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Abstract

The L(p, ¢)-labelling of graphs, is a graph theoretic framework introduced by Griggs
and Yeh (7) to model the channel assignement problem. In this paper we improve
the best known upper bound for the L(p, 1)-labelling of graphs with given maximum
degree. We show that for any integer p > 2, any graph GG with maximum degree A
admits an L(p, 1)-labelling such that the labels range from 0 to A% + (p — 1)A — 2.
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1 Introduction

Let G be a connected graph with maximum degree A. For a set of vertices
S C V(G), the graph G\S is the graph induced by V(G)\S. The distance
d(u,v) between two vertices u and v is the number of edges in the shortest
path from u to v. We say that v is a d-neighbor of u if d(u,v) = d. We generally
use the common term neighbor instead of 1-neighbor. Let N4(v) be the set of
d-neighbors of v. An L(ay, as, ..., ax)-labelling of a graph G is a function
[+ V(G) — [0, A] such that for any pair of vertices u and v if d(u,v) =d < k
then |l(u) — [(v)] > 4. The problem is to find an L(ay, as, ..., ag)-labelling
of G that minimizes A. We denote A\, a,...0,(G) the minimum value of A.
For a sequence of non-negative integers S = (aq, o, ..., ), we will use the
notation \g(G) instead of Ay, 4y 0, (G)-
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L(ay, ..., ar)-labellings arise from the channel assignement problem. The chan-
nel assignement problem is to assign a channel to each radio transmitter so
that close transmitters do not interfer and such that we use the minimum span
of frequency. Roberts proposed to assign channels such that “close” transmit-
ters receive different channels and “very close” transmitters receive channels
that are at least two channels apart. This is an L(2,1)-labelling of a graph
GG where the vertices are the transmitters, the “very close” transmitters are
adjacent vertices and the “close” transmitters are vertices at distance 2 in G.
Since the constraints between transmitters disminish with the distance, the
Loy, as, ..., a)-labelling of graph is interesting for this problem when the
sequence i, s, ...,q is decreasing. Many work has been done on 1.(2,1)-
labelling since the first paper of Griggs and Yeh (7). Many papers deal with
bounding A, », for some graph families (1; 4; 5; 8; 9; 11; 14; 15; 16) or given
some graph invariants such as x(G), w(G) or A (2; 3; 10; 12). In their paper
(7), Griggs and Yeh proved that Ay 1(G) < A?+2A and proposed the following
conjecture.

Conjecture 1 For any graph G with mazimum degree A > 2, Xy 1(G) < A%

Actually they proved it for A = 2 and for graphs of diameter at most 2. They
also proved that determining Ay ;(G) is NP-complete. The conjecture is still
open for A > 3 and for various families of graphs. In (9), Kang proved it for
Hamiltonian cubic graphs. The results in (1; 8; 14) prove the conjecture for
planar graphs with maximum degree A # 3.

In (2) the authors gave an algorithm for the 1.(2,1)-labelling and improved
the upper bound of Ay; to A% + A. In (3), with the same algorithm they
obtained that \,1(G) < A%+ (p — 1)A. Let o(S, A) be the function defined
for any sequence S = (ay, ..., ;) by 0(S,A) = X% | a; A(A—1)""1. With the
algorithm used in (2; 3), we can extend their result as follow:

Proposition 2 For any sequence of non-negative integers S = (aq, o, . . ., ),
with k > 1, and any graph G with mazimum degree A, we have that As(G) <
a(S,A).

This is not the best known bound. In (10), Kral and Skrekovski had a result
on the list channel assignement problem. As a corollary of their result we have
that:

Theorem 3 (Kral and Skrekovski) For any sequence of non-negative in-
tegers S = (aq,ag,...,ax), with k > 2 and oy > «ag, and any graph G with
mazximum. degree A > 3, we have that As(G) < o(S,A) — 1.

We slightly improved this bound for some specific sequences S.



Theorem 4 For any sequence S = (aq,...,aq) such that k > 2, ag > 2,
ar=1and 1 < a; < ay for 1 <i <k, and for any connected graph G with
mazimum degree A > 3, there is an ordering of the vertices, vy, v1,...,v, and
an L(aq, ..., ax)-labelling | of G such that:

(1) I(wo) <
(2) I(vy) <
(3) Ivy) <

o(S,A) -1,
o(S,A)—j for 1 <j <k, and
o(S,A) =k for k<j.

This implies that just a constant number of vertices, k£, may be labelled more
than o(S,A) — k. We have a stronger result for k = 2.

Theorem 5 For any sequence S = (p,1) with p > 2 and any graph G with
mazimum degree A > 3, we have that A\, 1(G) < o(S, A)—2 = A?+(p—1)A—2.

So, for the L(2,1)-labelling we obtain that A\y1(G) < A+ A —2 and we get a
little closer to Conjecture 1. To prove Theorem 4 and Theorem 5 we need the
following structural lemma.

Lemma 6 Fvery graph G with mazimum degree A > 3 has either:

(i) a vertex v with degree less than A,

(ii) a cycle of length three,

(111) two cycles of length four passing through the same vertex v,

(iv) a vertexr v with three neighbors u, x and y, such that there is a cycle of
length four passing through the edge uwv and such that the graph G\{z,y}
18 connected, or

(v) a vertex u with two adjacent vertices v and w such that the graph G\X
is connected, where X is the set (Ny(v) U Ny (u)) \{w}.

In Section 2, we extend the labelling algorithm presented in (2) and its analysis
implies Proposition 2. In Section 3, we slightly modify this algorithm and we
prove Theorem 4. In Section 4, we prove Theorem 5 using Lemma 6. Finally,
we prove Lemma 6 in Section 5.

2 The basic algorithm

The algorithm presented in (2) performs an L(2, 1)-labelling of a a graph G
with maximum degree A. The analysis of the algorithm gives the following
bound, Ay1(G) < A% + A. Here we present an extended version of this algo-
rithm that performs an L(ay, ..., ax)-labelling, for any sequence (o, ..., o).
The analysis of this algorithm establishes Proposition 2. Let vy, ..., v, be an
ordering of the vertices in V(G).



Algorithm 1
1=0;
WHILE there are unlabelled vertices DO
FOR v; = v, TO vy DO
IF v; is unlabelled AND v; can be labelled i THEN
Let v; be labelled i;
1=1+1;

In this algorithm a vertex v; “can be labelled 7" if it has no d-neighbor already
labelled z with ¢ —ay < & < i+ ay. Let us denote [(v) the label the algorithm
assigns to the vertex v.

Claim 7 The fact that a vertex v is not labelled i is not due to a d-neighbor
u whose label verifies 1 < l(u) < i+ ag.

Indeed, when the algorithm “proposed” v to be labelled 7, the vertex u was
still unlabelled (since I(u) > 7). So, a vertex u can only “forbid” its d-neighbor
v to be labelled I(u), [(u) +1,...,l(u) + ag — 1.

Claim 8 According to the order on the vertices used by the algorithm, let v,
and v, be two wvertices of G such that p < q. The fact that v, is not labelled
l(vy) is not due to v,.

Indeed, when the algorithm “proposed” v, to be labelled [(v,), the vertex v,
was still unlabelled (since p < q).

Definition 9 Denote F(u,v), the set of labels which have been forbiden by u
to v during the execution of the algorithm. Let F(v) = Uyev(e) F(u,v) be the
set of all the labels that have been forbiden to v.

By Claim 7 and Claim 8, we know the elements in F'(u,v).
Remark 10 Given two vertices v, and v, with d(v,,v,) = d, we have either:

- F(up,vg) =0, ifd >k, ag =0 orl(vy) <l(v,),

- F(vp,vg) = {l(vy) +1,....U(v,) +aqg — 1}, if d < k, g > 0, I(vg) > U(v})
and p < q, or

- F(up,vg) = {l(vy), l(v,) +1,...,l(vy) +ag— 1}, if d < k, ag > 0, I(vy) >
l(v,) and p > q.

This implies that |F'(v,, v,)] = 0 when d > k and that |F(v,, v,)| < aq either.
Claim 11 The set F(v) equals the interval [0, ..., l(v) — 1], so l(v) = |F(v)|.

Indeed, it is clear that (1) the algorithm labels a vertex v with the first value
not in F'(v) and that (2) hence v is labelled there is no more value forbiden
to v.



Finally, the set F'(v) being a union of possibly disjoint sets we have |F(v)| <
Yuevie) | F(u,v)]. In a graph of maximum degree A, one can easily see by
induction on 7 that there are at most A(A — 1)1 vertices in N;(v). Since for
any vertex u with d(u,v) = d we have |F(u,v)| < a4 (with oy = 0 for d > k),
we obtain that I(v) = |F(v)] < 2F , ey A(A — 1)L,

3 The improved algorithm and proof of Theorem 4

To improve the bound we have in Proposition 2, we have to be more carefull
on the order the algorithm considers the vertices. Indeed, according to the
second point of Remark 10, if for a given vertex v, there are x vertices v,
such that d(v,,v,) =d <k, ag > 0 and p < ¢, then |F(v,,v,)| < ag—1 and
l(vg) = [F(vg)] < Xevie [F(u,vy)] < o(S,A) — . It would be interesting if
the algorithm could use an order on the vertices, vy, ..., v,, such that many
vertices v, have some d-neighbors v, such that d(v,,v,) = d <k, ag > 0 and
p < q. Note that in any order the vertex vy has no such d-neighbors.

Definition 12 Given a tree T rooted in a verter r, a root-to-leaves order on
the vertices of T is an order vy, vy, ...,v, such that vg = r and such that for
any x € [0...n] the subgraph of T induced by {vo,v1,...,v,} is connected (i.e.
is a tree).

There are various possible root-to-leaves orders for a given tree. Note that in
a root-to-leaves order any vertex v € V(T') appears after its “ancestors” in T'.
The following lemma gives interesting properties of those orders.

Lemma 13 Given a connected graph G, consider any spanning tree T of G
rooted in any vertex r € V(G). Let vo, ..., v, be a root-to-leaves ordering of
the vertices in T'. For any integer t > 0, we have that :

(i) vo=1.
(ii) For any integers i and j such that i < j <t we have d(v;,v;) < t.
(iii) For any integer j such that j > t, there are at least t vertices v; such that
i <j and d(v;,v;) <t

PROOF. (i) holds by definition of root-to-leaves orders. Since the graph
Tvo,...,v—1], the subgraph of T" induced by the vertices vy, ..., v;_1, is a
tree with ¢ vertices, its diameter is at most ¢ — 1. So (ii) clearly holds. For (iii),
since the graph T'[vy, ..., v;] is a tree, we consider two cases. If all the vertices
are at distance at most ¢ from v; in this subtree, there are j vertices (from v,
to v;_1) at distance at most ¢ from v; and since j > ¢ (iii) holds. If there is
a vertex at distance ¢t + 1 from v; in this subtree, the ¢ vertices of the path



linking v; to this vertex are at distance at most ¢ from v;, so (iii) holds.

Given any spanning tree T of a connected graph G rooted in any vertex
r € V(G), let vy,...,v, be any root-to-leaves ordering of the vertices in 7.
Now assume that Algorithm 1 performs an L(aq, ..., ai)-labelling of G using
this order of the vertices. Lemma 13 (with ¢t = k) and Remark 10 imply that
the points (2) and (3) of Theorem 4 hold:

(2) For any vertex v; with 1 < j < k, there are j vertices v; (from vy to v;_1)
such that ¢ < j and d(v;,v;) < k. Since oy > 1 for all I < k, Remark 10
implies that the algorithm labels v; at most o(A,S) — j.

(3) For any vertex v; with j > k, there are k vertices v; such that ¢ < j
and d(v;,v;) < k. Since oy > 1 for all | < k, Remark 10 implies that the
algorithm labels v; at most o(A, S) — k.

We prove now that appropriately choosing 7', » and the root-to-leaves order,
the point (1) of Theorem 4 also holds. The following structural lemma is easily
deduced from Lemma 6 or from Lemma 1.15 in (13).

Lemma 14 FEvery graph G with mazimum degree A > 3 has either:

(a) a verter v with degree less than A,

(b) a cycle of length | < 4, or

(c) a vertex v with two neighbors x and y such that the graph G\{z,y} is
connected.

We consider three cases according to which case of Lemma 14 the graph G
corresponds.

Case (a): If there is a vertex of degree less than A, let the root r be this ver-
tex. Then, consider any spanning tree 7" of G and any root-to-leaves ordering
of T'. In this case, since there are at most A — 1 vertices in Ny (vg), |F(vo)] is
bounded by (S, A) — ;. Since oy > 2, we have that [(vg) < o(S,A) —2 and
(1) holds.

Case (b): If there is a cycle of length [ < 4, let the root r be any vertex
of this cycle. Then, consider any spanning tree T of G and any root-to-leaves
ordering of 7. In this case, since there are at most A(A — 1) — 1 vertices
in Ny(vg), |F(vo)| is bounded by o(S,A) — as. Since as > 1, we have that
l(vg) < o(S,A)—1 and (1) holds.

Case (c): If there is a vertex with two neighors z and y such that the graph
G\{z,y} is connected, let the root r be this vertex. Let 7" be any spanning
tree of the connected graph G\{z,y}. Let T be the tree T" U {rz,ry}. Since
T" is a spanning tree of G\{z,y}, it is clear that T" is a spanning tree of G.



Since x and y are leaves in T, there is a root-to-leaves ordering of 7" such that
vo = r (by definition), v, ; = x and v, = y. Note that v, is the first vertex
considered by the algorithm (the loop goes from v, to vy) when ¢ = 0. At this
moment all the vertices are unlabelled, so the vertex v,, is necessarily labelled
0. Since v,, and v,_; have a common neighbor, vy, we have d(v,, v, 1) < 2. If
d(vn,vn—1) = 1, G has a cycle of length three, (vg, vy, v,_1), and this case was
proved in Case (b). So, let d(v,, v,_1) = 2. This implies (since I(v,) = 0) that
vUn—1 cannot be labelled less than ay. Let us consider two cases:

(1) If I(v,_1) = o, since a; > o, the value s is in both F'(v,_1,vy) and
F(vpn,v0). This implies that |F(v,—1,v0) U F(v,,v)| < 204 — 1, and so
that [(vg) = |F'(vo)| is bounded by (S, A) — 1. So (1) holds.

(2) If l(vy—1) > g, since F(vp,vn-1) ={0,..., a9 — 1}, there is a vertex v; #
vy, such that ay € F(vg, v,—1). This vertex vy is such that d(vg, v,—1) = d <
k and ag < l(vy) + ag. Furthermore, since v,—; was the first unlabelled
vertex “offered” to be labelled ay (v, was already labelled 0), we have
l(v) < ag. If vy = vy, since I(v;) < ag < 0(S,A) — 1, we are done, so let
vy # vg. Since ag € F(vg,vp-1) = {l(vy), ..., l(vy) +aqg—1}, l(vy) < ag and
ar = 1, we have that d < k. This implies that d(v,,v) =d' < d+ 1<k
and that the value [(v;) is in both F(v,v9) and F(vy,,v). This implies
that |F(v,v9) U F(vn,v0)| < ag + a3 — 1 and so that I(vg) = |F(vg)] is
bounded by ¢(S,A) — 1. So (1) holds.

4 Proof of Theorem 5

We prove Theorem 5 for a sequence S = (p, 1), with p > 2, and a connected
graph G (if G is disconnected we consider each of its connected components).
Let vy, . .., v, be any root-to-leaves ordering of any spanning tree 7" of GG rooted
in any vertex r € V(G). We have seen in the previous section that, using this
order on the vertices of GG, Algorithm 1 does a L(p, 1)-labelling of G such that
the vertices v;, with ¢ > 2, are labelled at most o (S, A) — 2. Furthermore, with
such order on the vertices we have that |F'(vg, v1)| < p—1. This means that the
set F'(vg) (resp. F'(v1)) has at most o(S, A) (resp. o(S, A) — 1) elements, and
that we should “save” two (resp. one) elements. We prove that, appropriately
choosing T', r and the root-to-leaves ordering, we can bound [(vg) = |F(vp)|
and [(v1) = |F(v1)| by o(S,A) — 2. We consider distinct cases according to
which case of Lemma 6 the graph GG corresponds.

Case (i): If there is a vertex of degree less than A, let the root r be this vertex.
Then, consider any spanning tree 7' of G and any root-to-leaves ordering of 7T'.
Since vy = r has at most A — 1 neighbors and (A — 1)? vertices at distance 2,
we bound |F(vg)| by (A —1)?+p(A —1) which is less than A2+ (p—1)A —2.
The vertex vy has at most A neighbors, including vg, and at most A(A—1)—1



vertices at distance 2. With the fact that |F'(vo,v1)| < p — 1, we have that
|F(v)] < AA—=1) =14 p(A—1)+p—1, which equals A% + (p — 1)A — 2.

Case (ii): If there is a cycle of length three passing through the edge uv,
consider a spanning tree 7' rooted in v that uses the edge uv. Then let this tree
be rooted in v (vg = v ) and consider a root-to-leaves ordering of 7" such that
v = u. Since the vertices in a cycle of length three have at most A(A —1) —2
vertices at distance 2, we can bound |F(vg)| and |F(v1)| by A%+ (p—1)A —2.

Case (iii): If there are two cycles of length four passing through the same
vertex v, let u be a neighbor of v in one of these cycles. Consider a spanning tree
T rooted in v that uses the edge uv. Then consider a root-to-leaves ordering
of T' such that vy = v and v; = u. Since vy has at most A(A — 1) — 2 vertices
at distance 2, we can bound |F(vg)| by A%+ (p—1)A —2. The vertex v; has at
most A(A—1)—1 vertices at distance 2. With the fact that |F(vg,v1)| < p—1,
we have that |F(v;)| is bounded by A? + (p — 1)A — 2.

Case (iv): If there is a cycle of length four passing through an edge wv and
two vertices x and y € Ny(v)\{u} such that G\{z,y} is connected, let 7" be
any spanning tree of G\{x,y}. Let T be the tree 7" U {vz, vy} rooted in v.
Since T" is a spanning tree of G\{z,y}, it is clear that T is a spanning tree of
G. Since x and y are leaves in T, let vg, ..., v, be a root-to-leaves ordering of
T that finishes with = and y (i.e. v,_1 = x and v, = y).

The vertex vy has at most A(A — 1) — 1 vertices at distance 2. With the fact
that |F'(vg,v1)| < p—1, we have that |F(v;)] is bounded by A%+ (p—1)A —2.

Note that v, is the first vertex considered by the algorithm (the loop goes
from v, to vy) when ¢ = 0. At this moment all the vertices are unlabelled,
so the vertex v, is labelled 0. Since v, and v,_; have a common neighbor,
vo, we have d(v,, v,—1) < 2. If d(v,,v,—1) = 1, G has a cycle of length three,
(vo, U, Vn_1), and this case was proved in Case (ii). So, let d(v,,v,_1) = 2.
This implies (since [(v,) = 0) that v, cannot be labelled 0. We consider two
cases according to [(v,_1):

(1) Ifl(v,—1) = 1, since p > 2, the value 1 is in both F(v,,_1,vo) and F (v, vo).
This implies that |F(v,—1,v0) U F(v,,v0)] < 2p — 1. With the fact that
vo has at most A(A — 1) — 1 vertices at distance 2, we have that |F(vg)]
is bounded by A% + (p — 1)A — 2.

(2) If l(v,—1) > 1, there is a vertex v; € Ny(v,—1) labelled 0. Indeed, since
F(vp,v,—1) = {0}, there is a vertex v; # v, such that 1 € F(v,v,-1).
Furthermore, since v,_; was the first unlabelled vertex “offered” to be
labelled 1 (v,, was already labelled 0), we have I(v;) = 0 and d(vy, v,—1) =
1. If v, = wp, since 0 < o(S, A)—2, we are done, so let v; # vg. Since vy and
v are adjacent to v,_; and since there is no cycle (vg, vy, v,,—1) (we would
be in Case (ii)), we have d(vg, v;) = 2. This implies that the value 0 is in



both F(uvg,v) and F(v,,vg) and so that |F(vy, vg) UF (v, v0)] < 14+p—1.
With the fact that vy has at most A(A — 1) — 1 vertices at distance 2,
we have that |F(vp)| is bounded by A? + (p — 1)A — 2.

Case (v): If there is a vertex u with two neighbors v and w such that, for
X = Ni(v) U N1 (u)\{w}, the graph G\ X is connected, let 7" be any spanning
tree of G\ X. Note that the vertex v, the neighbors of v (including u) and the
neighbors of u except w are not in G\ X. So let T" be the tree rooted in v
which is the union of 7", all the edges incident to u and all the edges incident
to v. Since 7" is a spanning tree of G\ X, it is clear that 7" is a spanning tree
of GG such that the neighbors of u and v, except u, v and w, are leaves. This
implies that there are root-to-leaves orderings of 7" that finish with the vertices
in L = Ny(v) UN;y(u)\{u,v,w}. In these orderings, since the subgraphs of T
induced by {vg,v1} or {vg,v1,v2} are connected, since Ny(v) \ L = {u} and
since Ny(u) \ L = {v,w}, we have that vy = v, v; = v and vy = w. So, let
Vo, - - ., U, be a root-to-leaves ordering of 1" such that vy = v, v = u, vo = w,
Ni(vo) = {v1,vn_at2,- -, 0.} and Ny(vy) = {vg, V2, Vp_2A1dy - Un_ns1}. We
consider two subcases according to the maximum degree A of the graph G.

Case (v) with A > 4: For vy, let us consider the labels the algorithm assigns
to two neighbors of vy, v,_a and v,_ay1. Since d(v,_a,v,-av1) < 2 we have
l(vp—a) # U(vp_as1). Let a and b be such that {a,b} = {n — A,n— A+ 1}
and (v,) < l(vp). We consider two cases according to [(vp):

(1) If {(vp) < l(vy) + p then the value [(v,) belongs to both F'(wvy,v;) and
F(vg,v1), and we have |F (v, v1) U F(v,,v1)| < 2p— 1. With the fact that
|F(vg,v1)| < p—1, we have that |F(v;)| is bounded by A2+ (p—1)A —2.

(2) If I(vy) > l(vy) + p, we wonder why v, has not been labelled I(v,) +p—1
when the algorithm proposed it this value. There are two possible reasons.
The vertex v, had either (1) a neighbor v, such that I(v,) < l(v,) <
l(vy) +p—1, or (2) a 2-neighbor v, labelled {(v,) + p — 1 and such that
y > b. In the first case, v, would be at distance 2 from vy (if there was
a cycle (vq, vy, v,) we would be in Case (ii)) and the value [(v,) would
be in both F(v,,v,) and F(v,,v1). In the second case, since y > b and
y # a (by l(vy) = l(v,) +p — 1), the vertex v, is a neighbor of vy (indeed
y > n—A+1) and a 2-neighbor of v;. So, the value (v, )+p—1 would be in
both F(v,,v;) and F(v,, v1). In both cases, (1) or (2), with the fact that
|F(vg,v1)| < p—1, we have that |F(v;)| is bounded by A2+ (p—1)A —2.

For vg, let us consider the labels the algorithm assigns to v,, v,_1; and v,_s.
Since v, is the first vertex the algorithm proposes the value 0, it is labelled 0.
These three vertices are all at distance 2 from the others (if there was a cycle
of length three we would be in Case (ii)), so they have different labels. Let a
and b be such that {a,b} = {n —1,n —2} and 0 = I(v,,) < l(va) < l(vp). We

consider three cases according to [(v,) and {(vp):



(1)

(2)

V2 Upn—-3Un—4 V2 Up—3Un—4

(a) (b) (c)

Figure 1. The vertex vy in the case (v) with A = 4.

If (v,) = 1 and I(vy) = 2 (see Figure 1.(a)), the values 1 and 2 are
each forbiden twice to vg. Formally we have 1 € F(v,,vg) N F(v4, v9) and
2 € F(vq,v0) N F(vp, vg). This implies that |F(vg)| < o(S,A) — 2.

If I(v,) = 1 and l(vy) > 2 (see Figure 1.(b)), there is a vertex v,
Ni(vp) labelled 0 or 1. Indeed, since F(v,,vy) = {0} and F(v,,vy)
{1}, there is a vertex v,, with v, # v, and v, # v,, such that 2
F(vg,vp). Furthermore, since v, was the first unlabelled vertex “offered
to be labelled 2 (v, and v, were already labelled), we have I(v,) € {0,1}
and d(vg,vy) = 1. If v, = vy, since 1 < o(S,A) — 2, we are done, so
let v, # vg. The vertex v, is at distance 2 from v, (if there was a cycle
(vo, vy, v;) We would be in Case (ii)), so we have 1 € F'(v,,vo) N F(va, vo)
and [(v,) € F (v, v0) N F(vg, vo). This implies that |F(vy)| < o(S,A)—2.
If {(v,) > 1 (see Figure 1.(c)), the vertices v, and v, are not labelled
1 (I(vy) < l(vp)) there are two vertices, v, € Ni(v,) and v, € Ni(vp),
labelled 0. Indeed, since F(v,,v,) = {0} (resp. F(v,,v,) = {0}), there
is a vertex v, # v, (resp. v, # v,), such that 1 € F(v,,v) (resp. 1 €
F(v,,vp)). Furthermore, since v, and v, were the first unlabelled vertices
“offered” to be labelled 1 (v,, was already labelled), we have [(v,) = (v,) =
0 and d(vy, v,) = d(vs,vp) = 1. If v9 = v, or v,, since 0 < (S, A) — 2, we
are done, so let vy # v, and v,. If v, = v,, there is a cycle (v, va, vy, Vp)
and we would be in Case (iv), so let v, # v,. The vertex v, (resp. v,)
is at distance 2 from vy (if there was a cycle (vg, v,,vy) or (vo, vp, v,) We
would be in Case (ii)), so we have 0 € F'(v,,v9) N F(vy,vo) N F(v2, ).
This implies that |F(vg)| < (S, A) — 2.

m I m

I

Case (v) with A = 3: When A = 3, we have Ni(vg) = {v1,vn,0n-1},
Ni(v1) = {wvo,v9, U2} and X = {vg, v1,Vp_2,Vp_1,v,}. In this case we have
to be more precise on the structure of G around vy and v;. Let us consider
that we are in none of the cases (i), (ii), (iii) and (iv). Since we are not in
configuration (iv) d(vy,v,_2) > 2 and d(v,_1,v,_2) > 2.

First we consider that one of the vertices v,, or v,_; is at distance at least 3
from v,_5. Note that since v,, and v,_; are both leaves in T, by permuting
them in the root-to-leaves order we still have a root-to-leaves order. So, w.l.o.g.
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let v,, be such that d(v,,v,_2) > 3. The order of the vertices implies that both
v, and v,_o are labelled 0. Indeed, when the algorithm proposes the label
0, v, accept it, then v,_; reject it (since d(vn,v,—1) = 2) and then v, o
accept it (since d(vp,v,—2) > 3). So we have 0 € F(v,,vo) N F(vn—2,v0) and
0 € F(vy,v1) N F(vy_2,v1). If l(v,_1) =1 we have 1 € F(v,,,v9) N F(vn_1,v0)
and so, both |F(vg)| and | F(v;)| are bounded by A%+ (p—1)A—2. If [(v,_1) >
1, there is a vertex v, € Nj(v,_1) labelled 0. Indeed, since F(v,,v, 1) =
{0}, there is a vertex v, # v, such that 1 € F(v;,v,_1). Furthermore, since
v,—1 was the first unlabelled vertex “offered” to be labelled 1 (v, was already
labelled), we have I(v,) = 0 and d(v,, v,—1) = 1. The vertex v, is at distance 2
from vy (if there was a cycle (vg, v,_1, v,) we would be in Case (ii)), so we have
0 € F(vg,v0) N F(vn,v0) N F(vy_2,v0). With the fact that |F(vg,v1)| < p — 1,
we have that both |F(vg)| and |F(v;)| are bounded by A% + (p — 1)A — 2.

Now we consider that d(v,, v,—2) = d(v,—1, v,—2) = 2. Let v, (resp. v,) be the
vertex adjacent to v, and v,_o (resp. v,_1 and v,_5). The vertices v, and v,
are distinct because if there was a vertex with neighbors v,,, v,,_1 and v,,_5 the
graph G\ X would be disconnected, which is impossible by definition of Case
(v). By construction of T, the edges vgv,,, vov,_1 and v1v,_5 are the only edges
in 7', adjacent to v, v,—1 O V,,_2. So the edges v, vy, V205, Vp—1v, and v, _sv,
are not in 7", and the vertices v, and v, having just one adjacent edge in T" are
leaves of T'. This implies that the root-to-leaves order can also verify v,,_3 = v,
and v,_4 = v,. We know that d(v,, v,—4) > 1 and d(v,_1,v,-3) > 1, else G\ X
would be disconnected. We consider different cases according to d(v,, v,—4)
and d(v,_1,v,_3):

- If one of these distances is greater than 2 (see Figure 2.(a)), w.l.o.g.
consider that d(v,,v,_4) > 2 (we could exchange v,, and v,_5 with v, _;
and v,_4 in the root-to-leaves ordering of 7). During its first iteration
(when ¢ = 0) the algorithm labels v, with 0. Since d(v,,v,—1) = 2,
d(Un, Up—2) = 2 and d(v,, v,—3) = 1 the vertices v,_1, v,_o and v,,_3 are
not labelled 0. Then, since d(v,, v,_4) > 2, the algorithm labels v,,_4 with
0 and we have 0 € F'(v,,,v0) N F(vy_4,v0) and 0 € F (v, v1) N F(vp_q,01).
Since the vertices v,_1, v,_o and v,_3 are adjacent to v, or v,_4, their
labels are greater than p — 1. We consider two case according to [(v,_1):

- If i(v,—1) = p then, since d(v,—1,v1) = d(vVy—1,V,-2) = 2, we have
that I(vy) # p and (v,_2) > p. (v, 2) =p+ 1, we have p+ 1 €
F(vp_1,v0) N F(vp_2,v0). If l(v,_2) > p+ 1, since v,_o was the first
unlabelled vertex offered to be labelled p+1, it implies that either the
vertex v,_s is labelled p, or the vertex vy is labelled [(v) < p. In the
first case we would have p € F(v,_1,v9) N F(vy—3,v0). In the other
case we would have either I(vy) € F(vy,vo) N F(vn,vo) (if I(v1) < p)
or p € F(vy,v0) N F(vp_1,v0) (if l(v1) = p).

- Ifl(v,_1) > pitis because the unique vertex v, € N1(v,_1)\{vo, Vn_a}
is labelled less than p. In this case we have I(v,) € F(v,,vo) N F (vn, vo).
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@ (b)

Figure 2. Case (v) with A =3 and d(v,,, vp—2) = d(vVp—1,Vp—2) = 2.

Whatever the subcase, with the fact that |F(vg,v1)| < p — 1, we have
that |F(vg)| and |F(v1)| are bounded by A% + (p — 1)A — 2.

- If these two distances equal 2, d(v,, v, _4) = d(v,_1,v,_3) = 2, we have to
slightly modify the order on the vertices by permuting v,,_; with v,_» (see
Figure 2.(b)). Since these two vertices are leaves in 7', the order obtained
still corresponds to a root-to-leaves ordering of 7'. With this order on
the vertices, the algorithm labels the vertices v,, v,_1, v,_2 and v, _3,
respectively 0, 1, 2 and p + 1. Indeed:

- The first unlabelled vertex “proposed” to be labelled 0 is v, and so
l(v,) = 0. This implies that none of the vertices v, _1, v,_2, V3 and
none of their neighbors (except v,,) are labelled 0.

- The first unlabelled vertex “proposed” to be labelled 1 is v,,_; and
since none of its neighbors is labelled 0, we have {(v,,_1) = 1. This im-
plies that none of the vertices v, _o, v,,_3 and none of their neighbors
(except v,_1) are labelled 1.

- The first unlabelled vertex “proposed” to be labelled 2 is v,_o and
since none of its neighbors is labelled 0 or 1, we have [(v,,_2) = 2. This
implies that the neighbor of v, _3 distinct from v, and v,_; cannot
be labelled less than p 4 2.

- The vertex v,_3 cannot be labelled less than p+1 (since [(v,_1) = 1).
Furthermore, none of its neighbors is labelled [ € {2,...,p}. So, since
vp_3 18 the first unlabelled vertex “proposed” to be labelled p+ 1, we
have [(v,—3) = p+ 1.

This implies that 1 € F(v,,v9) N F(vp_1,v0), 2 € F(v,_1,v1) N F(vy_2,v1)
and p+ 1 € F(v,_2,v0) N F(v,_3,v0). With the fact that |F(vg,v1)| <
p—1, we have that |F(vy)| and | F'(v;)| are bounded by A%+ (p—1)A —2.

This conclude the proof of Theorem 5.

5 Proof of Lemma 6

Let G be a graph with maximum degree A > 3. We prove the lemma by
showing that if G’ has none of the configurations (i), (ii), (iii) and (iv), then
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Figure 3. e-bags.

it contains configuration (v).

Definition 15 Given an edge e = uv € E(G), the set of neighbors of e is
N(e) = (Ny(u)UN1(v)) \{u,v}. Given e =uv € E(G) an e-bag B is a maxi-
mal subgraph of G\{u,v} such that, for any pair of vertices x and y € V(B),
there is a path from x to y without internal vertices in N(e) (see Figure 3).

Note that two different e-bags can only share vertices of N(e), else their union
would be a bigger e-bag, contradicting their maximality. Given an e-bag B,
let L(B) = V(B)NN(e) be the set of vertices linking B to the rest of the
graph. The others vertices of B form the set of inner vertices of B, I(B) =
V(B)\L(B). Given a set Y C N(uv) U{u,v}, the graph G\Y is disconnected
if there is an e-bag B with L(B) C Y and |[(B)| > 0.

Remark 16 An edge e € E(G) corresponds to the edge uv of configuration
(v) iff there is a vertex w € N(e) contained by all the e-bags.

We can found this edge uv of configuration (v) by doing the following process:

(1) Consider two non-incident edges e and f € E(G).

(2) Verity if e corresponds to the edge uv of the configuration (v).

(3) If not, let By be the e-bag containing f. Since e does not correspond to
the edge uv, there are e-bags B;, with ¢ > 0, such that L(Bg)\L(B;) # 0
(else with e = wv and any w € L(Bj) we would have configuration
(v)). Let B be the set of all these e-bags. Let B; be an e-bag of B that
minimizes |L(By)| and (if there are various e-bags B; minimizing |L(B;)|)
then maximizes |/(By)|. Finally since |I(B;)| > 2 (c.f. Lemma 17), let e
be an edge of By with its two ends in I(B;) and go to step (2).

We can prove that this process terminates because each time we change e, the
size of I(By) increases. Indeed, since none of the vertices in L(By) \ L(B;) has
a neighbor in By, all the vertices of By\L(Bj) (i.e. I(By) U (L(By) \ L(By)))
are in I(By) in the next step. So if the following lemma holds, Lemma 6 holds.

Lemma 17 If a graph G does not contain configurations (i), (ii), (iii) and

(iv), and if a given edge e = ab € E(G) does not correspond to the edge uv of
configuration (v) then the e-bag By (defined before) is such that |I(By)| > 2.
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Figure 4. Cases with |I(By)| =0 and |I(B;)| = 1.

PROOF. If |I(B;)] = 0, let ¢ = &b’ be its unique edge and note that a’
and b belong to N(e). This implies that |L(B;)| = 2 and that any e-bag
B; € B has either |L(B;)| > 3 or |L(B;)| = 2 and |I(B;)| = 0. If o’ and ¥/
are both neighbors of a (resp. b) there is a cycle of length three and we are in
configuration (ii), so let @’ € Ny(a) and &' € N;y(b) (see Figure 4.(a)). Then we
consider any vertex ¢ € L(By)\ L(B;) (so ¢ # a’ and V). W.l.o.g. let ¢ € Ny(a).
Since {a’,b,c} C Ny(a) and (a,b,b',d’) is cycle, if G\{c, d'} is connected, we
are in configuration (iv). So let G\{¢,a'} be disconnected. This implies that
there is a vertex d € V(G)\{c,a’'} such that all the paths from d to a pass
through ¢ or a’. The e-bag B; containing d is such that L(B;) C {c¢,a'} and
d € I(B;). Since V' € L(By) \ L(B;), we have B; € B. With the fact that
|L(B;)| <2 and |I(B;)| > 1, this contradicts the definition of By and we have
1(B)| > 1

If |[I(B;)] =1, let ¢ be the unique vertex in I(Bj). Since deg(c) = |L(By)| =
A > 3, any e-bag B; € B has either |L(B;)| > A or |L(B;)| = A and |I(B;)| =
1 (when |I(B;)| = 0 we have |L(B;)| = 2 < A). If A > 4 there are at least
two cycles of length four passing through ¢, so we are in configuration (iii)
(see Figure 4.(b) and Figure 4.(c)). For A = 3 (see Figure 4.(d)), let Ny(a) =
{b,dy,ds} and Ny(b) = {a,ds,ds}. W.lo.g. let Ni(c) = L(B;) = {dy,da,ds}.
Since By € B, we have L(By)\ L(B;) # 0 and so dy € L(By). Since (a, dy, ¢, ds)
is a cycle, if the graph G\{ds,ds} is connected we are in configuration (iv),
so let G\{dz,ds} be disconnected. This implies, that there is a vertex z such
that all the paths from 2z to a pass through dy or ds. The e-bag B; containing
z is such that L(B;) C {ds,ds}. Since dy € L(By) \ L(B;), we have B; € B.
With the fact that |L(B;)| < 2, this contradicts the minimality of |L(B;)| = A
(since A > 2). So we have |I(Bj)| > 2 and this completes the proof of Lemma
17.
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