /∈ L′

i+1.
By property (T1), Pi+1(v) and Pi−1(v) cannot reach L′

i+1. Thus, Li+1 = Li+1(v) =
(Li−1(v))−1. �
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The size of the region R(C
j
i ,C

j+1
i ) of G, denoted f

j
i = |R(C

j
i ,C

j+1
i )|, is equal

to the number of faces in R(C
j
i ,C

j+1
i ). Remark that for each color, we have that

∑ki−1
j=0 f

j
i equals the total number of faces f of G. If L and L′ are consecutive i-

lines of G∞ with L ∈ Lj
i and L′ ∈ Lj+1

i , then the size of the (unbounded) region

R(L,L′), denoted |R(L,L′)|, is equal to f
j
i . If L and L′ are any i-lines, the size of

the (unbounded) region R(L,L′), denoted |R(L,L′)|, is equal to the sum of the size
of all the regions delimited by consecutive i-lines inside R(L,L′). For each color i,
choose arbitrarily an i-line L∗

i in L0
i that is used as an origin for i-lines. Given an

i-line L, we define the value fi(L) of L as follows: fi(L) = |R(L,L∗
i )| if L is on the

positive side of L∗
i and fi(L) = −|R(L,L∗

i )| otherwise.
Consider two vertices u,v such that Li−1(u) = Li−1(v) and Li+1(u) = Li+1(v).

Even if the two regions Ri(u) and Ri(v) are unbounded, their difference is bounded.
Let di(u, v) be the number of faces in Ri(u) \ Ri(v) minus the number of faces
in Ri(v) \ Ri(u). For any vertex, by Lemma 21, there exists zi(v), a vertex on the
intersection of the two lines Li−1(v) and Li+1(v). Let N be a constant ≥ n (in this
section we can have N = n, but in Sect. 12 we need to choose N bigger). We are now
able to define the region vector of a vertex of G∞, that is, a mapping of this vertex
in R3.

Definition 4 (Region vector) The i-th coordinate of the region vector of a vertex v

of G∞ is equal to vi = di(v, zi(v)) + N × (fi+1(Li+1(v)) − fi−1(Li−1(v))) (see
Fig. 32).

For each color i, let ci (resp. c′
i ), be the algebraic number of times an i-cycle is

traversing the vertical (resp. horizontal) side of the parallelogram P (which was the
parallelogram containing the flat torus representation of G) from right to left (resp.
from bottom to top). This number increases by one each time a monochromatic cycle
traverses the side in the given direction and decreases by one when it traverses in the
other direction. Let S and S′ be the two vectors of R3 with coordinates Si = N(ci+1 −
ci−1)f and S′

i = N(c′
i+1 − c′

i−1)f . Note that S0 + S1 + S2 = 0 and S′
0 + S′

1 + S′
2 = 0

We use the example of the toroidal map G of Fig. 2 to illustrate the region vec-
tor method. This toroidal map has n = 3 vertices, f = 4 faces, and e = 7 edges. Let
N = n = 3. There are two edges that are oriented in two directions. The Schny-
der wood is of Type 1, with two 1-cycles. We choose as origin the three bold
monochromatic lines of Fig. 33. We give them value 0 and compute the other val-
ues fi(L) as explained formally at the beginning of this section; i.e., we compute
the “number” of faces between L and the origin L∗ and put a minus if we are
on the left of L∗. (This corresponds to values indicated on the border of Fig. 33,
which are values 0,−4,−8,−12 for lines of color 0, values −4,−2,0,2,4 for
lines of color 1, and values 0,4 for lines of color 2.) Then we compute the re-
gion vector of the points according to Definition 4. For example, the point v of
Fig. 33 has the following values (the three points zi(v) are represented on the
figure): v0 = d0(v, z0(v)) + N × (f1(L1(v)) − f2(L2(v))) = 0 + 3(0 − 0) = 0,
v1 = d1(v, z1(v)) + N × (f2(L2(v)) − f0(L0(v))) = 0 + 3(0 − (−4)) = 12, v2 =
d2(v, z2(v)) + N × (f0(L0(v)) − f1(L1(v))) = 1 + 3(−4 − 0) = −11. We compute
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Fig. 32 Coordinate 1 of vertex v is equal to the number of faces in the region d+
1 , minus the number of

faces in the region d−
1 , plus N times (f 0

2 + f 1
2 ) − (−f 0

0 − f 1
0 )

similarly the region vectors of all the vertices that are in the black box represent-
ing one copy of the graph and let V = {(0,0,0), (0,12,−11), (6,12,−18)} be the
set of these vectors. Then we compute the ci ’s and c′

i ’s by algebraically counting
the number of times the monochromatic cycles cross the sides of the black box.
A monochromatic cycle of color 0 goes −1 time from right to left and 2 times
from bottom to top. So c0 = −1 and c′

0 = −2. Similarly, c1 = 0, c′
1 = 1, c2 = 1,

c′
2 = 0. Then we compute Si = N(ci+1 − ci−1)f and S′

i = N(c′
i+1 − c′

i−1)f and
obtain S = (−12,24,−12), S′ = (12,24,−36). Then the region vectors of the ver-
tices of G∞ are {u ∈ R3 | ∃v ∈ V, k1, k2 ∈ Z such that u = v + kS + k′S}. In this
example, the points are not coplanar; they lie on the two different planes of equations
x + y + z = 0 and x + y + z = 1. The geodesic embedding that is obtained by map-
ping each vertex to its region vector is the geodesic embedding of Fig. 5. The black
parallelogram has as sides the vectors S,S′ and represents a basic tile.

Lemma 22 The sum of the coordinates of a vertex v equals the number of faces in
the bounded region delimited by the lines L0(v), L1(v), and L2(v) if the Schnyder
wood is of Type 1, and this sum equals zero if the Schnyder wood is of Type 2.

Proof We have v0 + v1 + v2 = d0(v, z0(v)) + d1(v, z1(v)) + d2(v, z2(v)) =∑
i (|Ri(v) \ Ri(zi(v))| − |Ri(zi(v)) \ Ri(v)|). We use the characteristic function 1

to deal with infinite regions. We note 1(R), the function defined on the faces of
G∞ that has value 1 on each face of region R and 0 elsewhere. Given a function
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Fig. 33 Computation of the region vectors for the Schnyder wood of Fig. 2

g : F(G∞) −→ Z, we note that |g| = ∑
F∈F(G∞) g(F ) (when the sum is finite).

Thus,
∑

i vi = ∑
i (|1(Ri(v)\Ri(zi(v)))|− |1(Ri(zi(v))\Ri(v))|) = |∑i (1(Ri(v)\

Ri(zi(v)))−1(Ri(zi(v))\Ri(v)))|. Now we compute g = ∑
i (1(Ri(v)\Ri(zi(v)))−

1(Ri(zi(v)) \ Ri(v))). We have:

g =
∑

i

(
1
(
Ri(v) \ Ri

(
zi(v)

)) + 1
(
Ri(v) ∩ Ri

(
zi(v)

))

− 1
(
Ri

(
zi(v)

) \ Ri(v)
) − 1

(
Ri(v) ∩ Ri

(
zi(v)

)))

As Ri(v) \ Ri(zi(v)) and Ri(zi(v)) \ Ri(v) are disjoint from Ri(v) ∩ Ri(zi(v)), we
have:

g =
∑

i

(
1
(
Ri(v)

) − 1
(
Ri

(
zi(v)

))) =
∑

i

1
(
Ri(v)

) −
∑

i

1
(
Ri

(
zi(v)

))

Because the interior of the three regions Ri(v), for i = 0,1,2, is disjoint and spans the
whole plane P (by definition), we have

∑
i 1(Ri(v)) = 1(∪i (Ri(v))) = 1(P). More-

over, the regions Ri(zi(v)), for i = 0,1,2, are also disjoint and
∑

i 1(Ri(zi(v))) =
1(∪i (Ri(zi(v)))) = 1(P \ T ), where T is the bounded region delimited by the lines
L0(v), L1(v), and L2(v). So g = 1(P) − 1(P \ T ) = 1(T ). And thus

∑
i vi = |g| =

|1(T )|. �

Lemma 22 shows that if the Schnyder wood is of Type 1, then the set of points
are not necessarily coplanar as in the planar case [12], but all the copies of a vertex
lie on the same plane (the bounded region delimited by the lines L0(v), L1(v) and
L2(v) has the same number of faces for any copies of a vertex v). Surprisingly, for
Schnyder woods of Type 2, all the points are coplanar.
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Lemma 23 The mapping is periodic with respect to S and S′.

Proof Let v be any vertex of G∞. Then v
top
i − vi = N(fi+1(Li+1(v

top)) −
fi+1(Li+1(v))) − N(fi−1(Li−1(v

top)) − fi−1(Li−1(v))) = N(ci+1 − ci−1)f . So
vtop = v + S. Similarly, vright = v + S′. �

For each color i, let γi be the integer such that two monochromatic cycles of G of
respective colors i − 1 and i + 1 intersect exactly γi times, with the convention that
γi = 0 if the Schnyder wood is of Type 2.i. By Lemma 3, γi is properly defined and
does not depend on the choice of the monochromatic cycles. Note that if the Schnyder
wood is of Type 2.i, then γi−1 = γi+1 and if the Schnyder wood is not of Type 2.i, then
γi 
= 0. Let γ = max(γ0, γ1, γ2). Let Z0 = ((γ1 + γ2)Nf,−γ1Nf,−γ2Nf ), Z1 =
(−γ0Nf, (γ0 + γ2)Nf,−γ2Nf ), and Z2 = (−γ0Nf,−γ1Nf, (γ0 + γ1)Nf ).

Lemma 24 For any vertex u, we have {u + k0Z0 + k1Z1 + k2Z2 | k0, k1, k2 ∈ Z} ⊆
{u + kS + k′S′ | k, k′ ∈ Z}.
Proof Let u,v be two copies of the same vertex, such that v is the first copy of u

in the direction of L0(u). (That is, L0(u) = L0(v) and on the path P0(u) \ P0(v)

there are not two copies of the same vertex.) Then vi − ui = N(fi+1(Li+1(v)) −
fi+1(Li+1(u)))−N(fi−1(Li−1(v))−fi−1(Li−1(u))). We have |R(L0(v),L0(u))| =
0, |R(L1(v),L1(u))| = γ2f , and |R(L2(v),L2(u))| = γ1f . So v0 − u0 =
N(γ1 + γ2)f , v1 − u1 = −Nγ1f , and v2 − u2 = −Nγ2f . Thus, v = u + Z0, and
similarly for the other colors. So the first copy of u in the direction of Li(u) is equal
to u+Zi . By Lemma 23, all the copies of u are mapped on {u+kS +k′S′ | k, k′ ∈ Z},
and so we have the result. �

Lemma 25 We have dim(Z0,Z1,Z2) = 2, and if the Schnyder wood is not of
Type 2.i, then dim(Zi−1,Zi+1) = 2.

Proof We have γ0Z0 + γ1Z1 + γ2Z2 = 0 and so dim(Z0,Z1,Z2) ≤ 2. We can as-
sume by symmetry that the Schnyder wood is not of Type 2.1 and so γ1 
= 0. Thus,
Z0 
= 0 and Z2 
= 0. Suppose by contradiction that dim(Z0,Z2) = 1. Then there exist
α 
= 0, β 
= 0, such that αZ0 +βZ2 = 0. The sum of this equation for the coordinates
0 and 2 gives (α + β)γ1 = 0 and thus α = −β . Then the equation for coordinate 0
gives γ0 + γ1 + γ2 = 0, contradicting the fact that γ1 > 1 and γ0, γ2 ≥ 0. �

Lemma 26 The vectors S,S′ are not collinear.

Proof By Lemma 24, the set {u + k0Z0 + k1Z1 + k2Z2 | k0, k1, k2 ∈ Z} is a subset
of {u + kS + k′S′ | k, k′ ∈ Z}. By Lemma 25, we have dim(Z0,Z1,Z2) = 2, thus
dim(S,S′) = 2. �

Lemma 27 If u,v are two distinct vertices such that v is in Li−1(v), u is in Pi−1(v),
both u and v are in the region R(Li+1(u),Li+1(v)), and Li+1(u) and Li+1(v) are
two consecutive (i + 1)-lines with Li+1(u) ∈ Lj

i+1 (see Fig. 34), then di(zi(v), v) +
di(u, zi(u)) < (n − 1) × f

j

i+1.
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Fig. 34 The gray area,
corresponding to the quantity
di (zi (v), v) + di (u, zi (u)), has

size bounded by (n − 1) × f
j
i+1

Proof Let Qi+1(v) the subpath of Pi+1(v) between v and Li+1(v) (maybe Qi+1(v)

has length 0 if v = zi(v)). Let Qi+1(u) be the subpath of Pi+1(u) between u and
Li+1(u) (maybe Qi+1(u) has length 0 if u = zi(u)). The path Qi+1(v) cannot contain
two different copies of a vertex of G, otherwise Qi+1(v) will correspond to a non-
contractible cycle of G and thus will contain an edge of Li+1(v). So the length of
Qi+1(v) is ≤ n − 1.

The total number of times a copy of a given face of G can appear in the region
R = Ri(zi(v)) \ Ri(v), corresponding to di(zi(v), v), can be bounded as follows.
Region R is between two consecutive copies of Li+1(u). So in R, all the copies of
a given face are separated by a copy of Li−1(v). Each copy of Li−1(v) intersecting
R must intersect Qi+1(v) on a specific vertex. As Qi+1(v) has at most n vertices,
a given face can appear at most n − 1 times in R. Similarly, the total number of
times that a copy of a given face of G can appear in the region Ri(u) \ Ri(zi(u)),
corresponding to di(u, zi(u)), is ≤ (n − 1).

A given face of G can appear in only one of the two gray regions of Fig. 34.
So a face is counted ≤ n − 1 times in the quantity di(zi(v), v) + di(u, zi(u)). Only
the faces of the region R(C

j

i+1,C
j+1
i+1 ) can be counted, and there is at least one face

of R(C
j

i+1,C
j+1
i+1 ) (for example, one incident to v) that is not counted. So in total

di(zi(v), v) + di(u, zi(u)) ≤ (n − 1) × (f
j

i+1 − 1) < (n − 1) × f
j

i+1. �

Clearly, the symmetric of Lemma 27, where the roles of i + 1 and i − 1 are ex-
changed, is also true.

The bound of Lemma 27 is somehow sharp. In the example of Fig. 35, the
rectangle represents a toroidal map G and the universal cover is partially repre-
sented. If the map G has n vertices and f faces (n = 5 and f = 5 in the example),
then the gray region, representing the quantity d1(z1(v), v) + d1(u, z1(u)), has size
n(n−1)

2 = Ω(n × f ).

Lemma 28 Let u,v be vertices of G∞ such that Ri(u) ⊆ Ri(v), then ui ≤ vi .
Moreover, if Ri(u) � Ri(v), then vi − ui > (N − n)(|R(Li−1(u),Li−1(v))| +
|R(Li+1(u),Li+1(v))|) ≥ 0.

110



Discrete Comput Geom (2014) 51:67–131 113

Fig. 35 Example of a toroidal map where d1(u, z1(u)) has size Ω(n × f )

Fig. 36 Positions of u and v in the proof of Lemma 28

Proof We distinguish two cases depending on whether the Schnyder wood is of
Type 2.i or not.
• Case 1: The Schnyder wood is not of Type 2.i.

Suppose first that u and v are both in a region delimited by two consecutive lines

of color i−1 and two consecutive lines of color i+1. Let L
j

i−1,L
j+1
i−1 , Lj ′

i+1,L
j ′+1
i+1 be

these lines such that L
j+1
i−1 is on the positive side of L

j

i−1, Lj ′+1
i+1 is on the positive side

of L
j ′
i+1, and L�

k ∈ L�
k (see Fig. 36). We distinguish cases corresponding to equality

or not between lines Li−1(u), Li−1(v) and Li+1(u), Li+1(v).
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� Case 1.1: Li−1(u) = Li−1(v) and Li+1(u) = Li+1(v). Then vi − ui =
di(v, zi(v)) − di(u, zi(u)) = di(v,u). Thus clearly, if Ri(u) ⊆ Ri(v), then ui ≤ vi

and if Ri(u) � Ri(v), vi − ui > 0 = (N − n)(|R(Li−1(u),Li−1(v))| +
|R(Li+1(u),Li+1(v))|).
� Case 1.2: Li−1(u) = Li−1(v) and Li+1(u) 
= Li+1(v). As u ∈ Ri(v), we have

Li+1(u) = L
j ′
i+1 and Li+1(v) = L

j ′+1
i+1 . Then vi − ui = di(v, zi(v)) − di(u, zi(u)) +

N(fi+1(Li+1(v)) − fi+1(Li+1(u))) = di(v, zi(v)) − di(u, zi(u)) + Nf
j ′
i+1. Let u′

be the intersection of Pi+1(u) with L
j+1
i−1 (maybe u = u′). Let v′ be the intersection

of Pi+1(v) with L
j+1
i−1 (maybe v = v′). Since Li+1(u) 
= Li+1(v), we have u′ 
= v′.

Since u ∈ Ri(v), we have u′ ∈ Ri(v
′) and so u′ ∈ Pi−1(v

′). Then, by Lemma 27,

di(zi(v
′), v′)+di(u

′, zi(u
′)) < (n−1)f

j ′
i+1. If Li−1(u) = L

j+1
i−1 , then one can see that

di(v, zi(v)) − di(u, zi(u)) ≥ di(v
′, zi(v

′)) − di(u
′, zi(u

′)). If Li−1(u) = L
j

i−1, one

can see that di(v, zi(v)) − di(u, zi(u)) ≥ di(v
′, zi(v

′)) − di(u
′, zi(u

′)) − f
j ′
i+1. So fi-

nally, vi −ui = di(v, zi(v))−di(u, zi(u))+Nf
j ′
i+1 ≥ di(v

′, zi(v
′))−di(u

′, zi(u
′))+

(N − 1)f
j ′
i+1 > (N − n)f

j ′
i+1 = (N − n)(|R(Li−1(u),Li−1(v))| +

|R(Li+1(u),Li+1(v))|) ≥ 0.
� Case 1.3: Li−1(u) 
= Li−1(v) and Li+1(u) = Li+1(v). This case is completely
symmetric to the previous case.
� Case 1.4: Li−1(u) 
= Li−1(v) and Li+1(u) 
= Li+1(v). As u ∈ Ri(v), we

have Li+1(u) = L
j ′
i+1, Li+1(v) = L

j ′+1
i+1 , Li−1(u) = L

j+1
i−1 , and Li−1(v) = L

j

i−1.
Then vi − ui = di(v, zi(v)) − di(u, zi(u)) + N(fi+1(Li+1(v)) − fi+1(Li+1(u))) −
N(fi−1(Li−1(v)) − fi−1(Li−1(u))) = di(v, zi(v)) − di(u, zi(u)) + Nf

j ′
i+1 + Nf

j

i−1.

Let u′ be the intersection of Pi+1(u) with L
j+1
i−1 (maybe u = u′). Let u′′ be the inter-

section of Pi−1(u) with L
j ′
i+1 (maybe u = u′′). Let v′ be the intersection of Pi+1(v)

with L
j+1
i−1 (maybe v = v′). Let v′′ be the intersection of Pi−1(v) with L

j ′
i+1 (maybe

v = v′′). Since Li+1(u) 
= Li+1(v), we have u′ 
= v′. Since u ∈ Ri(v), we have
u′ ∈ Ri(v

′) and so u′ ∈ Pi−1(v
′). Then, by Lemma 27, di(zi(v

′), v′)+di(u
′, zi(u

′)) <

(n−1)f
j ′
i+1. Symmetrically, di(zi(v

′′), v′′)+di(u
′′, zi(u

′′)) < (n−1)f
j

i−1. Moreover,
we have di(v, zi(v))−di(u, zi(u)) ≥ di(v

′, zi(v
′))−di(u

′, zi(u
′))+di(v

′′, zi(v
′′))−

di(u
′′, zi(u

′′)) − f
j ′
i+1 − f

j

i−1. So finally, vi − ui = di(v, zi(v)) − di(u, zi(u)) +
Nf

j ′
i+1 + Nf

j

i−1 ≥ di(v
′, zi(v

′)) − di(u
′, zi(u

′)) + di(v
′′, zi(v

′′)) − di(u
′′, zi(u

′′)) +
(N − 1)f

j ′
i+1 + (N − 1)f

j

i−1 > (N − n)f
j ′
i+1 + (N − n)f

j

i−1 = (N − n)(|R(Li−1(u),

Li−1(v))| + |R(Li+1(u),Li+1(v))|) ≥ 0.
Suppose now that u and v do not lie in a region delimited by two consecutive lines

of color i − 1 and/or in a region delimited by two consecutive lines of color i + 1.
One can easily find distinct vertices w0, . . . ,wr (wi , 1 ≤ i < r chosen at intersec-
tions of monochromatic lines of colors i − 1 and i + 1) such that w0 = u, wr = v,
and for 0 ≤ � ≤ r −1, we have Ri(w�) � Ri(w�+1) and w�,w�+1 are both in a region
delimited by two consecutive lines of color i − 1 and in a region delimited by two
consecutive lines of color i +1. Thus, by the first part of the proof, (w�)i − (w�+1)i >

(N −n)(|R(Li−1(w�+1),Li−1(w�))|+|R(Li+1(w�+1),Li+1(w�))|). Thus vi −ui >
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(N − n)
∑

�(|R(Li−1(w�+1),Li−1(w�))| + |R(Li+1(w�+1),Li+1(w�))|). For any
a, b, c such that Ri(a) ⊆ Ri(b) ⊆ Ri(c), we have |R(Lj (a),Lj (b))| +
|R(Lj (b),Lj (c))| = |R(Lj (a),Lj (c))|. Thus, we obtain the result by summing the
size of the regions.
• Case 2: The Schnyder wood is of Type 2.i.

Suppose first that u and v are both in a region delimited by two consecutive lines
of color i + 1.

Let L
j

i+1,L
j+1
i+1 be these lines such that L

j+1
i+1 is on the positive side of L

j

i+1, and

L�
i+1 ∈ L�

i+1. We can assume that we do not have both u and v in L
j+1
i+1 (by eventually

choosing other consecutive lines of color i + 1). We consider two cases:
� Case 2.1: v /∈ L

j+1
i+1 . Then by Lemma 21, L

j

i+1 = Li+1(u) = (Li−1(u))−1 =
Li+1(v) = (Li−1(v))−1. Then vi − ui = di(v, zi(v)) − di(u, zi(u)) = di(v,u). Thus
clearly, if Ri(u) ⊆ Ri(v), then ui ≤ vi and if Ri(u) � Ri(v), then vi − ui > 0 =
(N − n)(|R(Li−1(u),Li−1(v))| + |R(Li+1(u),Li+1(v))|).
� Case 2.2: v ∈ L

j+1
i+1 . Then L

j+1
i+1 = Li+1(v) = (Li−1(v))−1 and di(v, zi(v)) = 0.

By assumption u /∈ L
j+1
i+1 and by Lemma 21, L

j

i+1 = Li+1(u) = (Li−1(u))−1.
Then vi − ui = di(v, zi(v)) − di(u, zi(u)) + N(fi+1(Li+1(v)) − fi+1(Li+1(u))) −
N(fi−1(Li−1(v)) − fi−1(Li−1(u))) = −di(u, zi(u)) + 2Nf

j

i+1. Let Li and L′
i

be two consecutive i-lines such that u lies in the region between them and L′
i

is on the right of Li . Let u′ be the intersection of Pi+1(u) with Li (maybe
u = u′). Let u′′ be the intersection of Pi−1(u) with L′

i (maybe u = u′′). Then, by

Lemma 27, di(u
′, zi(u

′)) < (n − 1)f
j

i+1 and di(u
′′, zi(u

′′)) < (n − 1)f
j

i+1. Thus,

we have di(u, zi(u)) ≤ di(u
′, zi(u

′)) + di(u
′′, zi(u

′′)) + f
j

i+1 < (2(n − 1) + 1)f
j

i+1.

So finally, vi − ui > −(2n − 1)f
j

i+1 + 2Nf
j

i+1 > 2(N − n)f
j

i+1 = (N − n) ×
(|R(Li−1(u),Li−1(v))| + |R(Li+1(u),Li+1(v))|) ≥ 0.

If u and v do not lie in a region delimited by two consecutive lines of color i + 1,
then as in case 1, one can find intermediate vertices to obtain the result. �

Lemma 29 If two vertices u,v are adjacent, then for each color i, we have
|vi − ui | ≤ 2Nf .

Proof Since u,v are adjacent, they are both in a region delimited by two con-
secutive lines of color i − 1 and in a region delimited by two consecutive lines
of color i + 1. Let L

j

i−1,L
j+1
i−1 be these two consecutive lines of color i − 1 and

L
j ′
i+1,L

j ′+1
i+1 these two consecutive lines of color i + 1 where L�

k ∈ L�
k , L

j+1
i−1 is on

the positive side of L
j

i−1, and L
j ′+1
i+1 is on the positive side of L

j ′
i+1 (see Fig. 36

when the Schnyder wood is not of Type 2.i). If the Schnyder wood is of Type 2.i,

we assume that L
j+1
i−1 = (L

j ′
i+1)

−1 and L
j

i−1 = (L
j ′+1
i+1 )−1. Let z be a vertex on

the intersection of L
j+1
i−1 and L

j ′
i+1. Let z′ be a vertex on the intersection of L

j

i−1

and L
j ′+1
i+1 . Thus, we have Ri(z) ⊆ Ri(u) ⊆ Ri(z

′) and Ri(z) ⊆ Ri(v) ⊆ Ri(z
′). So by

Lemma 28, zi ≤ ui ≤ z′
i and zi ≤ vi ≤ z′

i . So |vi − ui | ≤ z′
i − zi = N(fi+1(L

j ′+1
i+1 ) −

fi+1(L
j ′
i+1)) − N(fi−1(L

j

i−1) − fi−1(L
j+1
i−1 )) = Nf

j ′
i+1 + Nf

j

i−1 ≤ 2Nf . �
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We are now able to prove the following theorem.

Theorem 13 If G is a toroidal map given with a Schnyder wood, then the mapping
of each vertex of G∞ on its region vector gives a geodesic embedding of G.

Proof By Lemmas 23 and 26, the mapping of G∞ on its region vector is periodic
with respect to S, S′ that are not collinear. For any pair u,v of distinct vertices of G∞,
by Lemma 8(iii), there exists i, j with Ri(u) � Ri(v) and Rj (v) � Rj (u); thus, by
Lemma 28, ui < vi and vj < uj . So V∞ is a set of pairwise incomparable elements
of R3.

(D1) V∞ is a set of pairwise incomparable elements, so the mapping between
vertices of G∞ and V∞ is a bijection.

(D2) Let e = uv be an edge of G∞. We show that w = u∨v is on the surface SV∞ .
By definition, u ∨ v is in DV∞ . Suppose, by contradiction, that w /∈ SV∞ . Then there
exists x ∈ V∞ with x < w. Let x also denote the corresponding vertex of G∞.
Edge e is in a region Ri(x) for some i. So u,v ∈ Ri(x) and thus by Lemma 8(i),
Ri(u) ⊆ Ri(x) and Ri(v) ⊆ Ri(x). Then by Lemma 28, wi = max(ui, vi) ≤ xi ,
a contradiction. Thus, the elbow geodesic between u and v is on the surface.

(D3) Consider a vertex v ∈ V and a color i. Let u be the extremity of the arc ei(v).
We have u ∈ Ri−1(v) and u ∈ Ri+1(v), so by Lemma 8(i), Ri−1(u) ⊆ Ri−1(v) and
Ri+1(u) ⊆ Ri+1(v). Thus, by Lemma 8(iii), Ri(v) � Ri(u). So, by Lemma 28,
vi < ui , ui−1 ≤ vi−1, and ui+1 ≤ vi+1. So the orthogonal arc of vertex v in the direc-
tion of the basis vector ei is part of the elbow geodesic of the edge ei(v).

(D4) Suppose there exists a pair of crossing edges e = uv and e′ = u′v′ on the
surface SV∞ . The two edges e, e′ cannot intersect on orthogonal arcs, so they intersect
on a plane orthogonal to one of the coordinate axes. Up to symmetry we may assume
that we are in the situation of Fig. 37 with u1 = u′

1, u2 > u′
2, and v2 < v′

2. Between
u and u′, there is a path consisting of orthogonal arcs only. With (D3), this implies
that there is a bidirected path P ∗ colored 0 from u to u′ and colored 2 from u′ to u.
We have u ∈ R2(v), so by Lemma 8(i), R2(u) ⊆ R2(v). We have u′ ∈ R2(u), so
u′ ∈ R2(v). If P0(v) contains u′, then there is a contractible cycle containing v,u,u′
in G1 ∪ G−1

0 ∪ G−1
2 , contradicting Lemma 1, so P0(v) does not contain u′. If P1(v)

contains u′, then u′ ∈ P1(u) ∩ P0(u), contradicting Lemma 7. So u′ ∈ R◦
2(v). Thus,

the edge u′v′ implies that v′ ∈ R2(v). So by Lemma 28, v′
2 ≤ v2, a contradiction. �

Theorems 1 and 13 imply Theorem 3.
One can ask: What is the “size” of the obtained geodesic embedding of Theo-

rem 13? Of course, this mapping is infinite so there is no real size, but as the object
is periodic, one can consider the smallest size of the vectors such that the mapping
is periodic with respect to them. There are several such pairs of vectors, one is S,S′.
Recall that Si = N(ci+1 − ci−1)f and S′

i = N(c′
i+1 − c′

i−1)f . Unfortunately, the size
of S,S′ can be arbitrarily large. Indeed, the values of ci+1 − ci−1 and c′

i+1 − c′
i−1 are

unbounded, as a toroidal map can be artificially “very twisted” in the considered flat
torus representation (independent of the number of vertices or faces). Nevertheless,
we can prove the existence of bounded size vectors for which the mapping is periodic
with respect to them.
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Fig. 37 A pair of crossing
elbow geodesics

Lemma 30 If G is a toroidal map given with a Schnyder wood, then the mapping of
each vertex of G∞ on its region vector gives a periodic mapping of G∞ with respect
to non-collinear vectors Y and Y ′, where the size of Y and Y ′ is in O(γNf ). In
general, we have γ ≤ n, and in the case where G is a simple toroidal triangulation
given with a Schnyder wood obtained by Theorem 9, we have γ = 1.

Proof By Lemma 24, the vectors Zi−1,Zi+1 (when the Schnyder wood is not of
Type 2.i) span a subset of S,S′ (it can happen that this subset is strict). Thus, in
the parallelogram delimited by the vectors Zi−1,Zi+1 (that is, a parallelogram by
Lemma 25), there is a parallelogram with sides Y,Y ′ containing a copy of V . The
size of the vectors Zi is in O(γNf ) and so the size of Y and Y ′ is also.

In general, we have γi ≤ n, as each intersection between two monochromatic cy-
cles of G of color i − 1 and i + 1 corresponds to a different vertex of G and thus
γ ≤ n. In the case of simple toroidal triangulation given with a Schnyder wood ob-
tained by Theorem 9, we have, for each color i, γi = 1, and thus γ = 1. �

As in the plane, one can give weights to faces of G. Then all their copies in G∞
have the same weight, and instead of counting the number of faces in each region one
can compute the weighted sum.

Note that the geodesic embeddings of Theorem 13 are not necessarily rigid.
A geodesic embedding is rigid [11, 20] if for every pair u,v ∈ V such that u ∨ v is
in SV , u and v are the only elements of V that are dominated by u ∨ v. The geodesic
embedding of Fig. 5 is not rigid, as the bend corresponding to the loop of color 1 is
dominated by three vertices of G∞. We do not know if it is possible to build a rigid
geodesic embedding from the Schnyder wood of a toroidal map. Maybe a technique
similar to the one presented in [11] can be generalized to the torus.

It has already been mentioned that in the geodesic embeddings of Theorem 13 the
points corresponding to vertices are not coplanar. The problem of building a coplanar
geodesic embedding from the Schnyder wood of a toroidal map is open. In the plane,
there are some examples of maps G [11] for which it is not possible to require both
rigidity and coplanarity. Thus, the same is true in the torus for the graph G+.

Another question related to coplanarity is whether one can require that the points
of the orthogonal surface corresponding to edges of the graph (i.e., bends) are copla-
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nar. This property is related to contact representation by homotopic triangles [11]. It
is known that in the plane, not all Schnyder woods are supported by such surfaces.
Kratochvil’s conjecture [19], recently proved [17], states that every 4-connected pla-
nar triangulation admits a contact representation by homothetic triangles. Can this be
extended to the torus?

When considering not necessarily homothetic triangles, it has been proved [14]
that there is a bijection between Schnyder woods of planar triangulations and con-
tact representations by triangles. This result has been generalized to internally 3-
connected planar maps [16] by exhibiting a bijection between Schnyder woods of
internally 3-connected planar maps and primal-dual contact representations by tri-
angles (i.e., representations where both the primal and the dual are represented). It
would be interesting to generalize these results to the torus.

11 Duality of Orthogonal Surfaces

Given an orthogonal surface generated by V , let FV be the maximal points of SV ,
i.e., the points of SV that are not dominated by any vertex of SV . If A,B ∈ FV and
A ∧ B ∈ SV , then SV contains the union of the two line segments joining A and B

to A ∧ B . Such arcs are called dual elbow geodesics. The dual orthogonal arc of
A ∈ FV in the direction of the standard basis vector ei is the intersection of the ray
A + λei with SV .

Given a toroidal map G, let G∞∗ be the dual of G∞. A dual geodesic embedding
of G is a drawing of G∞∗ on the orthogonal surface SV∞ , where V∞ is a periodic
mapping of G∞ with respect to two non-collinear vectors, satisfying the following
(see the example of Fig. 38):

(D1*) There is a bijection between the vertices of G∞∗ and FV∞ .
(D2*) Every edge of G∞∗ is a dual elbow geodesic.
(D3*) Every dual orthogonal arc in SV∞ is part of an edge of G∞∗.
(D4*) There are no crossing edges in the embedding of G∞∗ on SV∞ .

Let G be a toroidal map given with a Schnyder wood. Consider the mapping of
each vertex on its region vector. We consider the dual of the Schnyder wood of G.
By Lemma 11, it is a Schnyder wood of G∗. A face F of G∞ is mapped on the point∨

v∈F v. Let G̃∞ be a simultaneous drawing of G∞ and G∞∗ such that only dual
edges intersect. To avoid confusion, we denote Ri the regions of the primal Schnyder
wood and R∗

i the regions of the dual Schnyder wood.

Lemma 31 For any face F of G∞, we have that
∨

v∈F v is a maximal point of SV∞ .

Proof Let F be a face of G∞. For any vertex u of V∞, there exists a color i, such that
the face F is in the region Ri(u). Thus for v ∈ F , we have v ∈ Ri(u). By Lemma 28,
we have vi ≤ ui and so Fi ≤ ui . So F = ∨

v∈F v is a point of SV∞ .
Suppose, by contradiction, that F is not a maximal point of SV∞ . Then there is a

point α ∈ SV∞ that dominates F and, for at least one coordinate j , we have Fj < αj .
By Lemma 10, the angles at F form, in counterclockwise order, non-empty intervals
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Fig. 38 Dual geodesic embedding of the toroidal map of Fig. 2

of 0’s, 1’s, and 2’s. For each color, let zi be a vertex of F with angle i. We have that
F is in the region Ri(z

i). So zi−1 ∈ Ri(z
i) and by Lemma 8(i), we have Ri(z

i−1) ⊆
Ri(z

i). Since F is in Ri−1(z
i−1), it is not in Ri(z

i−1) and thus Ri(z
i−1) � Ri(z

i).
Then by Lemma 28, we have (zi−1)i < (zi)i and symmetrically (zi+1)i < (zi)i . So
Fj−1 = (zj−1)j−1 > (zj )j−1 and Fj+1 > (zj )j+1. Thus, α strictly dominates zj ,
a contradiction to α ∈ SV∞ . Thus, F is a maximal point of SV∞ . �

Lemma 32 If two faces A,B are such that R∗
i (B) ⊆ R∗

i (A), then Ai ≤ Bi .

Proof Let v ∈ B be a vertex whose angle at B is labeled i. We have v ∈ R∗
i (B) and

so v ∈ R∗
i (A). In G̃∞, the path Pi(v) cannot leave R∗

i (A), the path Pi+1(v) cannot
intersect Pi+1(A), and the path Pi−1(v) cannot intersect Pi−1(A). Thus, Pi+1(v)

intersects Pi−1(A) and the path Pi−1(v) cannot intersect Pi+1(A). So A ∈ Ri(v).
Thus, for all u ∈ A, we have u ∈ Ri(v), so Ri(u) ⊆ Ri(v), and so ui ≤ vi . Then
Ai = maxu∈A ui ≤ vi ≤ maxw∈B wi = Bi . �

Theorem 14 If G is a toroidal map given with a Schnyder wood and each vertex of
G∞ is mapped on its region vector, then the mapping of each face of G∞∗ on the
point

∨
v∈F v gives a dual geodesic embedding of G.

Proof By Lemmas 23 and 26, the mapping is periodic with respect to non-collinear
vectors.

(D1*) Consider a counting of elements on the orthogonal surface, where we count
two copies of the same object just once (note that we are on an infinite and periodic
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object). We have that the sum of primal orthogonal arcs plus dual ones is exactly 3m.
There are 3n primal orthogonal arcs and thus there are 3m−3n = 3f dual orthogonal
arcs. Each maximal point of SV∞ is incident to 3 dual orthogonal arcs and there is no
dual orthogonal arc incident to two distinct maximal points. So there are f maximal
points. Thus by Lemma 31, we have a bijection between faces of G∞ and maximal
points of SV∞ .

Let V∞∗ be the maximal points of SV∞ . Let D∗
V∞ ={A ∈ R3 | ∃B ∈ V∞∗ such that

A ≤ B}. Note that the boundary of D∗
V∞ is SV∞ .

(D2*) Let e = AB be an edge of G∞∗. We show that w = A ∧ B is on the sur-
face SV∞ . By definition, w is in D∗

V∞ . Suppose, by contradiction, that w /∈ SV∞ . Then
there exists C, a maximal point of SV∞ with w < C. By the bijection (D1*) between
maximal points and vertices of G∞∗, the point C corresponds to a vertex of G∞∗,
also denoted C. Edge e is in a region R∗

i (C) for some i. So A,B ∈ R∗
i (C) and thus,

by Lemma 8(i), R∗
i (A) ⊆ R∗

i (C) and R∗
i (B) ⊆ R∗

i (C). Then by Lemma 32, we have
Ci ≤ min(Ai,Bi) = wi , a contradiction. Thus, the dual elbow geodesic between A

and B is also on the surface.
(D3*) Consider a vertex A of G∞∗ and a color i. Let B be the extremity

of the arc ei(A). We have B ∈ R∗
i−1(A) and B ∈ R∗

i+1(A), so by Lemma 8(i),
R∗

i−1(B) ⊆ R∗
i−1(A) and R∗

i+1(B) ⊆ R∗
i+1(A). Thus by Lemma 32, Ai−1 ≤ Bi−1

and Ai+1 ≤ Bi+1. As A and B are distinct maximal points of SV∞ , they are incom-
parable, and thus Bi < Ai . So the dual orthogonal arc of vertex A in the direction of
the basis vector ei is part of edge ei(A).

(D4*) Suppose there exists a pair of crossing edges e = AB and e′ = A′B ′ of G∞∗
on the surface SV∞ . The two edges e, e′ cannot intersect on orthogonal arcs, so they
intersect on a plane orthogonal to one of the coordinate axes. Up to symmetry we
may assume that we are in the situation A1 = A′

1, A′
0 > A0, and B ′

0 < B0. Between
A and A′ there is a path consisting of orthogonal arcs only. With (D3*), this implies
that there is a bidirected path P ∗ colored 2 from A to A′ and colored 0 from A′ to A.
We have A ∈ R0(B), so by Lemma 8(i), R0(A) ⊆ R0(B). We have A′ ∈ R0(A), so
A′ ∈ R0(B). If P2(B) contains A′, then there is a contractible cycle containing A,
A′, B in G∗

1 ∪ G∗−1
0 ∪ G∗−1

2 , contradicting Lemma 1, so P2(B) does not contain A′.
If P1(B) contains A′, then A′ ∈ P1(A) ∩ P2(A), contradicting Lemma 7. So A′ ∈
R◦

0(B). Thus, the edge A′B ′ implies that B ′ ∈ R0(B). So by Lemma 32, B ′
0 ≥ B0,

a contradiction. �

Theorems 13 and 14 can be combined to obtain a simultaneous representation of
a Schnyder wood and its dual on an orthogonal surface. The projection of this 3-
dimensional object on the plane of the equation x + y + z = 0 gives a representation
of the primal and the dual where edges are allowed to have one bend and two dual
edges have to cross on their bends (see the example of Fig. 39).

Theorem 15 An essentially 3-connected toroidal map admits a simultaneous flat
torus representation of the primal and the dual where edges are allowed to have
one bend and two dual edges have to cross on their bends. Such a representation is
contained in a (triangular) grid of size O(n2f ) × O(n2f ) in general and O(nf ) ×
O(nf ) if the map is a simple triangulation. Furthermore, the length of the edges are
in O(nf ).
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Fig. 39 Simultaneous
representation of the primal and
the dual of the toroidal map of
Fig. 2 with edges having one
bend (in gray)

Proof Let G be an essentially 3-connected toroidal map. By Theorem 1 (or Theo-
rem 9 if G is a simple triangulation), G admits a Schnyder wood (where monochro-
matic cycles of different colors intersect just once if G is simple). By Theorems 13
and 14, the mapping of each vertex of G∞ on its region vector gives a primal and
dual geodesic embedding. Thus, the projection of this embedding on the plane of the
equation x +y +z = 0 gives a representation of the primal and the dual of G∞ where
edges are allowed to have one bend and two dual edges have to cross on their bends.

By Lemma 30, the obtained mapping is a periodic mapping of G∞ with respect to
non-collinear vectors Y and Y ′ where the size of Y and Y ′ is in O(γNf ), with γ ≤ n

in general and γ = 1 in case of a simple triangulation. Let N = n. The embedding
gives a representation in the flat torus of sides Y,Y ′ where the size of the vectors Y

and Y ′ is in O(n2f ) in general and in O(nf ) if the graph is simple and the Schnyder
wood is obtained by Theorem 9. By Lemma 29, the lengths of the edges in this
representation are in O(nf ). �

12 Straight-Line Representation of Toroidal Maps

The geodesic embedding obtained by the region vector method can be used to obtain
a straight-line representation of a toroidal map (see Fig. 40). For this purpose, we
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Fig. 40 Straight-line
representation of the graph of
Fig. 2 obtained by projecting the
geodesic embedding of Fig. 5

have to choose N bigger than previously. Note that Fig. 40 is the projection of the
geodesic embedding of Fig. 5 obtained with the value of N = n. In this particular
case this gives a straight-line representation, but in this section we only prove that
such a technique works for triangulations and for N sufficiently large. To obtain a
straight-line representation of a general toroidal map, one first has to triangulate it.

Let G be a toroidal triangulation given with a Schnyder wood and V ∞ the set of
region vectors of vertices of G∞. The Schnyder wood is of Type 1 by Theorem 7.
Recall that γi is the integer such that two monochromatic cycles of G of colors i − 1
and i + 1 intersect exactly γi times.

Lemma 33 For any vertex v, the number of faces in the bounded region delimited by
the three lines Li(v) is strictly less than (5 min(γi) + max(γi))f .

Proof Suppose by symmetry that min(γi) = γ1. Let Li = Li(v) and zi = zi(v). Let T

be the bounded region delimited by the three monochromatic lines Li . The boundary
of T is a cycle C oriented clockwise or counterclockwise. Assume that C is oriented
counterclockwise (the proof is similar if oriented clockwise). The region T is on the
left sides of the lines Li . We have zi−1 ∈ Pi(zi+1).

We define, for j, k ∈ N, monochromatic lines L2(j), L0(k) and vertices z(j, k) as
follows (see Fig. 41). Let L2(1) be the first 2-line intersecting L0 \ {z1} while walk-
ing from z1, along L0 in the direction of L0. Let L0(1) be the first 0-line of color 0
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Fig. 41 Notation of the proof of Lemma 33

intersecting L2 \ {z1} while walking from z1, along L2 in the reverse direction of L2.
Let z(1,1) be the intersection between L2(1) and L0(1). Let z(j,1), j ≥ 0, be the
consecutive copies of z(1,1) along L0(1) such that z(j + 1,1) is after z(j,1) in the
direction of L0(1). Let L2(j), j ≥ 0, be the 2-line of color 2 containing z(j,1). Note
that we may have L2 = L2(0), but in any case L2 is between L2(0) and L2(1). Let
z(j, k), k ≥ 0, be the consecutive copies of z(j,1) along L2(j) such that z(j, k+1) is
after z(j, k) in the reverse direction of L2(j). Let L0(k), k ≥ 0, be the 0-line contain-
ing z(1, k). Note that we may have L0 = L0(0), but in any case L0 is between L0(0)

and L0(1). Let S(j, k) be the region delimited by L2(j),L2(j +1),L0(k),L0(k+1).
All the regions S(j, k) are copies of S(0,0). The region S(0,0) may contain several
copies of a face of G, but the number of copies of a face in S(0,0) is equal to γ1. Let
R be the unbounded region situated on the right of L0(1) and on the right of L2(1). As
P0(v) cannot intersect L0(1) and P2(v) cannot intersect L2(1), vertex v is in R. Let
P(j, k) be the subpath of L0(k) between z(j, k) and z(j + 1, k). All the lines L0(k)

are composed only of copies of P(0,0). The interior vertices of the path P(0,0) can-
not contains two copies of the same vertex, otherwise there will be a vertex z(j, k)

between z(0,0) and z(1,0). Thus, all interior vertices of a path P(j, k) correspond
to distinct vertices of G.

The Schnyder wood is of Type 1, thus 1-lines are crossing 0-lines. As a line L0(k)

is composed only of copies of P(0,0), any path P(j, k) is crossed by a 1-line. Let

121



124 Discrete Comput Geom (2014) 51:67–131

L′
1 be the first 1-line crossing P(1,1) on a vertex x while walking from z(1,1)

along L0(1). By (T1), line L′
1 is not intersecting R \ {z(1,1)}. As v ∈ R, we have

that L1 is on the left of L′
1 (maybe L1 = L′

1). Thus, the region T is included in the
region T ′ delimited by L0,L

′
1,L2.

Let y be the vertex where L′
1 is leaving S(1,1). We claim that y ∈ L2(1). Note that

by (T1), we have y ∈ L2(1)∪P(1,2). Suppose, by contradiction, that y is an interior
vertex of P(1,2). Let dx be the length of the subpath of P(1,1) between z(1,1)

and x. Let dy be the length of the subpath of P(1,2) between z(1,2) and y. Suppose
dy < dx ; then there should be a distinct copy of L′

1 intersecting P(1,1) between
z(1,1) and x on a copy of y, a contradiction to the choice of L′

1. So dx ≤ dy . Let A

be the subpath of L′
1 between x and y. Let B be the subpath of P(1,1) between x

and the copy of y (if dx = dy , then B is just a single vertex). Consider all the copies
of A and B between lines L2(1) and L2(2). They form an infinite line L situated on
the right of L2(1) that prevents L′

1 from crossing L2(1), a contradiction.
By the positions of x and y, we have that L′

1 intersects S(0,1) and S(1,0). We
claim that L′

1 cannot intersect both S(0,3) and S(3,0). Suppose by contradiction that
L′

1 intersects both S(0,3) and S(3,0). Then L′
1 is crossing S(0,2) without crossing

L2(0) or L2(1). Similarly, L′
1 is crossing S(2,0) without crossing L0(0) or L0(1).

Thus, by superposing what happens in S(0,2) and S(2,0) in a square S(j, k), we
have that there are two crossing 1-lines, a contradiction. Thus, L′

1 intersects at most
one of S(0,3) and S(3,0).

Suppose that L′
1 does not intersect S(3,0). Then the part of T ′ situated right of

L0(2) (the left part of Fig. 41) is strictly included in (S(0,0) ∪ S(1,0) ∪ S(2,0) ∪
S(0,1) ∪ S(1,1)). Thus, this part of T ′ contains at most 5γ1f faces. Now consider
the part of T ′ situated on the left of L0(2) (the right part of Fig. 41). Let y′ be the
intersection of L′

1 with L2. Let Q be the subpath of L′
1 between y and y′. By the

definition of L2(1), there are no 2-lines between L2 and L2(1). So Q cannot intersect
a 2-line on one of its interior vertices. Thus, Q is crossing at most γ2 consecutive 0-
lines (that are not necessarily lines of type L0(k)). Let L′

0 be the γ2 +1-th consecutive
0-line that is on the left of L0(2) (counting L0(2)). Then the part of T ′ situated on the
left of L0(2) is strictly included in the region delimited by L0(2),L′

0,L2,L2(1), and
thus contains at most γ2 copies of a face of G. Thus, T ′ contains at most (γ2 + 5γ1)f

faces.
Symmetrically, if L′

1 does not intersect S(0,3) we have that T ′ contains at most
(γ0 + 5γ1)f faces. Then in any case, T ′ contains at most (max(γ0, γ2)+ 5γ1)f faces
and the lemma is true. �

The bound of Lemma 33 is somehow sharp. In the example of Fig. 42, the rect-
angle represents a toroidal triangulation G and the universal cover is partially repre-
sented. For each value of k ≥ 0, there is a toroidal triangulation G with n = 4(k + 1)

vertices, where the gray region, representing the region delimited by the three
monochromatic lines Li(v), contains 4

∑2k+1
j=1 +3(2k + 2) = Ω(n × f ) faces. Fig-

ure 42 represents such a triangulation for k = 2.
For planar graphs the region vector method gives vertices that all lie on the same

plane. This property is very helpful in proving that the positions of the points on
P give straight-line representations. In the torus, things are more complicated, as
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Fig. 42 Example of a toroidal
triangulation where the number
of faces in the region delimited
by the three monochromatic
lines Li(v) contains Ω(n × f )

faces

our generalization of the region vector method does not give coplanar points. But
Lemmas 22 and 33 show that all the points lie in the region situated between the two
planes of equations x+y+z = 0 and x+y+z = t , with t = (5 min(γi)+max(γi))f .
Note that t is bounded by 6nf by Lemma 30 and this is independent from N . Thus,
from “far away” it looks like the points are coplanar and by taking N sufficiently
large, non-coplanar points are “far enough” from each other to enable the region
vector method to give straight-line representations.

Let N = t + n.

Lemma 34 Let u,v be two vertices such that ei−1(v) = uv, Li = Li(u) = Li(v),
and such that both u, v are in the region R(Li,L

′
i ) for L′

i an i-line consecutive to Li .
Then vi+1 − ui+1 < |R(Li,L

′
i )| and ei−1(v) is going counterclockwise around the

closed disk bounded by {ei−1(v)} ∪ Pi(u) ∪ Pi(v).

Proof Let y be the first vertex of Pi(v) that is also in Pi(u). Let Qu (resp. Qv) be
the part of Pi(u) (resp. Pi(v)) between u (resp. v) and y.

Let D be the closed disk bounded by the cycle C = (Qv)
−1 ∪ {ei−1(v)} ∪ Qu.

If C is going clockwise around D, then Pi+1(v) is leaving v in D and thus has to
intersect Qu or Qv . In both cases, there is a cycle in Gi+1 ∪ (Gi)

−1 ∪ (Gi−1)
−1,

a contradiction to Lemma 6. So C is going clockwise around D.
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Fig. 43 (a) Case 1 and (b) case 2 of the proof of Lemma 35

As Li(u) = Li(v) and Li−1(u) = Li−1(v), we have vi+1 − ui+1 = di+1(v,u),
and this is equal to the number of faces in D. We have D � R(Li,L

′
i ). Suppose D

contains two copies of a given face. Then, these two copies are on different sides of a
1-line. By property (T1), it is not possible to have a 1-line entering D. So D contains
at most one copy of each face of R(Li,L

′
i ). �

Lemma 35 For any face F of G∞, incident to vertices u,v,w (given in counterclock-
wise order around F ), the cross product −→vw ∧ −→vu has strictly positive coordinates.

Proof Consider the angle labeling corresponding to the Schnyder wood. By
Lemma 10, the angles at F are labeled in counterclockwise order 0,1,2. As−→uv ∧ −→uw = −→vw ∧ −→vu = −→wu ∧ −→wv, we may assume that u,v,w are such that u is
in the angle labeled 0, vertex v in the angle labeled 1, and vertex w in the angle
labeled 2. The face F is either a cycle completely directed into one direction or it has
two edges oriented in one direction and one edge oriented in the other. Let

−→
X = −→vw ∧ −→vu =

⎛

⎝
(w1 − v1)(u2 − v2) − (w2 − v2)(u1 − v1)

−(w0 − v0)(u2 − v2) + (w2 − v2)(u0 − v0)

(w0 − v0)(u1 − v1) − (w1 − v1)(u0 − v0)

⎞

⎠

By symmetry, we consider the following two cases:
• Case 1: The edges of the face F are in counterclockwise order e1(u), e2(v), e0(w)

(see Fig. 43(a)).
We have v ∈ P1(u), so v ∈ R0(u) ∩ R2(u) and u ∈ R◦

1(v) (as there are no edges
oriented in two directions). By Lemma 8, we have R0(v) ⊆ R0(u), R2(v) ⊆ R2(u),
and R1(u) � R1(v). In fact, the first two inclusions are strict as u /∈ R0(v) ∪ R2(v).
So by Lemma 28, we have v0 < u0, v2 < u2, u1 < v1. We can prove similar in-
equalities for the other pairs of vertices and we obtain w0 < v0 < u0, u1 < w1 < v1,
v2 < u2 < w2. By just studying the signs of the different terms occurring in the
values of the coordinates of

−→
X , it is clear that

−→
X has strictly positive coordi-

nates. (For the first coordinates, it is easier if written in the following form: X0 =
(u1 − w1)(v2 − w2) − (u2 − w2)(v1 − w1).)
• Case 2: The edges of the face F are in counterclockwise order e0(v), e2(v), e0(w)

(see Fig. 43(b)).
As in the previous case, one can easily obtain the following inequalities: w0 <

v0 < u0, u1 < w1 < v1, u2 < v2 < w2 (the only difference with case 1 is between u2
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and v2). Exactly as in the previous case, it is clear that X0 and X2 are strictly positive.
But there is no way to reformulate X1 to have a similar proof. Let A = w2 − v2,
B = u0 − v0, C = v0 −w0, and D = v2 −u2, so X1 = AB −CD and A,B,C,D are
all strictly positive.

Vertices u,v,w are in the region R(L1,L
′
1) for L′

1 a 1-line consecutive to L1. We
consider two cases depending on equality or not between L1(u) and L1(v).
� Subcase 2.1: L1(u) = L1(v).

We have X1 = A(B − D) + D(A − C).
We have B − D = (u0 + u2) − (v0 + v2) = (v1 − u1) + (

∑
ui − ∑

vi).
Since u ∈ P0(v), we have L0(u) = L0(v). Suppose that L2(u) = L2(v); then by
Lemma 22, we have

∑
ui = ∑

vi , and thus B − D = v1 − u1 > 0. Suppose now
that L2(u) 
= L2(v). By Lemmas 22 and 33,

∑
ui − ∑

vi > −t . By Lemma 28,
v1 − u1 > (N − n)|R(L2(u),L2(v))| ≥ N − n. So B − D > N − n − t ≥ 0.

We have A−C = (w0 +w2)− (v0 +v2) = (v1 −w1)+ (
∑

wi −∑
vi) >

∑
wi −∑

vi . Suppose that L1(v) = L1(w); then by Lemma 22, we have
∑

vi = ∑
wi and

thus A − C = v1 − w1 > 0. Then X1 > 0. Suppose now that L1(v) 
= L1(w). By
Lemma 34, D = v2 − u2 < |R(L1,L

′
1)|. By Lemma 28, A = w2 − v2 > (N − n) ×

|R(L1,L
′
1)|. By Lemmas 22 and 33,

∑
wi − ∑

vi > −t , so A − C > −t . Then
X1 > (N − n − t)|R(L1,L

′
1)| > 0.

� Subcase 2.2: L1(u) 
= L1(v).
We have X1 = B(A − C) + C(B − D).
Suppose that L1(w) 
= L1(v). Then L1(w) = L1(u). By Lemma 34 e0(w) is going

counterclockwise around the closed disk D bounded by {e0(w)} ∪ P1(w) ∪ P1(u).
Then v is inside D and P1(v) has to intersect P1(w) ∪ P1(u), so L1(v) = L1(u),
contradicting our assumption. So L1(v) = L1(w).

By Lemma 28, B = u0 − v0 > (N − n)|R(L1,L
′
1)|. We have A − C =

(w0 + w2) − (v0 + v2) = (v1 − w1) + (
∑

wi − ∑
vi). By Lemma 22, we have∑

vi = ∑
wi and thus A − C = v1 − w1 > 0. By (the symmetric of) Lemma 34,

C = v0 −w0 < |R(L1,L
′
1)|. By Lemmas 22 and 33, B −D = (u0 +u2)−(v0 +v2) =

(v1 − u1) + (
∑

ui − ∑
vi) > −t . So X1 > (N − n − t)|R(L1,L

′
1)| > 0. �

Let G be an essentially 3-connected toroidal map. Consider a periodic map-
ping of G∞, embedded graph H (finite or infinite), and a face F of H . Denote
(f1, f2, . . . , ft ) the counterclockwise facial walk around F . Given a mapping of
the vertices of H in R2, we say that F is correctly oriented if for any triplet
1 ≤ i1 < i2 < i3 ≤ t , the points fi1 , fi2 , and fi3 form a counterclockwise triangle.
Note that a correctly oriented face is drawn as a convex polygon.

Lemma 36 Let G be an essentially 3-connected toroidal map given with a periodic
mapping of G∞ such that every face of G∞ is correctly oriented. This mapping gives
a straight-line representation of G∞.

Proof We proceed by induction on the number of vertices n of G. Note that the
theorem holds for n = 1, so we assume that n > 1. Given any vertex v of G,
let (u0, u1, . . . , ud−1) be the sequence of its neighbors in counterclockwise order
(subscript understood modulo d). Every face being correctly oriented, for every
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i ∈ [0, d − 1] the oriented angle (oriented counterclockwise) (−→vui,
−−−→vui+1) < π . Let

the winding number kv of v be the integer such that 2kvπ = ∑
i∈[0,d−1](−→vui,

−−−→vui+1).
It is clear that kv ≥ 1. Let us prove that kv = 1 for every vertex v.

Claim 4 For any vertex v, its winding number kv = 1.

Proof of Claim 4 In a flat torus representation of G, we can sum up all the angles by
grouping them around the vertices or around the faces.

∑

v∈V (G)

∑

ui∈N(v)

(−→vui,
−−−→vui+1) =

∑

F∈F(G)

∑

fi∈F

(
−−−→
fifi−1,

−−−→
fifi+1)

The faces being correctly oriented, they form convex polygons. Thus, the angles of a
face F sum at (|F | − 2)π .

∑

v∈V (G)

2kvπ =
∑

F∈F(G)

(|F | − 2)π

∑

v∈V (G)

kv = 1

2

∑

F∈F(G)

|F | − f

∑

v∈V (G)

kv = m − f

So by Euler’s formula
∑

v∈V (G) kv = n, and thus kv = 1 for every vertex v. This
proves Claim 4. �

Let v be a vertex of G that minimizes the number of loops whose ends are on v.
Thus, either v has no incident loop, or every vertex is incident to at least one loop.

Assume that v has no incident loop. Let v′ be any copy of v in G∞ and de-
note its neighbors (u0, u1, . . . , ud−1) in counterclockwise order. As kv = 1, the points
u0, u1, . . . , ud−1 form a polygon P containing the point v′ and the segments [v′, ui]
for any i ∈ [0, d − 1]. It is well known that any polygon admits a partition into tri-
angles by adding some of the chords. Let us call O the outerplanar graph with outer
boundary (u0, u1, . . . , ud−1), obtained by this “triangulation” of P . Let us now con-
sider the toroidal map G′ = (G \ {v}) ∪ O and its periodic embedding obtained from
the mapping of G∞ by removing the copies of v. It is easy to see that in this em-
bedding every face of G′ is correctly oriented (including the inner faces of O , or the
faces of G that have been shortened by an edge uiui+1). Thus by the induction hy-
pothesis, the mapping gives a straight-line representation of G′∞. It is also a straight-
line representation of G∞ minus the copies of v where the interiors of each copy of
the polygons P are pairwise disjoint and do not intersect any vertex or edge. Thus,
one can add the copies of v on their initial positions and add the edges with their
neighbors without intersecting any edge. The obtained drawing is thus a straight-line
representation of G∞.

Assume now that every vertex is incident to at least one loop. Since these loops
are non-contractible and do not cross each other, they form homothetic cycles. Thus,
G is as depicted in Fig. 44, where the dotted segments stand for edges that may be
in G but not necessarily. Since the mapping is periodic, the edges corresponding to
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Fig. 44 The graph G if every
vertex is incident to a loop

loops of G form several parallel lines, cutting the plane into infinite strips. Since for
any 1 ≤ i ≤ n, kvi

= 1, a line of copies of vi divides the plane, in such a way that their
neighbors which are copies of vi−1 and their neighbors which are copies of vi+1 are
in distinct half-planes. Thus, adjacent copies of vi and vi+1 are on two lines bounding
a strip. Then one can see that the edges between copies of vi and vi+1 are contained
in this strip without intersecting each other. Thus, the obtained mapping of G∞ is a
straight-line representation. �

A plane is positive if it has equation αx + βy + γ z = 0 with α,β, γ ≥ 0.

Theorem 16 If G is a toroidal triangulation given with a Schnyder wood, and V ∞
the set of region vectors of vertices of G∞, then the projection of V ∞ on a positive
plane gives a straight-line representation of G∞.

Proof Let α,β, γ ≥ 0 and consider the projection of V ∞ on the plane P of the
equation αx + βy + γ z = 0. A normal vector of the plane is given by the vector−→n = (α,β, γ ). Consider a face F of G∞. Suppose that F is incident to vertices
u,v,w (given in counterclockwise order around F ). By Lemma 35, (−→uv ∧ −→uw).−→n
is positive. Thus, the projection of the face F on P is correctly oriented. So by
Lemma 36, the projection of V ∞ on P gives a straight-line representation of G∞. �

Theorems 1 and 16 imply Theorem 4. Indeed, any toroidal graph G can be trans-
formed into a toroidal triangulation G′ by adding a linear number of vertices and
edges and such that G′ is simple if and only if G is simple (see for example the proof
of Lemma 2.3 of [21]). Then by Theorem 1, G′ admits a Schnyder wood. By The-
orem 16, the projection of the set of region vectors of vertices of G′∞ on a positive
plane gives a straight-line representation of G′∞. The grid where the representation is
obtained can be the triangular grid, if the projection is done on the plane of equation
x + y + z = 0, or the square grid, if the projection is done on one of the planes of
equations x = 0, y = 0, or z = 0. By Lemma 30, and the choice of N , the obtained
mapping is a periodic mapping of G∞ with respect to non-collinear vectors Y and
Y ′ where the size of these vectors is in O(γ 2n2) with γ ≤ n in general and γ = 1 if
the graph is simple and the Schnyder wood obtained by Theorem 9. By Lemma 29,
the lengths of the edges in this representation are in O(n3) in general and in O(n2) if
the graph is simple. When the graph is not simple, there is a non-contractible cycle of
length 1 or 2 and thus the size of one of the two vectors Y , Y ′ is in O(n3). Thus, the
grid obtained in Theorem 4 has size in O(n3)×O(n4) in general and O(n2)×O(n2)

if the graph is simple.
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The method presented here gives a polynomial algorithm to obtain flat torus
straight-line representations of any toroidal maps in polynomial size grids. Indeed, all
the proofs lead to polynomial algorithms, even the proof of Theorem 8 [13], which
uses results from Robertson and Seymour [25] on disjoint paths problems.

It would be nice to extend Theorem 16 to obtain convex straight-line representa-
tions for essentially 3-connected toroidal maps.

13 Conclusion

We have proposed a generalization of Schnyder woods to toroidal maps with appli-
cation to graph drawing. Along these lines, several questions were raised. We recall
some briefly:

• Does the set of Schnyder woods of a given toroidal map have a kind of lattice
structure?

• Does any simple toroidal triangulation admit a Schnyder wood where the set of
edges of each color induces a connected subgraph?

• Is it possible to use Schnyder woods to embed the universal cover of a toroidal map
on rigid or coplanar orthogonal surfaces?

• Which toroidal maps admit (primal-dual) contact representation by (homothetic)
triangles in a flat torus?

• Can geodesic embeddings be used to obtain convex straight-line representations
for essentially 3-connected toroidal maps?

The guideline of Castelli Aleardi et al. [3] to generalize Schnyder woods to higher
genus was to preserve the tree structure of planar Schnyder woods and to use this
structure for efficient encoding. For that purpose they introduce several special rules
(even in the case of genus 1). Our main guideline while working on this paper was
that the surface of genus 1, the torus, seems to be the perfect surface to define Schny-
der woods. Euler’s formula gives exactly m = 3n for toroidal triangulations. Thus,
a simple and symmetric object can be defined by relaxing the tree constraint. For
genus 0, the plane, there are not enough edges in planar triangulations to have out-
degree three for every vertex. For higher genus (the double torus, . . . ) there are too
many edges in triangulations. An open problem is to find what would be the natural
generalization of our definition of toroidal Schnyder woods to higher genus.

The results presented here motivated Castelli Aleardi and Fusy [4] to develop di-
rect methods to obtain straight-line representations for toroidal maps. They manage to
generalize planar canonical ordering to the cylinder to obtain straight-line representa-
tions of simple toroidal triangulations in grids of size O(n) × O(n2), thus improving
the size of our grid, which is O(n2) × O(n2) in the case of a simple toroidal map.
It should be interesting to investigate further the links between the two methods, as
canonical orderings are strongly related to Schnyder woods.

Planar Schnyder woods appear to have many applications in various areas like
enumeration [1], compact coding [24], representation by geometric objects [14, 16],
graph spanners [2], graph drawing [7, 18], etc. In this paper we use a new definition
of Schnyder wood for graph drawing purposes, and it would also be interesting to see
if it can be used in other computer science domains.

128



Discrete Comput Geom (2014) 51:67–131 131

Acknowledgements The authors thank Nicolas Bonichon, Luca Castelli Aleardi, and Eric Fusy for
fruitful discussions about this work. They also thank student Chloé Desdouits for developing a software to
visualize orthogonal surfaces.

References

1. Bonichon, N.: A bijection between realizers of maximal plane graphs and pairs of non-crossing Dyck
paths. Discrete Math. 298, 104–114 (2005)

2. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between Theta-graphs, Delaunay
triangulations, and orthogonal surfaces. In: Proceeding WG’10 Proceedings of the 36th International
Conference on Graph-Theoretic Concepts in Computer Science, pp. 266–278. Springer, Berlin (2010)

3. Castelli Aleardi, L., Fusy, E., Lewiner, T.: Schnyder woods for higher genus triangulated surfaces,
with applications to encoding. Discrete Comput. Geom. 42, 489–516 (2009)

4. Castelli Aleardi, L., Fusy, E.: Canonical ordering for triangulations on the cylinder, with applica-
tions to periodic straight-line drawings. In: Proceeding GD’12 Proceedings of the 20th International
Conference on Graph Drawing, pp. 376–387. Springer, Berlin (2012)

5. Chambers, E., Eppstein, D., Goodrich, M., Löffler, M.: Drawing graphs in the plane with a prescribed
outer face and polynomial area. Lect. Notes Comput. Sci. 6502, 129–140 (2011)

6. Duncan, C., Goodrich, M., Kobourov, S.: Planar drawings of higher-genus graphs. J. Graph Algo-
rithms Appl. 15, 13–32 (2011)

7. Felsner, S.: Convex drawings of planar graphs and the order dimension of 3-polytopes. Order 18,
19–37 (2001)

8. Felsner, S.: Geodesic embeddings and planar graphs. Order 20, 135–150 (2003)
9. Felsner, S.: Lattice structures from planar graphs. Electron. J. Comb. 11(1), R15 (2004)

10. Felsner, S., Trotter, W.T.: Posets and planar graphs. J. Graph Theory 49, 273–284 (2005)
11. Felsner, S., Zickfeld, F.: Schnyder woods and orthogonal surfaces. Discrete Comput. Geom. 40, 103–

126 (2008)
12. Felsner, S.: Geometric Graphs and Arrangements. Vieweg, Wiesbaden (2004)
13. Fijavz, G.: Personal communication (2011)
14. de Fraysseix, H., Ossona de Mendez, P., Rosenstiehl, P.: On triangle contact graphs. Comb. Probab.

Comput. 3, 233–246 (1994)
15. de Fraysseix, H., Ossona de Mendez, P.: On topological aspects of orientations. Discrete Math. 229,

57–72 (2001)
16. Gonçalves, D., Lévêque, B., Pinlou, A.: Triangle contact representations and duality. Discrete Com-

put. Geom. 48, 239–254 (2012)
17. Gonçalves, D., Lévêque, B., Pinlou, A.: Triangle contact representations and duality (GD’10). Lect.

Notes Comput. Sci. 6502, 262–273 (2011)
18. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16, 4–32 (1996)
19. Kratochvíl, J.: In: Bertinoro Workshop on Graph Drawing (2007)
20. Miller, E.: Planar graphs as minimal resolutions of trivariate monomial ideals. Doc. Math. 7, 43–90

(2002)
21. Mohar, B.: Straight-line representations of maps on the torus and other flat surfaces. Discrete Math.

155, 173–181 (1996)
22. Rosenstiehl, P.: Embedding in the plane with orientation constraints: The angle graph. Annals New

York Academy of Sciences (1989)
23. Mohar, B., Rosenstiehl, P.: Tessellation and visibility representations of maps on the torus. Discrete

Comput. Geom. 19, 249–263 (1998)
24. Poulalhon, D., Schaeffer, G.: Optimal coding and sampling of triangulations. Algorithmica 46, 505–

527 (2006)
25. Robertson, N., Seymour, P.D.: Graph minors. VI. Disjoint paths across a disc. J. Comb. Theory, Ser.

B 41, 115–138 (1986)
26. Schnyder, W.: Planar graphs and poset dimension. Order 5, 323–343 (1989)

129



130



Discrete Comput Geom (2017) 57:507–544
DOI 10.1007/s00454-016-9832-0

Encoding Toroidal Triangulations

Vincent Despré1 · Daniel Gonçalves2 ·
Benjamin Lévêque3

Received: 12 November 2015 / Revised: 16 September 2016 / Accepted: 27 September 2016 /
Published online: 26 October 2016
© Springer Science+Business Media New York 2016

Abstract Poulalhon and Schaeffer introduced an elegant method to linearly encode a
planar triangulation optimally. The method is based on performing a special depth-first
search algorithm on a particular orientation of the triangulation: the minimal Schnyder
wood. Recent progress toward generalizing Schnyder woods to higher genus enables
us to generalize this method to the toroidal case. In the plane, the method leads to
a bijection between planar triangulations and some particular trees. For the torus we
obtain a similar bijection but with particular unicellular maps (maps with only one
face).

Keywords Toroidal triangulations · Schnyder woods · Alpha-orientations ·
Distributive lattices · Poulalhon and Schaeffer’s method · Unicellular maps · Bijective
encoding

Mathematics Subject Classification 05C10 · 05C30 · 05A19 · 68R10 · 06D99

Editor in Charge: János Pach

Vincent Despré
vincent.despre@gipsa-lab.fr

Daniel Gonçalves
daniel.goncalves@lirmm.fr

Benjamin Lévêque
benjamin.leveque@cnrs.fr

1 GIPSA-Lab, University Grenoble Alpes, Grenoble, France

2 CNRS, LIRMM, University Montpellier, Montpellier, France

3 CNRS, G-SCOP, University Grenoble Alpes, Grenoble, France

123
131



508 Discrete Comput Geom (2017) 57:507–544

1 Introduction

A graph embedded on a surface is called a map on this surface if all its faces are home-
omorphic to open disks. A map is a triangulation if all its faces have length three. A
closed curve on a surface is contractible if it can be continuously transformed into
a single point. Given a graph embedded on a surface, a contractible loop is an edge
forming a contractible curve. Two edges of an embedded graph are called homotopic
multiple edges if they have the same extremities and their union encloses a region
homeomorphic to an open disk. In this paper, we restrict ourself to graphs embedded
on surfaces that do not have contractible loops nor homotopic multiple edges. Note
that this is a weaker assumption, than the graph being simple, i.e. not having loops nor
multiple edges. In this paper we distinguish cycles from closed walk as cycles have
no repeated vertices. A triangle of a map is a closed walk of length three enclosing a
region that is homeomorphic to an open disk. This region is called the interior of the
triangle. Note that a triangle is not necessarily a face of the map as its interior may be
not empty. Note also that a triangle is not necessarily a cycle since non-contractible
loops are allowed. We denote by n the number of vertices, m the number of edges and
f the number of faces of a given map.

Poulalhon and Schaeffer introduced in [20] a method (called here PS method for
short) to linearly encode a planar triangulation with a binary word of length log2

(4n
n

) ∼
n log2

( 256
27

) ≈ 3.2451 n bits. This is asymptotically optimal since it matches the infor-
mation theory lower bound. The method is the following. Given a planar triangulation
G, it considers the minimal Schnyder wood of G (that is the orientation where all
inner vertices have outdegree 3 and that contains no cycle oriented clockwise). Then
a special depth-first search algorithm is applied by “following” ingoing edges and
“cutting” outgoing ones. The algorithm outputs a rooted spanning tree with exactly
two leaves (also called stems) on each vertex from which the original triangulation
can be recovered in a straightforward way. This tree can be encoded very efficiently. A
nice aspect of this work, besides its interesting encoding properties, is that the method
gives a bijection between planar triangulations and a particular type of plane trees.

Aleardi et al. [3] adapt PS method to encode planar triangulations with boundaries.
A consequence is that a triangulation of any oriented surface can be encoded by
cutting the surface along non-contractible cycles and see the surface as a planar map
with boundaries. This method is a first attempt to generalize PS algorithm to higher
genus. The obtained algorithm is asymptotically optimal (in terms of number of bits)
but it is not linear, nor bijective.

The goal of this paper is to present a new generalization of PS algorithm to higher
genus based on some strong structural properties. Applied on a well chosen orientation
of a toroidal triangulation, what remains after the execution of the algorithm is a
unicellular map, i.e. a map with only one face (which corresponds to the natural
generalization of trees when going to higher genus, see [7,8]), that can be encoded
optimally using 3.2451 n bits. Moreover, the algorithm can be performed in linear
time and leads to a new bijection between toroidal triangulations and a particular type
of unicellular maps.
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The two main ingredients that make PS algorithm work in an orientation of a planar
map are minimality and accessibility of the orientation. Minimality means that there is
no clockwise cycle. Accessibility means that there exists a root vertex such that all the
vertices have an oriented path directed toward the root vertex. Given α : V → N, an
orientation ofG is an α-orientation if for every vertex v ∈ V its outdegree d+(v) equals
α(v). The existence and uniqueness of minimal orientations in the plane is given by the
following result of Felsner [12] (related to older results of Propp [21] and de Mendez
[10]): the set of α-orientations of a given planar map carries a structure of distributive
lattice. This gives the existence and uniqueness of a minimal α-orientation as soon
as an α-orientation exists. Felsner’s result enables several analogues of PS method
to other kind of planar maps, see [2,4,11]. In all these cases the accessibility of the
considered α-orientations is a consequence of the natural choice of α, like in Poulalhon
and Schaeffer’s original work [20] where any orientation of the inner edges of a planar
triangulation with inner vertices having outdegree 3 is accessible for any choice of
root vertex on the outer face. (Note that the conventions may differs in the literature:
the role of outgoing and incoming edges are sometimes exchanged and/or the role of
clockwise and counterclockwise.)

For higher genus, the minimality can be obtained by the following generalization of
Felsner’s result. The second author, Knauer and the third author [16] showed that on
any oriented surface the set of orientations of a given map having the same homology
carries a structure of distributive lattice. Note that α has been removed here since it
is captured by the homology (see Sect. 2 for a brief introduction to homology). Note
also that this result is equivalent to an older result of Propp [21] where the lattice
structure is described in the dual setting. Since this result is very general, there is hope
to be able to further generalize PS method to other oriented surfaces. Note that a given
map on an oriented surface can have several α-orientations (for the same given α) that
are not homologous. So the set of α-orientations of a given map is now partitioned
into distributive lattices contrarily to the planar case where there is only one lattice
(and thus only one minimal element). In the case of toroidal triangulations we manage
to face this problem and maintain a bijection by recent results on the structure of
3-orientations of toroidal triangulations (i.e. α-orientation such that α(v) = 3 for all
vertices v). We identify a special lattice (and thus a special minimal orientation) using
the notion of Schnyder woods generalized to the torus by the second and third author
in [15] (further generalized in [16], see also [18] for a unified presentation).

The main issue while trying to extend PS algorithm to higher genus is the accessibil-
ity. Accessibility toward the outer face is given almost for free in the planar case because
of Euler’s formula that sums to a strictly positive value. For an oriented surface of genus
g ≥ 1 new difficulties occur. Already in genus 1 (the torus), even if the orientation is
minimal and accessible PS algorithm can visit all the vertices but not all the angles of
the map because of the existence of non-contractible cycles. We can show that the spe-
cial minimal orientation that we choose has the nice property that this problem never
occurs. In genus g ≥ 2 things get even more difficult with separating non-contractible
cycles that make having accessibility of the vertices already difficult to obtain.

Another problem is to recover the original map after the execution of the algorithm.
If what remains after the execution of PS method is a spanning unicellular map then
the map can be recovered with the same simple rules as in the plane. Unfortunately for
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many minimal orientations the algorithm leads to a spanning unicellular embedded
graph that is not a map (the only face is not a disk) and it is not possible to directly
recover the original map. Here again, the choice of our special orientation ensures that
this never happens.

Finally the method presented here can be implemented in linear time. Clearly the
execution of PS algorithm is linear but the difficulty lies in providing the algorithm
with the appropriate orientation in input. Computing the minimal Schnyder wood of
a planar triangulation can be done in linear time quite easily by using a so-called
shelling order (or canonical order, see [17]). Other similar ad-hoc linear algorithms
can sometimes be found for other kinds of α-orientations of planar maps (see for
example [13, Chap. 3]). Such methods are not known in higher genus. We solve this
problems by first computing an orientation in our special lattice and then go down in
the lattice to find the minimal orientation. All this can be performed in linear time.

A brief introduction to homology and to the corresponding terminology used in
the paper is given in Sect. 2. In Sect. 3, we present the definitions and results we
need concerning the generalization of Schnyder woods to the toroidal case. In Sect. 4,
we introduce a reformulation of Poulalhon and Schaeffer’s original algorithm that is
applicable to any orientation of any map on an oriented surface. The main theorem
of this paper is proved in Sect. 5, that is, for a toroidal triangulation given with an
appropriate root and orientation, the output of the algorithm is a toroidal spanning
unicellular map. In Sect. 6, we show how one can recover the original triangulation
from the output. This output is then used in Sect. 7 to optimally encode a toroidal tri-
angulation. The linear time complexity of the method is discussed in Sect. 8. In Sect. 9
(resp. Sect. 11), we exhibit a bijection between appropriately rooted toroidal triangula-
tions and rooted (resp. non-rooted) toroidal unicellular maps. To obtain the non-rooted
bijection, further structural results concerning the particular Schnyder woods consid-
ered in this paper are given in Sect. 10. Finally, a possible generalization to higher
genus is discussed in Sect. 12.

2 A Bit of Homology

We need a bit of surface homology of general maps, which we discuss now. The
presentation is not standard but it is short and sufficient to fit our needs. For a deeper
introduction to homology we refer to [14].

Consider a map G with edge set E , on an orientable surface of genus g, given with
an arbitrary orientation of its edges. This fixed arbitrary orientation is implicit and is
used to manipulate flows. A flow φ on G is a vector in Z

E . For any e ∈ E , we denote
by φe the coordinate e of φ.

A walk W of G is a sequence of edges with a direction of traversal such that the
ending point of an edge is the starting point of the next edge. A walk is closed if the
start and end vertices coincide. A walk has a characteristic flow φ(W ) defined by

φ(W )e := times W traverses e forward − times W traverses e backward.

This definition naturally extends to sets of walks. From now on we consider that a
set of walks and its characteristic flow are the same object. We do similarly for oriented
subgraphs as they can be seen as sets of walks.

123
134



Discrete Comput Geom (2017) 57:507–544 511

A facial walk is a closed walk bounding a face. LetF be the set of counterclockwise
facial walks and let F = 〈φ(F)〉 the subgroup of ZE generated by F . Two flows φ, φ′
are said to be homologous if φ−φ′ ∈ F. A flow φ is 0-homologous if it is homologous
to the zero flow, i.e. φ ∈ F.

Let W be the set of closed walks and let W = 〈φ(W)〉 the subgroup of Z
E

generated by W . The group H(G) = W/F is the first homology group of G. Since
dim(W) = m−n+1 and dim(F) = f −1, Euler’s Formula gives dim(H(G)) = 2g.
So H(G) ∼= Z

2g only depends on the genus of the map. A set (B1, . . . , B2g) of (closed)
walks of G is said to be a basis for the homology if (φ(B1), . . . , φ(B2g)) is a basis of
H(G).

3 Toroidal Schnyder Woods

Schnyder [22] introduced Schnyder woods for planar triangulations using the follow-
ing local property:

Given a map G, a vertex v and an orientation and coloring of the edges incident to
v with the colors 0, 1, 2, we say that a vertex v satisfies the Schnyder property if (see
Fig. 1):

• Vertex v has out-degree one in each color.
• The edges e0(v), e1(v), e2(v) leaving v in colors 0, 1, 2, respectively, occur in

counterclockwise order.
• Each edge entering v in color i enters v in the counterclockwise sector from ei+1(v)

to ei−1(v) (where i + 1 and i − 1 are understood modulo 3).

Given a planar triangulation G, a (planar) Schnyder wood of G is an orientation
and coloring of the inner edges of G with the colors 0, 1, 2, where each inner vertex v

satisfies the Schnyder property. In [15,16] (see also the HDR thesis of the third author
[18]) a generalization of Schnyder woods for higher genus has been proposed. Since
this paper deals with triangulations of the torus only, we use a simplified version of
the definitions and results from [15,16,18]).

The definition of Schnyder woods for toroidal triangulations is the following. Given
a toroidal triangulation G, a (toroidal ) Schnyder wood of G is an orientation and col-
oring of the edges of G with the colors 0, 1, 2, where each vertex satisfies the Schnyder
property (see Fig. 2 for an example). The three colors 0, 1, 2 are completely symmet-
ric in the definition, thus we consider that two Schnyder woods that are obtained one

Fig. 1 The Schnyder property.
The correspondence between
red, blue, green and 0, 1, 2 and
the arrow shapes used here
serves as a convention for all
figures in the paper

1

2

2

2

011

0

0
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Fig. 2 A Schnyder wood of a
toroidal triangulation (opposite
sides are identified in order to
form a torus)

Fig. 3 Two different
orientations of a toroidal
triangulation. Only the one on
the right corresponds to a
Schnyder wood

from the other by a (cyclic) permutation of the colors are in fact the same object. We
consider that a Schnyder wood and its underlying orientation are the same object since
one can easily recover a coloring of the edges in a greedy way (by choosing the color
of an edge arbitrarily and then satisfying the Schnyder property at every vertex).

Note that the situation is quite different from the planar case. In a Schnyder wood
of a toroidal triangulation, each vertex has exactly one outgoing arc in each color, so
there are monochromatic cycles contrarily to the planar case (one can show that these
monochromatic cycles are non-contractible). Moreover the graph induced by one color
is not necessarily connected. Also, by a result of de Fraysseix and de Mendez [9], there
is a bijection between orientations of the internal edges of a planar triangulation where
every inner vertex has outdegree 3 and Schnyder woods. Thus, in the planar case, any
orientation with the proper outdegrees corresponds to a Schnyder wood. This is not
true for toroidal triangulations since there exists 3-orientations that do not correspond
to a Schnyder wood (see Fig. 3).

A Schnyder wood of a toroidal triangulation is said to be crossing, if for each pair
i, j of different colors, there exists a monochromatic cycle of color i intersecting a
monochromatic cycle of color j . The existence of crossing Schnyder woods is proved
in [15, Thm. 1] (note that in [15] the crossing property is included in the definition of
Schnyder woods, see [18] for a unified presentation):

Theorem 1 [15] A toroidal triangulation admits a crossing Schnyder wood.

Figure 4 depicts two different Schnyder woods of the same graph where just the
one on the left is crossing (on the right case the red and green monochromatic cycles
do not intersect, we say that the Schnyder wood is “half-crossing” since blue crosses
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Half-crossingCrossing

Fig. 4 A crossing and an half-crossing Schnyder wood

Non-crossing and HTC CTHtoN

Fig. 5 Non-crossing Schnyder woods

both green and red, see [16,18] for a formal definition). Note that the Schnyder wood
on the right is obtained from the one on the left by flipping a clockwise triangle into
a counterclockwise triangle.

Consider a toroidal triangulation G given with a crossing Schnyder wood. Let D0
be the corresponding 3-orientation of G. Let O(G) be the set of all the orientations of
G that are homologous to D0. A consequence of [16] is that all the crossing Schnyder
woods of G are homologous to each other. So O(G) contains all the crossing Schnyder
woods ofG. Thus the definition of O(G) does not depend on the particular choice of D0
and thus it is uniquely defined. Another consequence of [16] is that every orientation
of O(G) corresponds to a Schnyder wood. Thus we call the elements of O(G) the
homologous-to-crossing Schnyder woods (or HTC Schnyder woods for short). Note
that all the crossing Schnyder woods are HTC.

Figure 5 gives an example of an HTC Schnyder wood that is not crossing and
a Schnyder woods that is not HTC. The example on the left is obtained from the
crossing Schnyder wood of Fig. 4 by flipping two triangles (one to obtain the half-
crossing Schnyder wood of Fig. 4 and then another one flipped from counterclockwise
to clockwise). Thus it is HTC since the difference with a crossing Schnyder wood is a
0-homologous oriented subgraph. The example on the right of Fig. 5 is obtained from
the crossing Schnyder wood of Fig. 4 by reversing the three vertical red monochromatic
cycles. The union of these three cycles is not a 0-homologous oriented subgraph, thus
the resulting orientation is not HTC.

Let us now define briefly what a lattice is. Consider a partial order ≤ on a set S.
Given two elements x, y of S, let m(x, y) (resp. M(x, y)) be the set of elements z of
S such that z ≤ x and z ≤ y (resp. z ≥ x and z ≥ y). If m(x, y) (resp. M(x, y)) is
not empty and admits a unique maximal (resp. minimal) element, we say that x and y
admit a meet (resp. a join), noted x ∨ y (resp. x ∧ y). Then (S,≤) is a lattice if any
pair of elements of S admits a meet and a join. Thus in particular a lattice has a unique
minimal (resp. maximal) element. A lattice is distributive if the two operators ∨ and
∧ are distributive on each other.
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It is proved in [16] that on any oriented surface the set of orientations of a given map
having the same homology carries a structure of distributive lattice for a particular order
defined below. Thus in particular the set of HTC Schnyder woods carries a structure
of distributive lattice.

Let us define an order on the orientations of G. For that purpose, choose an arbitrary
face f0 of G and let F0 be its counterclockwise facial walk (this choice of a particular
face corresponds to the choice of the outer face in the planar case). Let F be the set
of counterclockwise facial walks of G and F ′ = F \ F0. We say that a 0-homologous
oriented subgraph T of G is counterclockwise (resp. clockwise) w.r.t. f0, if its charac-
teristic flow can be written as a combination with positive (resp. negative) coefficients
of characteristic flows of F ′, i.e. φ(T ) = ∑

F∈F ′ λFφ(F), with λ ∈ N
|F ′| (resp.

−λ ∈ N
|F ′|). Given two orientations D and D′ of G, let D \ D′ denote the subgraph

of D induced by the edges that are not oriented as in D′. We set D ≤ f0 D′ if and only
if D \ D′ is counterclockwise. In [16, Thm. 7] the following is proved:

Theorem 2 [16] (O(G),≤ f0) is a distributive lattice.

Since (O(G),≤ f0) is a distributive lattice, it has a unique minimal element. The
following lemma gives a property of this minimum that is essential to apply Poulalhon
and Schaeffer’s method.

Lemma 1 The minimal element of (O(G),≤ f0) is the only HTC Schnyder wood that
contains no clockwise (non-empty) 0-homologous oriented subgraph w.r.t. f0.

Proof Let Dmin be the minimal element of (O(G),≤ f0). Suppose by contradiction that
Dmin contains a clockwise non-empty 0-homologous oriented subgraph T w.r.t. f0.
The orientation of G obtained from Dmin by reversing all the edges of T gives an
orientation D ∈ O(G) such that T = Dmin \ D. Furthermore, by definition of ≤ f0 ,
we have D ≤ f0 Dmin, a contradiction to the minimality of Dmin. So Dmin contains no
clockwise non-empty 0-homologous oriented subgraph w.r.t. f0.

We now show that this characterizes Dmin. For any D ∈ O(G), distinct from Dmin,
we have Dmin ≤ f0 D. Thus T = D \ Dmin is a non-empty clockwise 0-homologous
oriented subgraph of D. 
�

The crossing Schnyder wood of Fig. 6 is the minimal HTC Schnyder wood for
the choice of f0 corresponding to the shaded face. This example is used in the next
sections to illustrate Poulalhon and Schaeffer’s method.

The two HTC Schnyder woods of Fig. 4 are not minimal (for any choice of spe-
cial face f0) since they contain several triangles that are oriented clockwise. On the
contrary, the HTC Schnyder wood of Fig. 5 is minimal w.r.t to its only face oriented
clockwise. These examples shows that the minimal HTC Schnyder wood is not always
crossing.

We define the dual orientation D∗ of an orientation D of G as an orientation of the
edges of the dual map G∗ of G satisfying the following rule: the dual e∗ of an edge e
goes from the face on the left of e to the face on the right of e. The following lemma
gives the key property of HTC Schnyder woods that we need in this paper:

Lemma 2 If D is an orientation corresponding to an HTC Schnyder wood, then the
dual orientation D∗ contains no oriented non-contractible cycle.
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Fig. 6 The minimal HTC
Schnyder wood of K7 w.r.t. the
shaded face

Proof We first prove the property for a crossing Schnyder wood and then show that it
is stable by reversing a 0-homologous oriented subgraph. Thus it is true for all HTC
Schnyder woods.

Consider a crossing Schnyder wood of G by Theorem 1 and let D0 be the corre-
sponding orientation. For i ∈ {0, 1, 2}, let Ci be a monochromatic cycle of color i .
In a crossing Schnyder wood, the monochromatic cycles are not contractible and any
two monochromatic cycles of different colors are not homologous and intersecting
[15]. Thus for any i ∈ {0, 1, 2}, the two cycles Ci−1 and Ci+1 generate the homology
of the torus with respect to Q. That is, for any curve C and i ∈ {0, 1, 2}, there exists
(k, ki−1, ki+1) ∈ Z

3, k �= 0, such that kC is homologous to ki−1Bi−1 + ki+1Bi+1. By
the Schnyder property, the cycle Ci−1 is crossing Ci (maybe several time) from left
to right so there exists α1, α2, α3 ∈ N, such that

∑
αiCi is 0-homologous. Thus for

any curve C there exists i ∈ {0, 1, 2}, (k, ki−1, ki+1) ∈ N
3, k �= 0, ki−1 �= 0, such

that kC is homologous to ki−1Bi−1 + ki+1Bi+1.
Suppose now by contradiction that D∗

0 contains an oriented non-contractible cycle
C∗. Let i ∈ {0, 1, 2}, (k, ki−1, ki+1) ∈ N

3, k �= 0, ki−1 �= 0, such that kC∗ is
homologous to ki−1Ci−1 + ki+1Ci+1. Then Ci+1 is crossing C∗ at least once from
left to right, contradicting the fact that C∗ is an oriented cycle of D∗

0 . So D∗
0 contains

no oriented non-contractible cycle.
Consider now a HTC Schnyder wood of G and let D be the corresponding orien-

tation. Since D and D0 are both element of O(G) they are homologous to each other.
Let T be the 0-homologous oriented subgraph of D such that T = D \ D0. Thus D0
is obtained from D by reversing the edges of T .

Suppose by contradiction that D∗ contains an oriented non-contractible cycle C∗.
The oriented subgraph T is 0-homologous thus it intersects C∗ exactly the same
number of time from right to left than from left to right. Since C∗ is oriented foward,
T cannot intersect it from left to right. So T does not intersectC∗ at all. Thus reversing
T to go from D to D0 does not affect C∗. Thus C∗ is an oriented non-contractible
cycle of D∗

0 , a contradiction. 
�
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Fig. 7 A Schnyder wood that is not HTC but contains no oriented non-contractible cycle in the dual

For the non-HTC Schnyder wood of Fig. 5, one can see that there is an horizontal
oriented non-contractible cycle in the dual, so it does not satisfy the conclusion of
Lemma 2. Note that this property is not a characterization of being HTC. Figure 7 is
a Schnyder wood that is not HTC but satisfies the conclusion of Lemma 2 (we leave
the reader check that this Schnyder wood is not HTC, it will be easier after Sect. 9 and
the definition of γ ).

4 Poulalhon and Schaeffer’s Algorithm on Oriented Surfaces

In this section we introduce a reformulation of Poulalhon and Schaeffer’s original
algorithm. This version is more general in order to be applicable to any orientation
of any map on an oriented surface. The execution slightly differs from the original
formulation, even on planar triangulations. In [20], the authors first delete some outer
edges of the triangulation before executing the algorithm. We do not consider some
edges to be special here since we want to apply the algorithm on any surface but the
core of the algorithm is the same. We show general properties of the algorithm in this
section before considering toroidal triangulations in the forthcoming sections.

Algorithm PS

Input : An oriented map G on an oriented surface S, a root vertex v0 and a root
edge e0 incident to v0.

Output : A graph U with stems, embedded on the oriented surface S.
The algorithm explores some of the edges of the map, marking one edge on each

iteration.

1. Let v := v0, e := e0, U := ∅, none of the edges is marked.
2. Let v′ be the extremity of e different from v.

Case 1 e is non-marked and entering v. Add e to U and let v := v′.
Case 2 e is non-marked and leaving v. Add a stem toU incident to v and correspond-

ing to e.
Case 3 e is already marked and entering v. Do nothing.
Case 4 e is already marked and leaving v. Let v := v′.

3. Mark e.
4. Let e be the next edge around v in counterclockwise order after the current e.
5. While (v, e) �= (v0, e0) go back to 2.
6. Return U .

We insist on the fact that the output of Algorithm PS is a graph embedded on the
same surface as the input map but that this embedded graph is not necessarily a map
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Fig. 8 The four cases of
Algorithm PS

non−marked non−marked

Case 1 Case 2

marked marked

Case 3 Case 4

(i.e some faces may not be homeomorphic to open disks). In the following section
we show that in our specific case the output U is a unicellular map on the contrary to
some examples presented later on (see Fig. 14).

Consider any oriented map G on an oriented surface given with a root vertex v0 and
a root edge e0 incident to v0. When Algorithm PS is considering a couple (v, e) we
see this like it is considering the angle at v that is just before e in counterclockwise
order. The particular choice of v0 and e0 is thus in fact a particular choice of a root
angle a0 that automatically defines a root vertex v0, a root edge e0, as well as a root
face f0. From now on we consider that the input of Algorithm PS is an oriented
map plus a root angle (without specifying the root vertex, face and edge).

The angle graph of G, is the graph defined on the angles of G and where two angles
are adjacent if and only if they are consecutive around a vertex or around a face. An
execution of Algorithm PS can be seen as a walk in the angle graph. Figure 8
illustrates the behavior of the algorithm corresponding to Case 1–4. In each case, the
algorithm is considering the angle in top left position and depending on the marking
of the edge and its orientation the next angle that is considered is the one that is the
end of the magenta arc of the angle graph. The cyan edge of Case 1 represents the
edge that is added to U by the algorithm. The stems of U added in Case 2 are not
represented in cyan, in fact we will represent them later by an edge in the dual. Indeed
seeing the execution of Algorithm PS as a walk in the angle graph enables us to
show that Algorithm PS behaves exactly the same in the primal or in the dual map
(as explained later).

In Fig. 9, we give an example of an execution of Algorithm PS on the orientation
corresponding to the minimal HTC Schnyder wood of K7 of Fig. 6.

Let a be a particular angle of the map G. It is adjacent to four other angles in the
angle graph (see Fig. 10). Let v, f be such that a is an angle of vertex v and face
f . The next-vertex (resp. previous-vertex) angle of a is the angle appearing just after
(resp. before) a in counterclockwise order around v. Similarly, the next-face (resp.
previous-face) angle of a is the angle appearing just after (resp. before) a in clockwise
order around f . These definitions enable one to orient consistently the edges of the
angle graph like in Fig. 10 so that for every oriented edge (a, a′), a′ is a next-vertex
or next-face angle of a.
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Fig. 9 An execution of Algorithm PS on K7 given with the orientation corresponding to the minimal
HTC Schnyder wood of Fig. 6. Vertices are numbered in black. The root angle is identified by a root symbol
and chosen in the face for which the orientation is minimal (i.e. the shaded face of Fig. 6). The magenta
arrows and numbers are here to help the reader to follow the cycle in the angle graph. The output U is a
toroidal unicellular map, represented here as an hexagon where the opposite sides are identified.

Fig. 10 Orientation of the
edges of the angle graph

The different cases depicted in Fig. 8 show that an execution of Algorithm PS is
just an oriented walk in the angle graph (i.e. a walk that is following the orientation of
the edges described in Fig. 10). The condition in the while loop ensures that when the
algorithm terminates, this walk is back to the root angle. The following proposition
shows that the algorithm actually terminates:

Proposition 1 Consider an oriented map G on an oriented surface and a root angle
a0. The execution ofAlgorithm PS on (G, a0) terminates and corresponds to a cycle
in the angle graph.

Proof We consider the oriented walk W in the angle graph corresponding to the
execution of Algorithm PS . Note that W may be infinite. The walk W starts with
a0, and if it is finite it ends with a0 and contains no other occurrence of a0 (otherwise
the algorithm should have stopped earlier). Toward a contradiction, suppose that W is
not simple (i.e. some angles different from the root angle a0 are repeated). Let a �= a0
be the first angle along W that is met for the second time. Let a1, a2 be the angles
appearing before the first and second occurrence of a in W , respectively. Note that
a1 �= a2 by the choice of a.

If a1 is the previous-vertex angle of a, then a2 is the previous-face angle of a. When
the algorithm considers a1, none of a and a2 are already visited, thus edge e is not
marked. Since the execution then goes to a after a1, we are in Case 2 and the edge e
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Fig. 11 The different cases of
Algorithm PS seen in a dual
way. The number of the angles
gives the order in which the
algorithm visits them (unvisited
angles are not numbered). The
edges of P and Q are
respectively cyan and yellow

2

1

32

1 4

Case 1 alone Case 1 and then 4

1 2

4

21

3

Case 2 alone Case 2 and then 3

Not visited

between a and a1 is oriented from v, where v is the vertex incident to a. Afterward,
when the algorithm reaches a2, Case 3 applies and the algorithm cannot go to a, a
contradiction. The case where a1 is the previous-face angle of a is similar.

So W is simple. Since the angle graph is finite, W is finite. So the algorithm
terminates, thus W ends on the root angle and W is a cycle. 
�

In the next section we see that in some particular cases the cycle in the angle graph
corresponding to the execution of PS algorithm (Proposition 1) can be shown to be
Hamiltonian like in Fig. 9.

By Proposition 1, an angle is considered at most once by Algorithm PS. This
implies that the angles around an edge can be visited in different ways depicted in
Fig. 11. Consider an execution of Algorithm PS on G. Let C be the cycle formed in
the angle graph by Proposition 1. Let P be the set of edges of the output U (without
the stems) and Q be the set of dual edges of edges of G corresponding to stems of U .
These edges are represented in Fig. 11 in cyan for P and in yellow for Q. They are
considered with their orientation (recall that the dual edge e∗ of an edge e goes from
the face on the left of e to the face on the right of e). Note that C does not cross an
edge of P or Q, and moreover P and Q do not intersect (i.e. an edge can be in P or
its dual in Q but both cases cannot happen).

One can remark that the cases of Fig. 11 are dual of each other. One can see that
Algorithm PS behaves exactly the same if applied on the primal map or on the dual
map. The only modifications to make is to start the algorithm with the face f0 as the
root vertex, the dual of edge e0 as the root edge and to replace counterclockwise by
clockwise at Line 4. Then the cycleC formed in the angle graph is exactly the same and
the output is Q with stems corresponding to P (instead of P with stems corresponding
to Q). Note that this duality is also illustrated by the fact that the minimality of the
orientation of G w.r.t. the root face is nothing else than the accessibility of the dual
orientation toward the root face. Indeed, a clockwise 0-homologous oriented subgraph
of G w.r.t f0 corresponds to a directed cut of the dual where all the edges are oriented
from the part containing f0. The following lemma shows the connectivity of P and Q:

Lemma 3 At each step of the algorithm, for every vertex v appearing in an edge of
P (resp. Q), there is an oriented path from v to v0 (resp. f0) consisting only of edges
of P (resp. Q). In particular P and Q are connected.
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Proof If at a step a new vertex is reached then it correspond to Case 1 and the cor-
responding edge is added in P and oriented from the new vertex, so the property is
satisfied by induction. As observed earlier the algorithm behaves similarly in the dual
map. 
�

Let C be the set of angles of G that are not in C . Any edge of G is bounded by
exactly 4 angles. Since C is a cycle, the 4 angles around an edge are either all in C ,
all in C or 2 in each set (see Fig. 11). Moreover, if they are 2 in each set, these sets are
separated by an edge of P or an edge of Q. Hence the frontier between C and C is a
set of edges of P and Q. Moreover this frontier is a union of oriented closed walks
of P and of oriented closed walks of Q. In the next section we study this frontier in
more details to show that C is empty in the case considered there.

5 From Toroidal Triangulations to Unicellular Maps

Let G be a toroidal triangulation. In order to choose appropriately the root angle a0,
we have to consider separating triangles. A separating triangle is a triangle that is
different from a face of G, that is a triangle whose interior in non empty. We say that
an angle is in the strict interior of a separating triangle T if it is in the interior of T
and not incident to a vertex of T . We choose as root angle a0 any angle that is not
in the strict interior of a separating triangle. One can easily see that such an angle a0
always exists. Indeed the interiors of two triangles are either disjoint or one is included
in the other. So, the angles that are incident to a triangle whose interior is maximal by
inclusion satisfy the property.

A subgraph of a graph is spanning if it is covering all the vertices. The main result
of this section is the following theorem (see Fig. 9 for an example):

Theorem 3 Consider a toroidal triangulation G, a root angle a0 that is not in the strict
interior of a separating triangle and the orientation of the edges of G corresponding
to the minimal HTC Schnyder wood w.r.t. the root face f0 containing a0. Then the
output U of Algorithm PS applied on (G, a0) is a toroidal spanning unicellular
map.

The choice of a root angle that is not in the interior of a separating triangle is
necessary to be able to use Poulalhon and Schaeffer method. Indeed, in a 3-orientation
of a toroidal triangulation, by Euler’s formula, all the edges that are incident to a
separating triangle and in its interior are oriented towards the triangle. Thus if one
applies Algorithm PS from an angle in the strict interior of a triangle, the algorithm
will remain stuck in the interior of the triangle and will not visit all the vertices.

Consider a toroidal triangulation G, a root angle a0 that is not in the strict interior
of a separating triangle and the orientation of the edges of G corresponding to the
minimal HTC Schnyder wood w.r.t. the root face f0 containing a0. Let U be the
output of Algorithm PS applied on (G, a0). We use the same notation as in the
previous section: the cycle in the angle graph is C , the set of angles that are not in C
is C , the set of edges of U is P , the dual edges of stems of U is Q.

Lemma 4 The frontier between C and C contains no oriented closed walk of Q.
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Proof Suppose by contradiction that there exists such a walk W . Then along this
walk, all the dual edges of W are edges of G oriented from the region containing C
toward C as one can see in Fig. 11. By Lemma 2, the walk W does not contain any
oriented non-contractible cycle. So W contains an oriented contractible cycle W ′, and
then either C is in the contractible region delimited by W ′, or not. The two case are
considered below:

• C lies in the non-contractible region of W ′

Then consider the plane map G ′ obtained from G by keeping only the vertices and
edges that lie (strictly) in the contractible region delimited by W ′. Let n′ be the
number of vertices of G ′. All the edges incident to G ′ that are not in G ′ are entering
G ′. So in G ′ all the vertices have outdegree 3 as we are considering 3-orientations
of G. Thus the number of edges of G ′ is exactly 3n′, contradicting the fact that
the maximal number of edges of planar map on n vertices is 3n − 6 by Euler’s
formula.

• C lies in the contractible region of W ′

All the dual edges of W ′ are edges ofG oriented from its contractible region toward
its exterior. Consider the graph Gout obtained from G by removing all the edges
that are cut by W ′ and all the vertices and edges that lie in the contractible region
of W ′. As G is a map, the face of Gout containing W ′ is homeomorphic to an open
disk. Let F be its facial walk (in Gout) and let k be the length of F . We consider
the map obtained from the facial walk F by putting back the vertices and edges
that lied inside. We transform this map into a plane map G ′ by duplicating the
vertices and edges appearing several times in F , in order to obtain a triangulation
of a cycle of length k. Let n′,m′, f ′ be the number of vertices, edges and faces of
G ′. Every inner vertex of G ′ has outdegree 3, there are no other inner edges, so the
total number of edges of G ′ is m′ = 3(n′ − k) + k. All the inner faces have length
3 and the outer face has length k, so 2m′ = 3( f ′ − 1) + k. By Euler’s formula
n′ − m′ + f ′ = 2. Combining the three equalities gives k = 3 and F is hence a
separating triangle of G. This contradicts the choice of the root angle, as it should
not lie in the strict interior of a separating triangle.


�
A Hamiltonian cycle of a graph is a cycle visiting every vertex once.

Lemma 5 The cycle C is a Hamiltonian cycle of the angle graph, all the edges of
G are marked exactly twice, the subgraph Q of G∗ is spanning, and, if n ≥ 2, the
subgraph P of G is spanning.

Proof Suppose for a contradiction that C is non empty. By Lemma 4 and Sect. 4,
the frontier T between C and C is a union of oriented closed walks of P . Hence a
face of G has either all its angles in C or all its angles in C . Moreover T is a non-
empty union of oriented closed walk of P that are oriented clockwise according to
the set of faces containing C (see the first case of Fig. 11). This set does not contain
f0 since a0 is in f0 and C . As in Sect. 3, let F be the set of counterclockwise facial
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walks of G and F0 be the counterclockwise facial walk of f0. Let F ′ = F \ F0,
and FC ⊆ F ′ be the set of counterclockwise facial walks of the faces containing C .
We have φ(T ) = −∑

F∈FC
φ(F). So T is a clockwise non-empty 0-homologous

oriented subgraph w.r.t. f0. This contradicts Lemma 1 and the minimality of the
orientation w.r.t. f0. So C is empty, thus C is Hamiltonian and all the edges of G are
marked twice.

Suppose for a contradiction that n ≥ 2 and P is not spanning. Since the algorithm
starts at v0, P is not covering a vertex v of G different from v0. Then the angles
around v cannot be visited since by Fig. 11 the only way to move from an angle of
one vertex to an angle of another vertex is through an edge of P incident to them. So
P is spanning. The proof is similar for Q (note that in this case we have f ≥ 2). 
�
Lemma 6 The first cycle created in P (resp. in Q) by the algorithm is oriented.

Proof Let e be the first edge creating a cycle in P while executing Algorithm PS
and consider the steps of Algorithm PS before e is added to P . So P is a tree during
all these steps. For every vertex of P we define P(v) the unique path from v to v0 in
P (while P is empty at the beginning of the execution, we define P(v0) = {v0}). By
Lemma 3, this path P(v) is an oriented path. We prove the following

Claim 1 Consider a step of the algorithm before e is added to P and where the
algorithm is considering a vertex v. Then all the angles around the vertices of P
different from the vertices of P(v) are already visited.

Proof Suppose by contradiction that there is such a step of the algorithm where some
angles around the vertices of P different from the vertices of P(v) have not been
visited. Consider the first such step. Then clearly we are not at the beginning of the
algorithm since P = P(v) = {v0}. So at the step just before, the conclusion holds
and now it does not hold anymore. Clearly at the step before we were considering a
vertex v′ distinct from v, otherwise P(v) and P have not changed and we have the
conclusion. So from v′ to v we are either in Case 1 or Case 4 of Algorithm PS
(see Fig. 12). If v has been considered by Case 1, then P(v) contains P(v′) and the
conclusion holds. If v has been considered by Case 4, then since P is a tree, all the
angles around v′ have been considered and v′ is the only element of P \ P(v) that is
not in P \ P(v′). Thus the conclusion also holds. 
�

Consider the iteration of Algorithm PS where e is added to P . The edge e is
added to P by Case 1, so e is oriented from a vertex u to a vertex v such that v is
already in P or v is the root vertex v0. Consider the step of the algorithm just before u
is added to P . By Claim 1, vertex u is not in P \ P(v) (otherwise e would have been
considered before and it would be a stem). So u ∈ P(v) and P(v) ∪ {e} induces an
oriented cycle of G. The proof is similar for Q. 
�
Lemma 7 P is a spanning unicellular map of G and Q is a spanning tree of G∗.
Moreover one is the dual of the complement of the other.

Proof Suppose that Q contains a cycle, then by Lemma 6 it contains an oriented
cycle of G∗. This cycle is contractible by Lemma 2. Recall that by Lemma 5, C is a
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Fig. 12 The two cases of the
proof of Claim 1

v’

v

v

v’

Case 1 Case 4

Hamiltonian cycle, moreover it does not cross Q, a contradiction. So Q contains no
cycle and is a tree.

By Lemma 5, all the edges of G are marked at the end. So every edge of G is either
in P or its dual in Q (and not both). Thus P and Q are the dual of the complement of
each other. So P is the dual of the complement of a spanning tree of G∗. Thus P is a
spanning unicellular map of G. 
�

Theorem 3 is then a direct reformulation of Lemma 7 by the definition of P and Q.
A toroidal unicellular map on n vertices has exactly n + 1 edges: n − 1 edges of a

tree plus 2 edges corresponding to the size of a basis of the homology (i.e. plus 2g in
general for an oriented surface of genus g). Thus a consequence of Theorem 3 is that
the obtained unicellular map U has exactly n vertices, n + 1 edges and 2n − 1 stems
since the total number of edges is 3n. The orientation of G induces an orientation
of U such that the stems are all outgoing, and such that while walking clockwise
around the unique face of U from a0, the first time an edge is met, it is oriented
counterclockwise according to this face, see Fig. 13 where all the tree-like parts and
stems are not represented. There are two types of toroidal unicellular maps depicted
in Fig. 13. Two cycles of U may intersect either on a single vertex (square case) or on
a path (hexagonal case). The square can be seen as a particular case of the hexagon
where one side has length zero and thus the two corners of the hexagon are identified.

In Fig. 14, we give several examples of executions of Algorithm PS on minimal
3-orientations. These examples show how important is the choice of the minimal HTC
Schnyder wood in order to obtain Theorem 3. In particular, the third example shows
that Algorithm PS can visit all the angles of the triangulation (i.e. the cycle in the
angle graph is Hamiltonian) without outputting a unicellular map.

Note that the orientations of Fig. 14 are not Schnyder woods. One may wonder if
the fact of being a Schnyder wood is of any help for our method. This is not the case
since there are examples of minimal Schnyder woods that are not HTC and where
Algorithm PS does not visit all the vertices. One can obtain such an example by
replicating 3 times horizontally and then 3 times vertically the second example of
Fig. 14 to form a 3 × 3 tiling and starts Algorithm PS from the same root angle.
Conversely, there are minimal Schnyder woods that are not HTC where Algorithm
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a
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SquareHexagon

Fig. 13 The two types of rooted toroidal unicellular maps

Fig. 14 Examples of minimal
3-orientations that are not HTC
Schnyder woods and where
Algorithm PS respectively: 1
does not visit all the vertices, 2
visits all the vertices but not all
the angles, and 3 visits all the
angles but does not output an
unicellular map

(2)(1)

(3)

PS does output a toroidal spanning unicellular map (the Schnyder wood of Fig. 7 can
serve as an example while starting from an angle of the only face oriented clockwise).

6 Recovering the Original Triangulation

This section is dedicated to show how to recover the original triangulation from the
output of Algorithm PS. The method is very similar to [20] since like in the plane
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Fig. 15 Example of how to recover the original toroidal triangulation K7 from the output of Algorithm
PS

the output has only one face that is homeomorphic to an open disk (i.e. a tree in the
plane and a unicellular map in general).

Theorem 4 Consider a toroidal triangulation G, a root angle a0 that is not in the strict
interior of a separating triangle and the orientation of the edges of G corresponding to
the minimal HTC Schnyder wood w.r.t. the root face f0 containing a0. From the output
U ofAlgorithm PS applied on (G, a0) one can reattach all the stems to obtain G by
starting from the root angle a0 and walking along the face of U in counterclockwise
order (according to this face): each time a stem is met, it is reattached in order to
create a triangular face on its left side.

Theorem 4 is illustrated in Fig. 15 where one can check that the obtained toroidal
triangulation is K7 (like on the input of Fig. 9).

In fact in this section we define a method, more general than the one described in
Theorem 4, that will be useful in next sections.

Let Ur (n) denote the set of toroidal unicellular mapsU rooted on a particular angle,
with exactly n vertices, n+1 edges and 2n−1 stems satisfying the following property.
A vertex that is not the root, has exactly 2 stems if it is not a corner, 1 stem if it is
the corner of an hexagon and 0 stem if it is the corner of a square. The root vertex
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has 1 additional stem, i.e. it has 3 stems if it is not a corner, 2 stems if it is the corner
of an hexagon and 1 stem if it is the corner of a square. Note that the output U of
Algorithm PS given by Theorem 3 is an element of Ur (n).

Similarly to the planar case [20], we define a general way to reattach step by step all
the stems of an elementU ofUr (n). LetU0 = U , and, for 1 ≤ k ≤ 2n−1, letUk be the
map obtained fromUk−1 by reattaching one of its stem (we explicit below which stem
is reattached and how). The special face of U0 is its only face. For 1 ≤ k ≤ 2n − 1,
the special face of Uk is the face on the right of the stem of Uk−1 that is reattached
to obtain Uk . For 0 ≤ k ≤ 2n − 1, the border of the special face of Uk consists of a
sequence of edges and stems. We define an admissible triple as a sequence (e1, e2, s),
appearing in counterclockwise order along the border of the special face of Uk , such
that e1 = (u, v) and e2 = (v,w) are edges of Uk and s is a stem attached to w. The
closure of the admissible triple consists in attaching s to u, so that it creates an edge
(w, u) oriented from w to u and so that it creates a triangular face (u, v, w) on its left
side. The complete closure of U consists in closing a sequence of admissible triple,
i.e. for 1 ≤ k ≤ 2n − 1, the map Uk is obtained from Uk−1 by closing any admissible
triple.

Note that, for 0 ≤ k ≤ 2n − 1, the special face of Uk contains all the stems of Uk .
The closure of a stem reduces the number of edges on the border of the special face
and the number of stems by 1. At the beginning, the unicellular map U0 has n + 1
edges and 2n− 1 stems. So along the border of its special face, there are 2n+ 2 edges
and 2n − 1 stems. Thus there is exactly three more edges than stems on the border of
the special face ofU0 and this is preserved while closing stems. So at each step there is
necessarily at least one admissible triple and the sequenceUk is well defined. Since the
difference of three is preserved, the special face of U2n−2 is a quadrangle with exactly
one stem. So the reattachment of the last stem creates two faces that have length three
and at the end U2n−1 is a toroidal triangulation. Note that at a given step there might
be several admissible triples but their closure are independent and the order in which
they are performed does not modify the obtained triangulation U2n−1.

We now apply the closure method to our particular case. Consider a toroidal trian-
gulation G, a root angle a0 that is not in the strict interior of a separating triangle and
the orientation of the edges of G corresponding to the minimal HTC Schnyder wood
w.r.t. the root face f0. Let U be the output of Algorithm PS applied on (G, a0).

Lemma 8 When a stem of U is reattached to form the corresponding edge of G, it
splits the (only) face of U into two faces. The root angle of U is in the face that is on
the right side of the stem.

Proof By Lemma 5, the execution of Algorithm PS corresponds to a Hamiltonian
cycle C = (a0, . . . , a2m, a0) in the angle graph of G. Thus C defines a total order
< on the angles of G where ai < a j if and only if i < j . Let us consider now the
angles on the face of U . Note that such an angle corresponds to several angles of
G, that are consecutive in C and that are separated by a set of incoming edges of G
(those incoming edges corresponding to stems of U ). Thus the order on the angles of
G defines automatically an order on the angles of U . The angles of U considered in
clockwise order along the border of its face, starting from the root angle, correspond
to a sequence of strictly increasing angles for <.
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Consider a stem s of U that is reattached to form an edge e of G. Let as be the
angle of U that is situated just before s (in clockwise order along the border of the
face of U ) and a′

s be the angle of U where s should be reattached. If a′
s < as , then

when Algorithm PS consider the angle as , the edge corresponding to s is already
marked and we are not in Case 2 of Algorithm PS . So as < a′

s and a0 is on the
right side of s. 
�

Recall that U is an element of Ur (n) so we can apply on U the complete closure
procedure described above. We use the same notation as before, i.e. let U0 = U and
for 1 ≤ k ≤ 2n − 1, the map Uk is obtained from Uk−1 by closing any admissible
triple. The following lemma shows that the triangulation obtained by this method
is G:

Lemma 9 The complete closure of U is G, i.e. U2n−1 = G.

Proof We prove by induction on k that every face of Uk is a face of G, except for the
special face. This is true for k = 0 since U0 = U has only one face, the special face.
Let 0 ≤ k ≤ 2n − 2, and suppose by induction that every non-special face of Uk is a
face of G. Let (e1, e2, s) be the admissible triple of Uk such that its closure leads to
Uk+1, with e1 = (u, v) and e2 = (v,w). The closure of this triple leads to a triangular
face (u, v, w) of Uk+1. This face is the only “new” non-special face while going from
Uk to Uk+1.

Suppose, by contradiction, that this face (u, v, w) is not a face of G. Let av (resp.
aw) be the angle of Uk at the special face, between e1 and e2 (resp. e2 and s). Since G
is a triangulation, and (u, v, w) is not a face of G, there exists at least one stem of Uk

that should be attached to av or aw to form a proper edge of G. Let s′ be such a stem
that is the nearest from s. In G the edges corresponding so s and s′ should be incident
to the same triangular face. Let x be the origin of the stem s′. Let z ∈ {v,w} such
that s′ should be reattached to z. If z = v, then s should be reattached to x to form
a triangular face of G. If z = w, then s should be reattached to a common neighbor
of w and x located on the border of the special face of Uk in counterclockwise order
between w and x . So in both cases s should be reattached to a vertex y located on
the border of the special face of Uk in counterclockwise order between w and x (with
possibly y = x). To summarize s goes from w to y and s′ from x to z, and z, x, y, w
appear in clockwise order along the special face of Uk . By Lemma 8, the root angle is
on the right side of both s and s′, this is not possible since their right sides are disjoint,
a contradiction.

So for 0 ≤ k ≤ 2n − 2, all the non-special faces of Uk are faces of G. In particular
every face of U2n−1 except one is a face of G. Then clearly the (triangular) special
face of U2n−1 is also a face of G, hence U2n−1 = G. 
�

Lemma 9 shows that one can recover the original triangulation from U with any
sequence of admissible triples that are closed successively. This does not explain how
to find the admissible triples efficiently. In fact the root angle can be used to find a
particular admissible triple of Uk :

Lemma 10 For 0 ≤ k ≤ 2n − 2, let s be the first stem met while walking counter-
clockwise from a0 in the special face of Uk. Then before s, at least two edges are met
and the last two of these edges form an admissible triple with s.
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Proof Since s is the first stem met, there are only edges that are met before s. Suppose
by contradiction that there is only zero or one edge met before s. Then the reattachment
of s to form the corresponding edge of G is necessarily such that the root angle is on
the left side of s, a contradiction to Lemma 8. So at least two edges are met before s
and the last two of these edges form an admissible triple with s. 
�

Lemma 10 shows that one can reattach all the stems by walking once along the face
of U in counterclockwise order. Thus we obtain Theorem 4.

Note thatU is such that the complete closure procedure described here never wraps
over the root angle, i.e. when a stem is reattached, the root angle is always on its right
side (see Lemma 8). The property of never wrapping over the root angle is called
balanced in [2]. Let Ur,b(n) denote the set of elements of Ur (n) that are balanced. So
the output U of Algorithm PS given by Theorem 3 is an element of Ur,b(n). We
exhibit in Sect. 9 a bijection between appropriately rooted toroidal triangulations and
a particular subset of Ur,b(n).

The possibility to close admissible triples in any order to recover the original trian-
gulation is interesting compared to the simpler method of Theorem 4 since it enables
to recover the triangulation even if the root angle is not given. This property is used
in Sect. 11 to obtain a bijection between toroidal triangulations and some unrooted
unicellular maps.

Moreover if the root angle is not given, then one can simply start from any angle
of U , walk twice around the face of U in counterclockwise order and reattach all the
admissible triples that are encountered along this walk. Walking twice ensures that at
least one complete round is done from the root angle. Since only admissible triples
are considered, we are sure that no unwanted reattachment is done during the process
and that the final map is G. This enables to reconstruct G in linear time even if the
root angle is not known. This property is used in Sect. 7.

7 Optimal Encoding

The results presented in the previous sections allow us to generalize the encoding of
planar triangulations, defined by Poulalhon and Schaeffer [20], to triangulations of
the torus. The construction is direct and it is hence really different from the one of
[3] where triangulations of surfaces are cut in order to deal with planar triangulations
with boundaries. Here we encode the unicellular map outputted by Algorithm PS
by a plane rooted tree with n vertices and with exactly two stems attached to each
vertex, plus O(log(n)) bits. As in [3], this encoding is asymptotically optimal and uses
approximately 3.2451n bits. The advantage of our method is that it can be implemented
in linear time. Moreover we believe that our encoding gives a better understanding of
the structure of triangulations of the torus. It is illustrated with new bijections that are
obtained in Sects. 9 and 11 .

Consider a toroidal triangulationG, a root anglea0 that is not in the strict interior of a
separating triangle and the orientation of the edges of G corresponding to the minimal
HTC Schnyder wood w.r.t. the root face f0. Let U be the output of Algorithm
PS applied on (G, a0). As already mentioned at the end of Sect. 6, to retrieve the
triangulation G one just needs to know U without the information of its root angle
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Fig. 16 From unicellular maps to trees with special stems and back

(by walking twice around the face of U in counterclockwise order and reattaching all
the admissible triples that are encountered along this walk, one can recover G). Hence
to encode G, one just has to encode U without the position of the root angle around
the root vertex (see Fig. 16a).

By Lemma 3, the unicellular map U contains a spanning tree T which is oriented
from the leaves to the root vertex. The tree T contains exactly n − 1 edges, so there is
exactly 2 edges of U that are not in T . We call these edges the special edges of U . We
cut these two special edges to transform them into stems of T (see Fig. 16a, b). We
keep the information of where are the special stems in T and on which angle of T they
should be reattached. This information can be stored with O(log(n)) bits. One can
recover U from T by reattaching the special stems in order to form non-contractible
cycles with T (see Fig. 16c).

So T is a plane tree on n vertices, each vertex having 2 stems except the root vertex
v0 having three stems. Choose any stem s0 of the root vertex, remove it and consider
that T is rooted at the angle where s0 should be attached. The information of the root
enables to put back s0 at its place. So now we are left with a rooted plane tree T on n
vertices where each vertex has exactly 2 stems (see Fig. 17a).

This tree T can easily be encoded by a binary word on 6n − 2 bits: that is, walking
in counterclockwise order around T from the root angle, writing a “1” when going
down along T (our convention for down is with the root vertex at the top), and a “0”
when going up along T (see Fig. 17a). As in [20], one can encode T more compactly
by using the fact that each vertex has exactly two stems. Thus T is encoded by a binary
word on 4n−2 bits: that is, walking in counterclockwise order around T from the root
angle, writing a “1” when going down along an edge of T , and a “0” when going up
along an edge or along a stem of T (see Fig. 17b where the “red 1’s” of Fig. 17a have
been removed). Indeed there is no need to encode when going down along stems, as
this information can be retrieved afterward. While reading the binary word to recover
T , when a “0” is met, we should go up in the tree, except if the vertex that we are
considering does not have already its two stems, then in that case we should create a
stem (i.e. add a “red 1” before the “0”). So we are left with a binary word on 4n − 2
bits with exactly n − 1 bits “1” and 3n − 1 bits “0”.
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Fig. 17 Encoding a rooted tree with two stems at each vertex

Similarly to [20], using [6, Lem. 7], this word can then be encoded with a binary
word of length log2

(4n−2
n−1

) + o(n) ∼ n log2
( 256

27

) ≈ 3.2451 n bits. Thus we have the
following theorem whose linearity is discussed in Sect. 8:

Theorem 5 Any toroidal triangulation on n vertices, can be encoded with a binary
word of length 3.2451n + o(n) bits, the encoding and decoding being linear in n.

8 Linear Complexity

In this section we show that the encoding method described in this paper, that is
encoding a toroidal triangulation via a unicellular map and recovering the original
triangulation, can be performed in linear time. The only difficulty lies in providing
Algorithm PS with the appropriate input it needs in order to apply Theorem 3. Then
clearly the execution of Algorithm PS, the encoding phase and the recovering of
the triangulation are linear. Thus we have to show how one can find in linear time a
root angle a0 that is not in the strict interior of a separating triangle, as well as the
minimal HTC Schnyder wood w.r.t. the root face f0.

Consider a toroidal triangulation G. Let us see how one can build a Schnyder
wood of G in linear time. The contraction of a non-loop-edge e of G is the operation
consisting of continuously contracting e until merging its two ends, as shown in Fig. 18.
Note that only one edge of each pair of homotopic multiple edges is preserved (edges
ewx and ewy in the figure). Note that the contraction operation is also defined when
some vertices are identified: x = u and y = v, or, x = v and y = u.

An edge e is said to be contractible if it is not a loop and if after contracting e
and identifying the borders of the two newly created length two faces, one obtains
a triangulation that is still without contractible loop or homotopic multiple edges. In
[15] the existence of crossing Schnyder wood is proved by contraction. Unfortunately
this proof cannot easily be transformed into a linear algorithm because of the crossing
property that has to be maintained during the contraction process. Nevertheless we use
contractions to obtain non-necessarily crossing Schnyder woods. If the triangulation
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Fig. 18 The contraction operation

obtained after contracting a contractible edge admits a Schnyder wood it is then easy
to obtain a Schnyder wood of G. The rules for decontracting an edge in the case of
toroidal triangulations are depicted in [15, Fig. 21] where for each case one can choose
any of the proposed colorings. For any toroidal triangulation, one can find contractible
edges until the toroidal map has only one vertex (see [19]). A Schnyder wood of the
toroidal map on one vertex is depicted on the right of Fig. 3. Thus one can obtain a
Schnyder wood of any toroidal triangulation by this process. Nevertheless, to maintain
linearity we have to be more precise since it is not trivial to find contractible edges.

Consider an edge e of G with distinct ends u, v, and with incident faces uvx and
vuy, such that these vertices appear in clockwise order around the corresponding face
(so we are in the situation of Figure 18). The edge e is contractible if and only if,
every walk enclosing an open disk containing a face other than uvx and vuy, goes
through an edge distinct from e at least three times. Equivalently e is non-contractible
if and only if it belongs to a separating triangle or u, v are both incident to a loop-edge
�u, �v , respectively, such that the walk of length four (�u, e, �v, e) encloses an open
disk with at least three faces (i.e. with at least one face distinct from uvx and vuy).
To avoid the latter case, if vertex u is incident to a loop-edge �u , we consider e to be
an edge that is consecutive to that loop, so that we have x = u. In such a case, if there
is a loop �v incident to v and a walk of length four of the form (�u, e, �v, e) enclosing
a disk with at least three faces, then there is also a separating triangle containing e. In
the following we show how to find such separating triangle, if there is one. If u and
v have more common neighbors, than simply x and y, consider their second common
neighbor going clockwise around u from e (the first one being x , and the last being y)
and call it x ′. Call y′ their second common neighbor going counterclockwise around u
from e. Now, either uvx ′ or uvy′ is a separating triangle or the edge e is contractible.
We consider these two cases below:

• If e is contractible, then it is contracted and we apply the procedure recursively
to obtain a Schnyder wood of the contracted graph. Then we update the Schnyder
wood as described above. Note that this update is done in constant time.

• If uvx ′ (resp. uvy′) is a separating triangle, one can remove its interior, recursively
obtain a toroidal Schnyder wood of the remaining toroidal triangulation, build a
planar Schnyder wood of the planar triangulation inside uvx ′ (resp. uvy′), and then
superimpose the two (by eventually permuting the colors) to obtain a Schnyder
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wood of the whole graph. Note that computing a planar Schnyder wood can be
done in linear time using a canonical ordering (see [17]).

The difficulty here is to test whether uvx ′ or uvy′ are triangles. For that purpose,
one first needs to compute a basis (B1, B2) for the homology. Consider a spanning tree
of the dual map G∗. The map obtained from G by removing those edges is unicellular,
and removing its treelike parts one obtains two cycles (B1, B2) (intersecting on a path
with at least one vertex) that form a basis for the homology. This can be computed in
linear time for G and then updated when some edge is contracted or when the interior
of some separating triangle is removed. The updating takes constant time when some
edge is contracted, and it takes O(n′) time when removing n′ vertices in the interior of
some separating triangle. The overall cost of constructing and maintaining the basis
is thus linear in the size of G. Then a closed walk of length three W , given with an
arbitrary orientation, encloses a region homeomorphic to an open disk if and only if
W crosses Bi from right to left as many times as W crosses Bi from left to right, for
every i ∈ {1, 2}. This test can be done in constant time for uvx ′ and uvy′ once the
half edges on the right and left sides of the cycles Bi are marked. Marking the half
edges of G and maintaining this marking while contracting edges or while removing
the interior of separating triangles can clearly be done in linear time. We thus have
that the total running time to compute a Schnyder wood of G is linear.

From this Schnyder wood, one can compute in linear time a root angle a0 not in
the strict interior of a separating triangle. First note that in a 3-orientation of a toroidal
triangulation, the edges that are inside a separating triangle and that are incident to
the three vertices on the border are all oriented toward these three vertices by Euler’s
formula. Thus an oriented non-contractible cycle cannot enter in the interior of a
separating triangle. Now follow any oriented monochromatic path of the Schnyder
wood and stop the first time this path is back to a previously met vertex v0. The end of
this path forms an oriented monochromatic cycleC containing v0. IfC is a contractible
cycle then Euler’s formula is violated in the contractible region. Thus C is an oriented
non-contractible cycle and cannot contain some vertices that are in the interior of a
separating triangle. So v0 is not in the interior of a separating triangle and we can
choose as root angle a0 any angle incident to v0.

In [16] (see also [18]) it is proved how one can transform any 3-orientation (hence
a Schnyder wood) of a toroidal triangulation into a HTC Schnyder wood. The method
consists in computing a so called “middle-path” (a directed path where the next
edge chosen is the one leaving in the “middle”) and reversing some non-contractible
“middle-cycles”. Clearly the method is linear even if not explicitly mentioned in [16].
Let D0 be the corresponding obtained orientation of G.

It remains to compute the minimal HTC Schnyder wood w.r.t. the root face f0.
There is a generic known method Meunier, F.: Personal communication (2015) (see
also [23, p. 23]) to compute in linear time a minimal α-orientation of a planar map as
soon as an α-orientation is given. This method also works on oriented surfaces and
can be applied to obtain the minimal HTC Schnyder wood in linear time. We explain
the method briefly below.

It is much simpler to compute the minimal orientation Dmin homologous to D0
in a dual setting. The first observation to make is that two orientations D1, D2 of G
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are homologous if and only if there dual orientations D∗
1 , D∗

2 of G∗ are equivalent up
to reversing some directed cuts. Furthermore D1 ≤ f0 D2 if and only if D∗

1 can be
obtained from D∗

2 by reversing directed cuts oriented from the part containing f0. Let
us compute D∗

min which is the only orientation of G∗, obtained from D∗
0 by reversing

directed cuts, and without any directed cut oriented from the part containing f0. For
this, consider the orientation D∗

0 of G∗ = (F, E∗) and compute the set X ⊆ F of
vertices of G∗ that have an oriented path toward f0. Then (X, F \ X) is a directed
cut oriented from the part containing f0 that one can reverse. Then update the set of
vertices that can reach f0 and go on until X = F . It is not difficult to see that this can
be done in linear time. Thus we obtain the minimal HTC Schnyder wood w.r.t. f0 in
linear time.

9 Bijection with Rooted Unicellular Maps

Given a toroidal triangulation G with a root angle a0, we have defined a unique asso-
ciated orientation: the minimal HTC Schnyder wood w.r.t. the root face f0. Suppose
that G is oriented according to the minimal HTC Schnyder wood. If a0 is not in the
strict interior of a separating triangle then Theorems 3 and 4 show that the execution
of Algorithm PS on (G, a0) gives a toroidal unicellular map with stems from which
one can recover the original triangulation. Thus there is a bijection between toroidal
triangulations rooted from an appropriate angle and their image by Algorithm PS.
The goal of this section is to describe this image.

Recall from Sect. 6 that the output of Algorithm PS on (G, a0) is an element
of Ur,b(n). One may hope that there is a bijection between toroidal triangulations
rooted from an appropriate angle and Ur,b(n) since this is how it works in the planar
case. Indeed, given a planar triangulation G, there is a unique orientation of G (the
minimal Schnyder wood) on which Algorithm PS, performed from an outer angle,
outputs a spanning tree. In the toroidal case, things are more complicated since the
behavior of Algorithm PS on minimal HTC Schnyder woods does not characterize
such orientations.

Figure 19 gives an example of two (non-homologous) orientations of the same
triangulation that are both minimal w.r.t. the same root face. For these two orientations,
the execution ofAlgorithm PS from the same root angle gives two different elements
of Ur,b(2) (from which the original triangulation can be recovered by the method of
Theorem 4). Thus we have to exhibit a particular property of HTC Schnyder woods
that can be used to characterize which particular subset of Ur,b(n) is in bijection with
appropriately rooted toroidal triangulations.

For that purpose we now introduce a function γ which is reminiscent to the one
in [16]. Consider a particular orientation of G. Let C be a cycle that is given with an
arbitrary direction (C is not necessarily a directed cycle). Then γ (C) is defined by,

γ (C) = # edges leaving C on its right − # edges leaving C on its left .

By the Schnyder property, it is clear that in a toroidal Schnyder wood, a mono-
chromatic cycle C always satisfies γ (C) = 0. Consider a crossing Schnyder wood
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HTC orientation non-HTC orientation

Fig. 19 A graph that can be represented by two different unicellular maps

of G and C1,C2 two monochromatic cycles of different colors. Thus we have
γ (C1) = γ (C2) = 0. By [15, Thm. 7], the two cycles C1,C2 are non-contractible
and non-homologous, thus they form a basis for the homology. While returning a
0-homologous oriented subgraph, the value of γ on a given cycle does not change.
Thus any HTC Schnyder wood also satisfies γ (C1) = γ (C2) = 0. Moreover it is
proved in [16] (see also [18]) that if a 3-orientation of a toroidal triangulation sat-
isfies γ equals 0 for two cycles forming a basis for the homology, then γ equals 0
for any non-contractible cycle. Thus any HTC Schnyder wood satisfies γ equals 0
for any non-contractible cycle. We call this property the γ0 property. Note that, for a
3-orientation, it is sufficient to satisfy γ equals 0 on any two cycles forming a basis
for the homology to have the γ0 property.

Actually the γ0 property characterizes the 3-orientations that are HTC Schnyder
woods. Indeed a consequence of [16, Thm. 5 and Lem. 18] is that if two 3-orientations
both satisfy the γ0 property, then they are homologous to each other and thus HTC.
Note that for the 3-orientation on the right of Fig. 19, we have γ equals ±2 for the
horizontal cycle and this explain why this orientation is not HTC (one can find similar
arguments for previous examples of non-HTC Schnyder woods presented in this paper,
see Figs. 5, 7).

Let us translate this γ0 property on Ur (n). Consider an element U of Ur (n) whose
edges and stems are oriented w.r.t. the root angle as follows: the stems are all outgoing,
and while walking clockwise around the unique face of U from a0, the first time an
edge is met, it is oriented counterclockwise w.r.t. the face ofU . Then one can compute
γ on the cycles of U (edges and stems count). We say that a unicellular map of Ur (n)

satisfies the γ0 property if γ equals zero on its (non-contractible) cycles. Let us call
Ur,b,γ0(n) the set of elements of Ur,b(n) satisfying the γ0 property. So the output of
Algorithm PS given by Theorem 3 is an element of Ur,b,γ0(n).

Let Tr (n) be the set of toroidal triangulations on n vertices rooted at an angle that is
not in the strict interior of a separating triangle. Then we have the following bijection:

Theorem 6 There is a bijection between Tr (n) and Ur,b,γ0(n).

Proof Consider the mapping g that associates to an element of Tr (n), the output of
Algorithm PS executed on the minimal HTC Schnyder wood w.r.t. the root face.
By the above discussion the image of g is in Ur,b,γ0(n) and g is injective since one can
recover the original triangulation from its image by Theorem 4.

Conversely, given an element U of Ur,b,γ0(n) with root angle a0, one can build a
toroidal map G by the complete closure procedure described in Sect. 6. The number
of stems and edges of U implies that G is a triangulation. Recall that a0 defines an
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orientation on the edges and stems of U . Consider the orientation D of G induced
by this orientation. Since U is balanced, the execution of Algorithm PS on (G, a0)

corresponds to the cycle in the angle graph of U obtained by starting from the root
angle and walking clockwise in the face of U . Thus the output of Algorithm PS
executed on (G, a0) is U . It remains to show that G is appropriately rooted and that
D corresponds to the minimal HTC Schnyder wood w.r.t. this root.

First note that by definition of Ur (n), the orientation D is a 3-orientation.
Suppose by contradiction thata0 is in the strict interior of a separating triangle. Then,

since we are considering a 3-orientation, by Euler’s formula, the edges in the interior
of this triangle and incident to its border are all entering the border. So Algorithm
PS started from the strict interior cannot visit the vertices on the border of the triangle
and outside. Thus the output of Algorithm PS is not a toroidal unicellular map, a
contradiction. So a0 is not in the strict interior of a separating triangle.

The γ0 property of U implies that γ equals zero on two cycles of U . Hence these
two cycles considered in G also satisfy γ equals 0 and form a basis for the homology.
So D is an HTC Schnyder wood.

Suppose by contradiction that D is not minimal. Then, by Lemma 1, it contains a
clockwise (non-empty) 0-homologous oriented subgraph w.r.t. f0. With the notations
of Sect. 3, let T be such a subgraph with φ(T ) = −∑

F∈F ′ λFφ(F), with λ ∈ N
|F ′|.

Let λF0 = 0, and λmax = maxF∈F λF . For 0 ≤ i ≤ λmax, let Xi = {F ∈ F | λF ≥ i}.
For 1 ≤ i ≤ λmax, let Ti be the oriented subgraph such that φ(Ti ) = −∑

F∈Xi
φ(F).

Then we have φ(T ) = ∑
1≤i≤λmax

φ(Ti ). Since T is an oriented subgraph, we have
φ(T ) ∈ {−1, 0, 1}|E(G)|. Thus for any edge of G, incident to faces F1 and F2, we have
(λF1 − λF2) ∈ {−1, 0, 1}. So, for 1 ≤ i ≤ λmax, the oriented graph Ti is the frontier
between the faces with λ value equal to i and i − 1. So all the Ti are edge disjoint
and are oriented subgraphs of D. Since T is non-empty, we have λmax ≥ 1, and T1
is non-empty. All the edges of T1 have a face of X1 on their right and a face of X0
on their left. Since U is an unicellular map, and T1 is a (non-empty) 0-homologous
oriented subgraph, at least one edge of T1 corresponds to a stem of U . Let s be the last
stem of U corresponding to a edge of T1 that is reattached by the complete closure
procedure. Consider the step where s is reattached. As the root angle (and thus f0) is
in the special face (see the terminology of Sect. 6), the special face is in the region
defined by X0. Thus it is on the left of s when it is reattached. This contradicts the fact
that U is balanced. Thus D is the minimal HTC Schnyder wood w.r.t. f0. 
�

10 The Lattice of HTC Schnyder Woods

In this section, we push further the study of HTC Schnyder woods in order to remove
the root and the balanced property of the unicellular maps considered in Theorem 6
and obtain a simplified bijection in Theorem 7 of Sect. 11.

Consider a toroidal triangulation G given with a crossing Schnyder wood. Let D0
be the corresponding 3-orientation of G. Let f0 be any face of G. Recall from Sect. 3
that O(G) denotes the set of all the orientations of G that are homologous to D0. The
elements of O(G) are the HTC Schnyder woods ofG and (O(G),≤ f0) is a distributive
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lattice. We first recall some general results and terminology from [16] before studying
the consequences of considering HTC Schnyder woods.

We need to reduce the graph G. We call an edge of G rigid w.r.t. O(G) if it has the
same orientation in all the elements of O(G). Rigid edges do not play a role for the
structure of O(G). We delete them from G and call the obtained embedded graph G̃.
Note that this graph is embedded but it is not necessarily a map, as some faces may
not be homeomorphic to open disks. Note also that G̃ might be empty if all the edges
are rigid, i.e. |O(G)| = 1 and G̃ has no edge but a unique face that is all the surface.

Lemma 11 [16] Given an edge e of G, the following are equivalent:

1. e is non-rigid,
2. e is contained in a 0-homologous oriented subgraph of D0,
3. e is contained in a 0-homologous oriented subgraph of any element of O(G).

By Lemma 11, one can build G̃ by keeping only the edges that are contained in
a 0-homologous oriented subgraph of D0. Note that this implies that all the edges of
G̃ are incident to two distinct faces of G̃. Denote by F̃ the set of oriented subgraphs
of G̃ corresponding to the boundaries of faces of G̃ considered counterclockwise. Let
f̃0 be the face of G̃ containing f0 and F̃0 be the element of F̃ corresponding to the
boundary of f̃0. Let F̃ ′ = F̃ \ F̃0. The elements of F̃ ′ are sufficient to generate the
entire lattice (O(G),≤ f0) (see [16]), i.e. two elements D, D′ of O(G) are linked in
the Hasse diagram of the lattice, with D ≤ f0 D′, if and only if D \ D′ ∈ F̃ ′.

Lemma 12 [16] For every element F̃ ∈ F̃ there exists D in O(G) such that F̃ is an
oriented subgraph of D.

By Lemma 12, for every element F̃ ∈ F̃ ′ there exists D in O(G) such that F̃ is
an oriented subgraph of D. Thus there exists D′ such that F̃ = D \ D′ and D, D′ are
linked in the Hasse diagram of the lattice. Thus the elements of F̃ ′ form a minimal set
that generates the lattice.

Let Dmax (resp. Dmin) be the maximal (resp. minimal) element of (O(G),≤ f0).

Lemma 13 [16] F̃0 (resp. −F̃0) is an oriented subgraph of Dmax (resp. Dmin).

From now on we use some specific properties of the object considered in this paper,
i.e. HTC Schnyder woods.

Lemma 14 Consider an orientation D in O(G) and a closed walk W of G̃. If on the
left side of W, there is no incident outgoing edges of D, then W is a triangle with its
interior on its left side.

Proof Consider a closed walk W of G̃ such that on its left side there is no incident
outgoing edges of D. Let Wleft be the edges of D that are incident to the left side of
W . By assumption they are all entering W . Note that W cannot cross itself otherwise
it has at least one incident outgoing edges of D on its left side. However it may have
repeated vertices but in that case it intersects itself tangentially on the right side.

Suppose first that W is a non-contractible cycle. Then consider the closed walk
W ∗ of the dual orientation D∗ that is obtained by considering all the dual edges of
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Wleft with their corresponding orientation. Since all the edges of Wleft are entering W
we have that W ∗ is an oriented closed walk. Moreover it is non-contractible and thus
contains an oriented non-contractible cycle, a contradiction to Lemma 2. So W is not
a non-contractible cycle.

Suppose by contradiction that there is an oriented subwalk W ′ of W , that forms a
cycle C enclosing a region R on its right side that is homeomorphic to an open disk.
Let v be the starting and ending vertex of W ′. Note that we do not consider that W ′
is a strict subwalk of W , so we might have W ′ = W . Consider the graph G ′ obtained
from G by keeping all the vertices and edges that lie in the region R, including W ′.
Since W can intersect itself only tangentially on the right side, we have that G ′ is a
plane map whose outer face boundary is W ′ and whose interior is triangulated. Let
k be the length of W ′. Let n′,m′, f ′ be the number of vertices, edges and faces of
G ′. By Euler’s formula, n′ − m′ + f ′ = 2. All the inner faces have length 3 and the
outer face has length k, so 2m′ = 3( f ′ − 1) + k. Since there is no outgoing incident
edges of D on the left side of W , all the vertices of G ′, except v, have their outgoing
edges in G ′. Since W ′ is oriented, v has at least one outgoing edge in G ′. Thus, as we
are considering a 3-orientation, we have m′ ≥ 3(n′ − 1) + 1. Combining these three
equalities gives k ≤ −1, a contradiction. So there is no oriented subwalk of W , that
forms a cycle enclosing an open disk on its right side.

Recall that since there is no incident outgoing edges of G on the left side of W ,
the walk W can only intersect itself tangentially and on its right side. Thus following
W on its left, one draws a curve that does not intersect itself. This curve is thus either
enclosing a region homeomorphic to an open disk or forming a non-contractible non-
self intersecting curve. Suppose, by contradiction, that we are in the second case. Since
there is no subwalk of W , that forms a cycle enclosing an open disk on its right side,
we have that W is a non-contractible cycle, a contradiction. So the left side of W
encloses a region R homeomorphic to an open disk.

Consider the graph G ′ obtained from G by keeping only the vertices and edges
that lie in the region R, including W . The vertices of W appearing several times are
duplicated so that G ′ is a plane triangulation of a cycle. Let k be the length of W .
Let n′,m′, f ′ be the number of vertices, edges and faces of G ′. By Euler’s formula,
n′ −m′ + f ′ = 2. All the inner faces have length 3 and the outer face has length k, so
2m′ = 3( f ′ − 1) + k. All the inner vertices have outdegree 3 as we are considering a
3-orientation of G. All the edges of Wleft are oriented toward W , and there are k outer
edges, so m′ = 3(n′ − k) + k. Combining these three equalities gives k = 3, i.e. W
has length three and the lemma holds. 
�

The boundary of a face of G̃ may be composed of several closed walks. Let us
call quasi-contractible the faces of G̃ that are homeomorphic to a disk or to a disk
with punctures. Note that such a face may have several boundaries (if there is some
punctures) but exactly one of these boundaries enclose the face. Let us call outer facial
walk this special boundary. Then we have the following:

Lemma 15 All the faces of G̃ are quasi-contractible and their outer facial walk is a
triangle.
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Proof Suppose by contradiction that there is a face f̃ of G̃ that is not quasi-contractible
or whose outer facial walk is not a triangle. Let F̃ be the element of F̃ corresponding
to the boundary of f̃ . By Lemma 12, there exists an orientation D in O(G) such that
F̃ is an oriented subgraph of D.

All the faces of G have length three. Thus f̃ is not a face of G and contains in its
interior at least one edge of G. Start from any such edge e and consider the left-walk
W = (ei )i≥0 of D obtained by the following: if the edge ei is entering a vertex v, then
ei+1 is choosen among the three edges leaving v as the edge that is on the left coming
from ei (i.e. the first one while going clockwise around v). Suppose that for i ≥ 0,
edge ei is entering a vertex v that is on the border of f̃ . Recall that by definition F̃ is
oriented counterclockwise according to its interior, so either ei+1 is in the interior of
f̃ or ei+1 is on the border of f̃ . Thus W cannot leave f̃ .

Since G has a finite number of edges, some edges are used several times in W .
Consider a minimal subsequence W ′ = ek, . . . , e� such that no edge appears twice
and ek = e�+1. Thus W ends periodically on the sequence of edges ek, . . . , e�.
By Lemma 14, all the closed walks that are part of F̃ have some outgoing incident
edges of D on their left side. Thus we have that W ′ contains at least one edge that is
not an edge of F̃ , thus it contains at least one rigid edge.

By construction, on the left side of W ′, there is no incident outgoing edges of D. So,
by Lemma 14, W ′ is a triangle with its interior on its left side. So W ′ is a 0-homologous
oriented subgraph of D, thus all its edges are non-rigid by Lemma 11, a contradiction.


�

By Lemma 15, every face of G̃ is quasi-contractible and its outer facial walk is a
triangle. So G̃ contains all the triangles of G whose interiors are maximal by inclusion,
i.e. it contains all the edges that are not in the interior of a separating triangle. In
particular, G̃ is non-empty and |O(G)| ≥ 2. The status (rigid or not) of an edge lying
inside a separating triangle is determined as in the planar case: such an edge is rigid
if and only if it is in the interior of a separating triangle and incident to this triangle.
Thus an edge of G is rigid if and only if it is in the interior of a separating triangle and
incident to this triangle.

Since (O(G),≤ f0) is a distributive lattice, any element D of O(G) that is distinct
from Dmax and Dmin contains at least one neighbor above and at least one neighbor
below in the Hasse diagram of the lattice. Thus it has at least one face of G̃ oriented
counterclockwise and at least one face of G̃ oriented clockwise. Thus by Lemma 15,
it contains at least one triangle oriented counterclockwise and at least one triangle
oriented clockwise. Next lemma shows that this property is also true for Dmax and
Dmin.

Lemma 16 In Dmax (resp. Dmin) there is a counterclockwise (resp. clockwise) triangle
containing f0, and a clockwise (resp. counterclockwise) triangle not containing f0.

Proof By Lemma 15, f̃0 is quasi-contractible and its outer facial walk is a triangle T .
By lemma 13, F̃0 is an oriented subgraph of Dmax. Thus T is oriented counterclockwise
and contains f0. The second part of the lemma is clear since |O(G)| ≥ 2 so Dmax has
at least one neighbor below in the Hasse diagram of the lattice. Similarly for Dmin. 
�
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Fig. 20 Angles that are in a
separating triangle but not in its
clockwise interior

Thus by above remarks and Lemma 16, all the HTC Schnyder woods have at least
one triangle oriented counterclockwise and at least one triangle oriented clockwise.
Note that this property does not characterize HTC Schnyder woods. Figure 7 gives
an example of a Schnyder wood that is not HTC but satisfies the property. Note also
that not all Schnyder woods satisfy the property. The right of Fig. 5 is an example of
a Schnyder wood that is no HTC and has no oriented triangle.

Lemma 16 is used in the next section to obtained a bijection with unrooted unicel-
lular maps.

11 Bijection with Unrooted Unicellular Maps

To remove the root and the balanced property of the unicellular maps considered in
Theorem 6, we have to root the toroidal triangulation more precisely than before. We
say that an angle is not in the clockwise interior of a separating triangle if it is not in
its interior, or if it is incident to a vertex v of the triangle and situated just before an
edge of the triangle in counterclockwise order around v (see Fig. 20).

Consider a toroidal triangulation G. Consider a root angle a0 that is not in the
clockwise interior of a separating triangle. Note that the choice of a0 is equivalent
to the choice of a root vertex v0 and a root edge e0 incident to v0 such that none
is in the interior of a separating triangle. Consider the orientation of the edges of
G corresponding to the minimal HTC Schnyder wood w.r.t. the root face f0. By
Lemma 16, there is a clockwise triangle containing f0. Thus by the choice of a0, the
edge e0 is leaving the root vertex v0. This is the essential property used in this section.
Consider the output U of Algorithm PS on (G, a0). Since e0 is leaving v0 and a0 is
just before e0 in counterclockwise order around v0, the execution of Algorithm PS
starts by Case 2 and e0 corresponds in U to a stem s0 attached to v0. We call this stem
s0 the root stem.

The recovering method defined in Theorem 4 says that s0 is the last stem reattached
by the procedure. So there exists a sequence of admissible triples of U (see the termi-
nology and notations of Sect. 6) such that s0 belongs to the last admissible triple. Let
U0 = U and for 1 ≤ k ≤ 2n − 2, the map Uk is obtained from Uk−1 by closing any
admissible triple that does no contain s0. As noted in Sect. 6, the special face of U2n−2
is a quadrangle with exactly one stem. This stem being s0, we are in the situation of
Fig. 21.

Consequently, if one removes the root stem s0 from U to obtain a unicellular map
U ′ with n vertices, n+ 1 edges and 2n− 2 stems, one can recover the graph U2n−2 by
applying a complete closure procedure on U ′ (see example of Fig. 22). Note that then,
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Fig. 21 The situation just
before the last stem (i.e. the root
stem) is reattached
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Fig. 22 Example of K7 where the root angle, the root stem and the orientation w.r.t. the root angle have
been removed from the output of Fig. 9. The complete closure procedure leads to a quadrangular face

there are four different ways to finish the closure ofU2n−2 to obtain an oriented toroidal
triangulation. This four cases correspond to the four ways to place the (removed) root
stem in a quadrangle, they are obtained by pivoting Fig. 21 by 0◦, 90◦, 180◦ and 270◦.
Note that only one of this four cases leads to the original rooted triangulation G, except
if there are some symmetries (like in the example of Fig. 22).

Let U(n) denote the set of (non-rooted) toroidal unicellular maps, with exactly n
vertices, n + 1 edges and 2n − 2 stems satisfying the following: a vertex has exactly
2 stems if it is not a corner, 1 stem if it is the corner of an hexagon and 0 stem if it is
the corner of a square. Note that the output of Theorem 3 on an appropriately rooted
toroidal triangulation is an element of U(n) when the root stem is removed.

Note that an element U ′ of U(n) is non-rooted so we cannot orient automatically
its edges w.r.t. the root angle like in Sect. 9. Nevertheless one can still orient all the
stems as outgoing and compute γ on the cycles of U ′ by considering only its stems in
the counting (and not the edges nor the root stem anymore). We say that a unicellular
map of U(n) satisfies the γ0 property if γ equals zero on its (non-contractible) cycles.
Let us call Uγ0(n) the set of elements of U(n) satisfying the γ0 property.

A surprising property is that an element U ′ of U(n) satisfies the γ0 property if and
only if any elementU ofUr (n) obtained fromU ′ by adding a root stem anywhere inU ′
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Fig. 23 The parts of the
unicellular map showing the
correspondence while
computing γ with or without the
orientation w.r.t. the root plus
the root stem
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Fig. 24 The difference between
the rooted output of Fig. 9 and
the non-rooted output of Fig. 22

1

3

5

2 3

5

4

3

7

2

4

6

2

6

satisfies the γ0 property (note that inU we count the edges and the root stem to compute
γ ). One can see this by considering the unicellular map of Fig. 23. It represents the
general case of the underlying rooted hexagon of U . The edges represent in fact paths
(some of which can be of length zero). One can check that it satisfies γ equals zero on
its (non-contractible) cycles. It corresponds exactly to the set of edges that are taken
into consideration when computing γ on U but not when computing γ on U ′. Thus it
does not affect the counting (the tree-like parts are not represented since they do not
affect the value γ ). So the output of Theorem 3 on an appropriately rooted toroidal
triangulation is an element of Uγ0(n) when the root stem is removed.

For the particular case of K7, the difference between the rooted output of Fig. 9 and
the non-rooted output of Fig. 22 is represented in Fig. 24 (one can superimpose the
last two to obtain the first). One can check that these three unicellular maps (rooted,
non-rooted and the difference) all satisfy γ equals zero on their cycles.

There is an “almost” four-to-one correspondence between toroidal triangulations
on n vertices, given with a root angle that is not in the clockwise interior of a separating
triangle, and elements of Uγ0(n). The “almost” means that if the automorphism group
of an element U of Uγ0(n) is not trivial, some of the four ways to add a root stem in U
are isomorphic and lead to the same rooted triangulation. In the example of Fig. 22,
one can root in four ways the quadrangle but this gives only two different rooted
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triangulations (because of the symmetries of K7). We face this problem by defining
another class for which we can formulate a bijection.

Let T (n) be the set of toroidal maps on n vertices, where all the faces have length
three, except one that has length four and which is not in a separating triangle. Then
we have the following bijection:

Theorem 7 There is a bijection between T (n) and Uγ0(n).

Proof Let a (for “add”) be an arbitrarily chosen mapping defined on the maps G ′ of
T (n) that adds a diagonal e0 in the quadrangle of G ′ and roots the obtained toroidal
triangulation G at a vertex v0 incident to e0 (this defines the root angle a0 situated just
before e0 in counterclockwise order around v0). Note that the added edge cannot create
homotopic multiple edges, since otherwise the quadrangle would be in a separating
triangle. Moreover the root angle of G is not in the clockwise interior of a separating
triangle. Thus the image of a is in T ′

r (n), the subset of Tr (n) corresponding to toroidal
triangulations rooted at an angle that is not in the clockwise interior of a separating
triangle.

Let U ′
r,b,γ0

(n) be the elements of Ur,b,γ0(n) that have their root angle just before
a stem in counterclockwise order around the root vertex. Consider the mapping g,
defined in the proof of Theorem 9. By above remarks and Theorem 9, the image of g
restricted to T ′

r (n) is in U ′
r,b,γ0

(n). Let r (for “remove”) be the mapping that associates
to an element of U ′

r,b,γ0
(n) an element of Uγ0(n) obtained by removing the root angle

and its corresponding stem. Finally, let h = r ◦ g ◦ a which associates to an element
of T (n) an element of Uγ0(n). Let us show that h is a bijection.

Consider an element G ′ of T (n) and its image U ′ by h. The complete closure
procedure on U ′ gives G ′ thus the mapping h is injective.

Conversely, consider an element U ′ of Uγ0(n). Apply the complete closure proce-
dure on U ′. At the end of this procedure, the special face is a quadrangle whose angles
are denoted α1, . . . , α4. We denote also by α1, . . . , α4 the corresponding angles of
U ′. For i ∈ {1, . . . , 4}, let Ui be the element of Ur (n) obtained by adding a root stem
and a root angle in the angle αi of U ′, with the root angle just before the stem in
counterclockwise order around the root vertex. Note that by the choice of αi , the Ui

are all balanced. By above remarks they also satisfy the γ0 property and thus they are
in U ′

r,b,γ0
(n).

By the proof of Theorem 6, the complete closure procedure onUi gives a triangula-
tion Gi of Tr (n) that is rooted from an angle ai0 not in the strict interior of a separating
triangle and oriented according to the minimal HTC Schnyder wood w.r.t. the root
face. Moreover the output of Algorithm PS applied on (Gi , ai0) is Ui . Since in Ui ,
the root stem is present just after the root angle, the first edge seen by the execution
of Algorithm PS on (Gi , ai0) is outgoing. So a0 is not in the clockwise interior
of a separating triangle (in a 3-orientation, all the edges that are in the interior of a
separating triangle and incident to the triangle are entering the triangle). Thus the Gi

are appropriately rooted and are elements of T ′
r (n). Removing the root edge of any

Gi , gives the same map G ′ of T (n). Exactly one of the Gi is the image of G ′ by the
mapping a. Thus the image of G ′ by h is U ′ and the mapping h is surjective. 
�
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A nice aspect of Theorem 7 comparing to Theorem 6 is that the unicellular maps that
are considered are much simpler. They have no root nor balanced property anymore.
It would be great to use Theorem 7 to count and sample toroidal triangulations. The
main issue comparing to the planar case seems to be the γ0 property.

12 Conclusion

Note that the work presented here is related to a work of Bernardi and Chapuy [5] (their
convention for the orientation of the edges is the reverse of ours). Consider a map G
(not necessarily a triangulation) on an oriented surface of genus g, rooted at a particular
angle a0. An orientation of G is right if for each edge e, the right-walk starting from e
(when entering a vertex, the next chosen edge is the one leaving on the right) reaches
the root edge e0 via the root vertex v0. A consequence of [5] is that Algorithm PS
applied on an orientation of (G, a0) outputs a spanning unicellular submap U if and
only if the considered orientation is right. Note that in this characterization, the submap
U is not necessarily a map of genus g, its genus can be any value in {0, . . . , g}. In the
particular case of toroidal triangulations we show that by considering minimal HTC
Schnyder woods the output U is a toroidal spanning unicellular map. Hence by the
above characterization, minimal HTC Schnyder woods are right. But here, the fact that
U and G have the same genus is of particular interest as it yields a simple bijection.

The key property that makesU andG have same genus is the conclusion of Lemma 2
(no oriented non-contractible cycle in the dual orientation). Recently, Albar, the second
author and Knauer [1] proved the following:

Theorem 8 ([1]) A simple triangulation on a genus g ≥ 1 orientable surface admits
an orientation of its edges such that every vertex has outdegree at least 3, and divisible
by 3.

Theorem 8 is proved for simple triangulation but we believe it to be true for all tri-
angulations. Moreover we hope for a possible generalization satisfying the conclusion
of Lemma 2:

Conjecture 1 A triangulation on a genus g ≥ 1 orientable surface admits an orien-
tation of its edges such that every vertex has outdegree at least 3, divisible by 3, and
such that there is no oriented non-contractible cycle in the dual orientation.

If Conjecture 1 is true, one can consider a minimal orientation satisfying its con-
clusion and apply Algorithm PS to obtain a unicellular map of the same genus as G.
Note that more efforts should be made to obtain a bijection since there might be several
minimal elements satisfying the conjecture and a particular one has to be identified
(as the minimal HTC Schnyder wood in our case).
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On the structure of Schnyder woods on orientable surfaces∗

Daniel Gonçalves†, Kolja Knauer‡, Benjamin Lévêque§

January 8, 2018

Abstract

We propose a simple generalization of Schnyder woods from the plane to maps on
orientable surfaces of higher genus. This is done in the language of angle labelings.
Generalizing results of De Fraysseix and Ossona de Mendez, and Felsner, we establish
a correspondence between these labelings and orientations and characterize the set
of orientations of a map that correspond to such a Schnyder labeling. Furthermore,
we study the set of these orientations of a given map and provide a natural partition
into distributive lattices depending on the surface homology. This generalizes earlier
results of Felsner and Ossona de Mendez. In the toroidal case, a new proof for the
existence of Schnyder woods is derived from this approach.

1 Introduction

Schnyder [25] introduced Schnyder woods for planar triangulations with the following
local property:

Definition 1.1 (Schnyder property) Given a map G, a vertex v and an orientation
and coloring1 of the edges incident to v with the colors 0, 1, 2, we say that v satisfies
the Schnyder property, (see Figure 1) if v satisfies the following local property:

• Vertex v has out-degree one in each color.

• The edges e0(v), e1(v), e2(v) leaving v in colors 0, 1, 2, respectively, occur in
counterclockwise order.

∗This work was supported by the grant EGOS ANR-12-JS02-002-01
†CNRS, Université de Montpellier, LIRMM UMR 5506, CC477, 161 rue Ada, 34095 Montpellier
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§CNRS, Laboratoire G-SCOP UMR 5272, 46 Avenue Félix Viallet, 38031 Grenoble Cedex 1, France

benjamin.leveque@cnrs.fr
1Throughout the paper colors and some of the indices are given modulo 3.
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• Each edge entering v in color i enters v in the counterclockwise sector from ei+1(v)
to ei−1(v).

1

2

2

2

011

0

0

Figure 1: The Schnyder property. The depicted correspondence between red, blue, green,
0, 1, 2, and the arrow shapes will be used through the paper.

Definition 1.2 (Schnyder wood) Given a planar triangulation G, a Schnyder wood
is an orientation and coloring of the inner edges of G with the colors 0, 1, 2 (edges
are oriented in one direction only), where each inner vertex v satisfies the Schnyder
property.

See Figure 2 for an example of a Schnyder wood.

Figure 2: Example of a Schnyder wood of a planar triangulation.

Schnyder woods are today one of the main tools in the area of planar graph repre-
sentations. Among their most prominent applications are the following: They provide a
machinery to construct space-efficient straight-line drawings [26, 18, 8], yield a character-
ization of planar graphs via the dimension of their vertex-edge incidence poset [25, 8], and
are used to encode triangulations [23, 3]. Further applications lie in enumeration [4],
representation by geometric objects [13, 16], graph spanners [5], etc. The richness of
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these applications has stimulated research towards generalizing Schnyder woods to non
planar graphs.

For higher genus triangulated surfaces, a generalization of Schnyder woods has been
proposed by Castelli Aleardi, Fusy and Lewiner [6], with applications to encoding. In
this definition, the simplicity and the symmetry of the original definition of Schnyder
woods are lost. Here we propose an alternative generalization of Schnyder woods for
higher genus that generalizes the one proposed in [17] for the toroidal case.

A closed curve on a surface is contractible if it can be continuously transformed into
a single point. Except if stated otherwise, we consider graphs embedded on orientable
surfaces such that they do not have contractible cycles of size 1 or 2 (i.e. no contractible
loops and no contractible double edges). Note that this is a weaker assumption, than
the graph being simple, i.e. not having any cycles of size 1 or 2 (i.e. no loops and no
multiple edges). A graph embedded on a surface is called a map on this surface if all
its faces are homeomorphic to open disks. A map is a triangulation if all its faces are
triangles.

In this paper we consider finite maps. We denote by n be the number of vertices and
m the number of edges of a graph. Given a graph embedded on a surface, we use f for
the number of faces. Euler’s formula says that any map on an orientable surface of genus
g satisfies n−m+f = 2−2g. In particular, the plane is the surface of genus 0, the torus
the surface of genus 1, the double torus the surface of genus 2, etc. By Euler’s formula,
a triangulation of genus g has exactly 3n + 6(g − 1) edges. So having a generalization
of Schnyder woods in mind, for all g ≥ 2 there are too many edges to force all vertices
to have outdegree exactly three. This problem can be overcome by allowing vertices to
fulfill the Schnyder property “several times”, i.e. such vertices have outdegree 6, 9, etc.
with the color property of Figure 1 repeated several times (see Figure 3).

Outdegree six Outdegree nine

Figure 3: The Schnyder property repeated several times around a vertex.

Figure 4 is an example of such a Schnyder wood on a triangulation of the double torus.
The double torus is represented by a fundamental polygon – an octagon. The sides of
the octagon are identified according to their labels. All the vertices of the triangulation
have outdegree three except two vertices, the circled ones, that have outdegree six. Each
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of the latter appear twice in the representation.

D

C

B

D

C

B

A

A

Figure 4: A Schnyder wood of a triangulation of the double torus.

In this paper we formalize this idea to obtain a concept of Schnyder woods applicable
to general maps (not only triangulations) on arbitrary orientable surfaces. This is based
on the definition of Schnyder woods via angle labelings in Section 2. We prove several
basic properties of these objects. While every map admits a “trivial” Schnyder wood,
the existence of a non-trivial one remains open but leads to interesting conjectures.

By a result of De Fraysseix and Ossona de Mendez [14], for any planar triangulation
there is a bijection between its Schnyder woods and the orientations of its inner edges
where every inner vertex has outdegree three. Thus, any orientation with the proper
outdegree corresponds to a Schnyder wood and there is a unique way, up to symmetry of
the colors, to assign colors to the oriented edges in order to fulfill the Schnyder property
at every inner vertex. This is not true in higher genus as already in the torus, there exist
orientations that do not correspond to any Schnyder wood (see Figure 5). In Section 3,
we characterize orientations that correspond to our generalization of Schnyder woods.

In Section 4, we study the transformations between Schnyder orientations. We obtain
a partition of the set of Schnyder woods into homology classes of orientations, each of
these classes being a distributive lattice. This generalizes corresponding results obtained
for the plane by Ossona de Mendez [22] and Felsner [10]. The particular properties of
the minimal element of such a lattice recently led to an optimal linear encoding method
for toroidal triangulations by Despré, the first author, and the third author [7]. This
generalizes previous results of Poulalhon and Schaeffer for the plane [23].
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Figure 5: Two different orientations of a toroidal triangulation. Only the one on the
right corresponds to a Schnyder wood.

In Section 5, we focus on toroidal triangulations. We use the characterization theorem
of Section 3 to give a new proof of the existence of Schnyder woods in this case. We
show that the so-called “crossing” property allows to define a canonical lattice. Note
that this special lattice is the one used in [7] to obtain a bijection. Finally the results of
the paper are illustrated by an example.

2 Generalization of Schnyder woods

2.1 Angle labelings

Consider a map G on an orientable surface. An angle labeling of G is a labeling of
the angles of G (i.e. face corners of G) in colors 0, 1, 2. More formally, we denote an
angle labeling by a function ℓ : A → Z3, where A is the set of angles of G. Given an
angle labeling, we define several properties of vertices, faces and edges that generalize
the notion of Schnyder angle labeling in the planar case [12].

Consider an angle labeling ℓ of G. A vertex or a face v is of type k, for k ≥ 1, if
the labels of the angles around v form, in counterclockwise order, 3k nonempty intervals
such that in the j-th interval all the angles have color (j mod 3). A vertex or a face v
is of type 0, if the labels of the angles around v are all of color i for some i in {0, 1, 2}.

An edge e is of type 1 or 2 if the labels of the four angles incident to edge e are, in
clockwise order, i− 1, i, i, i+1 for some i in {0, 1, 2}. The edge e is of type 1 if the two
angles with the same color are incident to the same extremity of e and of type 2 if the
two angles are incident to the same side of e. An edge e is of type 0 if the labels of the
four angles incident to edge e are all i for some i in {0, 1, 2} (See Figure 6).

If there exists a function f : V → N such that every vertex v of G is of type f(v),
we say that ℓ is f -vertex. If we do not want to specify the function f , we simply say
that ℓ is vertex. We sometimes use the notation K-vertex if the labeling is f -vertex
for a function f with f(V ) ⊆ K. When K = {k}, i.e. f is a constant function, then
we use the notation k-vertex instead of f -vertex. Similarly we define face, K-face,
k-face, edge, K-edge, k-edge.

The following lemma expresses that property edge is the central notion here. Prop-
erties K-vertex and K-face are used later on to express additional requirements on
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the angle labelings that are considered.

Lemma 2.1 An edge angle labeling is vertex and face.

Proof. Let ℓ be an edge angle labeling. Consider two counterclockwise consecutive
angles a, a′ around a vertex (or a face). Property edge implies that ℓ(a′) = ℓ(a) or
ℓ(a′) = ℓ(a) + 1 (see Figure 6). Thus by considering all the angles around a vertex or a
face, it is clear that ℓ is also vertex and face. ✷

Thus we define a Schnyder labeling as follows:

Definition 2.2 (Schnyder labeling) Given a map G on an orientable surface, a Schny-
der labeling of G is an edge angle labeling of G.

Figure 6 shows how an edge angle labeling defines an orientation and coloring of
the edges of the graph with edges oriented in one direction or in two opposite directions.

1 1

11 0

1

1

2 2

1 1

0
Type 0 Type 1 Type 2

Figure 6: Correspondence between edge angle labelings and some bi-orientations and
colorings of the edges.

In the next two sections, the correspondence from Figure 6 is used to show that
Schnyder labelings correspond to or generalize previously defined Schnyder woods in the
plane and in the torus. Hence, they are a natural generalization of Schnyder woods for
higher genus.

2.2 Planar Schnyder woods

Originally, Schnyder woods were defined only for planar triangulations [25]. Felsner [8, 9]
extended this definition to planar maps. To do so he allowed edges to be oriented in one
direction or in two opposite directions (originally only one direction was possible). The
formal definition is the following:

Definition 2.3 (Planar Schnyder wood) Given a planar map G. Let x0, x1, x2 be
three vertices occurring in counterclockwise order on the outer face of G. The suspension
Gσ is obtained by attaching a half-edge that reaches into the outer face to each of these
special vertices. A planar Schnyder wood rooted at x0, x1, x2 is an orientation and
coloring of the edges of Gσ with the colors 0, 1, 2, where every edge e is oriented in one
direction or in two opposite directions (each direction having a distinct color and being
outgoing), satisfying the following conditions:
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• Every vertex satisfies the Schnyder property and the half-edge at xi is directed
outward and colored i.

• There is no interior face whose boundary is a monochromatic cycle.

See Figure 7 for two examples of planar Schnyder woods.

Figure 7: A planar Schnyder wood of a planar map and of a planar triangulation.

The correspondence of Figure 6 gives the following bijection, as proved by Felsner [9]:

Proposition 2.4 ([9]) If G is a planar map and x0, x1, x2 are three vertices occurring
in counterclockwise order on the outer face of G, then the planar Schnyder woods of Gσ

are in bijection with the {1,2}-edge, 1-vertex, 1-face angle labelings of Gσ (with the
outer face being 1-face but in clockwise order).

Felsner [8] andMiller [20] characterized the planar maps that admit a planar Schnyder
wood. Namely, they are the internally 3-connected maps (i.e. those with three vertices
on the outer face such that the graph obtained from G by adding a vertex adjacent to
the three vertices is 3-connected).

2.3 Generalized Schnyder woods

Any map (on any orientable surface) admits a trivial edge angle labeling: the one with
all angles labeled i (and thus all edges, vertices, and faces are of type 0). A natural
non-trivial case, that is also symmetric for the duality, is to consider edge, N∗-vertex,
N∗-face angle labelings of general maps (where N∗ = N\{0}). In planar Schnyder woods
only type 1 and type 2 edges are used. Here we allow type 0 edges because they seem
unavoidable for some maps (see discussion below). This suggests the following definition
of Schnyder woods in higher genus.

First, the generalization of the Schnyder property is the following:
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Definition 2.5 (Generalized Schnyder property) Given a map G on a genus g ≥ 1
orientable surface, a vertex v and an orientation and coloring of the edges incident to
v with the colors 0, 1, 2, we say that v satisfies the generalized Schnyder property (see
Figure 3), if v satisfies the following local property for k ≥ 1:

• Vertex v has out-degree 3k.

• The edges e0(v), . . . , e3k−1(v) leaving v in counterclockwise order are such that ej(v)
has color j mod 3.

• Each edge entering v in color i enters v in a counterclockwise sector from ej(v) to
ej+1(v) with i 6≡ j (mod3) and i 6≡ j + 1 (mod3).

Then, the generalization of Schnyder woods is the following (where the three types
of edges depicted on Figure 6 are allowed):

Definition 2.6 (Generalized Schnyder wood) Given a map G on a genus g ≥ 1
orientable surface, a generalized Schnyder wood of G is an orientation and coloring of
the edges of G with the colors 0, 1, 2, where every edge is oriented in one direction or in
two opposite directions (each direction having a distinct color and being outgoing, or each
direction having the same color and being incoming), satisfying the following conditions:

• Every vertex satisfies the generalized Schnyder property.

• There is no face whose boundary is a monochromatic cycle.

When there is no ambiguity we call “generalized Schnyder woods” just “Schnyder
woods”. See Figure 8 for two examples of Schnyder woods in the torus.

Figure 8: A Schnyder wood of a toroidal map and of a toroidal triangulation.

The first and third author already defined Schnyder woods for toroidal maps in [17].
Our definition is broader as in [17], there is also a (global) condition on the way
monochromatic cycles intersect. See Section 5.2 for a discussion on this property.
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Figure 4 is an example of a Schnyder wood on a triangulation of the double torus.
The correspondence from Figure 6 immediately gives the following bijection whose proof
is omitted.

Proposition 2.7 If G is a map on a genus g ≥ 1 orientable surface, then the generalized
Schnyder woods of G are in bijection with the edge, N∗-vertex, N∗-face angle labelings
of G.

The examples in Figures 8 and 4 do not have type 0 edges. However, for all g ≥ 2,
there are genus g maps, with vertex degrees and face degrees at most five. Figure 9
depicts how to construct such maps, for all g ≥ 2. For these maps, type 0 edges are
unavoidable. Indeed, take such a map with an angle labeling that has only type 1 and
type 2 edges. Around a type 1 or type 2 edge there are exactly three changes of labels,
so in total there are exactly 3m such changes. As vertices and faces have degree at most
five, they are either of type 0 or 1, hence the number of label changes should be at most
3n+3f . Thus, 3m ≤ 3n+3f , which contradicts Euler’s formula for g ≥ 2. Furthermore,
note that the maps described in Figure 9, as well as their dual maps, are 3-connected.
Actually they can be modified to be 4-connected and of arbitrary large face-width.

if’ fi

f’ fGi i i

Figure 9: A toroidal map Gi with two distinguished faces, fi and f ′
i . Take g copies Gi

with 1 ≤ i ≤ g and glue them by identifying fi and f ′
i+1 for all 1 ≤ i < g. Faces f1 and

f ′
g are filled to have only vertices and faces of degree at most five.

An orientation and coloring of the edges corresponding to an edge, N∗-vertex,
N∗-face angle labelings is given for the double-toroidal map of Figure 10. It contains
two edges of type 0 and it is 1-vertex and 1-face. Similarly, one can obtain edge,
N∗-vertex, N∗-face angle labelings for any map in Figure 9.

2.4 Schnyder woods in the universal cover

In this section we prove some properties of Schnyder woods in the universal cover. We
refer to [19] for the general theory of universal covers. The universal cover of the torus
(resp. an orientable surface of genus g ≥ 2) is a surjective mapping p from the plane
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Figure 10: An orientation and coloring of the edges of a double-toroidal map that corre-
spond to an edge, N∗-vertex, N∗-face angle labeling. Here, the two parts are toroidal
and the two central faces are identified (by preserving the colors) to obtain a double-
toroidal map.

(resp. the open unit disk) to the surface that is locally a homeomorphism. The universal
cover of the torus is obtained by replicating a flat representation of the torus to tile the
plane. Figure 11 shows how to obtain the universal cover of the double torus. The
key property is that a closed curve on the surface corresponds to a closed curve in the
universal cover if and only if it is contractible.
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Figure 11: Canonical representation and universal cover of the double torus (source :
Yann Ollivier http://www.yann-ollivier.org/maths/primer.php).

Universal covers can be used to represent a map on an orientable surface as an infinite
planar map. Any property of the map can be lifted to its universal cover, as long as it is
defined locally. Thus universal covers are an interesting tool for the study of Schnyder
labelings since all the definitions we have given so far are purely local.
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Consider a map G on a genus g ≥ 1 orientable surface. Let G∞ be the infinite planar
map drawn on the universal cover and defined by p−1(G).

We need the following general lemma concerning universal covers:

Lemma 2.8 Suppose that for a finite set of vertices X of G∞, the graph G∞ \X is not
connected. Then G∞ \ X has a finite connected component.

Proof. Suppose the lemma is false and G∞ \ X is not connected and has no finite
component. Then it has a face bounded by an infinite number of vertices. As G is
finite, the vertices of G∞ have bounded degree. Putting back the vertices of X, a face
bounded by an infinite number of vertices would remain. The border of this face does
not correspond to a contractible cycle of G, a contradiction with G being a map. ✷

Recall that a graph is k-connected if it has at least k + 1 vertices and if it re-
mains connected after removing any k − 1 vertices. Extending the notion of essentially
2-connectedness defined in [21] for the toroidal case, we say that G is essentially k-
connected if G∞ is k-connected. Note that the notion of being essentially k-connected is
different from G being k-connected. There is no implications in any direction. But note
that since G is a map, it is essentially 1-connected.

Suppose now that G is given with a Schnyder wood (i.e. an edge, N∗-vertex, N∗-
face angle labeling by Proposition 2.7). Consider the orientation and coloring of the
edges of G∞ corresponding to the Schnyder wood of G.

Let G∞
i be the directed graph induced by the edges of color i of G∞. This definition

includes edges that are half-colored i, and in this case, the edges get only the direction
corresponding to color i. The graph (G∞

i )−1 is the graph obtained from G∞
i by reversing

all its edges. The graph G∞
i ∪ (G∞

i−1)
−1 ∪ (G∞

i+1)
−1 is obtained from the graph G by

orienting edges in one or two directions depending on whether this orientation is present
in G∞

i , (G∞
i−1)

−1 or (G∞
i+1)

−1. Similarly to what happens for planar Schnyder woods,
we have the following:

Lemma 2.9 The graph G∞
i ∪ (G∞

i−1)
−1 ∪ (G∞

i+1)
−1 does not contain directed cycle.

Proof. Suppose there is a directed cycle in G∞
i ∪ (G∞

i−1)
−1 ∪ (G∞

i+1)
−1. Let C be such

a cycle containing the minimum number of faces in the map D with border C. Suppose
by symmetry that C turns around D counterclockwisely. Every vertex of D has at least
one outgoing edge of color i + 1 in D. So there is a cycle of color (i+ 1) in D and this
cycle is C by minimality of C. Every vertex of D has at least one outgoing edge of color
i in D. So, again by minimality of C, the cycle C is a cycle of color i. Thus all the edges
of C are oriented in color i counterclockwisely and in color i+ 1 clockwisely.

By the definition of Schnyder woods, there is no face the boundary of which is a
monochromatic cycle, so D is not a face. Let vx be an edge in the interior of D that is
outgoing for v. The vertex v can be either in the interior of D or in C (if v has more
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than three outgoing arcs). In both cases, v has necessarily an edge ei of color i and
an edge ei+1 of color i + 1, leaving v and in the interior of D. Consider Wi(v) (resp.
Wi+1(v)) a monochromatic walk starting from ei (resp. ei+1), obtained by following
outgoing edges of color i (resp. i+1). By minimality of C those walks are not contained
in D. We hence have that Wi(v) \ v and Wi+1(v) \ v intersect C. Thus each of these
walks contains a non-empty subpath from v to C. The union of these two paths, plus a
part of C contradicts the minimality of C. ✷

Let v be a vertex of G∞. For each color i, vertex v is the starting vertex of some
walks of color i, we denote the union of these walks by Pi(v). Every vertex has at least
one outgoing edge of color i and the set Pi(v) is obtained by following all these edges
of color i starting from v. Note that for some vertices v, Pi(v) may consist of a single
walk. It is the case when v cannot reach a vertex of outdegree six or more.

Lemma 2.10 For every vertex v and color i, the two graphs Pi−1(v) and Pi+1(v) inter-
sect only on v.

Proof. If Pi−1(v) and Pi+1(v) intersect on two vertices, then G∞
i−1 ∪ (G

∞
i+1)

−1 contains
a cycle, contradicting Lemma 2.9. ✷

Now we can prove the following:

Theorem 2.11 If a map G on a genus g ≥ 1 orientable surface admits an edge, N∗-
vertex, N∗-face angle labeling, then G is essentially 3-connected.

Proof. Towards a contradiction, suppose that there exist two vertices x, y of G∞ such
that G′ = G∞ \ {x, y} is not connected. Then, by Lemma 2.8, the graph G′ has a finite
connected component R. Let v be a vertex of R. By Lemma 2.9, for 0 ≤ i ≤ 2, the
graph Pi(v) does not lie in R so it intersects either x or y. So for two distinct colors i, j,
the two graphs Pi(v) and Pj(v) intersect in a vertex distinct from v, a contradiction to
Lemma 2.10. ✷

2.5 Conjectures on the existence of Schnyder woods

Proving that every triangulation on a genus g ≥ 1 orientable surface admits a 1-edge
angle labeling would imply the following theorem of Barát and Thomassen [2]:

Theorem 2.12 ([2]) A simple triangulation on a genus g ≥ 1 orientable surface admits
an orientation of its edges such that every vertex has outdegree divisible by three.

Recently, Theorem 2.12 has been improved by Albar, the first author, and the second
author [1]:
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Theorem 2.13 ([1]) A simple triangulation on a genus g ≥ 1 orientable surface admits
an orientation of its edges such that every vertex has outdegree at least three, and divisible
by three.

Note that Theorems 2.12 and 2.13 are proved only in the case of simple triangulations
(i.e. no loops and no multiple edges). We believe them to be true also for non-simple
triangulations without contractible loops nor contractible double edges.

Theorem 2.13 suggests the existence of 1-edge angle labelings with no sinks, i.e.
1-edge, N∗-vertex angle labelings. One can easily check that in a triangulation, a
1-edge angle labeling is also 1-face. Thus we can hope that a triangulation on a genus
g ≥ 1 orientable surface admits a 1-edge, N∗-vertex, 1-face angle labeling. Note that
a 1-edge, 1-face angle labeling of a map implies that faces are triangles. So we propose
the following conjecture, whose “only if” part follows from the previous sentence:

Conjecture 2.14 A map on a genus g ≥ 1 orientable surface admits a 1-edge, N∗-
vertex, 1-face angle labeling if and only if it is a triangulation.

If true, Conjecture 2.14 would strengthen Theorem 2.13 in two ways. First, it consid-
ers more triangulations (not only simple ones). Second, it requires the coloring property
around vertices.

How about general maps? We propose the following conjecture, whose “only if” part
is Theorem 2.11:

Conjecture 2.15 A map on a genus g ≥ 1 orientable surface admits an edge, N∗-
vertex, N∗-face angle labeling if and only if it is essentially 3-connected.

Conjecture 2.15 implies Conjecture 2.14 since for a triangulation every face would
be of type 1, and thus every edge would be of type 1. Conjecture 2.15 is proved in [17]
for g = 1 whereas both conjectures are open for g ≥ 2. Section 5 gives a new proof of
Conjecture 2.14 for g = 1 based on the results in Section 3.

3 Characterization of Schnyder orientations

3.1 A bit of homology

In the next sections, we need a bit of surface homology of general maps, which we will
discuss now. For a deeper introduction to homology we refer to [15].

For the sake of generality, in this subsection we consider that maps may have con-
tractible cycles of size 1 or 2. Consider a map G = (V,E), on an orientable surface of
genus g, given with an arbitrary orientation of its edges. This fixed arbitrary orientation
is implicit in all the paper and is used to handle flows. A flow φ on G is a vector in ZE.
For any e ∈ E, we denote by φe the coordinate e of φ.
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A walk W of G is a sequence of edges with a direction of traversal such that the
ending point of an edge walk is the starting point of the next edge. A walk is closed if
the start and end vertices coincide. A walk has a characteristic flow φ(W ) defined by:

φ(W )e := #times W traverses e forward − #times W traverses e backward

This definition naturally extends to sets of walks. From now on we consider that a
set of walks and its characteristic flow are the same object and by abuse of notation we
can write W instead of φ(W ). We do the same for oriented subgraphs, i.e., subgraphs
that can be seen as a set of walks of unit length.

A facial walk is a closed walk bounding a face. Let F be the set of counterclockwise
facial walks and let F =< φ(F) > be the subgroup of ZE generated by F . Two flows
φ, φ′ are homologous if φ−φ′ ∈ F. They are weakly homologous if φ−φ′ ∈ F or φ+φ′ ∈ F.
We say that a flow φ is 0-homologous if it is homologous to the zero flow, i.e. φ ∈ F.

Let W be the set of closed walks and let W =< φ(W) > be the subgroup of ZE

generated by W. The group H(G) = W/F is the first homology group of G. It is well-
known that H(G) only depends on the genus of the map, and actually it is isomorphic
to Z2g.

A set {B1, . . . , B2g} of (closed) walks of G is said to be a basis for the homology if the
equivalence classes of their characteristic vectors ([φ(B1)], . . . , [φ(B2g)]) generate H(G).
Then for any closed walk W of G, we have W =

∑
F∈F λFF +

∑
1≤i≤2g µiBi for some

λ ∈ ZF , µ ∈ Z2g. Moreover one of the λF can be set to zero (and then all the other
coefficients are unique). Indeed, for any map, there exists a set of cycles that forms a
basis for the homology and it is computationally easy to build. A possible way is by
considering a spanning tree T of G, and a spanning tree T ∗ of G∗ that contains no edges
dual to T . By Euler’s formula, there are exactly 2g edges in G that are not in T nor
dual to edges of T ∗. Each of these 2g edges forms a unique cycle with T . It is not hard
to see that this set of cycles forms a basis for the homology.

The edges of the dual G∗ of G are oriented such that the dual e∗ of an edge e of G
goes from the face on the right of e to the face on the left of e. Let F∗ be the set of
counterclockwise facial walks of G∗. Consider {B∗

1 , . . . , B
∗
2g} a set of closed walks of G∗

that form a basis for the homology. Let p and d be flows of G and G∗, respectively. We
define the following:

β(p, d) =
∑

e∈G
pede∗

Note that β is a bilinear function.

Lemma 3.1 Given two flows φ, φ′ of G, the following properties are equivalent to each
other:

1. The two flows φ, φ′ are homologous.

14

182



2. For any closed walk W of G∗ we have β(φ,W ) = β(φ′,W ).

3. For any F ∈ F∗, we have β(φ, F ) = β(φ′, F ), and, for any 1 ≤ i ≤ 2g, we have
β(φ,B∗

i ) = β(φ′, B∗
i ).

Proof. (1. =⇒ 3.) Suppose that φ, φ′ are homologous. Then we have φ−φ′ =
∑

F∈F λFF
for some λ ∈ ZF . It is easy to see that, for any closed walk W of G∗, a facial walk F ∈ F
satisfies β(F,W ) = 0, so β(φ,W ) = β(φ′,W ) by linearity of β.

(3. =⇒ 2.) Suppose that for any F ∈ F∗, we have β(φ, F ) = β(φ′, F ), and, for any
1 ≤ i ≤ 2g, we have β(φ,B∗

i ) = β(φ′, B∗
i ). Let W be any closed walk of G∗. We have

W =
∑

F∈F∗ λFF +
∑

1≤i≤2g µiB
∗
i for some λ ∈ ZF , µ ∈ Z2g. Then by linearity of β we

have β(φ,W ) = β(φ′,W ).

(2. =⇒ 1.) Suppose β(φ,W ) = β(φ′,W ) for any closed walk W of G∗. Let z = φ−φ′.
Thus β(z,W ) = 0 for any closed walk W of G∗. We label the faces of G with elements
of Z as follows. Choose an arbitrary face F0 and label it 0. Then, consider any face F of
G and a path PF of G∗ from F0 to F . Label F with ℓF = β(z, PF ). Note that the label
of F is independent from the choice of PF . Indeed, for any two paths P1, P2 from F0 to
F , we have P1 − P2 is a closed walk, so β(z, P1 − P2) = 0 and thus β(z, P1) = β(z, P2).
Let us show that z =

∑
F∈F ℓFφ(F ).

∑

F∈F
ℓFφ(F ) =

∑

e∈G
(ℓF2 − ℓF1)φ(e) (face F2 is on the left of e and F1 on the right)

=
∑

e∈G
(β(z, PF2) − β(z, PF1))φ(e) (definition of ℓF )

=
∑

e∈G
β(z, PF2 − PF1)φ(e) (linearity of β)

=
∑

e∈G
β(z, e∗)φ(e) (PF1 + e∗ − PF2 is a closed walk)

=
∑

e∈G

(∑

e′∈G
ze′φ(e

∗)e′∗

)
φ(e) (definition of β)

=
∑

e∈G
zeφ(e)

= z

So z ∈ F and thus φ, φ′ are homologous. ✷

3.2 General characterization

Consider a map G on an orientable surface of genus g. The mapping of Figure 6 shows
how an edge angle labeling of G can be mapped to an orientation of the edges with
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edges oriented in one direction or in two opposite directions. These edges can be defined
more naturally in the primal-dual-completion of G.

The primal-dual-completion Ĝ is the map obtained from simultaneously embeddingG
and G∗ such that vertices of G∗ are embedded inside faces of G and vice-versa. Moreover,
each edge crosses its dual edge in exactly one point in its interior, which also becomes a
vertex of Ĝ. Hence, Ĝ is a bipartite graph with one part consisting of primal-vertices and
dual-vertices and the other part consisting of edge-vertices (of degree four). Each face of
Ĝ is a quadrangle incident to one primal-vertex, one dual-vertex and two edge-vertices.
Actually, the faces of Ĝ are in correspondance with the angles of G. This means that
angle labelings of G correspond to face labelings of Ĝ.

Given α : V → N, an orientation of G is an α-orientation [10] if for every vertex
v ∈ V its outdegree d+(v) equals α(v). We call an orientation of Ĝ a mod3-orientation
if it is an α-orientation for a function α satisfying :

α(v) ≡
{
0 (mod3) if v is a primal- or dual-vertex,

1 (mod3) if v is an edge-vertex.

Note that an edge angle labeling of G corresponds to a mod3-orientation of Ĝ, by
the mapping of Figure 12, where the three types of edges are represented. Type 0
corresponds to an edge-vertex of outdegree four. Type 1 and type 2 both correspond
to an edge-vertex of outdegree 1; in type 1 (resp. type 2) the outgoing edge goes to a
primal-vertex (resp. dual-vertex). In all cases we have d+(v) ≡ 1 ( mod 3) if v is an edge-
vertex. By Lemma 2.1, the labeling is also vertex and face. Thus, d+(v) ≡ 0 (mod3)
if v is a primal- or dual-vertex.

1

1 1

1

2

0

1

1

0 2

11

Type 0 Type 1 Type 2

Figure 12: How to map an edge angle labeling to a mod 3-orientation of the primal-dual
completion. Primal-vertices are black, dual-vertices are white and edge-vertices are gray.
This serves as a convention for the other figures.

As mentioned earlier, De Fraysseix and Ossona de Mendez [14] give a bijection be-
tween internal 3-orientations and Schnyder woods of planar triangulations. Felsner [10]
generalizes this result for planar Schnyder woods and orientations of the primal-dual
completion having prescribed out-degrees. The situation is more complicated in higher
genus (see Figure 5). It is not enough to prescribe outdegrees in order to characterize
orientations corresponding to edge angle labelings.
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We call an orientation of Ĝ corresponding to an edge angle labeling of G a Schny-
der orientation. In this section we characterize which orientations of Ĝ are Schnyder
orientations.

Consider an orientation of the primal-dual completion Ĝ. Let Out = {(u, v) ∈ E(Ĝ) |
v is an edge-vertex}, i.e. the set of edges of Ĝ which are going from a primal- or dual-
vertex to an edge-vertex. We call these edges out-edges. For φ a flow of the dual of the
primal-dual completion Ĝ∗, we define δ(φ) = β(Out, φ). More intuitively, if W is a walk
of Ĝ∗, then:

δ(W ) = #out-edges crossing W from left to right
−#out-edges crossing W from right to left.

The bilinearity of β implies the linearity of δ. The following lemma gives a necessary
and sufficient condition for an orientation to be a Schnyder orientation.

Lemma 3.2 An orientation of Ĝ is a Schnyder orientation if and only if any closed
walk W of Ĝ∗ satisfies δ(W ) ≡ 0 (mod3).

Proof. (=⇒) Consider an edge angle labeling ℓ of G and the corresponding Schnyder
orientation (see Figure 12). Figure 13 illustrates how δ counts the variation of the label
when going from one face of Ĝ to another face of Ĝ . The represented cases correspond
to a walk W of Ĝ∗ consisting of just one edge. If the edge of Ĝ crossed by W is not
an out-edge, then the two labels in the face are the same and δ(W ) = 0. If the edge
crossed by W is an out-edge, then the labels differ by one. If W is going counterclockwise
around a primal- or dual-vertex, then the label increases by 1 (mod3) and δ(W ) = 1.
If W is going clockwise around a primal- or dual-vertex then the label decreases by
1 (mod3) and δ(W ) = −1. One can check that this is consistent with all the edges
depicted in Figure 12. Thus for any walk W of Ĝ∗ from a face F to a face F ′, the
value of δ(W ) (mod3) is equal to ℓ(F ′)− ℓ(F ) (mod3). Thus if W is a closed walk then
δ(W ) ≡ 0 (mod3).

(⇐=) Consider an orientation of Ĝ such that any closed walk W of Ĝ∗ satisfies
δ(W ) ≡ 0 (mod3). Pick any face F0 of Ĝ and label it 0. Consider any face F of Ĝ and
a path P of Ĝ∗ from F0 to F . Label F with the value δ(P ) mod 3. Note that the label
of F is independent from the choice of P as for any two paths P1, P2 going from F0 to
F , we have δ(P1) ≡ δ(P2) (mod3) since δ(P1 − P2) ≡ 0 (mod3) as P1 − P2 is a closed
walk.

Consider an edge-vertex v of Ĝ and a walk W of Ĝ∗ going clockwise around v. By
assumption δ(W ) ≡ 0 (mod3) and d(v) = 4 so d+(v) ≡ 1 (mod3). One can check (see
Figure 12) that around an edge-vertex v of outdegree four, all the labels are the same
and thus v corresponds to an edge of G of type 0. One can also check that around an
edge-vertex v of outdegree 1, the labels are in clockwise order, i − 1, i, i, i+ 1 for some
i in {0, 1, 2} where the two faces with the same label are incident to the outgoing edge
of v. Thus, v corresponds to an edge of G of type 1 or 2 depending on the outgoing
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W

i

i i+1

i

W

δ(W ) = 0 δ(W ) = 1

Figure 13: How δ counts the variation of the labels.

edge reaching a primal- or a dual-vertex. So the obtained labeling of the faces of Ĝ
corresponds to an edge angle labeling of G and the considered orientation is a Schnyder
orientation. ✷

We now study properties of δ w.r.t homology in order to simplify the condition of
Lemma 3.2. Let F̂∗ be the set of counterclockwise facial walks of Ĝ∗.

Lemma 3.3 In a mod3-orientation of Ĝ, any F ∈ F̂∗ satisfies δ(F ) ≡ 0 (mod3).

Proof. If F corresponds to an edge-vertex v of Ĝ, then v has degree exactly four and
outdegree one or four by definition of mod3-orientations. So there are exactly zero or
three out-edges crossing F from right to left, and δ(F ) ≡ 0 (mod3).

If F corresponds to a primal- or dual-vertex v, then v has outdegree 0 (mod3) by
definition of mod3-orientations. So there are exactly 0 (mod3) out-edges crossing F
from left to right, and δ(F ) ≡ 0 (mod3). ✷

Lemma 3.4 In a mod3-orientation of Ĝ, if {B1, . . . , B2g} is a set of cycles of Ĝ∗ that
forms a basis for the homology, then for any closed walk W of Ĝ∗ homologous to µ1B1+
· · · + µ2gB2g, we have δ(W ) ≡ µ1δ(B1) + · · · + µ2gδ(B2g) (mod3).

Proof. We have W =
∑

F∈F̂∗ λFF +
∑

1≤i≤2g µiBi for some λ ∈ ZF . Then by linearity
of δ and Lemma 3.3, the claim follows. ✷

Lemma 3.4 can be used to simplify the condition of Lemma 3.2 and show that if
{B1, . . . , B2g} is a set of cycles of Ĝ∗ that forms a basis for the homology, then an
orientation of Ĝ is a Schnyder orientation if and only if it is a mod3-orientation such
that δ(Bi) ≡ 0 (mod3), for all 1 ≤ i ≤ 2g. Now, we define a new function γ that is used
to formulate a similar characterization theorem (see Theorem 3.7).
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Consider a (not necessarily directed) cycle C of G together with a direction of traver-
sal. We associate to C its corresponding cycle in Ĝ denoted by Ĉ. We define γ(C) by:

γ(C) = # edges of Ĝ leaving Ĉ on its right − # edges of Ĝ leaving Ĉ on its left

Since it considers cycles of Ĝ instead of walks of Ĝ∗, it is easier to deal with parameter
γ rather than parameter δ. However γ does not enjoy the same property w.r.t. homology
as δ. For homology we have to consider walks as flows, but two walks going several time
through a given vertex may have the same characteristic flow but different γ. This
explains why δ is defined first. Now we adapt the results for γ.

The value of γ is related to δ by the next lemmas. Let C be a cycle of G with a
direction of traversal. Let WL(C) be the closed walk of Ĝ∗ just on the left of C and
going in the same direction as C (i.e. WL(C) is composed of the dual edges of the edges
of Ĝ incident to the left of Ĉ). Note that since the faces of Ĝ∗ have exactly one incident
vertex that is a primal-vertex, walk WL(C) is in fact a cycle of Ĝ∗. Similarly, let WR(C)
be the cycle of Ĝ∗ just on the right of C.

Lemma 3.5 Consider an orientation of Ĝ and a cycle C of G, then γ(C) = δ(WL(C))+
δ(WR(C)).

Proof. We consider the different cases that can occur. An edge that is entering a
primal-vertex of Ĉ, is not counting in either γ(C), δ(WL(C)), δ(WR(C)). An edge that
is leaving a primal-vertex of Ĉ from its right side (resp. left side) is counting +1 (resp.
−1) for γ(C) and δ(WR(C)) (resp. δ(WL(C))).

For edges incident to edge-vertices of Ĉ both sides have to be considered at the same
time. Let v be an edge-vertex of Ĉ. Vertex v is of degree four so it has exactly two edges
incident to Ĉ and not on C. One of these edges, eL, is on the left side of Ĉ and dual
to an edge of WL(C). The other edge, eR, is on the right side of Ĉ and dual to an edge
of WR(C). If eL and eR are both incoming edges for v, then eR (resp. eL) is counting
−1 (resp. +1) for δ(WR(C)) (resp. δ(WL(C))) and not counting for γ(C). If eL and
eR are both outgoing edges for v, then eR and eL are not counting for both δ(WR(C)),
δ(WL(C)) and sums to zero for γ(C). If eL is incoming and eR is outgoing for v, then
eR (resp. eL) is counting 0 (resp. +1) for δ(WR(C)) (resp. δ(WL(C))), and counting
+1 (resp. 0) for γ(C). The last case, eL is outgoing and eR is incoming, is symmetric
and one can see that in the four cases we have that eL and eR count the same for γ(C)
and δ(WL(C)) + δ(WR(C)). We conclude γ(C) = δ(WL(C)) + δ(WR(C)). ✷

Lemma 3.6 In a mod3-orientation of G, a cycle C of G satisfies

δ(WL(C)) ≡ 0 (mod3) and δ(WR(C)) ≡ 0 (mod3) ⇐⇒ γ(C) ≡ 0 (mod3)

Proof. (=⇒) Clear by Lemma 3.5.
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(⇐=) Suppose that γ(C) ≡ 0 (mod3). Let xL (resp. yL) be the number of edges of
Ĝ that are dual to edges of WL(C), that are outgoing for a primal-vertex of Ĉ (resp.
incoming for an edge-vertex of Ĉ). Similarly, let xR (resp. yR) be the number of edges
of Ĝ that are dual to edges of WR(C), that are outgoing for a primal-vertex of Ĉ (resp.
incoming for an edge-vertex of Ĉ). So δ(WL(C)) = yL − xL and δ(WR(C)) = xR − yR.
So by Lemma 3.5, γ(C) = δ(WL(C)) + δ(WR(C)) = (yL + xR)− (xL + yR) ≡ 0 (mod3).

Let k be the number of vertices of C. So Ĉ has k primal-vertices, k edge-vertices
and 2k edges. Edge-vertices have outdegree 1 (mod3) so their total number of outgoing
edges on Ĉ is k + (yL + yR) (mod3). Primal-vertices have outdegree 0 (mod3) so their
total number of outgoing edges on Ĉ is −(xL + xR) (mod3). So in total 2k ≡ k +
(yL + yR) − (xL + xR) (mod3). So (yL + yR) − (xL + xR) ≡ 0 (mod3). By combining
this with plus (resp. minus) (yL + xR) − (xL + yR) ≡ 0 (mod3), one obtains that
2δ(WL(C)) = 2(yL − xL) ≡ 0 (mod3) (resp. 2δ(WR(C)) = 2(xR − yR) ≡ 0 (mod
3)). Since δ(WL(C)) and δ(WR(C)) are integer we obtain δ(WL(C)) ≡ 0 (mod3) and
δ(WR(C)) ≡ 0 (mod3). ✷

Finally we have the following characterization theorem concerning Schnyder orien-
tations:

Theorem 3.7 Consider a map G on an orientable surface of genus g. Let {B1, . . . , B2g}
be a set of cycles of G that forms a basis for the homology. An orientation of Ĝ is a
Schnyder orientation if and only if it is a mod3-orientation such that γ(Bi) ≡ 0 (mod
3), for all 1 ≤ i ≤ 2g.

Proof. (=⇒) Consider an edge angle labeling ℓ of G and the corresponding Schnyder
orientation (see Figure 12). Type 0 edges correspond to edge-vertices of outdegree four,
while type 1 and 2 edges correspond to edge-vertices of outdegree 1. Thus d+(v) ≡
1 (mod3) if v is an edge-vertex. By Lemma 2.1, the labeling is vertex and face.
Thus d+(v) ≡ 0 (mod3) if v is a primal- or dual-vertex. So the orientation is a mod3-
orientation. By Lemma 3.2, we have δ(W ) ≡ 0 (mod 3) for any closed walk W of Ĝ∗. So
we have that δ(WL(B1)), . . . , δ(WL(B2g)), δ(WR(B1)), . . . , δ(WR(B2g)) are all congruent
to 0 (mod3). Thus, by Lemma 3.6, we have γ(Bi) ≡ 0 (mod3), for all 1 ≤ i ≤ 2g.

(⇐=) Consider a mod3-orientation of G such that γ(Bi) ≡ 0 (mod3), for all 1 ≤
i ≤ 2g. By Lemma 3.6, we have δ(WL(Bi)) ≡ 0 (mod3) for all 1 ≤ i ≤ 2g. Moreover
{WL(B1), . . . ,WL(B2g)} forms a basis for the homology. So by Lemma 3.4, δ(W ) ≡
0 (mod3) for any closed walk W of Ĝ∗. So the orientation is a Schnyder orientation by
Lemma 3.2. ✷

The condition of Theorem 3.7 is easy to check: choose 2g cycles that form a basis
for the homology and check whether γ is congruent to 0 mod 3 for each of them.

When restricted to triangulations and to edges of type 1 only, the defintion of γ
can be simplified. Consider a triangulation G on an orientable surface of genus g and
an orientation of the edges of G. Figure 14 shows how to transform the orientation of
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G into an orientation of Ĝ. Note that all the edge-vertices have outdegree exactly 1.
Furthermore, all the dual-vertices only have outgoing edges and since we are considering
triangulations they have outdegree exactly three.

G Ĝ

Figure 14: How to transform an orientation of a triangulation G into an orientation of
Ĝ.

Then the definition of γ can be simplified by the following:

γ(C) = # edges of G leaving C on its right − # edges of G leaving C on its left

Note that comparing to the general definition of γ, only the symbols ˆ have been
removed.

The orientation of the toroidal triangulation on the left of Figure 5 is an example of
a 3-orientation of a toroidal triangulation where some non contractible cycles have value
γ not congruent to 0 mod 3. The value of γ for the three loops is 2, 0 and −2. This
explains why this orientation does not correspond to a Schnyder wood. On the contrary,
on the right of the figure, the three loops have γ equal to 0 and we have a Schnyder
wood.

4 Structure of Schnyder orientations

4.1 Transformations between Schnyder orientations

We investigate the structure of the set of Schnyder orientations of a given graph. For
that purpose we need some definitions that are given on a general map G and then
applied to Ĝ.

Consider a map G on an orientable surface of genus g. Given two orientations D and
D′ of G, let D \D′ denote the subgraph of D induced by the edges that are not oriented
as in D′.

An oriented subgraph T of G is partitionable if its edge set can be partitioned into
three sets T0, T1, T2 such that all the Ti are pairwise homologous, i.e. Ti − Tj ∈ F for
i, j ∈ {0, 1, 2}. An oriented subgraph T of G is called a topological Tutte-orientation if
β(T,W ) ≡ 0 (mod3) for every closed walk W in G∗ (more intuitively, the number of
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edges crossing W from left to right minus the number of those crossing W from right to
left is divisible by three).

The name “topological Tutte-orientation” comes from the fact that an oriented graph
T is called a Tutte-orientation if the difference of outdegree and indegree is divisible
by three, i.e. d+(v) − d−(v) ≡ 0 (mod3), for every vertex v. So a topological Tutte-
orientation is a Tutte orientation, since the latter requires the condition of the topological
Tutte orientation only for the walks W of G∗ going around a vertex v of G.

The notions of partitionable and topological Tutte-orientation are equivalent:

Lemma 4.1 An oriented subgraph of G is partitionable if and only if it is a topological
Tutte-orientation.

Proof. (=⇒) If T is partitionable, then by definition it is the disjoint union of three
homologous edge sets T0, T1, and T2. Hence by Lemma 3.1, β(T0,W ) = β(T1,W ) =
β(T2,W ) for any closed walk W of G∗. By linearity of β this implies that β(T,W ) ≡ 0 (
mod 3) for any closed walk W of G∗. So T is a topological Tutte-orientation.

(⇐=) Let T be a topological Tutte-orientation of G, i.e. β(T,W ) ≡ 0 ( mod 3)
for any closed walk W of G∗. In the following, T -faces are the faces of T considered
as an embedded graph. Note that T -faces are not necessarily disks. Let us introduce
a {0, 1, 2}-labeling of the T -faces. Label an arbitrary T -face F0 by 0. For any T -face
F , find a path P of G∗ from F0 to F . Label F with β(T, P ) (mod3). Note that the
label of F is independent from the choice of P by our assumption on closed walks. For
0 ≤ i ≤ 2, let Ti be the set of edges of T with two incident T -faces labeled i − 1 and
i+1. Note that an edge of Ti has label i− 1 on its left and label i+1 on its right. The
sets Ti form a partition of the edges of T . Let Fi be the counterclockwise facial walks
of G that are in a T -face labeled i. We have φ(Ti+1)− φ(Ti−1) =

∑
F∈Fi

φ(F ), so the Ti

are homologous. ✷

Let us refine the notion of partitionable. Denote by E the set of oriented Eulerian
subgraphs of G (i.e. the oriented subgraphs of G where each vertex has the same in-
and out-degree). Consider a partitionable oriented subgraph T of G, with edge set
partition T0, T1, T2 having the same homology. We say that T is Eulerian-partitionable
if Ti ∈ E for all 0 ≤ i ≤ 2. Note that if T is Eulerian-partitionable then it is Eulerian.
Note that an oriented subgraph T of G that is 0-homologous is also Eulerian and thus
Eulerian-partitionable (with the partition T, ∅, ∅).

We now investigate the structure of Schnyder orientations. For that purpose, consider
a map G on an orientable surface of genus g and apply the above definitions and results
to orientations of Ĝ.

Let D,D′ be two orientations of Ĝ such that D is a Schnyder orientation and T =
D \ D′. Let Out = {(u, v) ∈ E(D) | v is an edge-vertex}. Similarly, let Out′ = {(u, v) ∈
E(D′) | v is an edge-vertex}. Note that an edge of T is either in Out or in Out′, so
φ(T ) = φ(Out) − φ(Out′). By Lemma 3.2, for any closed walk W of Ĝ∗, β(Out,W ) ≡
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0 (mod3). The three following lemmas give necessary and sufficient conditions on T for
D′ being a Schnyder orientation.

Lemma 4.2 D′ is a Schnyder orientation if and only if T is partitionable.

Proof. Let D′ is a Schnyder orientation. By Lemma 3.2, this is equivalent to the fact
that for any closed walk W of Ĝ∗, we have β(Out′,W ) ≡ 0 (mod3). Since β(Out,W ) ≡
0 (mod3), this is equivalent to the fact that for any closed walk W of Ĝ∗, we have
β(T,W ) ≡ 0 (mod 3). Finally, by Lemma 4.1 this is equivalent to T being partitionable.
✷

Lemma 4.3 D′ is a Schnyder orientation having the same outdegrees as D if and only
if T is Eulerian-partitionable.

Proof. (=⇒) Suppose D′ is a Schnyder orientation having the same outdegrees as D.
Lemma 4.2 implies that T is partitionable into T0, T1, T2 having the same homology. By
Lemma 3.1, for each closed walk W of Ĝ∗, we have β(T0,W ) = β(T1,W ) = β(T2,W ).
Since D,D′ have the same outdegrees, we have that T is Eulerian. Consider a vertex v of
Ĝ and a walk Wv of Ĝ∗ going counterclockwise around v. For any oriented subgraph H
of Ĝ∗, we have d+H(v)−d−

H (v) = β(H,Wv), where d
+
H(v) and d−

H(v) denote the outdegree
and indegree of v restricted toH, respectively. Since T is Eulerian, we have β(T,Wv) = 0.
Since β(T0,Wv) = β(T1,Wv) = β(T2,Wv) and

∑
β(Ti,Wv) = β(T,Wv) = 0, we obtain

that β(T0,Wv) = β(T1,Wv) = β(T2,Wv) = 0. So each Ti is Eulerian.

(⇐=) Suppose T is Eulerian-partitionable. Then Lemma 4.2 implies that D′ is a
Schnyder orientation. Since T is Eulerian, the two orientations D,D′ have the same
outdegrees. ✷

Consider {B1, . . . , B2g} a set of cycles of G that forms a basis for the homology. For
Γ ∈ Z2g, an orientation of Ĝ is of type Γ if γ(Bi) = Γi for all 1 ≤ i ≤ 2g.

Lemma 4.4 D′ is a Schnyder orientation having the same outdegrees and the same
type as D (for the considered basis) if and only if T is 0-homologous (i.e. D,D′ are
homologous).

Proof. (=⇒) Suppose D′ is a Schnyder orientation having the same outdegrees and the
same type as D. Then, Lemma 4.3 implies that T is Eulerian-partitionable and thus
Eulerian. So for any F ∈ F̂∗, we have β(T, F ) = 0. Moreover, for 1 ≤ i ≤ 2g, consider
the region Ri between WL(Bi) and WR(Bi) containing Bi. Since T is Eulerian, it is
going in and out of Ri the same number of times. So β(T,WL(Bi)−WR(Bi)) = 0. Since
D,D′ have the same type, we have γD(Bi) = γD′(Bi). So by Lemma 3.5, δD(WL(Bi))+
δD(WR(Bi)) = δD′(WL(Bi)) + δD′(WR(Bi)). Thus β(T,WL(Bi) +WR(Bi)) = β(Out −
Out′,WL(Bi)+WR(Bi)) = δD(WL(Bi))+δD(WR(Bi))−δD′(WL(Bi))−δD′(WR(Bi)) = 0.
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By combining this with the previous equality, we obtain β(T,WL(Bi)) = β(T,WR(Bi)) =
0 for all 1 ≤ i ≤ 2g. Thus by Lemma 3.1, we have that T is 0-homologous.

(⇐=) Suppose that T is 0-homologous. Then T is in particular Eulerian-partitionable
(with the partition T, ∅, ∅). So Lemma 4.3 implies that D′ is a Schnyder orientation with
the same outdegrees as D. Since T is 0-homologous, by Lemma 3.1, for all 1 ≤ i ≤ 2g,
we have β(T,WL(Bi)) = β(T,WR(Bi)) = 0. Thus δD(WL(Bi)) = β(Out,WL(Bi)) =
β(Out′,WL(Bi)) = δD′(WL(Bi)) and δD(WR(Bi)) = β(Out,WR(Bi)) = β(Out′,WR(Bi)) =
δD′(WR(Bi)). So by Lemma 3.5, γD(Bi) = δD(WL(Bi))+δD(WR(Bi)) = δD′(WL(Bi))+
δD′(WR(Bi)) = γD′(Bi). So D,D′ have the same type. ✷

Lemma 4.4 implies that when you consider Schnyder orientations having the same
outdegrees the property that they have the same type does not depend on the choice of
the basis since being homologous does not depend on the basis. So we have the following:

Lemma 4.5 If two Schnyder orientations have the same outdegrees and the same type
(for the considered basis), then they have the same type for any basis.

Lemma 4.2, 4.3 and 4.4 are summarized in the following theorem (where by Lemma 4.5
we do not have to assume a particular choice of a basis for the third item):

Theorem 4.6 Let G be a map on an orientable surface and D,D′ orientations of Ĝ
such that D is a Schnyder orientation and T = D \ D′. We have the following:

• D′ is a Schnyder orientation if and only if T is partitionable.

• D′ is a Schnyder orientation having the same outdegrees as D if and only if T is
Eulerian-partitionable.

• D′ is a Schnyder orientation having the same outdegrees and the same type as D
if and only if T is 0-homologous (i.e. D,D′ are homologous).

We show in the next section that the set of Schnyder orientations that are homologous
(see third item of Theorem 4.6) carries a structure of distributive lattice.

4.2 The distributive lattice of homologous orientations

For the sake of generality, in this subsection we consider that maps may have contractible
cycles of size 1 or 2. Consider a map G on an orientable surface and a given orientation
D0 of G. Let O(G,D0) be the set of all the orientations of G that are homologous
to D0. In this section we prove that O(G,D0) forms a distributive lattice. We show
some additional interesting properties that are used in a recent paper by Despré, the
first author, and the third author [7]. This generalizes results for the plane obtained by
Ossona de Mendez [22] and Felsner [10]. The distributive lattice structure also can also
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be derived from a result of Propp [24] interpreted on the dual map, see the discussion
below Theorem 4.7.

In order to define an order on O(G,D0), fix an arbitrary face f0 of G and let F0 be its
counterclockwise facial walk. Let F ′ = F \ {F0} (where F is the set of counterclockwise
facial walks of G as defined earlier). Note that φ(F0) = −∑F∈F ′ φ(F ). Since the
characteristic flows of F ′ are linearly independent, any oriented subgraph of G has at
most one representation as a combination of characteristic flows of F ′. Moreover the 0-
homologous oriented subgraphs of G are precisely the oriented subgraph that have such a
representation. We say that a 0-homologous oriented subgraph T of G is counterclockwise
(resp. clockwise) if its characteristic flow can be written as a combination with positive
(resp. negative) coefficients of characteristic flows of F ′, i.e. φ(T ) =

∑
F∈F ′ λFφ(F ),

with λ ∈ N|F ′| (resp. −λ ∈ N|F ′|). Given two orientations D,D′, of G we set D ≤f0 D′

if and only if D \ D′ is counterclockwise. Then we have the following theorem.

Theorem 4.7 ([24]) Let G be a map on an orientable surface given with a particular
orientation D0 and a particular face f0. Let O(G,D0) the set of all the orientations of
G that are homologous to D0. We have (O(G,D0),≤f0) is a distributive lattice.

We attribute Theorem 4.7 to Propp even if it is not presented in this form in [24].
Here we do not introduce Propp’s formalism, but provide a new proof of Theorem 4.7 (as
a consequence of the forthcoming Proposition 4.7). This allows us to introduce notions
used later in the study of this lattice. It is notable that the study of this lattice found
applications in [7], where the authors found a bijection between toroidal triangulations
and unicellular toroidal maps.

To prove Theorem 4.7, we need to define the elementary flips that generates the
lattice. We start by reducing the graph G. We call an edge of G rigid with respect to
O(G,D0) if it has the same orientation in all elements of O(G,D0). Rigid edges do not
play a role for the structure of O(G,D0). We delete them from G and call the obtained
embedded graph G̃. This graph is embedded but it is not necessarily a map, as some
faces may not be homeomorphic to open disks. Note that if all the edges are rigid, i.e.
|O(G,D0)| = 1, then G̃ has no edges.

Lemma 4.8 Given an edge e of G, the following are equivalent:

1. e is non-rigid

2. e is contained in a 0-homologous oriented subgraph of D0

3. e is contained in a 0-homologous oriented subgraph of any element of O(G,D0)

Proof. (1 =⇒ 3) Let D ∈ O(G,D0). If e is non-rigid, then it has a different orientation
in two elements D′,D′′ of O(G,D0). Then we can assume by symmetry that e has a
different orientation in D and D′ (otherwise in D and D′′ by symmetry). Since D,D′
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are homologous to D0, they are also homologous to each other. So T = D \ D′ is a
0-homologous oriented subgraph of D that contains e.

(3 =⇒ 2) Trivial since D0 ∈ O(G,D0)

(2 =⇒ 1) If an edge e is contained in a 0-homologous oriented subgraph T of D0.
Then let D be the element of O(G,D0) such that T = D0 \ D. Clearly e is oriented
differently in D and D0, thus it is non-rigid. ✷

By Lemma 4.8, one can build G̃ by keeping only the edges that are contained in
a 0-homologous oriented subgraph of D0. Note that this implies that all the edges of
G̃ are incident to two distinct faces of G̃. Denote by F̃ the set of oriented subgraphs
of G̃ corresponding to the boundaries of faces of G̃ considered counterclockwise. Note
that any F̃ ∈ F̃ is 0-homologous and so its characteristic flows has a unique way to be
written as a combination of characteristic flows of F ′. Moreover this combination can
be written φ(F̃ ) =

∑
F∈X

F̃
φ(F ), for XF̃ ⊆ F ′. Let f̃0 be the face of G̃ containing f0

and F̃0 be the element of F̃ corresponding to the boundary of f̃0. Let F̃ ′ = F̃ \ {F̃0}.
The elements of F̃ ′ are precisely the elementary flips which suffice to generate the entire
distributive lattice (O(G,D0),≤f0).

We prove two technical lemmas concerning F̃ ′:

Lemma 4.9 Let D ∈ O(G,D0) and T be a non-empty 0-homologous oriented subgraph
of D. Then there exist edge-disjoint oriented subgraphs T1, . . . , Tk of D such that φ(T ) =∑

1≤i≤k φ(Ti), and, for 1 ≤ i ≤ k, there exists X̃i ⊆ F̃ ′ and ǫi ∈ {−1, 1} such that

φ(Ti) = ǫi
∑

F̃∈X̃i
φ(F̃ ).

Proof. Since T is 0-homologous, we have φ(T ) =
∑

F∈F ′ λFφ(F ), for λ ∈ Z|F ′|. Let
λf0 = 0. Thus we have φ(T ) =

∑
F∈F λFφ(F ). Let λmin = minF∈F λF and λmax =

maxF∈F λF . We may have λmin = 0 or λmax = 0 but not both since T is non-empty.
For 1 ≤ i ≤ λmax, let Xi = {F ∈ F ′ |λF ≥ i} and ǫi = 1. Let X0 = ∅ and ǫ0 = 1.
For λmin ≤ i ≤ −1, let Xi = {F ∈ F ′ |λF ≤ i} and ǫi = −1. For λmin ≤ i ≤ λmax, let
Ti be the oriented subgraph such that φ(Ti) = ǫi

∑
F∈Xi

φ(F ). Then we have φ(T ) =∑
λmin≤i≤λmax

φ(Ti).

Since T is an oriented subgraph, we have φ(T ) ∈ {−1, 0, 1}|E(G)|. Thus for any edge
of G, incident to faces F1 and F2, we have (λF1 −λF2) ∈ {−1, 0, 1}. So, for 1 ≤ i ≤ λmax,
the oriented graph Ti is the border between the faces with λ value equal to i and i − 1.
Symmetrically, for λmin ≤ i ≤ −1, the oriented graph Ti is the border between the
faces with λ value equal to i and i+ 1. So all the Ti are edge disjoint and are oriented
subgraphs of D.

Let X̃i = {F̃ ∈ F̃ ′ |φ(F̃ ) =
∑

F∈X′ φ(F ) for some X ′ ⊆ Xi}. Since Ti is 0-homologous,
the edges of Ti can be reversed in D to obtain another element of O(G,D0). Thus there
is no rigid edge in Ti. Thus φ(Ti) = ǫi

∑
F∈Xi

φ(F ) = ǫi
∑

F̃∈X̃i
φ(F̃ ). ✷
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Lemma 4.10 Let D ∈ O(G,D0) and T be a non-empty 0-homologous oriented subgraph
of D such that there exists X̃ ⊆ F̃ ′ and ǫ ∈ {−1, 1} satisfying φ(T ) = ǫ

∑
F̃∈X̃ φ(F̃ ).

Then there exists F̃ ∈ X̃ such that ǫ φ(F̃ ) corresponds to an oriented subgraph of D.

Proof. The proof is done by induction on |X̃ |. Assume that ǫ = 1 (the case ǫ = −1 is
proved similarly).

If |X̃| = 1, then the conclusion is clear since φ(T ) =
∑

F̃∈X̃ φ(F̃ ). We now assume

that |X̃ | > 1. Towards a contradiction, suppose that for any F̃ ∈ X̃ we do not have

the conclusion, i.e φ(F̃ )e 6= φ(T )e for some e ∈ F̃ . Let F̃1 ∈ X̃ and e ∈ F̃1 such that

φ(F̃1)e 6= φ(T )e. Since F̃1 is counterclockwise, we have F̃1 on the left of e. Let F̃2 ∈ F̃
that is on the right of e. Note that φ(F̃1)e = −φ(F̃2)e and for any other face F̃ ∈ F̃ ,

we have φ(F̃ )e = 0. Since φ(T ) =
∑

F̃∈X̃ φ(F̃ ), we have F̃2 ∈ X̃ and φ(T )e = 0. By

possibly swapping the role of F̃1 and F̃2, we can assume that φ(D)e = φ(F̃1)e, i.e., e is

oriented the same way in F̃1 and D. Since e is not rigid, there exists an orientation D′

in O(G,D0) such that φ(D)e = −φ(D′)e.

Let T ′ be the non-empty 0-homologous oriented subgraph of D such that T ′ = D\D′.
Lemma 4.9 implies that there exists edge-disjoint oriented subgraphs T1, . . . , Tk ofD such
that φ(T ) =

∑
1≤i≤k φ(Ti), and, for 1 ≤ i ≤ k, there exists X̃i ⊆ F̃ ′ and ǫi ∈ {−1, 1}

such that φ(Ti) = ǫi
∑

F̃∈X̃i
φ(F̃ ). Since T ′ is the disjoint union of T1, . . . , Tk, there

exists 1 ≤ i ≤ k, such that e is an edge of Ti. Assume by symmetry that e is an edge of
T1. Since φ(T1)e = φ(D)e = φ(F̃1)e, we have ǫ1 = 1, F̃1 ∈ X̃1 and F̃2 /∈ X̃1.

Let Ỹ = X̃ ∩ X̃1. Thus F̃1 ∈ Ỹ and F̃2 /∈ Ỹ . So |Ỹ | < |X̃|. Let TỸ be the oriented

subgraph of G such that TỸ =
∑

F̃∈Ỹ φ(F̃ ). Note that the edges of T (resp. T1) are

those incident to exactly one face of X̃ (resp. X̃1). Similarly every edge of T
Ỹ
is incident

to exactly one face of Ỹ = X̃ ∩ X̃1, i.e. it has one incident face in Ỹ = X̃ ∩ X̃1 and the
other incident face not in X̃ or not in X̃1. In the first case this edge is in T , otherwise
it is in T1. So every edge of TỸ is an edge of T ∪ T1. Hence TỸ is an oriented subgraph
of D. So we can apply the induction hypothesis on TỸ . This implies that there exists

F̃ ∈ Ỹ such that F̃ is an oriented subgraph of D. Since Ỹ ⊆ X̃, this is a contradiction
to our assumption. ✷

We need the following characterization of distributive lattice from [11]:

Theorem 4.11 ([11]) An oriented graph H = (V,E) is the Hasse diagram of a dis-
tributive lattice if and only if it is connected, acyclic, and admits an edge-labeling c of
the edges such that:

• if (u, v), (u,w) ∈ E then

(U1) c(u, v) 6= c(u,w) and

(U2) there is z ∈ V such that (v, z), (w, z) ∈ E, c(u, v) = c(w, z), and c(u,w) =
c(v, z).

27

195



• if (v, z), (w, z) ∈ E then

(L1) c(v, z) 6= c(w, z) and

(L2) there is u ∈ V such that (u, v), (u,w) ∈ E, c(u, v) = c(w, z), and c(u,w) =
c(v, z).

We define the directed graph H with vertex set O(G,D0). There is an oriented edge
from D1 to D2 in H (with D1 ≤f0 D2) if and only if D1 \ D2 ∈ F̃ ′. We define the
label of that edge as c(D1,D2) = D1 \ D2. We show that H fulfills all the conditions of
Theorem 4.11, and thus obtain the following:

Proposition 4.12 H is the Hasse diagram of a distributive lattice.

Proof. The characteristic flows of elements of F̃ ′ form an independent set, hence the
digraph H is acyclic. By definition all outgoing and all incoming edges of a vertex of H
have different labels, i.e. the labeling c satisfies (U1) and (L1). If (Du,Dv) and (Du,Dw)
belong to H, then Tv = Du \ Dv and Tw = Du \ Dw are both elements of F̃ ′, so they
must be edge disjoint. Thus, the orientation Dz obtained from reversing the edges of
Tw in Dv or equivalently Tv in Dw is in O(G,D0). This gives (U2). The same reasoning
gives (L2). It remains to show that H is connected.

Given a 0-homologous oriented subgraph T of G, such that T =
∑

F∈F ′ λFφ(F ), we
define s(T ) =

∑
F∈F ′ |λF |.

Let D,D′ be two orientations in O(G,D0), and T = D \ D′. We prove by induction
on s(T ) that D,D′ are connected in H. This is clear if s(T ) = 0 as then D = D′.
So we now assume that s(T ) 6= 0 and so that D,D′ are distinct. Lemma 4.9 implies
that there exists edge-disjoint oriented subgraphs T1, . . . , Tk of D such that φ(T ) =∑

1≤i≤k φ(Ti), and, for 1 ≤ i ≤ k, there exists X̃i ⊆ F̃ ′ and ǫi ∈ {−1, 1} such that

φ(Ti) = ǫi
∑

F̃∈X̃i
φ(F̃ ). Lemma 4.10 applied to T1 implies that there exists F̃1 ∈ X̃1

such that ǫ1 φ(F̃1) corresponds to an oriented subgraph of D. Let T ′ be the oriented

subgraph such that φ(T ) = ǫ1φ(F̃1) + φ(T ′). Thus:

φ(T ′) = φ(T ) − ǫ1φ(F̃1)

=
∑

1≤i≤k

φ(Ti) − ǫ1φ(F̃1)

=
∑

F̃∈(X̃1\{F̃1})

ǫ1φ(F̃ ) +
∑

2≤i≤k

∑

F̃∈X̃i

ǫiφ(F̃ )

=
∑

F̃∈(X̃1\{F̃1})

∑

F∈X
F̃

ǫ1φ(F ) +
∑

2≤i≤k

∑

F̃∈X̃i

∑

F∈X
F̃

ǫiφ(F )

So T ′ is 0-homologous. Let D′′ be such that ǫ1F̃1 = D \D′′. So we have D′′ ∈ O(G,D0)
and there is an edge between D and D′′ in H. Moreover T ′ = D′′ \ D′ and s(T ′) =
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s(T ) − |X
F̃1

| < s(T ). So the induction hypothesis on D′′,D′ implies that they are

connected in H. So D,D′ are also connected in H. ✷

Note that Proposition 4.12 gives a proof of Theorem 4.7 independent from Propp [24].

We continue to further investigate the set O(G,D0).

Proposition 4.13 For every element F̃ ∈ F̃ , there exists D in O(G,D0) such that F̃
is an oriented subgraph of D.

Proof. Let F̃ ∈ F̃ . Let D be an element of O(G,D0) that maximizes the number of
edges of F̃ that have the same orientation in F̃ and D, i.e. D maximizes the number of
edges oriented counterclockwise on the boundary of the face of G̃ corresponding to F̃ .
Towards a contradiction, suppose that there is an edge e of F̃ that does not have the same
orientation in F̃ and D. The edge e is in G̃ so it is non-rigid. Let D′ ∈ O(G,D0) such
that e is oriented differently in D and D′. Let T = D \ D′. By Lemma 4.9, there exist
edge-disjoint oriented subgraphs T1, . . . , Tk of D such that φ(T ) =

∑
1≤i≤k φ(Ti), and,

for 1 ≤ i ≤ k, there exists X̃i ⊆ F̃ ′ and ǫi ∈ {−1, 1} such that φ(Ti) = ǫi
∑

F̃ ′∈X̃i
φ(F̃ ′).

W.l.o.g., we can assume that e is an edge of T1. Let D′′ be the element of O(G,D0)
such that T1 = D \ D′′. The oriented subgraph T1 intersects F̃ only on edges of D
oriented clockwise on the border of F̃ . So D′′ contains strictly more edges oriented
counterclockwise on the border of the face F̃ than D, a contradiction. So all the edges
of F̃ have the same orientation in D. So F̃ is a 0-homologous oriented subgraph of D.
✷

By Proposition 4.13, for every element F̃ ∈ F̃ ′ there exists D in O(G,D0) such that
F̃ is an oriented subgraph of D. Thus there exists D′ such that F̃ = D \ D′ and D,D′

are linked in H. Thus, F̃ ′ is a minimal set that generates the lattice.

A distributive lattice has a unique maximal (resp. minimal) element. Let Dmax

(resp. Dmin) be the maximal (resp. minimal) element of (O(G,D0),≤f0).

Proposition 4.14 F̃0 (resp. −F̃0) is an oriented subgraph of Dmax (resp. Dmin).

Proof. By Proposition 4.13, there exists D in O(G,D0) such that F̃0 is an oriented
subgraph of D. Let T = D \ Dmax. Since D ≤f0 Dmax, the characteristic flow of T can

be written as a combination with positive coefficients of characteristic flows of F̃ ′, i.e.
φ(T ) =

∑
F̃∈F̃ ′ λFφ(F̃ ) with λ ∈ N|F ′|. So T is disjoint from F̃0. Thus F̃0 is an oriented

subgraph of Dmax. The proof is analogous for Dmin. ✷

Proposition 4.15 Dmax (resp. Dmin) contains no counterclockwise (resp. clockwise)
non-empty 0-homologous oriented subgraph.
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Proof. Towards a contradiction, suppose that Dmax contains a counterclockwise non-
empty 0-homologous oriented subgraph T . Then there exists D ∈ O(G,D0) distinct
from Dmax such that T = Dmax \ D. We have Dmax ≤f0 D by definition of ≤f0 , a
contradiction to the maximality of Dmax. ✷

In the definition of counterclockwise (resp. clockwise) non-empty 0-homologous ori-
ented subgraph, used in Proposition 4.15, the sum is taken over elements of F ′ and thus
does not use F0. In particular, Dmax (resp. Dmin) may contain regions whose boundary
is oriented counterclockwise (resp. clockwise) according to the region but then such a
region contains F0.

We conclude this section by applying Theorem 4.7 to Schnyder orientations:

Theorem 4.16 Let G be a map on an orientable surface given with a particular Schny-
der orientation D0 of Ĝ and a particular face f0 of Ĝ. Let S(Ĝ,D0) be the set of all
the Schnyder orientations of Ĝ that have the same outdegrees and same type as D0. We
have that (S(Ĝ,D0),≤f0) is a distributive lattice.

Proof. By the third item of Theorem 4.6, we have S(Ĝ,D0) = O(Ĝ,D0). Then the
conclusion holds by Theorem 4.7. ✷

Theorem 4.16 is illustrated in Section 5.3 on an example. Note that the minimal
element of the lattice and its properties (Proposition 4.12 to 4.15) are used in [7] to
obtain a new bijection concerning toroidal triangulations.

5 Toroidal triangulations

5.1 New proof of the existence of Schnyder woods

In this section we look specifically at the case of toroidal triangulations. We study the
structure of 3-orientations of toroidal triangulations and show how one can use it to
prove the existence of Schnyder woods in toroidal triangulations. This corresponds to
the case g = 1 of Conjecture 2.14. Given a toroidal triangulation G, a 3-orientation of
G is an orientation of the edges of G such that every vertex has outdegree exactly three.
By Theorem 2.12, a simple toroidal triangulation admits a 3-orientation. This can be
shown to be true also for non-simple triangulations, for example using edge-contraction.

Consider a toroidal triangulation G and a 3-orientation of G. Let G∞ be the universal
cover of G.

Lemma 5.1 A cycle C of G∞ of length k has exactly k−3 edges leaving C and directed
towards the interior of C.

Proof. Let x be the number of edges leaving C and directed towards the interior of
C. Consider the cycle C and its interior as a planar graph Co. Euler’s formula gives
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n − m+ f = 2 where n,m, f are respectively the number of vertices, edges and faces of
Co. Every inner vertex has exactly outdegree three, so m = 3(n − k) + k + x. Every
inner face is a triangle so 2m = 3(f − 1) + k. The last two equalities can be used to
replace f and m in Euler’s formula, and obtain x = k − 3. ✷

For an edge e of G, we define the middle walk from e as the sequence of edges (ei)i≥0

obtained by the following method. Let e0 = e. If the edge ei is entering a vertex v, then
the edge ei+1 is chosen in the three edges leaving v as the edge in the “middle” coming
from ei (i.e. v should have exactly one edge leaving on the left of the path consisting of
the two edges ei, ei+1 and thus exactly one edge leaving on the right).

A directed cycle M of G is said to be a middle cycle if every vertex v of M has
exactly one edge leaving v on the left of M (and thus exactly one edge leaving v on the
right of M). Note that if M is a middle cycle, and e is an edge of M , then the middle
walk from e consists of the sequence of edges of M repeated periodically. Note that a
middle cycle is not contractible, otherwise in G∞ it forms a contradiction to Lemma 5.1.
Similar arguments lead to:

Lemma 5.2 Two middle cycles that are weakly homologous are either vertex-disjoint or
equal.

We have the following useful lemma concerning middle walks and middle cycles:

Lemma 5.3 A middle walk always ends on a middle cycle.

Proof. Start from any edge e0 of G and consider the middle walk W = (ei)i≥0 from
e0. The graph G has a finite number of edges, so some edges will be used several times
in W . Consider a minimal subsequence ek, . . . , eℓ such that no edge appears twice and
ek = eℓ+1. Thus W ends periodically on the sequence of edges ek, . . . , eℓ. We prove that
ek, . . . , eℓ is a middle cycle.

Assume that k = 0 for simplicity. Thus e0, . . . , eℓ is an Eulerian subgraph E. If E is
a cycle then it is a middle cycle and we are done. So we can consider that it visits some
vertices several times. Let ei, ej , with 0 ≤ i < j ≤ ℓ, such that ei, ej are both leaving
the same vertex v. By definition of ℓ, we have ei 6= ej . Let A and B be the two closed
walks ei, . . . , ej−1 and ej , . . . , ei−1, respectively, where indices are modulo ℓ+ 1.

Consider a copy v0 of v in the universal cover G∞. Define the walk P obtained by
starting at v0 following the edges of G∞ corresponding to the edges of A, and then to
the edges of B. Similarly, define the walk Q obtained by starting at v0 following the
edges of B, and then the edges of A. The two walks P and Q both start at v0 and both
end at the same vertex v1 that is a copy of v. Note that v1 and v0 may coincide. All the
vertices that are visited on the interior of P and Q have exactly one edge leaving on the
left and exactly one edge leaving on the right. The two walks P and Q may intersect
before they end at v1 thus we define P ′ and Q′ has the subwalks of P and Q starting at
v0, ending on the same vertex u (possibly distinct from v1 or not) and such that P ′ and
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Q′ are not intersecting on their interior vertices. Then the union of P ′ and Q′ forms a
cycle C of G∞. All the vertices of C except possibly v0 and u, have exactly one edge
leaving C and directed towards the interior of C, a contradiction to Lemma 5.1. ✷

A consequence of Lemma 5.3 is that any 3-orientation of a toroidal triangulation has
a middle cycle. The 3-orientation of the toroidal triangulation on the left of Figure 5 is
an example where there is a unique middle cycle (the diagonal). We show in Lemma 5.5
that for any toroidal triangulation there exists a 3-orientation with several middle cycles.

Note that a middle cycle C satisfies γ(C) = 0 (when C is considered in any direction).
So, by Lemma 5.3, there is always a cycle with value γ equal to 0 in a 3-orientation of
a toroidal triangulation.

The orientation of the toroidal triangulation on the left of Figure 5 is an example of
a 3-orientation of a toroidal triangulation where some cycles have value γ not equal to
0. The value of γ for the three loops is 2, 0 and −2.

Two non-contractible not weakly homologous cycles generate the homology of the
torus with respect to Q. That is if B1, B2 are non contractible cycles that are not
weakly homologous, then for any cycle C there exists k, k1, k2 ∈ Z, k 6= 0, such that kC
is homologous to k1B1 + kB2.

Lemma 5.4 In a 3-orientation, consider B1, B2, C are non contractible cycles, such that
B1, B2 are not weakly homologous. Let k, k1, k2 ∈ Z, k 6= 0 such that kC is homologous
to k1B1 + k2B2. Then kγ(C) = k1 γ(B1) + k2 γ(B2).

Proof. Let v be a vertex in the intersection of B1 and B2. Consider a drawing of G∞

obtained by replicating a flat representation of G to tile the plane. Let v0 be a copy of
v. Consider the path B starting at v0 and following k1 times the edges corresponding
to B1 and then k2 times the edges corresponding to B2 (we are going backwards if ki is
negative). This path ends at a copy v1 of v. Since C is non-contractible we have k1 or k2
not equal to 0 and thus v1 is distinct from v0. Let B

∞ be the infinite path obtained by
replicating B (forwards and backwards) from v0. Since kC is homologous to k1B1+k2B2

we can find an infinite path C∞, that corresponds to copies of C replicated, that does
not intersect B∞ and situated on the right side of B. Now we can find a copy B′∞ of
B∞, such that C∞ lies between B∞ and B′∞ without intersecting them. Choose a copy
v′
0 of v on B′∞. Let B′ be the copy of B starting at v′

0 and ending at a vertex v′
1. Let

R be the region bounded by B,B′ and the segments [v0, v
′
0], [v1, v

′
1].

Consider the toroidal triangulation H whose representation is R (obtained by iden-
tifying B,B′ and [v0, v

′
0], [v1, v

′
1]). Note that H is just made of several copies of G. Let

C ′ be the subpath of C∞ intersecting the region R corresponding to exactly one copy
of kC. Let R1 be the subregion of R bounded by B and C ′ and R2 the subregion of
R bounded by B′ and C ′. By some counting arguments (Euler’s formula + triangula-
tion + 3-orientation) in the region R1 and R2, we obtain that γ(C ′) = γ(B) and thus
kγ(C) = k1γ(B1) + k2γ(B2). ✷
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By Lemma 5.3, a middle walk W always ends on a middle cycle. Let us denote by
MW this middle cycle and PW the part of W before MW . Note that PW may be empty.
We say that a middle walk is leaving a cycle C if its starting edge is incident to C and
leaving C.

Let us now prove the main lemma of this section.

Lemma 5.5 G admits a 3-orientation with two middle cycles that are not weakly ho-
mologous.

Proof. Towards a contradiction, suppose that there is no 3-orientation of G with two
middle cycles that are not weakly homologous. We first prove the following claim:

Claim 5.6 There exists a 3-orientation of G with a middle cycle M , a middle walk W
leaving M and MW = M .

Proof. Towards a contradiction, suppose that there is no 3-orientation ofG with a middle
cycle M , a middle walk W leaving M and MW = M . We first prove the following:

(1) Any 3-orientation of G, middle cycle M and middle walk W leaving M are such that
M does not intersect the interior of W .

Towards a contradiction, suppose that M intersects the interior of W . By assumption,
cycles MW and M are weakly homologous and MW 6= M . Thus by Lemma 5.2, they
are vertex-disjoint. So M intersects the interior of PW . Assume by symmetry that PW

is leaving M on its left side. If PW is entering M from its left side, in G∞, the edges of
PW plus M form a cycle contradicting Lemma 5.1. So PW is entering M from its right
side. Hence MW intersects the interior of PW on a vertex v. Let e be the edge of PW

leaving v. Then the middle cycle MW and the middle walk W ′ started on e satisfies
MW ′ = MW , contradicting the hypothesis. So M does not intersect the interior of W .
This proves (1).

Consider a 3-orientation, a middle cycle M and a middle walk W leaving M such
that the length of PW is maximized. By assumption MW is weakly homologous to M .
Assume by symmetry that PW is leaving M on its left side. By assumption MW 6= M .
(1) implies that M does not intersect the interior of W . Let v (resp. e0) be the starting
vertex (resp. edge) of W . Consider now the 3-orientation obtained by reversing MW .
Consider the middle walk W ′ started at e0. Walk W ′ follows PW , then arrives on MW

and crosses it (since MW has been reversed). (1) implies that M does not intersect the
interior of W ′. Similarly, (1) applied to MW and W ′ \ PW (the walk obtained from W ′

by removing the first edges corresponding to PW ), implies that MW does not intersect
the interior of W ′ \ PW . Thus, MW ′ is weakly homologous to MW and MW ′ is in the
interior of the region between M and MW on the right of M . Thus PW ′ strictly contains
PW and is thus longer, a contradiction. ✸

By Claim 5.6, consider a 3-orientation of G with a middle cycle M and a middle
walk W leaving M such that MW = M . Note that W is leaving M from one side and
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entering it in the other side, otherwise W and M contradicts Lemma 5.1. Let e0 be
the starting edge of W . Let v, u be the starting and ending point of PW , respectively,
where u = v may occur. Consider the 3-orientation obtained by reversing M . Let Q be
the directed path from u to v along M (Q is empty if u = v). Let C be the directed
cycle PW ∪ Q. We compute the value γ of C. If u 6= v, then C is almost everywhere
a middle cycle, except at u and v. At u, it has two edges leaving on its right side, and
at v it has two edges leaving on its left side. So we have γ(C) = 0. If u = v, then C
is a middle cycle and γ(C) = 0. Thus, in any case γ(C) = 0. Note that furthermore
γ(M) = 0 holds. The two cycles M,C are non contractible and not weakly homologous
so any non-contractible cycle of G has γ equal to zero by Lemma 5.4.

Consider the middle walk W ′ from e0. By assumption MW ′ is weakly homologous
to M . The beginning PW ′ is the same as for PW . As we have reversed the edges of M ,
when arriving on u, path PW ′ crosses M and continues until reaching MW ′ . Thus MW ′

intersects the interior of PW ′ at a vertex v′. Let u′ be the ending point of PW ′ (note
that we may have u′ = v′). Let P ′ be the non-empty subpath of PW ′ from v′ to u′. Let
Q′ be the directed path from u′ to v′ along MW ′ (Q′ is empty if u′ = v′). Let C ′ be
the non-contractible directed cycle P ′ ∪ Q′. We compute γ(C ′). The cycle C ′ is almost
everywhere a middle cycle, except at v′. At v′, it has two edges leaving on its left or
right side, depending on MW ′ crossing PW ′ from its left or right side. Thus, we have
γ(C ′) = ±2, a contradiction. ✷

By Lemma 5.5, for any toroidal triangulation, there exists a 3-orientation with two
middle cycles that are not weakly homologous. By Lemma 5.4, any non-contractible
cycle of G has value γ equal to zero. Note that γ(C) = 0 for any non-contractible
cycle C does not necessarily imply the existence of two middle cycle that are not weakly
homologous. The 3-orientation of the toroidal triangulation of Figure 15 is an example
where γ(C) = 0 for any non-contractible cycle C but all the middle cycle are weakly
homologous. The colors should help the reader to compute all the middle cycles by
starting from any edge and following the colors. One can see that all the middle cycles
are vertical (up or down) and that the horizontal (non-directed) cycle has value γ equal
to 0 so we have γ equal to 0 everywhere. Of course, the colors also show the underlying
Schnyder wood.

Figure 15: A 3-orientation of a toroidal triangulation with γ(C) = 0 for any non-
contractible cycle C. All the middle cycle are weakly homologous.

By combining Lemma 5.5 and Theorem 3.7, we obtain the following:
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Theorem 5.7 A toroidal triangulation admits a 1-edge, 1-vertex, 1-face angle la-
beling and thus a Schnyder wood.

Proof. By Lemma 5.5, there exists a 3-orientation with two middle cycles that are
not weakly homologous. By Lemma 5.4, any non-contractible cycle of G has value γ
equal to zero. Thus by Theorem 3.7, this implies that the orientation corresponds to an
edge angle labeling. Then by Lemma 2.1, the labeling is also vertex and face. As
all the edges are oriented in one direction only, it is 1-edge. As all the vertices have
outdegree three, it is 1-vertex. Finally as all the faces are triangles it is 1-face (in the
corresponding orientation of Ĝ, all the edges incident to dual-vertices are outgoing). By
Proposition 2.7, this 1-edge, 1-vertex, 1-face angle labeling corresponds to a Schnyder
wood. ✷

Theorem 5.7 corresponds to the case g = 1 of Conjecture 2.14. By [17], we already
knew that Schnyder woods exist for toroidal triangulations, but this section provides
an alternative proof based on the structure of 3-orientations and the characterization
theorem of Section 3.

5.2 The crossing property

A Schnyder wood of a toroidal triangulation is crossing, if for each pair i, j of different
colors, there exist a monochromatic cycle of color i intersecting a monochromatic cycle
of color j. In [17] a strengthening of Theorem 5.7 is proved :

Theorem 5.8 ([17]) An essentially 3-connected toroidal map admits a crossing Schny-
der wood.

Theorem 5.8 is stronger than Theorem 5.7 for two reasons. First, it considers es-
sentially 3-connected toroidal maps and not only triangulations, thus it proves Conjec-
ture 2.15 for g = 1. Second, it shows the existence of crossing Schnyder woods.

However, what we have done in Section 5.1 for triangulation can be generalized to
essentially 3-connected toroidal maps. For that purpose one has to work in the primal-
dual completion. Proofs get more technical and instead of walks in the primal now walks
in the dual of the primal-dual completion have to be considered. This is why we restrict
ourselves to triangulations.

Even if we did not prove the existence of crossing Schnyder woods, Lemma 5.5 gives
a bit of crossing in the following sense. A 3-orientation obtained by Lemma 5.5 has
two middle cycles that are not weakly homologous. Thus in the corresponding Schnyder
wood, these two cycles correspond to two monochromatic cycles that intersect. We say
that the Schnyder wood obtained by Theorem 5.7 is half-crossing, i.e., there exists a pair
i, j of different colors, such that there exist a monochromatic cycle of color i intersecting
a monochromatic cycle of color j.
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A half-crossing Schnyder wood is not necessarily crossing. The 3-orientation of the
toroidal triangulation of Figure 16 is an example where two middle cycles are not weakly
homologous, so it corresponds to a half-crossing Schnyder wood. However, It is not
crossing because the green and the blue cycle do not intersect.

Figure 16: A not crossing but half-crossing Schnyder wood of a toroidal triangulation.

Consider a toroidal triangulation G and a pair {B1, B2} of cycles that form a basis
for the homology. Figure 14 shows how to transform an orientation of G into an orien-
tation of Ĝ. With this transformation a Schnyder wood of G naturally corresponds to a
Schnyder orientation of Ĝ. This allows us to not distinguish between a Schnyder wood
or the corresponding Schnyder orientation of Ĝ. Recall from Section 4.1, that the type
of a Schnyder orientation of Ĝ in the basis {B1, B2} is the pair (γ(B1), γ(B2)).

Lemma 5.9 A half-crossing Schnyder wood is of type (0, 0) (for the considered basis).

Proof. Consider a half-crossing Schnyder wood of G and C1, C2 two crossing monochro-
matic cycles. We have γ(C1) = γ(C2) = 0. The cycles C1, C2 are not contractible and
not weakly-homologous. So by Lemma 5.4, any non-contractible cycle C of G satisfies
γ(C) = 0. Thus γ(B1) = γ(B2) = 0. ✷

A consequence of Lemma 5.9 is the following:

Theorem 5.10 Let G be a toroidal triangulation, given with a particular half-crossing
Schnyder wood D0, then the set T (G,D0) of all Schnyder woods of G that have the same
type as D0 contains all the half-crossing Schnyder woods of G.

Recall from Section 4.2, that the set T (G,D0) carries the structure of a distributive
lattice. This lattice contains all the half-crossing Schnyder woods. It shows the existence
of a canonical lattice useful for bijection purpose, see [7].

Note that T (G,D0) may contain Schnyder woods that are not half-crossing. The
Schnyder wood of Figure 15 is an example where γ(C) = 0 for any non-contractible
cycle C. So it is of the same type as any half-crossing Schnyder wood but it is not
half-crossing.

Note also that in general there exist Schnyder woods not in T (G,D0). The Schnyder
wood of Figure 17 is an example where the horizontal cycle has γ equal to ±6. Thus it
cannot be of the same type as a half-crossing Schnyder wood.
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Figure 17: A Schnyder wood of a toroidal triangulation where γ(C) 6= 0 for a non-
contractible cycle C.

5.3 A lattice example

Figure 18 illustrates the Hasse diagram of the set T (G,D0) for the toroidal triangulation
G of Figure 16. Bold black edges are the edges of the Hasse diagram H. Each node
of the diagram is a Schnyder wood of G. Since we are considering a triangulation Ĝ is
not represented in the figure. Indeed, all the edges of Ĝ incident to dual-vertices are
outgoing in any Schnyder orientation of G, thus these edges are rigid and do not play
a role for the structure of the lattice. In every Schnyder wood, a face is dotted if its
boundary is directed. In the case of the special face f0 the dot is black. Otherwise, the
dot is magenta if the boundary cycle is oriented counterclockwise and cyan otherwise.
An edge in the Hasse diagram from D to D′ (withD ≤ D′) corresponds to a face oriented
counterclockwise in D whose edges are reversed to form a face oriented clockwise in D′,
i.e., a magenta dot is replaced by a cyan dot. The outdegree of a node is its number of
magenta dots and its indegree is its number of cyan dots. By Proposition 4.13, all the
faces have a dot at least once. The special face is not allowed to be flipped, it is oriented
counterclockwise in the maximal Schnyder wood and clockwise in the minimal Schnyder
wood by Proposition 4.14. By Proposition 4.15, the maximal (resp. minimal) Schnyder
wood contains no other faces oriented counterclockwise (resp. clockwise), indeed in
contains only cyan (resp. magenta) dots. The words “no”, “half”, “full” correspond to
Schnyder woods that are not half-crossing, half-crossing (but not crossing), and crossing,
respectively. By Theorem 5.10, the figure contains all the half-crossing Schnyder woods
of G. The minimal element is the Schnyder wood of Figure 15, and its neighbor is the
Schnyder wood of Figure 16.

The graph is very symmetric so the lattice does not depend on the choice of special
face. In the example the two crossing Schnyder woods lie in the “middle” of the lattice.
These Schnyder woods are of particular interests for graph drawing (see [17]) whereas
the minimal Schnyder wood (not crossing in this example) is important for bijective
encoding (see [7]).

The underlying toroidal triangulation of Figure 18 has only two Schnyder woods not
depicted in Figure 18. One of them two Schnyder wood is shown in Figure 17 and the
other one is a 180◦rotation of Figure 17. Each of these Schnyder wood is alone in its
lattice of homologous orientations. All their edges are rigid. They have no 0-homologous
oriented subgraph.
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Figure 18: Example of the Hasse diagram of the distributive lattice of homologous
orientations of a toroidal triangulation.
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Theorem 4.6 says that one can take the Schnyder wood of Figure 17, reverse three
or six vertical cycle (such cycles form an Eulerian-partitionable oriented subgraph) to
obtain another Schnyder wood. Indeed, reversing any three of these cycles leads to one
of the Schnyder wood of Figure 18 (for example reversing the three loops leads to the
crossing Schnyder wood of the bottom part). Note that

(
3
6

)
= 20 and there are exactly

twenty Schnyder woods on Figure 18. Reversing six cycles leads to the same picture
pivoted by 180◦.

6 Conclusions

In this paper we propose a generalization of Schnyder woods to higher genus via angle
labelings. We show that these objects behave nicely with simple characterization the-
orems and strong structural properties. Unfortunately, we are not able to prove that
every essentially 3-connected map admits a generalized Schnyder wood.

As mentioned earlier, planar Schnyder woods have applications in various areas. In
the toroidal case, they already lead to some results concerning graph drawing [17] and
optimal encoding [7]. It would be interesting to see which other applications can be
generalized to higher genus.

Note also that the distributive lattice structure of homologous orientations of a given
map (see Theorem 4.7) is a very general result that may be useful to study other objects
(transversal structures, d

d−2 -orientations, etc.) associated to other kinds of maps (4-
connected triangulations, d-angulations, etc.).
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Abstract: We prove that any triangulation of a surface different from
the sphere and the projective plane admits an orientation without sinks
such that every vertex has outdegree divisible by three. This confirms a
conjecture of Barát and Thomassen and is a step toward a generalization
of Schnyder woods to higher genus surfaces. C© 2015 Wiley Periodicals, Inc. J. Graph
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1. INTRODUCTION

The notation and results we use for graphs and surfaces can be found in [10]. We start
with some basic definitions:

A map (or 2-cell embedding) of a multigraph into a surface, is an embedding such that
deleting the graph from the surface leaves a collection of open disks, called the faces of
the map. A triangulation is a map of a simple graph (i.e. without loops or multiple edges)
where every face is triangular (i.e. incident to three edges). A fundamental result in the
topology of surfaces is that every surface admits a map. The (orientable) genus of a map
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on an orientable surface is 1
2 (2 − n + m − f ) and the (nonorientable) genus of a map on

a nonorientable surface is 2 − n + m − f , where n, m, f denote the number of vertices,
edges, and faces of the map, respectively. The Euler genus of a map is 2 − n + m − f ,
that is the nonorientable genus or twice the orientable genus. All the maps on a fixed
surface have the same genus, which justifies to define the (Euler) genus of a surface as
the (Euler) genus of any of the maps it admits. In [1] Barát and Thomassen conjectured
the following:

Conjecture 1. Let T be a triangulation of a surface of Euler genus k ≥ 2. Then T has
an orientation such that each outdegree is at least 3, and divisible by 3.

One easily computes that the number of edges m of a triangulation T of a surface of
Euler genus k is 3n − 6 + 3k. So while triangulations of Euler genus less than 2 simply
have too few edges to satisfy the conjecture, in [1] the conjecture is proved for the case
k = 2, that is the torus and the Klein bottle. Moreover, they show that any triangulation T
of a surface has an orientation such that each outdegree is divisible by 3, that is in order
to prove the full conjecture they miss the property that there are no sinks.

Barát and Thomassen’s conjecture was originally motivated in the context of claw-
decompositions of graphs, since given an orientation with the claimed properties the
outgoing edges of each vertex can be divided into claws, such that every vertex is the
center of at least one claw.

Another motivation for this conjecture is, that it can be seen as a step toward the
generalization of planar Schnyder woods to higher genus surfaces. A Schnyder wood [11]
of a planar triangulation is an orientation and a {0, 1, 2}-coloring of the inner edges
satisfying the following local rule on every inner vertex v: going counterclockwise
around v one successively crosses an outgoing 0-arc, possibly some incoming 2-arcs, an
outgoing 1-arc, possibly some incoming 0-arcs, an outgoing 2-arc, and possibly some
incoming 1-arcs until coming back to the outgoing 0-arc.

Schnyder woods are one of the main tools in the area of planar graph representations
and Graph Drawing. They provide a machinery to construct space-efficient straight-line
drawings [6, 12], representations by touching � shapes [5], they yield a characterization
of planar graphs via the dimension of their vertex-edge incidence poset [6, 11], and are
used to encode triangulations efficiently [3]. In particular, the local rule implies that every
Schnyder wood gives an orientation of the inner edges such that every inner vertex has
outdegree 3 and the outer vertices are sinks with respect to inner edges. Indeed, this is
a one-to-one correspondence between Schnyder woods and orientations of this kind. As
a consequence, the set of Schnyder woods of a planar triangulation inherits a natural
distributive lattice structure, which in particular provides any triangulation with a unique
minimal Schnyder wood [7]. These unique representatives are an important tool in proofs
and lie at the heart of many enumerative results, see for instance [2].

When generalizing Schnyder woods to higher genus one has to choose which of
the properties of planar Schnyder woods are desired to be carried over to the more
general situation. Examples are: the efficient encoding of triangulations on arbitrary
surfaces [4] and the relation to orthogonal surfaces and small grid drawings for toroidal
triangulations [9], which lead to different definitions of generalized Schnyder woods.
In [9], the generalized Schnyder woods indeed satisfy the local rule with respect to all
edges and vertices of a toroidal triangulation and henceforth lead to orientations having
outdegree 3 at every vertex. An interesting open problem is to generalize the local rule to
triangulations with higher Euler genus in such a way that for some vertices the sequence
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mentioned in the local rule occurs several times around the vertex. Here, the mere
existence of such objects is an open question. Clearly, such a generalized Schnyder wood
would yield an orientation as claimed by the conjecture. Thus, proving the conjecture of
Barát and Thomassen is a first step into that direction.

2. PRELIMINARIES

A map M on a surface S is characterized by a triple (V (M), E(M), F(M)), formed by
the vertex, edge, and face sets of M. In the following we will restrict to triangulations
T = (V (T ), E(T ), F(T )), that is the pair (V (T ), E(T )) is a simple embedded graph
such that every face is incident to exactly three edges.

A submap M′ of T , is a triplet (V ′, E ′, F ′) where V ′ ⊆ V (T ), E ′ ⊆ E(T ), F ′ ⊆ F(T ),
and such that:

- uv ∈ E ′ implies {u, v} ⊆ V ′, and
- f ∈ F ′ implies e′ ∈ E ′ for any edge e incident to f .

The boundary ∂M′ of a submap M′ = (V ′, E ′, F ′) is the set of edges in E ′ that are incident
to at most one face in M′.

For any vertex v of T its surrounding is the circular sequence of edges and faces
successively met while going around v. This sequence as no particular direction as T can
be nonorientable. In a submap M′ of T a (boundary) angle at vertex v is a subsequence
(e0, f1, e1, . . . , ft, et ) of its surrounding such that the edges e0 and et are the only elements
of this sequence belonging to M′. Those edges are the sides of this angle. This angle can
be denoted by ê0vet or simply by v̂. It can occur that e0 = et . Consider for example a
submap consisting of a single edge. Let us mention, that this definition could be modified
in order to include the angle around a vertex with respect to a submap without edges.
Since we will not consider this situation we prefer avoiding further technicalities.

Note that an edge is in ∂M′ if and only if it is a side of (at least) one angle of M′.
Actually, the notion of angles endows the boundary ∂M′ of M′ with some further structure.
As each angle has two sides (possibly two occurrences of the same edge) and as each
occurrence of an edge of ∂M′ is a side for two angles, one can define the boundary
sequence of M′, that is a collection of circular sequences, alternating between angles
and edges, (â0, e0, â1, e1, . . . , ât, et ) (sometimes simply denoted by (â0, â1, . . . , ât ) or
(e0, e1, . . . , et )), where ei is the common edge of âi and âi+1. Note that an edge e may
appear twice in the boundary sequence, for example if e is a bridge of M′. Thus, if
necessary we will refer to a specific occurrence of e in ∂M′. For simplicity, we denote the
boundary sequence of M′ by ∂M′. This naturally leads to the notion of consecutive angles.
Note that two angles (e0, f1, e1, . . . , ft, et ) and (e′

0, f ′
1, e′

1, . . . , f ′
t , e′

t ) are consecutive on
the boundary sequence if et = e′

0 and ft = f ′
1.

In the following, a disk is a submap M′ of T if it is homeomorphic to a (closed)
topological disk. Furthermore, a disk is a k-disk if its boundary is a cycle with k edges.
A 3-disk is called trivial if it contains only one face. A disk is called chordless if its
outer vertices (i.e. on its boundary) induce a graph that is a (chordless) cycle. A cycle is
contractible if it is the boundary of a disk otherwise it is called noncontractible.

Given a triangulation T and a set of vertices X ⊆ V (T ), the induced submap T [X]
is the maximal submap with vertex set X . In other words this submap has edge set
{uv ∈ E(T ) | u ∈ X and v ∈ X}, and face set {uvw ∈ F(T ) | u ∈ X, v ∈ X, and w ∈ X}.
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FIGURE 1. Different scenarios of stacking c on M ′. Left: one neighboring path
P1 = (u, a, b, v, w ). Middle: three neighboring paths P1 = (u, a, b, v ), P2 = (w, x ),

P3 = (y ). Right: A boundary cycle C = (u, v, w, b, a).

Given an induced submap M′ = T [X] of a triangulation T , and any occurrence of an
edge ab in ∂M′ (corresponding to angles â and̂b) there exists a unique vertex c such that
there is a face abc in F(T )\F(M′) that belongs to both angles â and̂b. For any such vertex
c (and ab ∈ ∂M′) we define the operation of stackingc on M′, as adding c to X , that is
going from M′ = T [X] to M′′ = T [X + c]. In such stacking the neighborhood of c in M′

is the graph with vertices x such that cx ∈ E(M′′) and edges xy such that cxy ∈ F(M′′).
As T is simple, note that this neighborhood is either a cycle or a union of paths, one of
which with at least one edge (the edge allowing the stacking), and let us call them the
neighboring cycle and the neighboring paths of c in M′, respectively. See Figure 1 for an
illustration.

3. PROOF OF CONJECTURE 1

Let us consider for contradiction a minimal counterexample T . Note that T does not
contain any nontrivial 3-disk D. Otherwise we would remove the interior of D and
would replace it by a face. By minimality of T , this new triangulation would admit
an orientation such that every vertex has non-zero outdegree divisible by 3. As D is a
planar triangulation, there exists an orientation of its interior edges so that inner and outer
vertices have outdegree 3 and 0, respectively. This is the case for orientations induced by
a Schnyder wood on these triangulations [11]. Then the union of these two orientations
would give us an orientation of T with nonzero outdegrees divisible by three. Let us now
proceed by providing an outline of the proof.

3.1. Outline

We first prove that one can partition the edges of the triangulation T into the following
graphs:

- The initial graph I, which is an induced submap containing a non-contractible
cycle. Furthermore, I contains an edge uv such that the map I\uv is a disk ˜D
whose underlying graph is a maximal outerplanar graph with only two degree two
vertices, u and v. See Figure 2 for an illustration.

- The correction graph B (with blue edges in the figures), which is oriented acycli-
cally in such a way that each vertex of V (T )\V (I) has outdegree 2, while the other
vertices have outdegree 0,

- The last correction path G (with green edges in the figures), which is a {u, v}-path.
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FIGURE 2. Example of a submap I.

- The nonzero graph R (with red edges in the figures), which is oriented in such a
way that all vertices in (V (T )\V (G)) ∪ {u, v} have outdegree at least 1.

The existence of such graph I is proven in Section 3.2, then in Section 3.3 we prove
the existence of graphs B, G, and R (with the mentioned orientations). To do the latter
we start from I and we incrementally conquer the whole triangulation T by stacking the
vertices one by one (this procedure is inspired by [4]).

Finally, the edges of I, B, and G are (re)oriented, to obtain the desired orientation. The
orientation of edges in R does not change, as they ensure that many vertices (all vertices
of T except the interior vertices of the path G) have nonzero outdegree. The {u, v}-path
G is either oriented from u to v or from v to u, but this will be decided later. However in
both cases its interior vertices are ensured to have nonzero outdegree. Hence all vertices
are ensured to have nonzero outdegree and it remains to prove that they have outdegree
divisible by 3.

We start in Section 3.4 by reorienting the B-arcs in order to ensure that vertices of
V (T )\V (I) have outdegree divisible by 3 (this part is inspired by the proof of Theorem
4.5 in [1]). In the last step, in Section 3.5, we choose the orientation of the {u, v}-path G,
and we orient I in order to achieve the desired orientation.

3.2. Existence of I

To prove the existence of I, we first need the following lemma.

Lemma 1. Any triangulation T with Euler genus at least 2, has an induced submap I
obtained from a disk D by stacking a vertex v, such that for any two neighbors a, b of v
belonging to distinct neighboring paths (of v w.r.t. D), every cycle C in I going through
edges av and vb is noncontractible.

Proof. Any face of T is an induced disk. Consider a maximal induced disk D of T .
For any edge xy of ∂D, stack a vertex v on xy. Let us denote by I the map obtained by
stacking v on D. As T has Euler genus at least two the neighborhood of v is not a cycle.
Also, as D is maximal, v has at least two neighboring paths. Assume for contradiction,
that there is a contractible cycle C of I going through av, vb (where a and b belong to
distinct neighboring paths of v w.r.t. D) and through some {a, b}-path P of ∂D. Denote
by D′ the disk bounded by C and note that (as I is induced) D′ contains vertices not in
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FIGURE 3. The situation in Claim 1 (left) and Claim 2 (right) in the proof of
Lemma 2.

I. As ∂D′ intersects D on a path it is clear that V (D) ∪ V (D′) induces disk with v on its
boundary. Furthermore, as only two neighbors of v in this disk are on the border, we have
that (V (D) ∪ V (D′))\{v} also induces a disk. This disk is larger than D, contradicting its
maximality. �
Lemma 2. Any triangulation T ′ with Euler genus at least 2, has an induced submap
I containing a noncontractible cycle, and an edge uv such that I\uv is a disk ˜D, and for
each of the two {u, v}-paths of ∂˜D, all its interior vertices have a neighbor in the interior
of the other {u, v}-path.

Proof. Among the induced subgraphs of T ′ that satisfy Lemma 1 let I be a minimal
one. Let v and D be the vertex of I and the disk I\{v} described in Lemma 1, respectively.
As v is stacked on D let us denote by (w1, . . . , ws), with s ≥ 2, some neighboring path
of v, and let us denote by u1, . . . , ut , with t ≥ 1, the other neighbors of v in D. Finally,
let us denote by ˜D the disk obtained from D by adding vertex v, edges vwi for 1 ≤ i ≤ s,
and faces vwiwi+1 for 1 ≤ i < s. The minimality of I implies all the needed properties:

Claim 1. ∂D induces no chord xy inside D such that some {x, y}-path of ∂D contains
both an edge wiwi+1, for some 1 ≤ i < s, and a vertex u j, for some 1 ≤ j ≤ t.

Proof. If such chord xy exists, let D′ � D be the disk with boundary in ∂D + xy
which contains both wiwi+1 and u j. Then the graph induced by V (D′) ∪ {v} contradicts
the minimality of I. See the left of Figure 3. �

This implies that ∂˜D has no chord at u j, for all 1 ≤ j ≤ t.

Claim 2. For all 1 ≤ j ≤ t, every interior vertex x of a {v, u j}-path of ∂˜D is adjacent
to an interior vertex of the other {v, u j}-path.

Proof. Let P1 and P2 be the {v, u j}-path of ∂˜D containing w1 and ws, respectively.
Assume for contradiction, there exists an inner vertex x in P1 having no neighbor in the
interior of P2. By Claim 1 this implies that D (the disk induced by V (I)\{v}) has no
chord at x. Thus the map induced by V (D)\{x} is a disk containing P2 on its border,
hence containing the vertex u j and the edge ws−1ws. Hence the map induced by V (I)\{x}
contradicts the minimality of I. See the right of Figure 3. �

As ∂˜D has no chord at u j, for all 1 ≤ j ≤ t, this implies that t = 1. This concludes the
proof of the lemma. �

Consider now our counterexample T , and let I, uv and ˜D (= I\uv) be an induced
submap, an edge and a disk, verifying Lemma 2. In the beginning of the section we have
seen that by minimality, T does not contain nontrivial 3-disks. Hence by the properties
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of I, if ˜D would contain an inner vertex, this vertex would be in a chordless 4-disk of ˜D.
By the following lemma this is not possible, hence ˜D is a maximal outerplanar graph.
Finally, the adjacency property between vertices of ∂˜D\{u, v} imply that u and v are the
only degree two vertices of ˜D.

Lemma 3. The submap ˜D does not contain chordless 4-disks.

Proof. If ˜D would contain such a disk D4, with boundary (v1, v2, v3, v4), we would
remove the interior of D4 and we would add one of the two possible diagonals, say v2v4

(if v2v4 are not uv’s ends), and the corresponding two triangular faces, v1v2v4 and v2v3v4.
The obtained map T ′ is defined on the same surface as T and is smaller. Furthermore
as I is an induced submap without nontrivial 3-disk and as v2v4 
= uv, there is no edge
v2v4 in T . Hence T ′ is simple and it is a triangulation. Now by minimality of T , this new
triangulation T ′ has an orientation such that every vertex has nonzero outdegree divisible
by 3. Let us suppose without loss of generality that in this orientation the edge v2v4 is
oriented from v2 to v4.

Using the fact that for any planar triangulation, there exists an orientation of the interior
edges such that inner and outer vertices have outdegree 3 and 0 [11], respectively, one can
orient the inner edges of D4 in such a way that inner vertices, vertex v2, and vertices v1,
v3, and v4 have outdegree 3, 1 and 0, respectively. For this consider the orientation given
by a Schnyder wood of the triangulation D4 + v1v3 (with outer face v1v3v4) and notice
that the edges v2v1 and v2v3 are necessarily oriented from v2 to v1 and v3, respectively
(as v1, v3, and v4 have outdegree 0).

Then the union of these orientations, of T ′\v2v4 and of D4’s inner edges, would give
us an orientation of T with nonzero outdegrees divisible by three. �

3.3. Existence of B, G, and R

As mentioned in the outline, we will start from I and we incrementally explore the whole
triangulation T by stacking the vertices one by one. At each step, we will assign the
newly explored edges to B, G, or R, and we will orient those assigned to B or R. At each
step the explored region is a submap of T induced by some vertex set X . Such explored
region is denoted by T [X] and its boundary ∂T [X]. The connected pieces of the surface
obtained after removing T [X] are called the unexplored regions, and if one of them is
homeomorphic to an open disk it is called an unexplored disk. Given an unexplored disk
D (by abuse of notation) we denote by ∂D the cycle of ∂T [X] bordering D. During the
exploration we maintain the following invariants:

(I) The graphs I, B, G, and R partition the edges of T [X].
(II) All interior vertices of T [X] (i.e. in X\V (∂T [X])) have at least one outgoing R-arc,

or two incident G-edges. Furthermore G either is an {u, v}-path, or is the union
of two vertex disjoint paths Gu and Gv, going from u to u∗, and from v to v∗,
respectively, for some vertices u∗ and v∗ on ∂T [X].

Here the vertices u∗ and v∗ may coincide with vertices u and v, respectively, if Gu or Gv

is a trivial path with only one vertex.

(III) The graph B is acyclically oriented in such a way that the vertices of I have
outdegree 0, while the other vertices of T [X] have outdegree 2.
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FIGURE 4. Assigning requests to I in order to satisfy the invariants.

Furthermore, to help us in properly finishing the construction of the graphs B, G, and R
in the further steps, we introduce the notion of requests on the angles of ∂T [X]. There
are two types of requests, G-requests and R-request. An angle is allowed to have at most
one request, and an angle having no request is called free. Informally, a G-request (resp.
an R-request) for an angle â means that in a further step an edge inside this angle will be
added in G (resp. in R and oriented from a to the other end). In the figures, a G-request
(resp. an R-request) is depicted by a green (resp. red) arrow.

(IV) Every vertex of (∂T [X]\{u∗, v∗}) ∪ {u, v} having (still) no outgoing R-arc, has an
incident angle with an R-request.

(V) If G is not a {u, v}-path (yet), the vertices u∗ and v∗ (at the end of Gu and Gv,
respectively), have one incident angle each, say û∗ and v̂∗, that are consecutive on
∂T [X], and that have a G-request. Furthermore, there are no other G-requests.

(VI) If there is an unexplored disk D′, then there are at least three free angles (of ∂T [X])
around D′.

Before starting this exploration, let us observe that if these invariants are maintained
until the end of the exploration, we obtain the desired partition of the edges. Note that at
the end of the exploration T [X] has no border, hence no requests, and by (V) G is thus an
{u, v}-path. As u and v have degree 1 in G, by (II) every vertex in (V (T )\V (G)) ∪ {u, v}
has out-degree at least 1 in R. Finally, by (III) B is oriented acyclically in such a way that
each vertex of V (T )\V (I) has outdegree 2, while the other vertices have outdegree 0. We
can now proceed to the exploration itself.

This exploration starts with T [X] = I. In this case as all the edges of T [X] are in
I and as there are no interior vertices yet, (I), (II), and (III) are trivially satisfied.
Since I contains a noncontractible cycle and since the Euler genus of T is at least two
there is no unexplored disk, hence (VI) is satisfied. Since uv appears twice in ∂T [X], the
vertices u, v appear twice consecutively in ∂T [X]. To achieve (V), choose the angles of
one consecutive appearance of u, v as G-requests. To achieve (IV), all the other angles
are assigned R-requests. See Figure 4 for an illustration.

For the rest of the construction in each step we enlarge the explored submap T [X] by
stacking a vertex x on T [X]. The vertex x is chosen according to the following rules:

(i) If there is only one edge in the neighborhood of x in T [X], this edge is not {u∗, v∗}.
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FIGURE 5. Case where x is in an unexplored disk D and has a neighboring cycle.

(ii) If x belongs to an unexplored disk D, either x is adjacent to all the vertices of ∂D
or x has exactly one neighboring path P on ∂D such that P does not contain all the
free angles of ∂D.

(iii) In the case x does not belong to an unexplored disk, if possible we choose x such
that no unexplored disk is created. Furthermore, if unexplored disks are created we
choose x in order to minimize the total surface of these unexplored disks (measured
by the number of faces in these regions).

Let us explain why choosing such a vertex x is always possible. If there is an unexplored
disk D, let us choose x inside D. If there is a vertex adjacent to all the vertices of ∂D we
are fine ((i) follows). Otherwise, one can show that there are at least two vertices inside
D, say x1 and x2, having exactly one neighboring path P 
= (u∗, v∗) on ∂D, say P1 and
P2, respectively. These two paths intersect on at most two vertices, so one of them, say
P1, avoids one of the (at least) three free angles around D. In that case choosing x1 as the
next vertex to stack fulfills (i) and (ii). Now if there is no unexplored disk, as there are at
least three edges on ∂T [X] there are candidates fulfilling (i). As (iii) is not constraining
we are done.

In the following we show how to extend B, G, R on the newly introduced edges and how
to deal with the newly created angles to maintain all invariants valid. We will describe
the construction and we will check the validity of invariants only for the nontrivial ones.
We distinguish cases according to the topology of the unexplored region containing x.

(1) The vertex x is contained in an unexplored disk D and has a neighboring
cycle. By (VI) the unexplored disk containing x has at least three free angles. We orient
the corresponding edges from x to its neighbors, put two into B and the rest into R. All
non-free angles satisfy their request with the edge incident to x. See Figure 5 for an
illustration.

We have assigned all the newly explored edges, hence (I) remains valid. As (IV) and
(V) were valid in T [X], all the neighbors of x (i.e. the vertices around D) have now (in
T [X + x]) an outgoing R-arc or two incident G-edges. The vertex x also does, hence (II)
is valid. In the acyclic graph B, adding the vertex x with only outgoing B-arcs cannot
create any circuit, hence (III) remains valid. As in this case, as ∂T [X + x] is included
in ∂T [X], (IV) remains valid. If u∗ and v∗ were around D in T [X], the two parts of G
are now connected by the adjunction of xu∗ and xv∗ in G. Otherwise, G was already an
{u, v}-path, or u∗ and v∗ were elsewhere in ∂T [X] fulfilling (V). Hence in any case (V)
holds. Finally, as no unexplored disk has been created and as the requests around existing
unexplored disks have not changed, (VI) remains valid.
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FIGURE 6. Case where x is not in an unexplored disk. (left) One G-request is on a
neighboring path of x. (center) One G-request is on an outer angle and one is on

an inner angle. (right) Both of the G-requests are on outer angles.

For the remaining cases we introduce some further notation. Given a neighboring path
P = (p1, . . . , ps) of x, with corresponding angles p̂1, . . . , p̂s, the inner angles are the
angles p̂i with 1 < i < s. The other ones are the outer angles. An inner angle with an R-
or G-requests, has to satisfy its constraint (this cannot be further delayed). Hence for any
inner angle p̂i with a G-request (resp. an R-request) we add the edge xpi to G (resp. to R
oriented toward x). This is a preprocessing step valid for both the remaining two cases.

(2) The unexplored region containing x is not a disk. For simplicity assume, that
there are no free angles. Otherwise we assign an R-request to all these angles. Here after
the preprocessing step described above, there is an intermediate step 2.1) and a final step
2.2). See Figure 6 for an illustration of how this case is handled.

(2.1) The intermediate step. This step depends on the position of the G-requests, if
any.

If there is no G-request on the neighboring paths of x, then we assign an R-request
to some angle x̂ incident to x.

If only one G -request, say on û∗, is on a neighboring path of x, then by (V) v̂∗ is
next to it, hence û∗ is an end of this neighboring path. Here the new angle at u∗ (inside
the former angle û∗) that is created by stacking x inherits û∗’s G-request. If two angles
are created inside the former angle û∗, that is if u∗ is alone in its neighboring path, we
choose the angle next to v∗ in order to fulfill (V). Then we assign an R-request to some
angle x̂ incident to x.

If one G -request, say û∗, is on an outer angle and the other one, v̂∗, is on an
inner one, we have added the edge v∗x to G in the preprocessing. Here the new angle at
u∗ inherits û∗ ’s G-request and the next angle on ∂T [X + x], that is incident to x gets a
G-request too.

If both G -requests are on inner angles, the edges v∗x and u∗x have been added to G
in the preprocessing. Hence x has already two incident G-edges and does not need any
request around. We thus leave all angles incident to x free.

If both of the G -requests are on outer angles, then by (i) x has one neighboring path
of length one, (u∗, v∗), and at least one other neighboring path of length at least one. In
that case, we add edges v∗x and u∗x to G and we leave the new angles at u∗ and v∗, as
well as all angles incident to x, free.

(2.2) The final step. We now assign two outgoing B-arcs to x, depending on the G-
requests. If there is an outer angle û∗ (in T [X + x]) with a G-request add the arc xu∗
directed toward u∗ to B. The remaining one or two needed B-arcs are chosen arbitrarily
among the edges from x to outer vertices. All other edges, between x and outer vertices
will be put into R and directed toward x, and the corresponding angles will be left free.
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Note that among the newly created outer angles and the angles associated to x there are
at most 3 requests: two at the angles receiving a B-arc from x and one at an angle incident
to x.

If adding x creates an unexplored disk D′, we still have to argue, that (VI) is satisfied
with respect to D′. We make use of the following:

Claim 3. For any unexplored disk D′ created by stacking a vertex x on T [X], the vertex
x appears several times on the boundary of D′.

Proof. Suppose we create an unexplored disk D′ such that x appears only once on
its boundary. Assume x is chosen such that the number of faces in D′ is minimized. Since
there are no nontrivial 3-disks, the boundary of D′ is of length at least four. Therefore
D′ contains an unexplored vertex x′ that could have been stacked on a subpath of ∂D′\x.
Furthermore, x′ can be chosen such that the path does not only contain the G-requests.
Hence, stacking x′ would either not create any unexplored disk, or would create some
included in D′, hence smaller. Both cases contradict the choice of x with respect to (iii).�

This claim and the fact that T is simple imply that there are at least six angles on the
boundary of D′ incident to outer vertices of the neighborings paths of x (4 of them) or
incident to x (2 of them). As argued above at most 3 of these angles have a request. Thus,
there are at least 3 free angles on the boundary of D′ and (VI) is satisfied.

(3) The unexplored region containing x is a disk, but x ’s neighborhood is not
a cycle. By (ii) the vertex x has only one neighboring path. Let us denote this path by
P = (p1, . . . , ps) for some s ≥ 2 and p̂1, . . . , p̂s the corresponding angles. Denote by t
the number of free angles on P.

We start with the preprocessing described above, that deals with nonfree interior angles
(by fulfilling the requests). To fulfill (VI) we have to maintain the number of free angles
in this unexplored disk above three. Since by (ii) there is at least one free angle not on P,
to achieve this we need to have at least min{t, 2} free angles among the new angles p̂1, x̂,
and p̂s.

To achieve that we need to exploit free angles as follows. For any free angle p̂i (inner
or not), the edge xpi is added either to B or to R, in both cases oriented toward pi. Among
these t angles, min{t, 2} lead to a B-arc, and max{0, t − 2} lead to an R-arc. It remains
to deal with the (at least 2 − t) angles that are neither inner nor free. We proceed by
distinguishing cases according to the position of G-requests.

If there is no G -request on P, we proceed as follows. Let us first deal with the new
angle x̂. If t ≤ 2, the vertex x has no outgoing R-arc and we hence assign an R-request to
the angle x̂. Otherwise (i.e. if t ≥ 3) the vertex x has an outgoing R-arc, we hence leave
x̂ free. Then we use max{0, 2 − t} of the nonfree outer angles to add B-arcs leaving x.
We satisfy the possibly remaining non-free outer angles (that are min{2, t}), by adding
R-arcs toward x, and leave their new incident angle free. If t ≤ 2 (resp. t ≥ 3), there are
hence min{2, t} = t (resp. 1 + min{2, t} = 3) free angles among the new angles p̂1, x̂,
and p̂s. We hence have the expected (at least) min{t, 2} free angles.

If only one G -request (say on û∗) is on P, then û∗ is an end of P, say p1 = u∗ (see
Fig. 7). Here the new angle at u∗ inherits û∗’s G-request, and we add the edge xp1 in B
if t ≤ 1, or in R otherwise (if t ≥ 2). In both cases xp1 is oriented toward p1. Hence, if
t ≤ 1 we assign an R-request to angle x̂ and otherwise we leave x̂ free. If t = 0 then p̂s is
not free, then as it cannot have a G-request, p̂s has an R-request. In that case we add xps

in B oriented from x to ps and the new angle p̂s inherits the R-request. If t ≥ 1, we satisfy
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x xxu∗ u∗u∗

ps ps ps

FIGURE 7. Case where there is only one G-request (on û∗) and where p̂s has an
R-request. The 3 subcases from left to right correspond to t = 0, t = 1, and t = 2.

x xxu∗ u∗u∗

ps ps ps

v∗ v∗ v∗

FIGURE 8. Case where there is one G-request on an outer angle, and one in an
inner angle, and where p̂s has an R-request. The three subcases from left to right

correspond to t = 0, t = 1, and t = 2.

the R-request of p̂s (if it has one) with edge xps. In any case, p̂s having a request or not
in T [X], the new angle p̂s is left free. Hence if t ≥ 2 the angle x̂ is free , and if t ≥ 1 the
angle p̂s is free. We hence have the expected (at least) min{t, 2} free angles.

If one G -request say û∗ is on an outer angle and the other one v̂∗ on an inner
one, say u∗ = p1 and v∗ = p2 with s > 2, we have added the edge p2x to G (see Fig. 8).
Around p1, if t ≤ 1 we assign the new angles p̂1 and x̂ a G-request, and we add the edge
xp1 in B oriented from x to p1. Otherwise (i.e. t ≥ 2) we add the edge p1x to G, and we
leave both new angles p̂1 and x̂ as free. Around ps, if t = 0 (hence p̂s has an R-request)
we add xps in B oriented from x to ps, and the new angle p̂s keeps its R-request. Otherwise
(i.e. t ≥ 1), if p̂s has an R-request we add xps in R and orient it from ps to x, and in any
case ( p̂s having an R-request or not) we leave the new angle p̂s as free. Hence if t ≥ 1
the angle p̂s is free, and if t ≥ 2 both p̂1 and x̂ are free. We hence have the expected (at
least) min{t, 2} free angles.

If both G -requests are on inner angles, edges v∗x and u∗x have been added to G.
Now x is an inner vertex of G, and we thus leave x̂ free. Then we use max{0, 2 − t} of
the outer angles for B-arcs from x, and the remaining non-free outer angles have their
R-requests satisfied, and are left free. In any case, min{2, t} of the outer angles are free
(as is the angle x̂).

Finally by definition of stacking P, x’s unique neighboring path is distinct from (u∗, v∗)
and hence all cases have been addressed.

3.4. Reorienting B

Given a partial orientation O of T we define the demand of a vertex v as demO(v) :=
−δ+

|O(v) mod 3, where δ+
|O(v) denotes the outdegree of v with respect to O. We want to

find an orientation of T with all demands 0.
Recall we will not modify the orientation on R, which guarantees that all vertices

in (V (T )\V (G)) ∪ {u, v} have nonzero outdegrees. Furthermore, as G will be oriented
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either entirely forward or backwards (this will be chosen later), all its interior vertices will
have nonzero outdegrees. Hence every vertex of T [X] has nonzero outdegree. Suppose
that G is entirely oriented forward.

Now we linearly order vertices in V (T )\V (I) = (v1, . . . , v�) such that with respect to
B every vertex has its two outgoing B-neighbors among its predecessors and I. Denote
by Bi the subgraph of B induced by the arcs leaving vi, . . . , v� (before the reorienting).
We process V (T )\V (I) from the last to the first element. At a given vertex vi we look
at demG∪R∪Bi (vi) and reorient the two originally outgoing B-arcs of vi in such a way
that afterwards demG∪R∪Bi (vi) = 0 (i.e. δ+

|G∪R∪Bi
(vi) ≡ 0 mod 3). As these B-arcs were

heading at I or at a predecessor, the demand on the vertices v j, with j > i, is not modified
and hence remains 0.

3.5. Orienting G and I

Denote by O the partial orientation of T obtained after 3.4. Pick an orientation of G (either
all forward or all backward) and of uv such that for the resulting partial orientation O′

we have demO′ (v) ≡ 1 mod 3.
Now, take the triangle � of I containing v. Since ˜D = I\uv is a maximal outerplanar

graph with only two degree two vertices, ˜D can be peeled by removing degree two
vertices until reaching �. When a vertex x is removed orient its two incident edges so
that demO′ (x) = 0 (as for B-arcs). We obtain a partial orientation O′′, such that all vertices
except the ones of � have nonzero outdegree divisible by 3.

Since the number of edges of T , and the number of edges of � are divisible by 3,
the number of edges of T\� is divisible by 3. As this number equals the sum of the
outdegrees in O′′, and as every vertex out of � has outdegree divisible by 3, then the
outdegree of �’s vertices sum up to a multiple of 3. Hence their demands sum up to 0,
3 or 6. As demO′′ (v) = demO′ (v) = 1, the demands of the other two vertices of � are
either both 1, or 0 and 2. It is easy to see that in either case � can be oriented to satisfy
all three demands.

4. TOWARD SCHNYDER WOODS

We see our proof of Conjecture 1 as a step toward generalizing Schnyder woods to
triangulations of arbitrary orientable surfaces (the notion does not have much sense for
nonorientable ones). By results of [8] another step toward generalizing Schnyder woods
to maps of arbitrary orientable surfaces can be formulated after introducing a couple of
definitions:

A map G is said essentially k-connected, if its universal cover is k-connected. Given a
map G, its primal-dual-completion Ĝ is the map obtained from simultaneously embedding
G and its dual, G∗, such that vertices of G∗ are embedded inside faces of G and vice versa.
Moreover, each edge crosses its dual edge in exactly one point in the interior, which also
becomes a vertex of Ĝ. Hence, Ĝ is a bipartite graph with one bipartition consisting of
primal-vertices and dual-vertices and the other partition consisting of edge-vertices (of
degree 4).

Conjecture 2. Given an essentially 3-connected map G, the map Ĝ has an orientation
where primal- and dual-vertices have nonzero outdegrees divisible by three, and where
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edge-vertices have indegrees divisible by three, that is indegree 0 or 3 (i.e. outdegree 4
or 1).
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[9] D. Gonçalves and B. Lévêque, Toroidal maps: Schnyder woods, orthogonal
surfaces and straight-line representations, Disc Comput Geometry 51 (2014),
67–131.

[10] B. Mohar and C. Thomassen, Graphs on surfaces, Johns Hopkins Studies in
the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD,
2001.

[11] W. Schnyder, Planar graphs and poset dimension, Order 5 (1989), 323–343.
[12] W. Schnyder, Embedding planar graphs on the grid, in Proceedings of the

First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 90,
Philadelphia, PA, USA, 1990, pp. 138–148.

Journal of Graph Theory DOI 10.1002/jgt

224



Discrete Comput Geom (2012) 48:239–254
DOI 10.1007/s00454-012-9400-1

Triangle Contact Representations and Duality

Daniel Gonçalves · Benjamin Lévêque ·
Alexandre Pinlou

Received: 4 February 2011 / Revised: 3 November 2011 / Accepted: 27 January 2012 /
Published online: 16 February 2012
© Springer Science+Business Media, LLC 2012

Abstract A contact representation by triangles of a graph is a set of triangles in the
plane such that two triangles intersect on at most one point, each triangle represents
a vertex of the graph and two triangles intersects if and only if their corresponding
vertices are adjacent. De Fraysseix, Ossona de Mendez and Rosenstiehl proved that
every planar graph admits a contact representation by triangles. We strengthen this in
terms of a simultaneous contact representation by triangles of a planar map and of its
dual.

A primal–dual contact representation by triangles of a planar map is a contact
representation by triangles of the primal and a contact representation by triangles
of the dual such that for every edge uv, bordering faces f and g, the intersection
between the triangles corresponding to u and v is the same point as the intersection
between the triangles corresponding to f and g. We prove that every 3-connected
planar map admits a primal–dual contact representation by triangles. Moreover, the
interiors of the triangles form a tiling of the triangle corresponding to the outer face
and each contact point is a corner of exactly three triangles. Then we show that these
representations are in one-to-one correspondence with generalized Schnyder woods
defined by Felsner for 3-connected planar maps.

Keywords Triangle contact representation · 3-Connected planar maps · Schnyder
wood · Duality

1 Introduction

A contact system is a set of curves (closed or not) in the plane such that two curves
cannot cross but may intersect tangentially. A contact point of a contact system is
a point that is in the intersection of at least two curves. A contact representation of
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a graph G = (V ,E) is a contact system C = {c(v) : v ∈ V }, such that two curves
intersect if and only if their corresponding vertices are adjacent.

The Circle Packing Theorem of Koebe [14] states that every planar graph admits
a contact representation by circles.

Theorem 1 (Koebe [14]) Every planar graph admits a contact representation by
circles.

Theorem 1 implies that every planar graph has a contact representation by convex
polygons, and de Fraysseix et al. [3] strengthened this by showing that every planar
graph admits a contact representation by triangles. A contact representation by trian-
gles is strict if each contact point is a corner of exactly one triangle. De Fraysseix et
al. [3] proved the following:

Theorem 2 (De Fraysseix et al. [3]) Every planar graph admits a strict contact rep-
resentation by triangles.

Moreover, de Fraysseix et al. [3] proved that strict contact representations by tri-
angles of a planar triangulation are in one-to-one correspondence with its Schnyder
woods defined by Schnyder [16]. (Schnyder wood will be defined in Sect. 2.2.)

Andreev [1] strengthen Theorem 1 in terms of a simultaneous contact representa-
tion of a planar map and of its dual. The dual of a planar map G = (V ,E) is noted
G∗ = (V ∗,E∗). A primal–dual contact representation (V,F) of a planar map G is
two contact systems V = {c(v) : v ∈ V } and F = {c(f ) : f ∈ V ∗}, such that V is a
contact representation of G, and F is a contact representation of G∗, and for every
edge uv, bordering faces f and g, the intersection between c(u) and c(v) is the same
point as the intersection between c(f ) and c(g). A contact point of a primal–dual
contact representation is a contact point of V or a contact point of F . Andreev [1]
proved the following:

Theorem 3 (Andreev [1]) Every 3-connected planar map admits a primal–dual con-
tact representation by circles.

Our main result is an analogous strengthening of Theorem 2. We say that a primal–
dual contact representation by triangles is tiling if the triangles corresponding to ver-
tices and those corresponding to bounded faces form a tiling of the triangle corre-
sponding to the outer face (see Fig. 1). We say that a primal–dual contact represen-
tation by triangles is strict if each contact point is a corner of exactly three triangles
corresponding to vertices or faces (see Fig. 1). We prove the following:

Theorem 4 Every 3-connected planar map admits a strict tiling primal–dual contact
representation by triangles.

Gansner et al. [11] study representation of graphs by triangles where two vertices
are adjacent if and only if their corresponding triangles are intersecting on a side
(touching representation by triangles). Theorem 4 shows that for 3-connected planar
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Fig. 1 A strict tiling
primal–dual contact
representation by triangles

graphs, the incidence graph between vertices and faces admits a touching representa-
tion by triangles.

The tools needed to prove Theorem 4 are introduced in Sect. 2. In Sect. 2.1, we
present a result of de Fraysseix et al. [5] concerning the stretchability of a contact
system of arcs. In Sect. 2.2, we define (generalized) Schnyder woods and present
related results obtained by Felsner [7]. In Sect. 3, we define a contact system of arcs,
based on a Schnyder wood, and show that this system of arcs is stretchable. When
stretched, this system gives the strict tiling primal–dual contact representation by
triangles. In Sect. 4, we show that strict tiling primal–dual contact representations by
triangles of a planar map are in one-to-one correspondence with its Schnyder woods.
In Sect. 5, we define the class of planar maps admitting a Schnyder wood and thus
a strict tiling primal–dual contact representation by triangles. In Sect. 6, we discuss
possible improvements of Theorem 4.

2 Tools

2.1 Stretchability

An arc is a non-closed curve. An internal point of an arc is a point of the arc distinct
from its extremities. A contact system of arcs is strict if each contact points is internal
to at most one arc. A contact system of arcs is stretchable if there exists a homeomor-
phism which transforms it into a contact system whose arcs are straight line segments.
An extremal point of a contact system of arcs is a point on the outer-boundary of the
system and which is internal to no arc.

We define in Sect. 3 a contact system of arcs such that when stretched it gives a
strict tiling primal–dual contact representation by triangles. To prove that our contact
system of arcs is stretchable, we need the following theorem of de Fraysseix et al. [5].

Theorem 5 (de Fraysseix et al. [5]) A strict contact system of arcs is stretchable
if and only if each subsystem of cardinality at least two has at least three extremal
points.
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Fig. 2 (a) Edge colored, respectively, with color 0, 1, and 2. We use distinct arrow types to distinguish
those colors. (b) Rules for Schnyder woods and angle labelings. (c) Example of angle labeling around an
uni-directed edge colored 0. (d) Example of angle labeling around a bi-directed edge colored 2 and 1

2.2 Schnyder Woods

The contact system of arcs defined in Sect. 3 is constructed from a Schnyder wood.
Schnyder woods where introduced by Schnyder [16] and then generalized by Fel-

sner [7]. Here we use the definition from [7] except if explicitly mentioned. We refer
to classic Schnyder woods defined by Schnyder [16] or generalized Schnyder woods
defined by Felsner [7] when there is a discussion comparing both.

Given a planar map G. Let x0, x1, x2 be three distinct vertices occurring in clock-
wise order on the outer face of G. The suspension Gσ is obtained by attaching a
half-edge that reaches into the outer face to each of these special vertices. A Schny-
der wood rooted at x0, x1, x2 is an orientation and coloring of the edges of Gσ with
the colors 0, 1, 2 satisfying the following rules (see Fig. 2):

• Every edge e is oriented in one direction or in two opposite directions. We will,
respectively, say that e is uni- or bi-directed. The directions of edges are colored
such that if e is bi-directed the two directions have distinct colors.

• The half-edge at xi is directed outwards and colored i.
• Every vertex v has out-degree one in each color. The edges e0(v), e1(v), e2(v)

leaving v in colors 0, 1, 2, respectively, occur in clockwise order. Each edge en-
tering v in color i enters v in the clockwise sector from ei+1(v) to ei−1(v) (where
i + 1 and i − 1 are understood modulo 3).

• There is no interior face the boundary of which is a directed monochromatic cycle.

The difference with the original definition of Schnyder [16] it that edges can be
oriented in two opposite directions.

A Schnyder wood of Gσ defines a labeling of the angles of Gσ where every angle
in the clockwise sector from ei+1(v) to ei−1(v) is labeled i.

A Schnyder angle labelings of Gσ is a labeling of the angles of Gσ with the labels
0, 1, 2 satisfying the following rules (see Fig. 2):

• The two angles at the half-edge of the special vertex xi have labels i + 1 and i − 1
in clockwise order.
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Fig. 3 Directed paths and
regions corresponding to a
vertex

• Rule of vertices: The labels of the angles at each vertex form, in clockwise order,
a nonempty interval of 0’s, a nonempty interval of 1’s and a nonempty interval
of 2’s.

• Rule of faces: The labels of the angles at each interior face form, in clockwise or-
der, a nonempty interval of 0’s, a nonempty interval of 1’s and a nonempty interval
of 2’s. At the outer face the same is true in counterclockwise order.

Felsner [8] proved the following correspondence:

Theorem 6 (Felsner [8]) Schnyder woods of Gσ are in one-to-one correspondence
with Schnyder angle labelings.

Several properties of Schnyder woods will be used. Given a Schnyder wood, let
Ti be the set of edges colored i with the direction they have in this color. Felsner [7]
proved the following:

Lemma 1 (Felsner [7]) For i ∈ {0,1,2}, the digraph Ti is a tree rooted at xi .

By Lemma 1, every vertex v is the starting vertex of a unique directed path Pi(v)

from v to xi , composed of arcs colored i (see Fig. 3). Felsner [7] proved the following:

Lemma 2 (Felsner [7]) For every vertex v and i, j ∈ {0,1,2}, i �= j , the two paths
Pi(v) and Pj (v) have v as only common vertex.

By Lemma 2, for every vertex v, the three paths P0(v), P1(v), P2(v) divide G into
three regions R0(v), R1(v) and R2(v), where Ri(v) denotes the region bounded by
and including the two paths Pi−1(v) and Pi+1(v) (see Fig. 3). In fact Ri(v) will also
be used to denote the set of vertices in this region. Let ri(v) be the number of faces
in the region Ri(v).

Felsner [7] proved the following:

Lemma 3 (Felsner [7]) For all distinct vertices u, v, we have

(i) Ri(u) ⊆ Ri(v) if and only if u ∈ Ri(v).
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(ii) Ri(u) = Ri(v) if and only if there is a path between u and v, with all edges
oriented in two opposite directions, colored i − 1 in one direction and i + 1 in
the other direction.

(iii) There exist i and j with Ri(u) � Ri(v) and Rj (v) � Rj (u).

From Lemma 3 we can deduce some lemmas that will be use several time in the
proof of Lemma 7.

Lemma 4 For all distinct vertices u, v such that u ∈ Pi(v), we have v ∈ Ri(v) �
Ri(u).

Proof We can assume without loss of generality that i = 1. By induction it suffices
to show that for all u, v such that e1(v) = uv, we have R1(v) � R1(u). We have
u ∈ P1(v), so u ∈ R0(v) and u ∈ R2(v) (see Fig. 3). By Lemma 3(i), we have R0(u) ⊆
R0(v) and R2(u) ⊆ R2(v). So by Lemma 3(iii), R1(v) � R1(u). �

Lemma 5 Let vertices u,v be such that u ∈ Pi−1(v) and v ∈ Pi+1(u), then Ri(u) =
Ri(v) and there is a bi-directed path between u and v colored i − 1 from v to u and
colored i + 1 from u and v.

Proof We can assume without loss of generality that i = 1. As u ∈ P0(v) ⊆ R1(v),
Lemma 3(i) implies that R1(u) ⊆ R1(v). As v ∈ P2(u) ⊆ R2(u), Lemma 3(i) also
implies that R0(v) ⊆ R0(u). So R0(w) = R0(v) and by Lemma 3(ii), there is a bi-
directed path Q in color 0 and 2 between v and w. As u ∈ P0(v), by Lemma 2, we
have u /∈ P2(v), so Q is colored 0 from v to u and colored 2 from u to v. �

Lemma 6 Let u,v,w be such that uv is uni-directed from u to v in color i + 1,
w ∈ Pi(v) and v /∈ Pi−1(w), then Ri(u) � Ri(w).

Proof We can assume without loss of generality that i = 1.
Suppose R1(u) � R1(w). Then by Lemma 3(i) u /∈ R1(w). Since w ∈ P1(v),

Lemma 4 implies that v ∈ R1(w). Since u and v are adjacent, vertex v is on the
“border“ of R1(w), that is, we have either v ∈ P0(w) or v ∈ P2(w) (see Fig. 3). So
by the assumption that v /∈ P0(w), we have v ∈ P2(w). We also have w ∈ P1(v), so
Lemma 5 implies that R0(v) = R0(w). Now since u /∈ R1(w) and u is adjacent to v

in P2(w), we have u ∈ R0(w). So u ∈ R0(v), a contradiction to the fact that the edge
uv is uni-directed from u to v in color 2 by definition of Schnyder woods (see Fig. 2).

Suppose we have equality R1(u) = R1(w), then by Lemma 3(ii) there is a bi-
directed path Q in colors 0,2 between u and w. The edge e2(u) (leaving u in color 2)
is equal to uv and is uni-directed so it is not an edge of Q. So the path Q is colored
0 from u to w and colored 2 from w to u. The path P2(w) goes from w to u by path
Q and then to v by edge uv, so v ∈ P2(w). We also have w ∈ P1(v), so Lemma 5
implies that R0(w) = R0(v) and that there is a bi-directed path Q′ in colored 1 from
v to w and colored 2 from w to v. There is a unique path from w to v colored 0, so
the neighbor of v along Q′ is u, contradicting the fact that uv is uni-directed.

So R1(u) � R1(w). �
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Fig. 4 A Schnyder wood with
its corresponding angle labeling
and contact system of arcs

3 Mixing Tools

Given a planar map G and a Schnyder wood of G rooted at x0, x1, x2 we construct
a contact system of arcs A corresponding to the Schnyder wood by the following
method (see Fig. 4).

Each vertex v is represented by three arcs a0(v), a1(v), a2(v), where the arc ai(v)

is colored i and represent the interval of angles labeled i of v. It may be the case
that ai(u) = ai(v) for some values of i, u and v. For every edge e of G, we choose a
point p(e) on its interior. There is also such a point on the half-edge leaving xi , for
i ∈ {0,1,2}. The points p(e) are the contact points of the contact system of arcs.

Actually the arcs of A are completely defined by the following subarcs: For each
angle labeled i at a vertex v in-between the edges e and e′, there is a subarc of ai(v)

going from p(e) to p(e′) along e and e′. Each contact point p(e) is the end of 4 such
subarcs. The Schnyder labeling implies that the three colors are represented at p(e)

and so the two subarcs with the same color are merged and form a longer arc.
One can easily see that this defines a contact system of arcs whose contact points

are the points p(e). By construction, there are no crossing arcs. Moreover, there is no
closed curve as a closed curve in color i would imply the existence of a cycle of G

with edges bi-oriented in color i − 1 and i + 1, which is forbidden by Lemma 1.
It is also clear that the arcs satisfy the following rules:

• For every edge e = vw uni-directed from v to w in color i: The arcs ai+1(v) and
ai−1(v) end at p(e) and the arc ai(w) goes through p(e).

• For every edge e = vw bi-directed, leaving v in color i and leaving w in color j :
Let k be such that {i, j, k} = {0,1,2}. The arcs aj (v) and ai(w) ends at p(e), and
the arcs ak(v) and ak(w) are equal and go through p(e).
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Remark Felsner [8] has shown that generalized Schnyder woods can be embedded
on orthogonal drawings where the position of a vertex in the 3-dimensional space
is given by the coordinates (r1(v), r2(v), r3(v)). The contact system of arcs corre-
sponding to a Schnyder wood can also be drawn on this surface in such a way that
the contact points are precisely the edge-vertices of the drawing (see [9] for defini-
tion of edge-vertices). A possible generalization of shelling orders [6] to generalized
Schnyder wood is to consider the orders given by the three coordinates in the orthog-
onal drawing. The proof of Lemma 7 is not using orthogonal drawings but relies on
considering the orders on ri(v) and thus can be understood as considering the cor-
responding shelling orders in orthogonal drawings. Here we do not use orthogonal
drawings in the proof as the only properties that are useful concerning the regions
Ri(v) are given by Lemma 3.

The following lemma will be used to transform the contact system of arcs into a
strict tiling primal–dual contact representation by triangles.

Lemma 7 The contact system of arcs corresponding to a Schnyder wood is stretch-
able.

Proof Let G be a planar map, given with a Schnyder wood rooted at x0, x1, x2.
Let A be the contact system of arcs corresponding to the Schnyder wood as defined
before. By definition of A, every point p(e), corresponding to an edge e uni- or bi-
directed, is interior to one arc and is the end of two other arcs, so the contact system
of arcs A is strict. By Theorem 5, we have to prove that each subsystem of A, of
cardinality at least two, has at least three extremal points. Let B be a subsystem of
arcs of cardinality at least two. Let SB be the set of vertices v such that there exists
i ∈ {0,1,2} with ai(v) ∈ B. The set SB has cardinality at least one. We have to prove
that B has at least three extremal points.

Let si be a vertex v of SB , such that (ri(v), ri+1(v)) is lexicographically minimum.

Claim 1 Pi−1(si) ∩ SB = {si}.

Proof Suppose there exists v ∈ Pi−1(si) ∩ SB distinct from {si}. Vertex v is in
Ri(si) and in Ri+1(si), so by Lemma 3(i) it satisfies Ri(v) ⊆ Ri(si) and Ri+1(v) ⊆
Ri+1(si). By the choice of si we have in fact Ri(v) = Ri(si) and Ri+1(v) = Ri+1(si).
This contradicts Lemma 3(iii). This proves Claim 1. �

Let s′
i be the last vertex of Pi+1(si) (i.e. the farthest from si ) that is in SB (maybe

si = s′
i ). By Lemma 3(i), we have Ri(s

′
i ) ⊆ Ri(si). Thus, by definition of si , we have

Ri(s
′
i ) = Ri(si). By Lemma 3(ii), there is a bi-directed path Qi in color i − 1 and

i + 1 between si and s′
i . By Claim 1 we have s′

i /∈ Pi−1(si) \ {si} so Q is colored i + 1
from si to s′

i and colored i − 1 from s′
i to si . By definition of s′

i , we have the analog
of Claim 1, that is, Pi+1(s

′
i ) ∩ SB = {s′

i}.
Claim 1 can be restated by

Claim 2 (Ri(si) ∩ SB) = (Ri(s
′
i ) ∩ SB) ⊆ Qi .
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We now try to find some extremal points of B on the edges leaving si , s′
i .

Claim 3 If p(ei−1(si)) belongs to some arc in B, then it is an extremal point of B.
Similarly, if p(ei+1(s

′
i )) belongs to some arc in B, then it is an extremal point of B.

Proof Suppose p(ei−1(si)) belongs to some arc in B. Let v such that ei−1(si) = siv.
Since siv is not uni-directed from v to si , the only arc going through p(ei−1(si))

is an arc aj (v) for some j ∈ {1,2,3}. Then, since v /∈ SB , this arc does not belong
to B and p(ei−1(si)) is not an internal point of an arc of B. By Claim 1, we have
Pi−1(si) ∩ SB = {si}, so p(ei−1(si)) is the only contact point on Pi−1(si) that is
a point of B. Thus we can go along Pi−1(si) from p(ei−1(si)) to the outer-region
without crossing any arc of B . This means that the point p(ei−1(si)) is on B’s outer
boundary, and thus this point is an extremal point of B. Similarly for p(ei+1(s

′
i )).

This proves Claim 3. �

By Claim 3, we have many candidates for extremal points of B , but the points
p(ei−1(si)) and p(ei+1(s

′
i )), for i ∈ {0,1,2}, do not necessarily belongs to some arc

in B and also they are not necessarily disjoint.

Claim 4 At least one of p(ei−1(si)), p(ei+1(si)) and at least one of p(ei−1(s
′
i )),

p(ei+1(s
′
i )) is an extremal point of B .

Proof Since si ∈ SB , at least one of the arcs ai−1(si), ai(si), ai+1(si) is in B. If ai(si)

or ai+1(si) is in B, then p(ei−1(si)) belongs to some arc in B and so it is an extremal
point by Claim 3. So we can assume that ai−1(si) is in B and that ai(si) and ai+1(si)

are not. If si = s′
i , then the point p(ei+1(si)) = p(ei+1(s

′
i )) belongs to some arc in B

and so it is extremal by Claim 3. So we can assume that si �= s′
i . The edge ei+1(si)

is in Qi and bi-directed in colors i + 1 and i − 1. By definition the arc ai−1(si) ends
at p(ei+1(si)), and since ai(si) is not in B, p(ei+1(si)) is not an internal point of an
arc of B. By Claim 1, we have Pi−1(si) ∩ SB = {si} so there is no contact point on
Pi−1(si) that is a point of B. Thus we can go along ei−1(si) and then along Pi+1(si)

from p(ei−1(si)) to the outer-region without crossing any arc. This means that the
point p(ei−1(si)) is on B’s outer boundary, and thus this point is an extremal point
of B. Similarly for s′

i . This proves Claim 4. �

For i ∈ {0,1,2}, let consider the three arcs ai(si), that, respectively, go from
p(ei−1(si)) to p(ei+1(s

′
i )). If the three of them are in B, by Claim 3 the ends of

these three arcs are extremal; and since no three of them coincide, we have the three
required extremal points. If exactly two of them are in B, for example a0(s0) and
a1(s1), then we may have s′

1 = s0 but the points p(e0(s1)), p(e2(s
′
1)) and p(e1(s

′
0))

are distinct (by Claim 1) and form our three extremal points (by Claim 3). If none
of the ai(si) are in B, then by Claim 4, for each i ∈ {0,1,2}, one of p(ei−1(si))

and p(ei+1(si)) is an extremal point for si . We choose one of these extremal point
for each i and claim that they are distinct. Suppose not, then either (a) there ex-
ists i such that si = si+1 and the point p(ei−1(si)) = p(ei−1(si+1)) is extremal, or
(b) there exist i, j �= i and k �= i + 1 such that si and si+1 are adjacent and the point
p(ej (si)) = p(ek(si+1)) = p(sisi+1) is extremal.
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Fig. 5 Case where a1(s1) is an arc of B

(a) The point p(ei−1(si)) is extremal and neither ai(si) nor ai+1(si+1) belong to B,
so the arc ai−1(v) ∈ B, where siv = ei−1(si). Thus v ∈ SB contradicting Claim 1.

(b) Note that by definition of a Schnyder wood we also have j �= k. If j = i − 1 or
k = i we have si+1 ∈ Pi−1(si) or si ∈ Pi(si+1) contradicting Claim 1. So j =
i + 1 and k = i − 1. The edge sisi+1 is bi-directed with colors i − 1, i + 1, so
by Lemma 3(ii) we have Ri(si) = Ri(si+1). Vertex si is in Pi−1(si+1), so by
Lemma 3(i) we have Ri+1(si) ⊆ Ri+1(si+1). Moreover, by definition of si+1, we
have Ri+1(si) = Ri+1(si+1), contradicting Lemma 3(iii).

It remains to study the case where exactly one of the ai(si) is in B. We can assume
by symmetry that a1(s1) ∈ B and a0(s0), a2(s2) are not in B (see Fig. 5). By Claim 3
the two distinct points p(e0(s1)) and p(e2(s

′
1)) are extremal points of B. It remains

to find a third extremal point, distinct from these two. By Claim 4, one of p(e1(s2))

and p(e0(s2)) is an extremal point. Suppose p(e1(s2)) is extremal. By Claim 1, there
is no vertex of P0(s1) \ {s1} in SB , so e0(s1) is distinct from e1(s2). Similarly e2(s

′
1)

is distinct from e1(s2) and so p(e1(s2)) is a third extremal point. So we can assume
that p(e1(s2)) is not extremal and that p(e0(s2)) is. Edge e2(s

′
1) has an extremity not

in SB , so it is distinct to e0(s2). If p(e0(s2)) �= p(e0(s1)), we are done. So we can
assume that p(e0(s2)) = p(e0(s1)), and so s2 = s1. Note that s′

2 = s1 by definition of
s′

2 and Claim 1. Similarly, we can assume that s′
0 = s0 = s′

1.
The rest of the proof is dedicated to find a third extremal point.
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Claim 5 We have SB ⊆ R0(s1) ∩ R2(s
′
1).

Proof As s1 = s′
2 = s2 and s′

1 = s0 = s′
0, by Claim 2 for i = {0,1,2}, we have

R1(s1) ∩ SB ⊆ Q1 and R2(s1) ∩ SB ⊆ Q2 = {s1} and R0(s
′
1) ∩ SB ⊆ Q2 = {s′

1}. So
SB ⊆ R0(s1) ∩ R2(s

′
1) (see Fig. 5). This proves Claim 5. �

For an edge e = uv we define ri(e) = max(ri(u), ri(v)), for i ∈ {0,1,2}. For
the three half-edges of the outer boundary ej (xj ) (added to G to obtain Gσ , see
Sect. 2.2), we define ri(ej (xj )) equal to +∞ if i = j and 0 otherwise. Let e∗ be an
edge e (maybe half-edge) such that p(e) belongs to some arc in B and (r1(e), r2(e))

is lexicographically maximum. We prove that p(e∗) is a third extremal point. If
p(e1(x1)) is a point of B, it is extremal and distinct from e0(s1) and e2(s

′
1). So we

may assume that e∗ is distinct from the half-edge e1(x1).

Claim 6 The edge e∗ is distinct from e0(s1) and e2(s
′
1).

Proof We have r1(e0(s1)) = r1(s1) = r1(s
′
1) = r1(e2(s

′
1)). So we can prove the claim

by showing that r1(e
∗) > r1(s1).

Suppose there exists v ∈ SB \ Q1. Vertex v has an incident edge ei(v) such that
p(ei(v)) belongs to some arc in B and such that r1(e

∗) ≥ r1(ei(v)) ≥ r1(v). So it
suffices to show that r1(v) > r1(s1). By Claim 5, we have v ∈ R0(s1), so Lemma 3(i)
implies that R0(v) ⊆ R0(s1). So Lemma 3(iii) implies that R2(s1) � R2(v) or
R1(s1) � R1(v). If R1(s1) � R1(v) we are done as r1(v) > r1(s1). So we may as-
sume that R2(s1) � R2(v). Similarly we may assume that R0(s

′
1) � R0(v). So P0(v)

intersects P2(s1) and P2(v) intersects P0(s
′
1). By Lemma 2, the two paths P0(v) and

P2(v) have only v has a common point, so they both intersects Q1 and then con-
tinue, one on P0(s

′
1) and the other on P2(s1). So R1(s1) ⊆ R1(v). As v /∈ R1(s1), by

Lemma 3(i) we have R1(v) � R1(s1), so R1(s1) � R1(v) and we are done.
We can now assume that SB ⊆ Q1. Consider an arc a in B \ {a1(s1)} (it exists

since |B| ≥ 2). Let v ∈ SB and i ∈ {0,2} such that a = ai(v). This implies that
p(e1(v)) belongs to some arc in B. If e1(v) is a half-edge, then clearly r1(e

∗) =
r1(e1(v)) > r1(s1). So we may assume that e1(v) is not a half-edge. Let e1(v) = uv.
By Lemma 4, R1(v) � R2(u). Thus r1(e

∗) ≥ r1(e1(v)) = r1(u) > r1(v) = r1(s1).
This proves Claim 6. �

Claim 7 The point p(e∗) is extremal.

Proof Suppose p(e∗) is not extremal. By definition of an extremal point, it is either
not on B’s outer boundary or internal to an arc a of B.

Let e∗ = xy in such a way that r1(x) ≥ r1(y). By Lemma 4, for any vertex v

on P1(x) we have r1(v) > r1(x). So none of the contact points on P1(x)’s edges is
a point of B. Since P1(x) does not intersect any arc of B, p(e∗) lies on B’s outer
boundary.

Now suppose there exists an arc a of B such that p(e∗) is internal to a. We consider
three cases corresponding to the color of a.

Case 1: a is an arc of color 2. By definition of the arcs, either e∗ is uni-directed
in color 2 or e∗ is bi-directed in colors 0,1. Let e∗ = uv such that e∗ is directed
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from u to v in color 1 or 2. Then a = a2(v) by definition of the arcs. Let z be the
vertex of P1(v) such that there is a bi-directed path Q in colors 0,1 between v and
z which length is maximum (maybe v = z if e1(v) is not bi-directed). When v �= z,
since z ∈ P1(v), Lemma 2 implies that z /∈ P0(v). So Q is colored 1 from v to z and
colored 0 from z to v. By definition of the arcs, the arc a = a2(v) = a2(z) ends at
p(e1(z)). Thus p(e1(z)) belongs to some arc in B. If z = x1, then r1(e1(z)) = +∞,
contradicting the choice of e∗. So we may assume that z �= x1. Let w be such that
e1(z) = zw. By Lemma 4, R1(v) � R1(w). If uv is bi-directed, that is, uv is directed
from u to v in color 1, then Lemma 4 implies that R1(u) � R1(w). If uv is uni-
directed in color 2 from u to v, then Lemma 6 implies that R1(u) � R1(w). In both
cases we have r1(e

∗) = max{r1(u), r1(v)} < r1(w) ≤ r1(e1(z)), a contradiction to the
choice of e∗.

Case 2: a is an arc of color 0. This case is completely symmetric to Case 1 as in
the proof of case 1 we just use the fact that e∗ was chosen in order to maximize r1.
(In case 3, the proof is similar to case 1 but this time the order on r2 will also useful.)

Case 3: a is an arc of color 1. By definition of the arcs, either e∗ is uni-directed
in color 1 or e∗ is bi-directed in colors 0,2. Let e∗ = uv such that e∗ is directed
from u to v in color 1 or 2. Then a = a1(v) by definition of the arcs. Let z be the
vertex of P2(v) such that there is a bi-directed path Q in colors 0,2 between v and
z which length is maximum (maybe v = z if e2(v) is not bi-directed). When v �= z,
since z ∈ P2(v), Lemma 2 implies that z /∈ P0(v). So Q is colored 2 from v to z

and colored 0 from z to v. By definition of the arcs, the arc a = a1(v) = a1(z) ends
at p(e2(z)). Thus p(e2(z)) belongs to some arc in B. Vertex v is in P0(z), so by
Lemma 3(i), R1(v) ⊆ R1(z). If e∗ is bi-directed, then it is directed from v to u in
color 0 and by Lemma 3(i), R1(u) ⊆ R1(v). If e∗ is directed from u to v in color 1,
then by Lemma 4 R1(u) � R1(v). In both cases R1(u) ⊆ R1(v) ⊆ R1(z), so r1(e

∗) =
max{r1(u), r1(v)} ≤ r1(z) ≤ r1(e2(z)), and by the choice of e∗ we have r1(e

∗) =
r1(e2(z)). If z = x2, then r2(e2(z)) = +∞, contradicting the choice of e∗. So we may
assume that z �= x2. Let w be such that e2(z) = zw. By Lemma 4, R2(v) � R2(w).
If uv is bi-directed, that is, directed from u to v in color 2, then Lemma 4 implies,
R2(u) � R2(w). If uv is uni-directed in color 1 from u to v, then Lemma 6 implies
that R2(u) � R2(w). In both cases R2(u) � R2(w), so r2(e

∗) = max{r2(u), r2(v)} <

r2(w) ≤ r2(e2(z)), a contradiction to the choice of e∗. This proves Claim 7. �

By Claims 6 and 7, we have a third extremal point of B. Thus the contact system
of arcs is stretchable. �

4 One-to-One Correspondence

De Fraysseix et al. [3] already proved that strict contact representations by triangles
of a planar triangulation are in one-to-one correspondence with its Schnyder woods
defined by Schnyder [16]. In this section, we are going to prove a similar result for
primal–dual contact representations.

De Fraysseix et al. [4] proved that classic Schnyder woods of a planar triangulation
are in one-to-one correspondence with orientation of the edges of the graph where
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each interior vertex has out-degree 3. This shows that it is possible to retrieve the
coloring of the edges of a classic Schnyder wood from the orientation of all the edges
of this Schnyder wood.

For generalized Schnyder woods (with some edges bi-directed) such a property is
not true: it is not always possible to retrieve the coloring of the edges of a generalized
Schnyder wood from the orientation of the edges (see for example the graph of Fig. 8
in [9]). But Felsner proved that a Schnyder wood of a planar map uniquely defines a
Schnyder wood of the dual and when both the orientation of the edges of the primal
and the dual are given, then the coloring of the Schnyder wood can be retrieved.
We will use this to obtain the one-to-one correspondence with strict tiling primal–
dual contact representations by triangles. To this purpose, we need to introduce some
formalism from [9].

The suspension dual Gσ∗ is obtained from the dual G∗ by the following: The dual-
vertex corresponding to the unbounded face is replaced by a triangle with vertices
y0, y1, y2. More precisely, let Xi be the set of edges on the boundary of the outer face
of G between vertices xj and xk , with {i, j, k} = {0,1,2}. Let Yi be the set of dual
edges to the edges in Xi , i.e. Y0 ∪Y1 ∪Y2 is the set of edges containing the vertex f∞
of G∗ which corresponds to the unbounded face of G. Exchange f∞ by yi at all the
edges of Yi , add three edges y0y1, y1y2, y2y0, and finally add a half-edge at each yi

inside the face y0y1y2. The resulting graph is the suspension dual Gσ∗. Felsner [8, 9]
proved that Schnyder woods of Gσ are in one-to-one correspondence with Schnyder
woods of Gσ∗.

The completion of a plane suspension Gσ and its dual Gσ∗ is obtain by the follow-
ing: Superimpose Gσ and Gσ∗ so that exactly the primal–dual pairs of edges cross
(the half-edge at xi cross the dual edge yjyk , for {i, j, k} = {0,1,2}). The common
subdivision of each crossing pair of edges is a new edge-vertex. Add a new vertex
v∞ which is the second endpoint of the six half-edges reaching into the unbounded
face. The resulting graph is the completion ˜Gσ .

An s-orientation of ˜Gσ is an orientation of the edges of ˜Gσ satisfying the follow-
ing out-degrees:

• d+(v) = 3 for all primal- and dual-vertices v.
• d+(e) = 1 for all edge-vertices e.
• d+(v∞) = 0 for the special vertex v∞.

Felsner [9] proved the following:

Theorem 7 (Felsner [9]) Schnyder woods of Gσ are in one-to-one correspondence
with s-orientations of ˜Gσ .

We are now able to prove the following correspondence:

Theorem 8 The non-isomorphic strict tiling primal–dual contact representations by
triangles of a planar map are in one-to-one correspondence with its Schnyder woods.

Proof Given a strict tiling primal–dual contact representation by triangles (V,F) of
a graph G, one can associate a corresponding suspension Gσ , its suspension dual
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Gσ∗, the completion ˜Gσ and a s-orientation of the completion. The three vertices
x0, x1, x2 that define the suspension Gσ are, in clockwise order, the three triangles of
V that share a corner with the triangle corresponding to the outer face. We modify our
contact system by exchanging the triangle c(f∞), representing the outer face f∞, by
three triangles c(y0), c(y1), c(y2) each one representing y0, y1, y2 of the suspension
dual. Each c(yi) share a side with c(f∞) and two c(yi) have parallel and intersecting
sides. The interiors of the triangles of this new system still form a tiling of a trian-
gle c(v∞) representing the vertex v∞ of the completion. The edge-vertices of the
completion corresponds to the corners of the triangles of the new system.

The s-orientation of ˜Gσ is obtained by the following. For a primal- or dual-vertex
v, represented by a triangle c(v), all edges ve of ˜Gσ are directed from v to e if e

corresponds to a corner of c(v) and from e to v otherwise. For the special vertex v∞,
all its incident edges are directed toward itself. Clearly, for every primal- or dual-
vertex v, we have d+(v) = 3 as c(v) is a triangle and for v∞ we have d+(v∞) = 0.
As the primal–dual contact representation (V,F) is strict, i.e. each contact point is
a corner of exactly three triangles, we have d+(e) = 1 for every edge-vertex that is
a contact point of (V,F). For edge-vertices between special vertices xi , yj and v∞
one can check that the out-degree constraint is also satisfied.

One can remark that two non-isomorphic triangle contact systems representing
the same planar map G define two distinct orientations of ˜Gσ and thus two different
Schnyder woods of Gσ by Theorem 7.

Conversely, let G be a planar map, given with a Schnyder wood rooted at x0, x1,
x2 and the corresponding s-orientation of ˜Gσ . Let A be the contact system of arcs
corresponding to the Schnyder wood as defined in Sect. 3. For each vertex v ∈ V ,
we note c(v) the closed curve that is the union, for i ∈ {0,1,2}, of the part of the
arc ai(v) between the contact point with ai−1(v) and ai+1(v). The set of curves
V = (c(v))v∈V is a contact representation of G by closed curves. For each interior
face F , the labels of its angles form a nonempty interval of 0’s, a nonempty interval
of 1’s and a nonempty interval of 2’s by Theorem 6. By definition of the arcs, each
interval of i’s corresponds to only one arc, noted ai(f ). We note c(f ) the closed
curve that is the union, for i ∈ {0,1,2}, of the part of the arc ai(f ) between the
contact point with ai−1(f ) and ai+1(f ). For the outer face f∞, the curve c(f∞) is
the union, for i ∈ {0,1,2}, of ai+1(xi). The set of curves F = (c(f ))f ∈V ∗ is a contact
representation of G∗ by closed curves.

By Lemma 7, the contact system of arcs A is stretchable. For each v ∈ V ∪ V ∗,
the closed curves c(v) is the union of three part of arcs of A, so when stretched it
becomes a triangle. Thus, we obtain a primal–dual contact representation by triangles
(V,F) of G. By definition of (V,F) the interiors of the triangles form a tiling of the
triangle corresponding to the outer face. Thus, the primal–dual contact representation
by triangles (V,F) is tiling. By definition of A, every contact point, corresponding to
an uni- or bi-directed edge, is interior to one arc and is the extremity of two arcs. So
each contact point of (V,F) is a corner of exactly three triangles. Thus, the primal–
dual contact representation by triangles (V,F) is strict. The strict tiling primal–dual
contact representation by triangles (V,F) corresponds to the s-orientation of ˜Gσ and
thus to the Schnyder wood by Theorem 7. �
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5 Internally 3-Connected Planar Maps

A planar map G is internally 3-connected if there exist three vertices on the outer face
such that the graph obtain from G by adding a vertex adjacent to the three vertices is
3-connected. Miller [15] proved the following (see also [7] for existence of Schnyder
woods for 3-connected planar maps and [2] were the following result is stated in this
form):

Theorem 9 (Miller [15]) A planar map admits a Schnyder wood if and only if it is
internally 3-connected.

As a corollary of Theorems 8 and 9, we obtain the following:

Corollary 1 A planar map admits a strict tiling primal–dual contact representation
by triangles if and only if it is internally 3-connected.

A 3-connected planar map is obviously internally 3-connected, so we obtain The-
orem 4 as a consequence of Corollary 1.

Note that the representation of Theorem 4 is efficiently computable. Finding a
Schnyder wood of an internally 3-connected planar map can be done linearly by
contracting edges in a particular way (see [10]). Then the proof relies on the fact that
the system of arcs defined in Sect. 3 is stretchable. Stretching a system of arc can be
done by solving a system of linear equation (see [5]) and the number of equation and
variable is linear in the size of the graph.

6 Particular Types of Triangle

The construction given by de Fraysseix et al. [3] to obtain a strict contact representa-
tion by triangles of a planar triangulation can be slightly modified to give a strict tiling
primal–dual contact representation by triangles (the three triangles corresponding to
the outer face have to be modified to obtain the tiling property). In de Fraysseix et
al.’s construction, all the triangles have a horizontal side at their bottom and moreover
it is possible to require that all the triangles are right (with the right angle on the left
extremity of the horizontal side). This leads us to propose the following conjecture.

Conjecture 1 Every 3-connected planar map admits a strict tiling primal–dual con-
tact representation by right triangles where all triangles have a horizontal and a ver-
tical side and where the right angle is bottom-left for primal vertices and the outer
face and top-right otherwise.

One may wonder if further requirements can be asked. Is it possible to obtain
primal–dual contact representation by homothetic triangles? Such a representation
is a representation where vertex-triangles and the outer-face-triangle are positively
homothetic to a given triangle T and inner-face-triangles are negatively homothetic
to T . The 4-connected planar triangulation of Fig. 6 has a unique contact represen-
tation by homothetic triangles (for a fixed size of the external triangles). The central
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Fig. 6 A 4-connected planar
triangulation and its contact
representation by homothetic
triangles

face corresponds to an empty triangle and there are some extra contacts between non
adjacent faces. So it is not possible to have an “exact” primal–dual contact repre-
sentation by homothetic triangles for this graph. The extended abstract version of this
paper [12] contains results concerning representation by homothetic triangles that are
now presented in a more general paper on the subject [13].
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Abstract We prove that every planar graph is an intersection graph of strings in the
plane such that any two strings intersect at most once.
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1 Introduction

A string s is a curve of the plane homeomorphic to a segment. A string s has two ends,
the points of s that are not ends of s are internal points of s. Two strings s1 and s2
cross if they have a common point p ∈ s1 ∩ s2 and if going around p, we successively
meet s1, s2, s1, and s2. This means that a tangent point is not a “crossing.” In the
following we consider string sets without tangent points.

In this paper, we consider intersection models for simple planar graphs (i.e., planar
graphs without loops or multiple edges). A string representation of a graph G =
(V ,E) is a set Σ of strings in the plane such that every vertex v ∈ V maps to a string
v ∈ Σ and such that uv ∈ E if and only if the strings u and v cross (at least once).
Similarly, a segment representation of a graph G is a string representation of G in
which the strings are segments.
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These notions were introduced by Ehrlich et al. [3], who proved the following:

Theorem 1 [3] Planar graphs have a string representation.

In [9], Koebe proved that planar graphs are the contact graphs of disks in the plane.
Note that in this model the curves bounding two adjacent disks are tangent. However
by inflating these circles we obtain string representations for planar graphs. In his
PhD thesis, Scheinerman [10] conjectures a stronger result:

Conjecture 1 [10] Planar graphs have a segment representation.

Hartman et al. [8] and de Fraysseix et al. [4] proved Conjecture 1 for bipartite
planar graphs. Castro et al. [1] proved Conjecture 1 for triangle-free planar graphs.
Recently de Fraysseix and Ossona de Mendez [6] extended this to planar graphs that
have a 4-coloring in which every induced cycle of length 4 uses at most three colors.
Observe that, since parallel segments never cross, a set of parallel segments in a seg-
ment representation of a graph induces a stable set of vertices. The construction in
[4, 8] (resp. [1]) has the nice property that there are only two (resp. three) possible
slopes for the segments. So the construction induces a 2-coloring (resp. 3-coloring)
of G. Note that Castro et al. do not prove the 3-colorability of triangle-free planar
graphs, they use such coloring of the graphs (by Grötzsch’s Theorem) in their con-
struction. West [11] proposed a stronger version of Conjecture 1 in which only four
slopes are allowed, thus using the fact that these graphs are 4-colorable.

Notice that two segments cross at most one point, whereas in the construction
of Theorem 1, strings may cross twice. Let us define a 1-string representation as a
string representation in which any two strings cross at most once. Thus the following
theorem is a step towards Conjecture 1.

Theorem 2 Planar graphs have a 1-string representation.

Note that if we would allow and consider tangent points, this theorem would
directly follow from Koebe’s theorem. Theorem 2 answers an open problem of
de Fraysseix and Ossona de Mendez [5]. In the same article they noticed that The-
orem 2 implies that any planar multigraph has a string representation such that the
number of crossings between two strings equals the number of edges between the
two corresponding vertices.

In the next section we provide some definitions and prove that it is sufficient to
prove this theorem for triangulations. Section 3 is devoted to the study of string rep-
resentations of 4-connected triangulations. In this section we use a decomposition
technique of 4-connected triangulations that is inspired on Whitney’s work [12] and
that was recently used by the second author [7]. Then in Sect. 4 we finally prove
Theorem 2 for all triangulations.
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2 Preliminaries

2.1 Restriction to Triangulations

Lemma 1 Every planar graph is an induced subgraph of some planar triangulation.

Proof Let G be a planar graph embedded in the plane (i.e., a plane graph). The graph
h(G) is obtained from G by adding in every face f of G a new vertex vf adjacent to
every vertex incident to f in G. Notice that h(G) is also a plane graph and that G is
an induced subgraph of h(G). Moreover, h(G) is connected, h(h(G)) is 2-connected,
and h(h(h(G))) is a triangulation.

Note that we have to apply the h operator several times: if a facial walk goes
through the same vertex several times, since multiples edges are not allowed, we
obtain a nontriangular face. �

It is clear that a 1-string representation of a triangulation T induces a 1-string rep-
resentation for any of its induced subgraphs. It is thus sufficient to prove Theorem 2
for triangulations.

2.2 String Representations

In a plane graph G, the unbounded face of G is called the outer-face and every other
face of G is an inner-face of G. An outer-vertex (resp. outer-edge) of G is a ver-
tex (resp. edge) of G incident to the outer-face. The other vertices (resp. edges) of
G are inner-vertices (resp. inner-edges). The set of outer-vertices (resp. outer-edges,
inner-vertices, and inner-edges) of G is denoted by Vo(G) (resp. Eo(G), Vi(G), and
Ei(G)). A near-triangulation is a plane graph in which all the inner-faces are trian-
gles. An edge uv is a chord of some near-triangulation T if uv is an inner-edge linking
two outer-vertices. From now on, we use the following notation: the strings corre-
sponding to vertices of a graph G are denoted by bold letters, i.e., for any v ∈ V (G),
we denote its corresponding string by v. We need that in a 1-string representation of
a plane graph G, each face of G corresponds to some topological region of the string
representation.

Definition 1 Let G = (V ,E) be a plane graph with a 1-string representation Σ .
Given a face abc of G, consider a triplet (a, b, c) of its incident vertices. An (a, b, c)-
region abc is a region of the plane homeomorphic to a disk such that (see Fig. 1):

• For any vertex v �= a, b, and c, we have abc ∩ v = ∅ (i.e., abc intersects only with
a,b, c).

• abc ∩ a ∩ b = ∅, abc ∩ b ∩ c = ∅, and abc ∩ c ∩ a = ∅ (i.e., a,b, c intersect outside
abc).

• Both abc ∩ b and abc ∩ c are connected.
• The boundary of abc successively crosses (clockwise or anticlockwise) a, a, b, b,

c, a, c.
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Fig. 1 An (a, b, c)-region abc

Note that according to this definition, abc ∩ a has two components, and one end
of a is in abc. Note that the order in the triplet (a, b, c) matters: a region τ of the
plane cannot be an (a, b, c)-region and a (c, b, a)-region for example. A region abc
of the plane is an {a, b, c}-region if it is either an (a, b, c)-region, an (a, c, b)-region,
a (b, a, c)-region, a (b, c, a)-region, a (c, a, b)-region, or a (c, b, a)-region. When the
vertices a, b, and c are not mentioned, we call such a region a face-region.

Definition 2 A strong 1-string representation (S-representation, for short) of a near-
triangulation T is a pair (Σ,R) such that:

(1) Σ is a 1-string representation of T .
(2) R is a set of disjoint face-regions such that for every inner-face abc of T , R

contains an {a, b, c}-region.

A partial strong 1-string representation (PS-representation, for short) of a near-
triangulation T is a triplet (Σ,R,F ) in which F ⊆ E(T ) and such that (Σ,R) is a
strong 1-string representation of T without the crossings corresponding to the edges
of F .

In a PS-representation (Σ,R,F ) of T , note that Σ is a 1-string representation of
T \ F and that each inner-face of T has a corresponding face-region in R.

2.3 Special Triangulations

In a near-triangulation T , a separating 3-cycle C is a cycle of length 3 such that some
vertices of T lie inside C, whereas other vertices lie outside. It is well known that a
triangulation is 4-connected if and only if it contains no separating 3-cycle. In [12],
Whitney considered a special family of near-triangulations, it is why we call them
W-triangulations.

Definition 3 A W-triangulation is a 2-connected near-triangulation containing no
separating 3-cycle.

In particular, any 4-connected triangulation is a W-triangulation. Note that since
a W-triangulation has no cut vertex, its outer-edges induce a cycle. The following
lemma gives a sufficient condition for a subgraph of a W-triangulation T to be a
W-triangulation.
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Fig. 2 3-boundary of T

Lemma 2 Let T be a W-triangulation and consider a cycle C of T . The subgraph
induced by the vertices lying on and inside C is a W-triangulation.

Proof Consider the near-triangulation T ′ inside some cycle C of T . By definition,
T has no separating 3-cycle, and consequently T ′ does not have any separating 3-
cycle. Since T ′ is clearly connected and has more than two vertices, we prove that it
is 2-connected by showing that it does not contain any cut vertex.

Since the cycle C delimits the outer-face of T ′, any vertex v ∈ V (T ′) appears
at most once on the outer face. Since the outerface appears at most once around v

and since all its other incident faces are triangles, T ′ contains a path linking all the
neighbors of v. This implies that T ′ \v is connected, and thus T ′ has no cut vertex. �

Definition 4 A W-triangulation T is 3-bounded if the outer-boundary of T is the
union of three paths (a1, . . . , ap), (b1, . . . , bq), and (c1, . . . , cr ) that satisfy the fol-
lowing conditions (see Fig. 2):

• a1 = cr , b1 = ap , and c1 = bq .
• the paths are nontrivial, i.e., p ≥ 2, q ≥ 2, and r ≥ 2.
• there exists no chord aiaj , bibj , or cicj .

Such a 3-boundary of T will be denoted by (a1, . . . , ap)–(b1, . . . , bq)–(c1, . . . , cr ).

In the following, we will use the order on the three paths and their direc-
tions, i.e., (a1, . . . , ap)–(b1, . . . , bq)–(c1, . . . , cr ) will be different from (b1, . . . , bq)–
(c1, . . . , cr )–(a1, . . . , ap) and (ap, . . . , a1)–(cr , . . . , c1)–(bq, . . . , b1).

3 Proof for 4-connected Triangulations

The following property describes the shape of a PS-representation of a 3-bounded
W-triangulation.

Property 1 Consider a 3-bounded W-triangulation T with a 3-boundary (a1, . . . ,

ap)–(b1, . . . , bq)–(c1, . . . , cr ). The W-triangulation T has Property 1 if T has a PS-
representation (Σ,R,F ) contained inside a region τ of the plane homeomorphic to
the disk that satisfies the following properties (see Fig. 3):
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Fig. 3 Property 1

(a) F = Eo(T ) \ {a1a2} (i.e., the missing crossings correspond to the outer edges,
except a1a2).

(b) On the boundary of τ , we successively have the ends of a2,a3, . . . ,ap,b1, . . . ,

bq, c1, . . . , cr.

If going clockwise (resp. anticlockwise) around the boundary of τ , we cross the
strings in the order described in (b), we say that the PS-representation is clockwise
(resp. anticlockwise). Note that by an axial symmetry, one can obtain a clockwise
PS-representation from an anticlockwise PS-representation, and vice versa. Observe
that since ap = b1, bq = c1, and cr = a1, both ends of b1 and c1 lie on the boundary
of τ , but it is not the case for a1 or any other string (i.e., all the strings appearing on
the boundary of τ have an end inside τ except b1 and c1).

Before proving that each 3-bounded W-triangulation has Property 1, we give some
definitions and we present Property 2. Consider a 3-bounded W-triangulation T �= K3

whose boundary is (a1, . . . , ap)–(b1, . . . , bq)–(c1, . . . , cr ) and such that T does not
contain any chord aibj or aicj . Let D ⊆ Vi(T ) be the set of inner-vertices of T that
are adjacent to some vertex ai with i > 1 (the black vertices on the left of Fig. 4).
Since T has at least 4 vertices, no separating 3-cycle, and no chord aiaj , aibj , or
aicj , it follows that a1 and a2 (resp. b1 and b2) have exactly one common neighbor
in Vi(T ) that will be denoted a (resp. d1).

Since there is no chord aiaj , aibj , or aicj , for each vertex ai with i ∈ [2,p − 1],
all the neighbors of ai (resp. ap) except ai−1 and ai+1 (resp. ap−1 and b2) are in D.
Since for each i ∈ [2,p], there is a path linking the neighbors of ai in D and since the
vertices ai and ai+1 have a common neighbor in D, the set D induces a connected
graph. Since a is in D, the set D ∪ {a1} also induces a connected graph.

Definition 5 The adjacent path of T with respect to the 3-boundary (a1, . . . , ap)–
(b1, . . . , bq)–(c1, . . . , cr ) is the shortest path linking d1 and a1 in T [D ∪ {a1}] (the
graph induced by D ∪ {a1}). This path will be denoted (d1, d2, . . . , ds, a1).

Observation 1 There exists neither an edge didj with 2 ≤ i + 1 < j ≤ s nor an edge
a1di with 1 ≤ i < s. Otherwise, (d1, d2, . . . ds, a1) would not be the shortest path
between d1 and a1.
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Fig. 4 The adjacent path of T and the graph Td2a5

Definition 6 For each edge dxay ∈ E(T ) with x ∈ [1, s] and y ∈ [2,p], the graph
Tdxay is the graph lying inside the cycle C = (a1, ds, . . . , dx, ay, . . . , ap, b2, . . . ,

bq, c2, . . . , cr ) (see Fig. 4).

Note that since D ⊆ Vi(T ), C is a cycle, and by Lemma 2, Tdxay is a W-
triangulation. The following property describes the shape of a PS-representation
of Tdxay .

Property 2 Consider a 3-bounded W-triangulation T with a 3-boundary (a1, . . . ,

ap)–(b1, . . . , bq)–(c1, . . . , cr ) that does not have any chord aibj or aicj , and let
(d1, d2, . . . , ds, a1) be its adjacent path. Consider an edge dxay ∈ E(T ) with y > 1.

The W-triangulation Tdxay has Property 2 if Tdxay has a PS-representation
(Σ,R,F ) satisfying the following properties (see Fig. 5):

(a) F = Eo(G) \ {dxay}.
(b) Every string v ∈ Σ \ {dx,ay} is contained in a region τ of the plane homeomor-

phic to the disk. Furthermore, dx and ay have their ends in τ (or on the boundary
of τ ), but they cross each other outside τ .

(c) Each face-region of R is contained inside τ .
(d) On the boundary of τ , we successively have the ends of ay, . . . ,ap,b1, . . . ,bq,

c1, . . . , cr,

a1,ds, . . . ,dx+1, and then we successively have internal points of dx,ay,dx,
and ay.

Here again, if going clockwise (resp. anticlockwise) around the boundary of τ , we
cross the strings in the order described in (d), we say that the PS-representation is
clockwise (resp. anticlockwise). In the proof of Theorem 2, we only use Property 1.
However, in order to prove Property 1, we use Property 2. We prove these two prop-
erties by doing a “crossed” induction.

Proof of Properties 1 and 2

We prove, by induction on m ≥ 3, that the following two statements hold:
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Fig. 5 Property 2

Fig. 6 Initial case for
Property 1

– Property 1 holds if T has at most m edges.
– Property 2 holds if Tdxay has at most m edges.

The initial case, m = 3, is easy to prove since there is only one W-triangulation
having at most 3 edges, K3. For Property 1, we have to consider all the possible
3-boundaries of K3. All these 3-boundaries are equivalent, so let V (K3) = {a, b, c}
and consider the 3-boundary (a, b)–(b, c)–(c, a). In Fig. 6 there is a PS-representation
(Σ,R,F ) of K3 with F = {bc, ac} that fulfills Property 1. For Property 2, since a
W-triangulation Tdxay has at least 4 vertices, a1, b1, c1, and d1, we have Tdxay �= K3,
and there is no W-triangulation Tdxay with at most 3 edges. So by vacuity, Property 2
holds for Tdxay with at most 3 edges.

The induction step applies to both Property 1 and Property 2. This means that we
prove Property 1 (resp. Property 2) for the W-triangulations T (resp. Tdxay ) with m

edges using both Property 1 and Property 2 on W-triangulations with less than m

edges. We first prove the induction for Property 1.

Case 1: Proof of Property 1 for a W-triangulation T with m edges Let (a1, . . . ,

ap)–(b1, . . . , bq)–(c1, . . . , cr ) be the 3-boundary of T considered. We distinguish dif-
ferent cases according to the existence of a chord aibj or aicj in T . We successively
consider the case where there is a chord a1bi with 1 < i < q , the case where there
is a chord aibj with 1 < i < p and 1 < j ≤ q , and the case where there is a chord
aicj with 1 < i ≤ p and 1 < j < r . We then finish with the case where there is no
chord aibj with 1 ≤ i ≤ p and 1 ≤ j ≤ q (by the definition of 3-boundary, T has no
chord a1bq , aib1, or apbj ) and no chord aicj with 1 ≤ i ≤ p and 1 ≤ j ≤ r (by the
definition of 3-boundary, T has no chord apc1, aicr , or a1cj ).
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Fig. 7 Case 1.1: Chord a1bi

Fig. 8 Case 1.1: (Σ,R,F )

Case 1.1: There is a chord a1bi with 1 < i < q (see Fig. 7) Let T1 (resp.
T2) be the subgraph of T that lies inside the cycle (a1, bi, . . . , bq, c2, . . . , cr )

(resp. (a1, a2, . . . , ap, b2, . . . , bi, a1)). By Lemma 2, T1 and T2 are W-triangulations.
Since T has no chord axay , bxby , or cxcy , (bi, a1)–(cr , . . . , c1)–(bq, . . . , bi) (resp.
(a1, . . . , ap)–(b1, . . . , bi)–(bia1)) is a 3-boundary of T1 (resp. T2). Furthermore,
since a1a2 /∈ E(T1) and c1c2 /∈ E(T2), T1 and T2 have less edges than T , and Prop-
erty 1 holds for T1 and T2 with the mentioned 3-boundaries. Let (Σ1,R1,F1) (resp.
(Σ2,R2,F2)) be a clockwise (resp. anticlockwise) PS-representation contained in
the region τ1 (resp. τ2) obtained for T1 (resp. T2) with F1 = Eo(T1) \ {a1bi} (resp.
F2 = Eo(T2) \ {a1a2}). In Fig. 8 we show how to associate these two representations
to obtain (Σ,R,F ), an anticlockwise PS-representation of T contained in τ . Note
that the two strings a1 (resp. bi) from Σ1 and Σ2 have been linked.

We easily verify that (Σ,R,F ) satisfies Property 1:

• Σ is a string representation of T \ F with F = Eo(T ) \ {a1a2}. Indeed, since
V (T1) ∪ V (T2) = V (T ) and V (T1) ∩ V (T2) = {a1, bi}, every vertex v ∈ V (T )

has exactly one string in Σ . Furthermore, since (E(T1) \ F1) ∪ (E(T2) \ F2) =
E(T ) \ F , Σ is a string representation of T \ F .

• Σ is a 1-string representation. The only edge that belongs to both T1 and T2 is
a1bi . Since a1 and bi cross each other in Σ1 (a1bi /∈ F1) but not in Σ2 (a1bi ∈ F2),
a1 and bi cross exactly once in Σ .

• (Σ,R) is “strong”: Each inner-face of T is an inner-face in T1 or T2, and the
regions τ1 and τ2 are disjoint (so the face-regions in τ1 are disjoint from the face-
regions in τ2).

Finally we see in Fig. 8 that point (b) of Property 1 is satisfied.
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Fig. 9 Case 1.2: Chord aibj

Fig. 10 Case 1.2: (Σ,R,F )

Case 1.2: There is a chord aibj with 1 < i < p and 1 < j ≤ q (see Fig. 9) If
there are several chords aibj , we consider one that maximizes j , i.e., there is no
chord aibk with j < k ≤ q . Let T1 (resp. T2) be the subgraph of T that lies inside
the cycle (a1, a2, . . . , ai, bj , . . . , bq, c2, . . . , cr ) (resp. (ai, . . . , ap, b2, . . . , bj , ai)).
By Lemma 2, T1 and T2 are W-triangulations. Since T has no chord axay , bxby ,
cxcy , or aibk with k > j , (a1, . . . , ai)–(ai, bj , . . . , bq)–(c1, . . . , cr ) (resp. (ai, bj )–
(bj , . . . , b1)–(ap, . . . , ai)) is a 3-boundary of T1 (resp. T2). Furthermore, since b1b2 /∈
E(T1) and a1a2 /∈ E(T2), T1 and T2 have less edges than T , and Property 1 holds for
T1 and T2 with the mentioned 3-boundaries. Let (Σ1,R1,F1) (resp. (Σ2,R2,F2)) be
an anticlockwise (resp. clockwise) PS-representation contained in the region τ1 (resp.
τ2) obtained for T1 (resp. T2) with F1 = Eo(T1)\{a1a2} (resp. F2 = Eo(T2)\{aibj }).
In Fig. 10 we show how to associate these two representations to obtain (Σ,R,F ),
an anticlockwise PS-representation of T contained in τ . Note that in this construction
the two strings ai (resp. bj) from Σ1 and Σ2 have been linked.

As in Case 1.1, we easily verify that (Σ,R,F ) satisfies Property 1.

Case 1.3: There is a chord aicj with 1 < i ≤ p and 1 < j < r (see Fig. 11) If
there are several chords aicj , we consider one which maximizes i, i.e., there is no
chord akcj with i < k ≤ p. Let T1 (resp. T2) be the subgraph of T that lies inside
the cycle (a1, a2, . . . , ai, cj , . . . , cr ) (resp. (cj , ai, . . . , ap, b2, . . . , bq, c2, . . . , cj )).
By Lemma 2, T1 and T2 are W-triangulations. Since T has no chord axay , bxby ,
cxcy , or akcj with k > i, (a1, . . . , ai)–(ai, cj )–(cj , . . . , cr ) (resp. (cj , ai, . . . , ap)–
(b1, . . . , bq)–(c1, . . . , cj )) is a 3-boundary of T1 (resp. T2). Furthermore, since b1b2 /∈
E(T1) and a1a2 /∈ E(T2), T1 and T2 have less edges than T , and Property 1 holds for
T1 and T2 with the mentioned 3-boundaries. Let (Σ1,R1,F1) (resp. (Σ2,R2,F2)) be
an anticlockwise PS-representation contained in the region τ1 (resp. τ2) obtained for
T1 (resp. T2) with F1 = Eo(T1) \ {a1a2} (resp. F2 = Eo(T2) \ {cjai}). In Fig. 12 we
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Fig. 11 Case 1.3: Chord aicj

Fig. 12 Case 1.3: (Σ,R,F )

show how to associate these two representations to obtain (Σ,R,F ), an anticlock-
wise PS-representation of T contained in τ . Note that in this construction the two
strings ai (resp. cj) from Σ1 and Σ2 have been linked.

As in Case 1.1, we easily verify that (Σ,R,F ) satisfies Property 1.

Case 1.4: There is no chord aibj with 1 ≤ i ≤ p and 1 ≤ j ≤ q , and no chord aicj

with 1 ≤ i ≤ p and 1 ≤ j ≤ r (see Fig. 13) In this case we consider the adjacent
path (d1, . . . , ds, a1) (see Fig. 4) of T with respect to its 3-boundary, (a1, . . . , ap)–
(b1, . . . , bq)–(c1, . . . , cr ). Consider the edge dsay with 1 < y ≤ p and which min-
imizes y. This edge exists since, by the definition of the adjacent path, ds is adja-
cent to some vertex ay with y > 1. The W-triangulation Tdsay having less edges than
T (a1a2 /∈ E(Tdsay )), Property 2 holds for Tdsay . Let (Σ ′,R′,F ′) be an anticlock-
wise PS-representation almost contained in the region τ ′ obtained for Tdsay , with
F ′ = Eo(Tdsay ) \ {dsay}.

Now we distinguish two cases according to the position of ay : either y = 2
(Case 1.4.1), or y > 2 (Case 1.4.2).

Case 1.4.1: y = 2 In Fig. 14, starting from (Σ ′,R′,F ′), we show how to extend the
string a1 ∈ Σ ′ (in order to cross ds and a2) and how to draw the (a1, a2, ds)-region
a1a2ds to obtain (Σ,R,F ), an anticlockwise PS-representation of T contained in a
region τ .

One can verify on Fig. 14 that (Σ,R,F ) satisfies Property 1.

Case 1.4.2: y > 2 Let us denote by e1, e2, . . . , et the neighbors of ds strictly inside
the cycle (ds, a1, a2, . . . , ay, ds), going “from right to left” (see Fig. 13). By mini-
mality of y we have ei �= aj for all 1 ≤ i ≤ t and 1 ≤ j ≤ y.
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Fig. 13 Case 1.4: No chord aibj or aicj

Fig. 14 Case 1.4.1

Let T1 be the subgraph of T that lies inside the cycle (a1, . . . , ay, e1, . . . , et , a1).
By Lemma 2, T1 is a W-triangulation. Since the W-triangulation T has no separating
3-cycle (ds, a1, ei), (ds, ay, ei), or (ds, ei, ej ), there exists no chord a1ei , ayei , or eiej

in T1. So (a2, a1)–(a1, et , . . . , e1, ay)–(ay, . . . , a2) is a 3-boundary of T1. Finally,
since T1 has less edges than T (a1ds /∈ E(T1)), Property 1 holds for T1 with respect
to the mentioned 3-boundary. Let (Σ1,R1,F1) be a clockwise PS-representation con-
tained in the region τ1 obtained for T1 with F1 = E0(T1) \ {a2a1}.

In Fig. 15, starting from (Σ ′,R′,F ′) and (Σ1,R1,F1), we show how to join the
strings a1 (resp. ay) of Σ ′ and Σ1, how to extend the strings ei for 1 ≤ i ≤ t , and how
to draw the face-regions aye1ds, eta1ds, and eiei−1ds for 2 ≤ i ≤ t , in order to obtain
(Σ,R,F ), an anticlockwise PS-representation of T contained in a region τ .

We verify that (Σ,R,F ) satisfies Property 1:

• Σ is a string representation of T \ F with F = Eo(T ) \ {a1a2}. Indeed, since
V (Tdsay ) ∪ V (T1) = V (T ) and V (Tdsay ) ∩ V (T1) = {a1, ay}, every vertex v ∈
V (T ) has exactly one string in Σ . Furthermore, since E(T ) \ F = (E(Tdsay ) \
F ′)∪ (E(T1) \F1)∪ {aye1, eta1, dsa1} ∪ {eiei−1 | i ∈ [2, t]} ∪ {dsei | i ∈ [1, t]}, Σ

is a string representation of T \ F .
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Fig. 15 Case 1.4.2

• Σ is a 1-string representation. Indeed Tdsay and T1 do not have common edges,
and the new crossings added correspond to edges missing in both E(Tdsay ) \ F ′
and E(T1) \ F1.

• (Σ,R) is “strong”: The only inner-faces of T not in Tdsay nor in T1 are the faces
dsaye1, dsa1et , and dseiei+1 with 1 ≤ i < t . These faces correspond to the new
face-regions.

Finally we see in Fig. 15 that point (b) of Property 1 is satisfied.
So Property 1 holds for any W-triangulation T with m edges, and this concludes

the proof of Case 1.

Case 2: Proof of Property 2 for a W-triangulation Tdxay with m edges Recall that
the W-triangulation Tdxay is a subgraph of a W-triangulation T with 3-boundary
(a1, . . . , ap)–(b1, . . . , bq)–(c1, . . . , cr ). Moreover, T has no chord aibj or aicj , and
its adjacent path is (d1, . . . , ds, a1), with s ≥ 1. We distinguish the case where
dxay = d1ap and the case where dxay �= d1ap .

Case 2.1: dxay = d1ap (see Fig. 16) Let T1 be the subgraph of Td1ap that lies
inside the cycle (a1, ds, . . . , d1, b2, . . . , bq, c2, . . . , cr ). By Lemma 2, T1 is a W-
triangulation. This W-triangulation has no chord bibj , cicj , didj , or a1dj . We con-
sider two cases according to the existence of an edge d1bi with 2 < i ≤ q .

• If T1 has no chord d1bi , then (d1, b2, . . . , bq)–(c1, . . . , cr )–(a1, ds, . . . , d1) is a 3-
boundary of T1.

• If T1 has a chord d1bi with 2 < i ≤ q , note that q > 2 and that there cannot be
a chord b2a1 or b2dj with 1 < j ≤ s (this would violate the planarity of Tdxay ,
see Fig. 16). So in this case, (b2, d1, . . . , ds, a1)–(cr , . . . , c1)–(bq, . . . , b2) is a 3-
boundary of T1.

Finally, since T1 is a W-triangulation with less edges than Td1ap (b1b2 /∈ E(T1)),
Property 1 holds for T1 with respect to at least one of the two mentioned 3-boundaries.
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Fig. 16 Case 2.1:
Tdxay = Td1ap

Fig. 17 Case 2.1: (Σ,R,F )

Whichever 3-boundary we consider, we obtain a PS-representation (Σ1,R1,F1) of
T1 contained in a region τ1, with the same following characteristics:

• F1 = Eo(T ) \ {d1b2},
• in the boundary of τ1, we successively meet the ends of d1, . . . ,ds,a1, cr, . . . , c1,

bq, . . . , b2 (clockwise or anticlockwise).

In Fig. 17 we modify (Σ1,R1,F1), by extending the strings d1 and b2 and by
adding a new string ap and a new face-region d1b2ap. This leads to (Σ,R,F ), a
PS-representation of Td1ap contained in a region τ .

We verify that (Σ,R,F ) satisfies Property 2:

• Σ is a 1-string representation of Td1ap \ F : Indeed, E(Td1ap ) \ F is the disjoint
union of E(T1) \ F1 and {apd1}.

• (Σ,R) is “strong”: The only inner-face of Td1ap that is not an inner-face of T1 is
d1apb2, which corresponds to the new face-region d1apb2.

Finally we see in Fig. 17 that the other points of Property 2 are satisfied.

Case 2.2: Tdxay �= Td1ap In this case we consider an edge dzaw ∈ E(Tdxay ) such
that dzaw �= dxay . Among all the possible edges dzaw , we choose the one that first
maximizes z and then minimizes w. Such an edge necessarily exists, and actually one
can see that dz = dx or dz = dx−1. Indeed, if dx = d1, there is at least one edge d1aw

with w > y, the edge d1ap . If x > 1, it is clear by the definition of the adjacent path
that the vertex dx−1 is adjacent to at least one vertex aw with w ≥ y.
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Fig. 18 Case 2.2.1: z = x and w = y + 1

Fig. 19 Case 2.2.1: (Σ,R,F )

By Lemma 2, Tdzaw is a W-triangulation. Since dxay /∈ E(Tdzaw ), the W-
triangulation Tdzaw has less edges than Tdxay , and so Property 2 holds for Tdzaw . Let
(Σ ′,R′,F ′) be an anticlockwise PS-representation almost contained in the region τ ′
obtained for Tdzaw with F ′ = Eo(Tdzaw ) \ {dzaw}.

We distinguish four cases according to the edge dzaw . When z = x, we consider
the case where w = y+1 and the case where w > y+1. When z = x−1, we consider
the case where w = y and the case where w > y.

Case 2.2.1: Tdxay �= Td1ap , z = x, and w = y + 1 (see Fig. 18) In Fig. 19 we mod-
ify (Σ ′,R′,F ′) by adding a new string ay and a new face-region ayawdx. This leads
to (Σ,R,F ), an anticlockwise PS-representation of Tdxay almost contained in a re-
gion τ .

We verify that (Σ,R,F ) satisfies Property 2:

• Σ is a 1-string representation of Tdxay \ F : Indeed, E(Tdxay ) \ F is the disjoint
union of E(Tdzaw ) \ F ′ and {dxay}.

• (Σ,R) is “strong”: The only inner-face of Tdxay that is not an inner-face of Tdzaw

is dxayaw , which corresponds to the new face-region dxayaw.

Finally we see in Fig. 19 that the other points of Property 2 are satisfied.
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Fig. 20 Case 2.2.2:
Tdxay �= Td1ap , z = x − 1, and
w = y

Fig. 21 Case 2.2.2: (Σ,R,F )

Case 2.2.2: z = x − 1 and w = y (see Fig. 20) In Fig. 21, we modify (Σ ′,R′,F ′)
by extending the string dx and by adding a new face-region dxdzay. This leads to
(Σ,R,F ), an anticlockwise PS-representation of Tdxay almost contained in a re-
gion τ .

We verify that (Σ,R,F ) satisfies Property 2:

• Σ is a 1-string representation of Tdxay \ F : Indeed, E(Tdxay ) \ F is the disjoint
union of E(Tdzaw ) \ F ′ and {dxdz, dxay}.

• (Σ,R) is “strong”: The only inner-face of Tdxay that is not an inner-face of Tdzaw

is dxdzay , which corresponds to the new face-region dxdzay.

Finally we see in Fig. 21 that the other points of Property 2 are satisfied.

Case 2.2.3: z = x and w > y + 1 (see Fig. 22) Let us denote by e1, e2, . . . , et the
neighbors of dx strictly inside the cycle (dx, ay, . . . , aw, dx), going “from right to
left” (see Fig. 22). Since there is no chord aiaj , we have t ≥ 1. Furthermore by
minimality of w we have ei �= aj for all 1 ≤ i ≤ t and y ≤ j ≤ w. Let T1 be the
subgraph of Tdxay that lies inside the cycle (ay, . . . , aw, e1, . . . , et , ay). By Lemma 2,
T1 is a W-triangulation. Since the W-triangulation Tdxay has no separating 3-cycle
(dx, aw, ei) or (dx, ei, ej ), there exists no chord awei or eiej in T1. With the fact that
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Fig. 22 Case 2.2.3:
Tdxay �= Td1ap , z = x, and
w > y + 1

Fig. 23 Case 2.2.3: (Σ,R,F )

t ≥ 1, we know that (et , ay)–(ay, . . . , aw)–(aw, e1, . . . , et ) is a 3-boundary of T1.
Finally, since T1 has less edges than Tdxay (dxay /∈ E(T1)), Property 1 holds for T1
with respect to the mentioned 3-boundary. Let (Σ1,R1,F1) be an anticlockwise PS-
representation contained in the region τ1 obtained for T1 with F1 = E0(T1) \ {etay}.

In Fig. 23, starting from (Σ ′,R′,F ′) and (Σ1,R1,F1), we show how to join the
strings aw of Σ ′ and Σ1, how to extend the string ay and the strings ei for 1 ≤ i ≤ t ,
and how to draw the face-regions ayetdx, e1awdx, and eiei−1dx for 1 < i ≤ t , in
order to obtain (Σ,R,F ), an anticlockwise PS-representation of Tdxay contained in
a region τ .

We verify that (Σ,R,F ) satisfies Property 2:

• Σ is a 1-string representation of Tdxay \ F with F = Eo(Tdxay ) \ {dxay}: Indeed,
E(Tdxay )\F is the disjoint union of E(Tdzaw )\F ′, E(T1)\F1, and {awe1, dxay}∪
{eiei−1 | i ∈ [2, t]} ∪ {dxei | i ∈ [1, t]}.

• (Σ,R) is “strong”: The only inner-faces of Tdxay that are not inner-faces in Tdzaw

or T1 are dxayet , dxawe1, and the faces dxeiei−1 for 2 ≤ i ≤ t , which correspond
to the new face-regions.

Finally we see in Fig. 23 that the other points of Property 2 are satisfied.
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Fig. 24 Case 2.2.4: Tdxay �= Td1ap , z = x − 1, and w > y

Fig. 25 Case 2.2.4: (Σ,R,F )

Case 2.2.4: z = x − 1 and w > y (see Fig. 24) Let us denote by e1, e2, . . . , et the
neighbors of dz strictly inside the cycle (dz, dx, ay, . . . , aw, dz), going “from right to
left” (see Fig. 24). By maximality of z, there is no edge dxaw , so t ≥ 1. Let us denote
by f1, . . . , fu the neighbors of dx strictly inside the cycle (dx, ay, . . . , aw, dz, dx),
going “from right to left” (see Fig. 24). Note that f1 = et and that by minimality
of w, there is no edge dzay , so u ≥ 1.

By minimality of w (resp. maximality of z) we have ei �= aj (resp. fi �= aj ) for
all 1 ≤ i ≤ t (resp. 1 ≤ i ≤ u) and y ≤ j ≤ w. Let T1 be the subgraph of Tdxay that
lies inside the cycle (ay, . . . , aw, e1, . . . , et , f2, . . . , fu, ay). By Lemma 2, T1 is a W-
triangulation. Since the W-triangulation Tdxay has no separating 3-cycle (dz, aw, ei),
(dz, ei, ej ), (dx, fi, fj ), or (dx, fi, ay), there exists no chord awei , eiej , fifj , or
fiay in T1. With the fact that t ≥ 1 and u ≥ 1, we know that (f1, f2, . . . , fu, ay)–
(ay, . . . , aw)–(aw, e1, . . . , et ) is a 3-boundary of T1. Finally, since T1 has less edges
than Tdxay (dxay /∈ E(T1)), Property 1 holds for T1 with respect to the mentioned
3-boundary. Let (Σ1,R1,F1) be an anticlockwise PS-representation contained in the
region τ1 obtained for T1 with F1 = E0(T1) \ {f1f2}.
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Fig. 26 S-representation of T

from (Σ,R,F )

In Fig. 25, starting from (Σ ′,R′,F ′) and (Σ1,R1,F1), we show how to join the
strings aw of Σ ′ and Σ1, how to extend the string dx, ay, the strings ei for 1 ≤ i ≤ t ,
and the strings fi for 2 ≤ i ≤ u, and how to draw the face-regions dzawe1, dzeiei−1
for 2 ≤ i ≤ t , dzdxet, dxfifi−1 for 2 ≤ i ≤ u, and dxayfu in order to obtain (Σ,R,F ),
an anticlockwise PS-representation of Tdxay almost contained in a region τ .

We verify that (Σ,R,F ) satisfies Property 2:

• Σ is a 1-string representation of Tdxay \ F with F = Eo(Tdxay ) \ {dxay}: In-
deed, E(Tdxay ) \ F is the disjoint union of E(Tdzaw ) \ F ′, E(T1) \ F1, and
{dxay, dxdz, awe1, ayfu} ∪ {dzei | i ∈ [1, t]} ∪ {dxfi | i ∈ [1, u]} ∪ {eiei−1 | i ∈
[2, t]} ∪ {fifi−1 | i ∈ [2, u]}.

• (Σ,R) is “strong”: The only inner-faces of Tdxay that are not inner-faces in Tdzaw

or T1 are dzawe1, dzeiei−1 for 2 ≤ i ≤ t , dzdxet , dxfifi−1 for 2 ≤ i ≤ u, and
dxayfu, which correspond to the new face-regions.

Finally we see in Fig. 25 that the other points of Property 2 are satisfied. So, Prop-
erty 2 holds for any W-triangulation Tdxay with m edges, and this completes the proofs
of Properties 1 and 2.

4 Proof in the General Case

Theorem 3 Every triangulation T admits an S-representation (Σ,R).

Proof We prove this result by induction on the number of separating 3-cycles. Note
that any triangulation T is 3-connected and that if T has no separating 3-cycle, then
T is 4-connected and is a W-triangulation. Consequently, if T is a 4-connected trian-
gulation whose outer-vertices are a, b, and c, then T is a W-triangulation 3-bounded
by (a, b)–(b, c)–(c, a). By Property 1, T admits a PS-representation (Σ,R,F ), with
F = {bc, ca}, that is contained in a region τ . Furthermore, in the boundary of τ , we
successively meet the ends of b,b, c, c,a. To obtain an S-representation of T , it is
sufficient to extend a, b, and c outside of τ so that c crosses a and b, as depicted in
Fig. 26.

Suppose now that T is a triangulation that contains at least one separating 3-cycle.
Consider a separating 3-cycle (a, b, c) such that there is no other separating 3-cycle
lying inside. This implies that the triangulation T ′ induced by the vertices on and
inside (a, b, c) is 4-connected.

Let T1 be the triangulation obtained by removing the vertices lying strictly inside
(a, b, c). Let T2 be the subgraph of T induced by the vertices lying strictly inside
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Fig. 27 In the S-representation
(Σ1,R1) of T1, the
(a, b, c)-region abc

Fig. 28 The cases (A) and (B)

(a, b, c) (i.e., T2 = T ′ \ {a, b, c}). In T1, the cycle (a, b, c) is a face of the triangu-
lation and is no more a separating 3-cycle. Thus, T1 has one separating cycle less
than T , and so we have by induction hypothesis that T1 admits an S-representation
(Σ1,R1). This S-representation contains a face-region abc corresponding to the face
abc. Without loss of generality, say that abc is an (a, b, c)-region, as depicted in
Fig. 27.

Since T ′ is a triangulation with at least four vertices, the neighbors of any vertex
v ∈ V (T ′) induce a cycle. Suppose that the vertex a (resp. b and c) has exactly one
neighbor v that lies inside (a, b, c). Then there exists a cycle (b, v, c) (resp. (a, v, c)

and (a, v, b)) in T ′, and consequently v is a neighbor of a, b, and c in T ′. Suppose
that there exists another vertex w in T ′, then w lies either inside the cycle (a, v, b),
inside (a, v, c), or inside (b, v, c), and then one of these cycles is a separating 3-
cycle. This is impossible by definition of (a, b, c). So we can distinguish two cases
(see Fig. 28), (A) the case where T2 is a single vertex, and (B) the case where each of
the vertices a, b, and c has at least two neighbors inside (a, b, c).

Case (A): T2 is a single vertex v To obtain an S-representation (Σ,R) of T (see
Fig. 29), we add a string v in (Σ1,R1). Since E(T )\E(T1) = {va, vb, vc}, this string
v crosses a,b, c. Moreover, we also define three disjoint face-regions acv,vbc,vab
that correspond respectively to the faces acv, vbc, vab.

Since (Σ1,R1) is an S-representation of T1 and since v,acv,vbc,vab are
drawn inside abc, it is clear that (Σ ∪ {v}, (R \ {abc}) ∪ {acv,vbc,vab}) is an S-
representation of T .

Case (B): Each of the vertices a, b, and c has at least two neighbors inside (a, b, c)

There exists a cycle (c, a1, . . . , ap, b) (resp. (a, b1, . . . , bq, c) and (b, c1, . . . , cr , a))
in T ′ whose vertices are exactly the neighbors of a (resp. b and c). We already know
that p > 1, q > 1, and r > 1 and that ap = b1, bq = c1, and cr = a1. Moreover, since
b1 and c (resp. c1 and a, and a1 and b) are the only two common neighbors of a and
b (resp. b and c, and a and c) in T ′ (otherwise there would be a separating 3-cycle),
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Fig. 29 Case (A):
Modifications inside abc

Fig. 30 Case (B):
Modifications inside abc

we have that (a1, . . . , ap = b1, . . . , bq = c1, . . . , cr = a1) is a cycle. This implies by
Lemma 2 that T2 is a W-triangulation.

Suppose that there exists an edge aiaj (resp. bibj , cicj ) with 1 < i + 1 < j ≤
p (resp. 1 < i + 1 < j ≤ q , 1 < i + 1 < j ≤ r). Then, the cycle (a, ai, aj ) (resp.
(b, bi, bj ), (c, ci, cj )) would be a separating 3-cycle of T ′. Consequently, T2 is 3-
bounded by (a1, . . . , ap)–(b1, . . . , bq)–(c1, . . . , cr ). With respect to this 3-boundary,
T2 has an anticlockwise PS-representation (Σ2,R2,F2) with F2 = Eo \ {a1a2} (cf.
Property 1). Let τ2 be a region of abc containing this representation.

Since abc is an (a, b, c)-region, on its boundary we successively cross a,a,b,b, c,
a, and c when going anticlockwise (by doing an axial symmetry if necessary).

In Fig. 30, starting from (Σ1,R1) and (Σ2,R2), we obtain (Σ,R). We extend the
strings a2, . . . ,ap,b1, . . . ,bq, c1, . . . , cr to obtain the crossings that correspond to the
edges in the set E(T )\(E(T1)∪(E(T2)\F2)) = {aai | i ∈ [1,p]}∪{bbi | i ∈ [1, q]}∪
{cci | i ∈ [1, r]} ∪ {aiai+1 | i ∈ [2,p − 1]} ∪ {bibi+1 | i ∈ [1, q − 1]} ∪ {cici+1 | i ∈
[1, r − 1]}. We also define face-regions for the faces in the set {abb1, aca1, bcc1} ∪
{aaiai+1 | i ∈ [1,p − 1]} ∪ {bbibi+1 | i ∈ [1, q − 1]} ∪ {ccici+1 | i ∈ [1, r − 1]}.

Since (Σ1,R1) is an S-representation of T1 and (Σ2,R2,F2) is a PS-representation
of T2, (Σ,R,F ) is an S-representation of T .

• Σ is a 1-string representation of T : Indeed, we added all the crossings correspond-
ing to the edges in E(T ) \ (E(T1) ∪ (E(T2) \ F2)).
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• (Σ,R) is “strong”: Indeed, we added all the face-regions corresponding to the
inner-faces of T that are neither in T1 nor in T2.

Consequently, every triangulation admits an S-representation, which proves The-
orem 3 and then Theorem 2. �

5 Conclusion

The first and the second author recently improved the result presented in this article
by proving Conjecture 1 [2]. For this, they use the same decomposition of triangula-
tion, but their notion of face-region is quite different. One should also mention that
their construction does not correspond to a stretching of the 1-string representation
presented here.

Finally, an interesting question is whether the result presented here holds for other
surfaces. For example, does any graph embedded on a surface S have a 1-string rep-
resentation on S ?
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Abstract
The x-intersection graphs are the graphs that have a
representation as intersection graphs of axis-parallel x
shapes in the plane. A subfamily of these graphs are
{x, |,−}-contact graphs which are the contact graphs of
axis parallel x, |, and − shapes in the plane. We prove
here two results that were conjectured by Chaplick and
Ueckerdt in 2013. We show that planar graphs are x-
intersection graphs, and that triangle-free planar graphs
are {x, |,−}-contact graphs. These results are obtained
by a new and simple decomposition technique for 4-
connected triangulations. Our results also provide a
much simpler proof of the known fact that planar graphs
are segment intersection graphs.

1 Introduction
The representation of graphs by contact or intersection
of predefined shapes in the plane is a broad subject of
research since the work of Koebe on the representation
of planar graphs by contacts of circles [28]. In particular,
the class of planar graphs has been widely studied in this
context.

Given a shape1 X, an X-intersection representa-
tion is a collection of X-shaped geometrical objects in
the plane. The X-intersection graph described by such
a representation has one vertex per geometrical object,
and two vertices are adjacent if and only if the corre-
sponding objects intersect. In the case where the shape
X defines objects that are homeomorphic to a segment
(resp. to a disc), an X-contact representation is an X-
intersection representation such that if an intersection
occurs between two objects, then it occurs at a single
point that is the endpoint of one of them (resp. it oc-
curs on their boundary). We say that a graph G is an
X-contact graph if it is the X-intersection graph of an
X-contact representation.

The case of shapes homeomorphic to discs has

∗This research is partially supported by the ANR GATO,
under contract ANR-16-CE40-0009.

1We do not provide a formal definition of shape, but a shape
characterizes a family of connected geometric objects in the plane.

been widely studied; see for example the literature for
triangles [19, 23], homothetic triangles [25, 35], axis
parallel rectangles [36], squares [26, 33], hexagons [22],
convex bodies [34], or axis aligned polygons [2]. Here,
we focus on intersection and contact representations
of planar graphs with objects that are homeomorphic
to a segment. The more general representations of
this type are the intersection or contact representation
with curves. those are called string representations.
It is known that every planar graph has a string-
intersection representation [28]. However, if one forbids
tangent curves, this representation may contain pairs
of curves that cross several times. One may thus
take an additional parameter into account, namely
the maximal number of crossings of any two of the
curves: a 1-string representation of a graph is a string
representation where every two curves intersect at most
once. The question of finding a 1-string representation
of planar graphs has been solved by Chalopin et al. in
the positive [11], and additional parameters are now
studied, like order-preserving representations [8].

Segment intersection graphs are in turn a special-
ization of the class of 1-string graphs. It is known that
bipartite planar graphs are {|,−}-contact graphs [4, 18]
(i.e., segment contact graphs with vertical or horizontal
segments). De Castro et al. [16] showed that triangle-
free planar graphs are segment contact graphs with
only three different slopes. De Fraysseix and Ossona
de Mendez [17] then proved that a larger class of pla-
nar graphs are segment intersection graphs. Finally,
Chalopin and the first author extended this result to
general planar graphs [10], which was conjectured by
Scheinerman in his PhD thesis [32].

A graph is said to be a VPG-graph (Vertex-Path-
Grid) if it has a contact or intersection representation in
which each vertex is assigned to a path of vertical and
horizontal segments (see [1, 15]). Asinowski et al. [3]
showed that the class of VPG-graphs is equivalent to the
class of graphs admitting a string-representation. They
also defined the class Bk-VPG, which contains all VPG-
graphs for which each vertex is represented by a path
with at most k bends (see [20] for the determination of
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the value of k for some classes of graphs). It is known
that Bk-VPG ( Bk+1-VPG, and that the recognition
of graphs of Bk-VPG is an NP-complete problem [12].
These classes have interesting algorithmic properties
(see [29] for approximation algorithms for independence
and domination problems in B1-VPG graphs), but most
of the literature studies their combinatorial properties.

Chaplick and Ueckerdt [14] proved that planar
graphs are B2-VPG graphs. This result was recently
improved by Biedl and Derka [6], as they showed that
planar graphs have a 1-string B2-VPG representation.

Various classes of graphs have been shown to have 1-
string B1-VPG representations, such as planar partial 3-
trees [5] and Halin graphs [21]. In these representations,
each vertex is assigned to a path formed by at most one
horizontal and one vertical segment. There are different
types of such paths. For example, the x shape defines
paths where the vertical segment is above and to the left
of the horizontal one. Interestingly, it has been shown
that the class of segment contact graphs is equivalent to
the one of B1-VPG contact graphs [27]. This implies in
particular that triangle-free planar graphs are B1-VPG
contact graphs. This has been improved by Chaplick et
al. [14] as they showed that triangle-free planar graphs
are in fact {x, p, |,−}-contact graphs (that is without
using the shapes y and q). In the following, we will
always precise when | or − shapes are allowed. This
is specially important as for example some {x, |,−}-
contact graphs like the octaedron are not x-contact
graphs.

The restriction of B1-VPG to x-intersection or x-
contact graphs has been much studied (see for example
[20]) and it has been shown that they are in relation with
other structures such as Schnyder realizers, canonical
orders or edge labelings [13]. The same authors also
proved that the recognition of x-contact graphs can be
done in quadratic time, and that this class is equivalent
to the one restricted to equilateral x shapes. The
x-contact graphs where the corners lie on a straight
line are called monotone or linear x-contact graphs.
Those graphs have been recently studied further, in
particular in relation with MPT (Max-Point Tolerance)
graphs [9, 31].

Our contributions The two main results of this
paper are the following:

Theorem 1.1. Every triangle-free planar graph is an
{x, |,−}-contact graph.

Theorem 1.2. Every planar graph is an x-intersection
graph.

Both results were conjectured in [14]2. In both
cases, one cannot restrict the representation to | and
− shaped paths. Indeed, any {|,−}-intersection repre-
sentation of a triangle-free planar graph can be turned
into a {|,−}-contact representation, and any such rep-
resentation defines a vertex partition of the graph into
two forests of paths (one induced by the vertical paths
and the other induced by the horizontal ones), but such
partition is not always possible [37].

As a string contact graph (and thus a {x, |,−}-
contact graph) with n vertices has at most 2n edges and
as a triangle-free planar graph may have up to 2n − 4
edges, Theorem 1.1 cannot be extended to much denser
graphs. However, for planar Laman graphs (a large
family of planar graphs with at most 2n − 3 edges and
which are B1-VPG graphs [20]), the question of whether
these graphs have a {x, |,−}-contact representation is
open, up to our knowledge. The question whether
triangle-free planar graphs are {x, |}-contact graphs is
also open. Theorem 1.2 implies that planar graphs
are in (1-string) B1-VPG, improving the results of
Biedl and Derka [6] stating that planar graphs are
in (1-string) B2-VPG. Since an {x, p, |,−}-intersection
representation can be turned into a segment intersection
representation [30], this also directly provides a rather
simple proof of the fact that planar graphs are segment
intersection graphs [10].

The common ingredient of our results is what we
call 2-sided near-triangulations. In Section 2, we present
the 2-sided near-triangulations, allowing us to provide a
new decomposition of planar 4-connected triangulations
(see [7] and [38] for other decompositions of 4-connected
triangulations). This decomposition is simpler than the
one provided by Whitney [38] that is used in [10]. In
Section 3, we define thick x-contact representations (i.e.,
x-contact representations in which the x are thick) with
specific properties. We then show that every 2-sided
near-triangulation admits such a representation. This
result is used in Section 4 to prove Theorem 1.1. Then
in Section 5 we use 2-sided near-triangulations to prove
Theorem 1.2.

2 2-sided near-triangulations
In this paper we consider plane graphs with neither
loops nor multiple edges. The infinite face is called
the outer face, while the other faces are called inner
faces. A near-triangulation is a plane graph such that
every inner face is triangular. In a plane graph G,
a chord is an edge not bounding the outer face but

2In fact, Theorem 1.1 has been proven in the master thesis
(written in German) of B. Kappelle in 2015 [24] but never
published.
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that links two vertices of the outer face. A separating
triangle of G is a cycle of length three such that both
regions delimited by this cycle (the inner and the outer
region) contain some vertices. It is well known that a
triangulation is 4-connected if and only if it contains
no separating triangle. Given a vertex v on the outer
face, the inner neighbors of v are the neighbors of v
that are not on the outer face. We define here 2-sided
near-triangulations (see Figure 1) whose structure will
be useful in the inductions of the proofs of Theorem 1.2
and Theorem 3.1.

Definition 2.1. A 2-sided near-triangulation is a 2-
connected near-triangulation T without separating tri-
angles, such that going clockwise on its outer face,
the vertices are denoted a1, a2, . . . , ap, bq, . . . , b2, b1, with
p ≥ 1 and q ≥ 1, and such that there is neither a chord
aiaj nor bibj (that is an edge aiaj or bibj such that
|i− j| > 1).

Remark that 4-connected triangulations being the
triangulations without separating triangles, 4-connected
triangulations are 2-sided near-triangulations.

a1
b1

a2

a3

b2

b3

x

Figure 1: Example of a 2-sided near-triangulation.

The structure of the 2-sided near-triangulations
allows us to describe the following decomposition:

Lemma 2.1. Given a 2-sided near-triangulation T with
at least 4 vertices, one can always perform one of the
following operations:

• (ap-removal) This operation applies if p > 1, ap
has no neighbor bi with i < q, and none of the
inner neighbors of ap has a neighbor bi with i < q.
This operation consists in removing ap from T , and
in denoting bq+1, . . . , bq+r the new vertices on the
outer face in anti-clockwise order, if any. This
yields a 2-sided near-triangulation T ′ (see Figure
2a).

• (bq-removal) This operation applies if q > 1, bq
has no neighbor ai with i < p, and none of the

b1

b2

bq
ap

bq+r

ap−1

bq−1

a2

a1

T ′

(a)
b1

bq

ap

ap−1

bq−1

a1

T ′
bj

ai

Tb
Ta

d

(b)

Figure 2: Illustrations of (a) the ap-removal operation
and (b) the cutting operation.

inner neighbors of bq has a neighbor ai with i < p.
This operation consists in removing bq from T , and
in denoting ap+1, . . . , ap+r the new vertices on the
outer face in clockwise order, if any. This yields
a 2-sided near-triangulation T ′. This operation is
strictly symmetric to the previous one.

• (cutting) This operation applies if p > 1, q > 1
and the unique common neighbor of ap and bq,
denoted d, has a neighbor ai with i < p, and a
neighbor bj with j < q. This operation consists in
cutting T into three 2-sided near-triangulations T ′,
Ta and Tb (see Figure 2b):

– T ′ is the 2-sided near-triangulation con-
tained in the cycle formed by vertices
(a1, . . . , ai, d, bj , . . . , b1), and the vertex d is
renamed ai+1.

– Ta (resp. Tb) is the 2-sided near-triangulation
contained in the cycle (ai, . . . , ap, d) (resp.
(d, bq, . . . , bj)), where the vertex d is denoted
b1 (resp. a1).
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Proof. Suppose that ap has no neighbor bi with i < q
and none of the inner neighbors of ap has a neighbor
bi with i < q. We denote bq+1, . . . , bq+r the inner
neighbors of ap in anti-clockwise order such that bj is
connected to bj+1 for every q ≤ j ≤ r. Let T ′ be the
graph obtained by removing ap and its incident edges
from T . It is clear that T ′ is a near-triangulation,
and that it has no separating triangle (otherwise T
would have one too). Furthermore, as there is no chord
incident to ap, and as T ′ has at least three vertices
its outer face is bounded by a cycle, and T ′ is thus
2-connected. As T is a 2-sided near-triangulation, T ′
has no chord aiaj , with i, j < p, or bibj with i, j ≤ q.
From our assumption, the inner neighbors of ap have
no neighbors bk with k < q, thus there is no chord bibj
with i ≤ q and q < j. Finally, we claim that there is no
chord bibj in T ′ with q ≤ i < j. Supposing otherwise
would mean that the vertices ap, bi, and bj would form
a triangle with at least one vertex inside, bi+1, and at
least one vertex outside, ap−1: it would be a separating
triangle, a contradiction. Therefore T ′ is a 2-sided near-
triangulation.

The proof for the bq-removal operation is analogous
to the previous case.

Suppose that we are not in the first case nor in the
second one. Let us first show that p > 1 and q > 1.
Assume by contradiction that p = 1. Then as T is 2-
connected, it has at least three vertices on the outer face
and q ≥ 2. In such a case one can always perform the
bq-removal operation, a contradiction.

Let us now show that ap is not adjacent to a vertex
bi with i < q. Assume by contradiction that ap is
adjacent to a vertex bi with i < q. Then by planarity,
bq (with q > 1) has no neighbor ai with i < p, and has
no inner neighbor adjacent to a vertex ai with i < p.
In such a case one can always perform the bq-removal
operation, a contradiction. Symmetrically, we deduce
that bq is not adjacent to a vertex ai with i < p.

Vertices ap and bq have one common neighbor d
such that dapbq is an inner face. Note that as there is
no chord incident to ap or bq, then d is not on the outer
face. Since the outer face is not triangular, they have
no other common neighbor y, otherwise there would
be a separating triangle yapbq (separating d from both
vertices a1 and b1).

As we are not in the first case nor in the second
case, we have that ap (resp. bq) has (at least) one inner
neighbor adjacent to a vertex bi with i < q (resp. ai
with i < p). By planarity, d is the only inner neighbor
of ap (resp. bq) adjacent to a vertex bi with i < q (resp.
ai with i < p). We can thus apply the cutting operation.

We now show that T ′, Ta and Tb are 2-sided near-
triangulations. Consider first T ′. It is clear that it

is a near-triangulation without separating triangles. It
remains to show that there are no chords aiaj or bibj .
By definition of T ′, the only chord possible would have
d = ai+1 as an endpoint, but the existence of an edge
dak with k < i would contradict the minimality of i.
Thus T ′ is a 2-sided near-triangulation.

By definition, Ta is also a near-triangulation con-
taining no separating triangles. Moreover, there is no
chord akal with i ≤ k ≤ l−2 as there are no such chords
in T . Therefore Ta is a 2-sided near-triangulation. Sim-
ilarly, Tb is also a 2-sided near-triangulation. �

3 Thick x-contact representation
A thick x is an x shape where the two segments are
turned into thick rectangles (see Figure 3). Here we do
not allow thick | or −, so going clockwise around a thick
x from the bottom-right corner, we call its sides bottom,
left, top, vertical interior, horizontal interior, and right.
We draw them in the integer grid, that is such that
their bend points have integer coordinates, and we ask
the two rectangles to be of thickness one, and of length
at least two. A thick x is described by four coordinates
a, b, c, d such that a+1 < b and c+1 < d. It is thus the
union of two boxes: ([a, a+1]×[c, d])∪([a, b]×[c, c+1]). If
not specified, the corner of a thick x denotes its bottom-
left corner (with coordinates (a, c)).

d

c

a b

c+ 1

a+ 1

Figure 3: A thick x.

Definition 3.1. A convenient thick x-contact repre-
sentation (CTLCR) is a contact representation of thick
x (which implies that the thick x interiors are disjoint)
with the following properties:

• Two thick x intersect either on exactly one segment
or on a point (Figure 5 lists the allowed ways two
thick x can intersect). If the intersection is a
segment, then it must be exactly one side of a thick
x. If the intersection is a point, then it is the bottom
right corner of one thick x and the top left corner
of the other one.

• If the bottom (resp. left) side of a thick x x is
contained in the horizontal (resp. vertical) interior
side of a thick x y, then the bottom (resp. left)
side of y is not contained in the horizontal (resp.
vertical) interior side of a thick x z (see Figure 4).
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z
y x

Figure 4: Forbidden configuration in a CTLCR.

Figure 5: Allowed intersections in a CTLCR. From left
to right and top to bottom: the intersection is the top,
right, bottom, left side of a thick x, and the intersection
is a point at the bottom right corner of a thick x and at
the top left corner of a thick x.

Remark that in a CTLCR the removal of any thick
x still leads to a CTLCR. We now show that every 2-
sided near-triangulation has a CTLCR (see Figure 7 for
an illustration).

Theorem 3.1. Every 2-sided near-triangulation T has
a CTLCR with the following properties, for some inte-
gers X and Y :

• Every corner of a thick x is included in the non-
positive quadrant {(x, y) : x ≤ 0, y ≤ 0}.
• The thick x of a1 has the bottom-most corner and
has coordinates (0,−Y ). Every vertex ai is repre-
sented by a thick x whose corner has coordinates
(x,−Y ) with 2 − X ≤ x < 0. Furthermore their
horizontal interior side does not contain any other
side.

• The thick x of b1 has the left-most corner and has
coordinates (−X, 0). Every vertex bi is represented
by a thick x whose corner has coordinates (−X, y)
with 2 − Y ≤ y < 0. Furthermore their vertical
interior side does not contain any other side.

• Y +X ≤ 3n− 3, where n is the number of vertices
in T

Proof. We proceed by induction on the number of
vertices. The theorem clearly holds for the 2-sided near-
triangulation with three vertices. Let T be a 2-sided

b1

b2

bq−1

bq

ap ap−1 a2 a1

(0, 0)
(−X, 0)

(0,−Y )

Figure 6: Typical CTLCR obtained from Theorem 3.1.

b1

b2

b3

d

a1a2a3

Figure 7: One of the CTLCR of the near-triangulation
from Figure 1.

near-triangulation; it can thus be decomposed using one
of the three operations described in Lemma 2.1. We go
through the three operations successively.

(ap-removal) Let T ′ be the 2-sided near-
triangulation resulting from an ap-removal operation on
T . By the induction hypothesis, T ′ has a CTLCR with
the required properties for parameters X ′ and Y ′ (see
Figure 9a). We can now modify this CTLCR slightly
in order to obtain a CTLCR of T (thus adding a thick
x corresponding to vertex ap). Move the corners of the
thick x corresponding to vertices b1, . . . , bq three units
to the left. Since their vertical interior side do not con-
tain any other side, one can do this without modifying
the rest of the representation. Then one can add the
thick x of ap such that it touches the thick x of vertices
bq and ap−1 (as depicted in Figure 9b). One can easily
check that the obtained representation is a CTLCR of
T and satisfies all the requirements. Note in particular
that in this case the vertical interior side of ap can con-
tain some sides, the left sides of bq+1, . . . , bq+r, but in
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the induction these thick x are such that their vertical
interior side do not contain any other side, so we avoid
the configuration depicted in Figure 4.

(bq-removal) This case is symmetric to the previ-
ous one.

(cutting) Let T ′, Ta and Tb be the three 2-sided
near-triangulations resulting from the cutting operation
described in Lemma 2.1. By induction hypothesis, each
of them has a CTLCR satisfying the requirements of
Theorem 3.1, with parameters X ′, Y ′, Xa, Ya, Xb, and
Yb respectively. We are going to modify the CTLCR of
T ′ in order to include the ones of Ta and Tb, as they are
given by the induction (see Figure 8).

Given the CTLCR of T ′, move the corners of the
thick x corresponding to vertices b1, . . . , bj by at most
(Xb − 2) units to the left, so that the x-coordinates of
the corners of bj and d = ai+1 differ by exactly Xb.
Move the corner of d = ai+1 downward by at most
Yb − 2 units, so that the y-coordinates of the corners
of bi and d = ai+1 differ by exactly Yb. As these y-
coordinate originally already differ by at least 2, this
move is of at most (Yb − 2) units. Move the corners
of a1, . . . , ai by at most (Yb − 2) + Ya units downward,
so that the y-coordinates of the corners of d = ai+1

and ai differ by exactly Ya. Again, since these thick
x have their vertical or horizontal interior sides that
do not contain any other side, one can do this without
modifying the rest of the representation. Now one has
to modify the representation in order to prolong the
horizontal part of the thick x of d = ai+1 so that its
bottom side reaches length Xa. This can be done by
cutting the CTLCR along a vertical line ` that crosses
the thick x of d = ai+1, by moving the left part at most
(Xa−2) units to the left (as this side has already length
at least 2), and for any thick x of the left side touching
` by prolonging its horizontal part to the right, until
reaching the right part of the CTLCR. Now the corners
of the thick x ’s of bj , d = ai+1 and ai are well placed so
that one can add the CTLCR of Ta below the thick x of
d and the one of Tb on its left (see Figure 8). One can
easily check that the obtained representation satisfies
all the requirements.

Let us now check that these operations preserve the
fact that Y + X ≤ 3n − 3. Indeed, for the ap-removal
Y = Y ′ and X = X ′ + 3 while T has one more vertex
than T ′. The case of bq-removal is identical. For the
cutting operation, we have that X ≤ Xa +Xb +X ′ − 4
and that Y ≤ Ya+Yb+Y ′−2. Thus Y +X ≤ (Ya+Xa)+
(Yb+Xb)+(Y ′+X ′)−6 ≤ 3n−3×3+4×3−6 ≤ 3n−3
because d is counted twice too much and bj and ai are
counted both one time too much. �

Note that the last item of the theorem implies that
such a CTLCR fits into a grid of width W and height

H with W +H ≤ 3n + 1. Actually, allowing two thick
x shapes to intersect on two segments (that is, allowing
the corner of any thick x x to be at the intersection
of the vertical and horizontal interior sides of another
thick x y), one can reach W + H ≤ 2n + 3. It is not
clear whether allowing thick | or − would decrease this
bound much further.

Similar representations with axis aligned polygons
have been studied in the literature. For example,
the problem of representing a planar graph G with
such contact representations where the area of each
polygon is prescribed by some weight function w(v),
defined on V (G), has various applications. It has
been shown [2] that finding such a representation is
always possible for Hamiltonian triangulations even if
restricting to thick [, x, p, or | shaped polygons, where
the thickness of each part is not necessarily one. In the
same paper the authors also consider this problem for 4-
connected triangulations when restricting to thick x, p,
or | shaped polygons (in relation with the so-called one-
legged Hamiltonian cycles), but this remains open. We
wonder whether our approach (through 2-sided near-
triangulations) could lead to a positive answer, but
the {x, |,−}-contact representations described in the
following section lead to a representation with thick x, |
, and − shaped polygons for triangle-free planar graphs
(leaving some holes in the representation).

4 {x, |,−}-contact representations for
triangle-free planar graphs

We can now use the CTLCR to prove Theorem 1.1. Re-
call that a {x, |,−}-contact representation is a contact
representation with some x, some vertical segments |,
and some horizontal segments −, such that if an inter-
section occurs between two of these objects, then the
intersection is an endpoint of one of the two objects.
We need the following lemma as a tool (it is proved in
appendix).

Lemma 4.1. For any plane triangle-free graph G, there
exists a 4-connected triangulation T containing G as an
induced subgraph.

We can now prove Theorem 1.1, which asserts that
every triangle-free planar graph has an {x, |,−}-contact
representation.

Proof. [Proof of Theorem 1.1] Consider a triangle-free
planar graph G. According to Lemma 4.1, there exists a
4-connected triangulation T containing G as an induced
subgraph. Denoting a1, b2, b1 the three exterior vertices
of T in clockwise order, one sees that T is a 2-sided
near-triangulation. By Theorem 3.1, T has a CTLCR

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited177

D
ow

nl
oa

de
d 

03
/3

0/
18

 to
 1

93
.4

9.
10

6.
14

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

268



b1

b2

bj−1

bj

bj+1

bq−1

bq

ap ap−1 ai+1 ai a2 a1

bj

bj+1

bq−1

bq

ap ap−1 ai+1 ai

b1

b2

bj−1

bj

ai a2 a1

d
d

d

d

T T ′

Tb

Ta

Figure 8: The (cutting) operation for a CTLCR.

b1

bq

bq+1

bq+r

b2

a1a2ap−1

(a) CTLCR of T ′

b1

bq

bq+1

bq+r

b2

a1a2ap−1ap

(b) CTLCR of T

Figure 9: The (ap-removal) operation for a CTLCR.
Here, the grey region contains the corners of the inner
vertices.

and removing every thick x corresponding to a vertex of
T \G leads to a CTLCR of G.

If a thick x x has its bottom side included in the
horizontal interior side of another thick x y, then x does
not contain any other side on its horizontal interior side.
Furthermore, x does not intersect anyone on its right
side nor on its bottom right corner. Indeed, if there
was such an intersection with a thick x z, then y and
z would also intersect, contradicting the fact that G is
triangle-free (see Figure 10). One can thus replace the
thick x of x by a thick |.

Similarly, if a thick x x has its left side included in
the vertical interior side of a thick x y, we can replace
the thick x of x by a thick −.

Note that now the intersections are on segments of
length 1, or on a point, between the bottom right corner

z z

z
y y yx x x

Figure 10: If a thick x x has its bottom side included
in the horizontal interior of a thick x y, then x has no
intersection with a thick x z on its right side and on its
bottom right corner.

of a thick x or −, and the top left corner of a thick x or
|. Then, we replace each thick x, |, and − by thin ones
as depicted in Figure 11. It is clear that we obtain a
{x, |,−}-contact representation whose contact graph is
G. This concludes the proof. �

An example of the process is shown in Figure 12. Note
that any {x, |,−}-contact representation with n paths
fits into a grid of width and height at most n. Indeed,
any horizontal (resp. vertical) line of the grid that does
not contain any of the nh horizontal (resp. nv vertical)
subpaths, nor contain any contact point between two
vertical (resp. horizontal) subpaths can be deleted. As
the number of contact points between two vertical (resp.
horizontal) subpaths where the path on top (resp. on
the right) is | shaped (resp. − shaped) is at most n−nh

(resp. n − nv), we end up with at most n horizontal
(resp. vertical) lines. It is open to know whether this
bound can be improved. Let Gt be the (bipartite)
planar graph obtained by taking t cubes C1, . . . , Ct and
gluing Ci and Ci+1 on a square, for all 1 ≤ i < t,
such that Ci and Ci+2 remain vertex disjoint, for all
1 ≤ i < t − 1. We believe that for this graph, with
n = 4t+ 4 vertices, any {x, |,−}-contact representation
requires a grid of width and height at least n/2.
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1/2
1/2

1/2

1/2

1/2 1/2

Figure 11: Replacing thick x, |, and − by thin ones.

Figure 12: Given a CTLCR of a triangle-free graph G,
we first replace some thick x by thick | and thick −, and
then replace every thick shape by a thin one according
to Figure 11.

5 The x-intersection representations
An x-intersection representation of a graph G is a
representation of G such that vertices are represented
by x-shaped paths in a grid, that intersect if and only
if the vertices are adjacent in G. Using Theorem 3.1,
one can prove that every 4-connected triangulation has
such a representation. To allow us to work on every
triangulation (not only the 4-connected ones) we need to
enrich our x-intersection representations with the notion
of anchor3.

There are two types of anchors (see Figure 13).
A horizontal anchor is a set ([x1, x3] × y1) ∪ (x1 ×
[y1, y2]) ∪ (x2 × [y1, y2]) where x1 < x2 < x3 and
y1 < y2. The middle corner of such a horizontal
anchor is the point (x2, y1). A vertical anchor is a set
(x1 × [y1, y3]) ∪ ([x1, x2] × y1) ∪ ([x1, x2] × y2) where
x1 < x2 and y1 < y2 < y3. The middle corner of such
a vertical anchor is the point (x1, y2). In addition to
middle corners, every anchor has a main corner which
is the point of coordinate (x1, y1) for both types of
anchors. An anchor can thus be seen as a union of three
segments, or as the union of two x paths.

Consider a near-triangulation T , and any inner face
abc of T . Note that if the x paths of a, b and c do
not intersect at a common point or segment, then their
horizontal (resp. vertical) subpaths lie on three different
lines. They thus form a rectangle whose top side belongs
to the x path with the up-most corner, whose right side
belongs to the x path with the right-most corner, and

3The notion was introduced in [20] under the name of private
region.

x1 x2 x3

y1

y2

(a) An horizontal an-
chor.

y2

y1

y3

x1 x2

(b) A vertical anchor.

Figure 13: The two types of anchors (horizontal and
vertical).

whose other sides belong to the third x path. Given
an x-intersection representation of T , an anchor for abc
is an anchor intersecting the x paths of a, b and c and
no other path, and such that the middle corner is in
the rectangle described by a, b and c as depicted in
Figure 14.

a

b

c

a

b

c

Figure 14: The two possible anchors for the x paths
corresponding to a triangle abc.

Definition 5.1. A full x-intersection representation
(FLIR) of a near-triangulation T is an x-intersection
representation of T together with a set of pairwise
disjoint anchors, one for each inner face of T .

a

c

b
d

a

b

c

d

Figure 15: Example of a triangulation and a correspond-
ing FLIR (the anchors are drawn in gray).

Let us now prove that every 2-sided near-
triangulation admits an FLIR.

Proposition 5.1. Every 2-sided near-triangulation
has an FLIR such that among the corners of the x paths
and of the anchors:
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• from left to right, the first corners are those of
vertices b1, b2, . . . bq and the last one is the corner
of vertex a1, and

• from bottom to top, the first corners are those of
vertices a1, a2, . . . ap and the last one is the corner
of vertex b1.

As the x of ai and ai+1 (resp. bi and bi+1) intersect,
the FLIR is rather constrained. This is illustrated in
Figure 16, where the grey region contains the corners of
the inner vertices, and the corners of the anchors.

b1

b2

b3

bq

ap
a3

a2
a1

b1

ap

a3
a2

a1

ap−1

b1

b2

b3

bq

a1

bq−1

Figure 16: Illustration of Proposition 5.1 when p > 1
and q > 1, when p > 1 and q = 1, and when p = 1 and
q > 1.

Proof. We proceed by induction on the number of
vertices.

The result clearly holds for the 2-sided near-
triangulation with three vertices, no matter if p = 1
and q = 2, or p = 2 and q = 1. Let T be a 2-sided near-
triangulation with at least four vertices. By Lemma 2.1
we consider one of the following operations on T :

(ap-removal) Consider the FLIR of T ′ obtained by
induction and see in Figure 17 how one can add an x
for ap and an anchor for each inner face apbjbj+1 with
q ≤ j < q+r and for the inner face apap−1bq+r. One can
easily check that the obtained representation verifies all
the requirements of Proposition 5.1.

(bq-removal) This case is symmetric to the previ-
ous one.

(cutting) Consider the FLIRs of T ′, Ta and Tb.
Figure 18 depicts how to combine them, and how to
add an anchor for dapbq, in order to get the FLIR of T .
One can easily check that the obtained representation
verifies all the requirements of Proposition 5.1. �

We now prove Theorem 1.2 which asserts that
every planar graph is a x-intersection graph. It is
well known that every planar graph is an induced
subgraph of some triangulation (see [11] for a proof
similar to the one of Lemma 4.1). Thus, given a
planar graph G, one can build a triangulation T for
which G is an induced subgraph. If one can create
an FLIR of T , then it remains to remove the x paths
corresponding to vertices of T \G along with the anchors
in order to get an x-intersection representation of G.
In order to prove Theorem 1.2, we thus only need to
show that every triangulation admits an FLIR. Namely,
proving the following proposition completes the proof of
Theorem 1.2.

Proposition 5.2. Every triangulation T with outer-
vertices x, y, z has an FLIR such that among the corners
of the x paths and of the anchors:

• the corner of x is the top-most and left-most,

• the corner of y is the second left-most, and

• the corner of z is the bottom-most and right-most.

Note that in this proposition there is no constraint
on x, y, z, so by renaming the outer vertices, other
FLIRs can be obtained.

Another way to obtain more FLIRs is by applying
a reflection with respect to a line of slope 1. In such an
FLIR (see Figure 19) among the corners of the x paths
and of the anchors:

• the corner of x is the bottom-most and right-most,

• the corner of y is the second bottom-most, and

• the corner of z is the top-most and left-most.

This reflection operation is used later in the proof of
Proposition 5.2.

Proof. We proceed by induction on the number of
vertices in T . Let T be a triangulation with outer
vertices x, y, z.

If T is 4-connected, then it is also a 2-sided near-
triangulation. By Proposition 5.1 and by renaming the
outer-vertices x to b1, y to b2 and z to a1, T has an
FLIR with the required properties.

If T is not 4-connected, then it has a separating
triangle formed by vertices a, b and c. We call Tin and
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b1

bq

bq+r

a2

b2

ap−1

ap−2

b2

b1

bq

bq+r

ap−1
ap−2

a2
a1a1

ap

Figure 17: The (ap-removal) operation.

b1

bj

bj−1

bq

bq−1

ai
ai−1

ap
ap−1

a1

bj

bq

bq−1

ai

ap
ap−1

b1

bj

bj−1

ai
ai−1

a1

dd

dd

d

T T ′Tb

Ta

Figure 18: The (cutting) operation.

x

y

z

z

x
y

Figure 19: Illustration of Proposition 5.2, and the FLIR
obtained after reflection with respect to a line of slope
1.

Tout the triangulations obtained from T by removing
the vertices outside and inside abc respectively.

By the induction hypothesis, Tout has an FLIR
verifying Proposition 5.2 (considering the outer vertices
to be x, y, z in the same order as in T ). Without loss of
generality we can suppose that the x paths of a, b and
c appear in the following order: the top-most and left-
most is b, the second left-most is c and the bottom-most
is a. There are two cases according to the type of the
anchor of the inner face abc.

If the anchor of abc in the FLIR of Tout is vertical
(see Figure 20a), then applying the induction hypothesis
on Tin with b, c, a as outer vertices considered in that
order, Tin has an FLIR as depicted on the Figure 20b.
Figure 20c depicts how to include the FLIR of Tin \
{a, b, c} in the close neighborhood of the anchor of abc.
As abc is not a face of T , the close neighborhood of its
anchor is indeed available for this operation.
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b

c

a

a

Tout

(a) The vertical anchor
of abc in the FLIR of
Tout

b

c

a

Tin

(b) The FLIR of Tin

b

c

a

a

Tin

Tout

(c) The inclusion of the FLIR of
Tin in the FLIR of Tout

Figure 20: FLIR inclusion in the case of a vertical
anchor

Now suppose that the anchor of abc in the FLIR
of Tout is horizontal (see Figure 21a). By application
of the induction hypothesis on Tin with a, c, b as outer
vertices considered in that order, then Tin has an FLIR
as depicted on the Figure 21b. By a reflection of slope
1, Tin has an FLIR such that b is the top-most and left-
most, c is the second left-most and a is bottom-most (see
Figure 21c). Similarly to the previous case, we include
this last FLIR of Tin \ {a, b, c} in the one from Tout (see
Figure 21d).

As Tin and Tout cover T , and intersect only on
the triangle abc, and as every inner face of T is an
inner face in Tin or in Tout, these constructions clearly
verify Proposition 5.2. This concludes the proof of the
proposition. �

Note that as for {x, |,−}-contact representations
any x-intersection representation with n paths fits into
a grid of width and height at most n. Here also, it is
open to know whether this bound can be improved. We
believe that for the graph Gt described in the previous
section any x-intersection representation requires a grid
of width and height at least n/2.
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A From triangle-free planar graphs to
4-connected triangulations

We here prove Lemma 4.1.

Proof. The main idea of the construction of T is to
insert vertices and edges in every face of G (even for
the exterior face).

For the sake of clarity, vertices of G are called black
and vertices of T \ G are called red. The new graph T
contains G as an induced subgraph, along with other
vertices and edges. More precisely, for every face of G,
let P = {v0, e0, v1, e1, . . .} be the list of vertices and
edges along the face boundary (see Figure 22), where
ei is the edge between vertices vi and vi+1; there can
be repetitions of vertices or edges. For each face of
G, given the list P , the graph T contains a vertex v′i
for each vertex vi, a vertex e′i for each edge ei, and an
additionnal vertex t. Each vertex v′i is connected to e′i
and e′i+1 (with subscripts addition done modulo the size
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1 2

3
4

5

6 7

Figure 22: A planar triangle-free graph G (in black)
and a 4-connected near-triangulation containing it as
an induced subgraph (adding red vertices and edges).
The boundary lists of the two inner faces of G are re-
spectively {1, (1, 2), 2, (2, 3), 3, (3, 4), 4, (4, 7), 7, (7, 1)},
{1, (1, 7), 7, (7, 4), 4, (4, 5), 5, (5, 6), 6, (6, 5), 5, (5, 1)}
The outer face is {1, (1, 2), 2, (2, 3), 3, (3, 4), 4, (4, 5), 5, (5, 1)}.

of the face), each vertex vi is connected to v′i, e′i−1 and
e′i, and the vertex t is connected to all vertices v′i and
e′i (see Figures 22 and 23 for examples).

The new graph T is a triangulation, and we now
show that it is 4-connected, i.e., has no separating
triangle. Suppose that there is a separating triangle
in the new graph. There are four cases depending on
the colors of the edges of this triangle:

• The separating triangle contains three black edges.
It is impossible since G is triangle-free.

• The separating triangle contains exactly one red
edge. One of its endpoints must be a red vertex.
But a red vertex is incident to only red edges, a
contradiction.

• The separating triangle contains exactly two red
edges. Then their common endpoint is a red vertex,
and the triangle is made of two vertices vi and vi+1,
together with the vertex e′i. All these triangles are
faces, a contradiction.

• The separating triangle contains three red edges.
Since for each face, the red vertices (vertices v′i, e′i
and t) induce a wheel graph centered on t, with at
least 8 peripheral vertices (vertices v′i and e′i), this
separating triangle has at least one black vertex.
As two adjacent black vertices are linked by a black

edge, this separating triangle has exactly one black
vertex. As the two red vertices are two adjacent
v′i or e′j vertices, we have that those are v′i and e′j ,
for some i and for j = i or for j = i + 1. Such a
triangle is not separating, a contradiction.

This concludes the proof of the lemma. �

vi
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ei

ei+1
vi+2

ei+2

vi+3

v′i
e′i v′i+1
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v′i+3
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Figure 23: Zoom on the new connections.
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