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ours de la liberation 33405 Talen
e Cedex, Fran
e.Abstra
tThe L(p, q)-labelling of graphs, is a graph theoreti
 framework introdu
ed by Griggsand Yeh (7) to model the 
hannel assignement problem. In this paper we improvethe best known upper bound for the L(p, 1)-labelling of graphs with given maximumdegree. We show that for any integer p ≥ 2, any graph G with maximum degree ∆admits an L(p, 1)-labelling su
h that the labels range from 0 to ∆2 + (p − 1)∆ − 2.Key words: Channel assignement problem, L(p, q)-labelling
1 Introdu
tionLet G be a 
onne
ted graph with maximum degree ∆. For a set of verti
es
S ⊂ V (G), the graph G\S is the graph indu
ed by V (G)\S. The distan
e
d(u, v) between two verti
es u and v is the number of edges in the shortestpath from u to v. We say that v is a d-neighbor of u if d(u, v) = d. We generallyuse the 
ommon term neighbor instead of 1-neighbor. Let Nd(v) be the set of
d-neighbors of v. An L(α1, α2, . . . , αk)-labelling of a graph G is a fun
tion
l : V (G) → [0, λ] su
h that for any pair of verti
es u and v if d(u, v) = d ≤ kthen |l(u) − l(v)| ≥ αd. The problem is to �nd an L(α1, α2, . . . , αk)-labellingof G that minimizes λ. We denote λα1,α2,...,αk

(G) the minimum value of λ.For a sequen
e of non-negative integers S = (α1, α2, . . . , αk), we will use thenotation λS(G) instead of λα1,α2,...,αk
(G).
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L(α1, . . . , αk)-labellings arise from the 
hannel assignement problem. The 
han-nel assignement problem is to assign a 
hannel to ea
h radio transmitter sothat 
lose transmitters do not interfer and su
h that we use the minimum spanof frequen
y. Roberts proposed to assign 
hannels su
h that �
lose� transmit-ters re
eive di�erent 
hannels and �very 
lose� transmitters re
eive 
hannelsthat are at least two 
hannels apart. This is an L(2,1)-labelling of a graph
G where the verti
es are the transmitters, the �very 
lose� transmitters areadja
ent verti
es and the �
lose� transmitters are verti
es at distan
e 2 in G.Sin
e the 
onstraints between transmitters disminish with the distan
e, theL(α1, α2, . . . , αk)-labelling of graph is interesting for this problem when thesequen
e α1, α2, . . . , αk is de
reasing. Many work has been done on L(2,1)-labelling sin
e the �rst paper of Griggs and Yeh (7). Many papers deal withbounding λα1,α2

for some graph families (1; 4; 5; 8; 9; 11; 14; 15; 16) or givensome graph invariants su
h as χ(G), ω(G) or ∆ (2; 3; 10; 12). In their paper(7), Griggs and Yeh proved that λ2,1(G) ≤ ∆2+2∆ and proposed the following
onje
ture.Conje
ture 1 For any graph G with maximum degree ∆ ≥ 2, λ2,1(G) ≤ ∆2.A
tually they proved it for ∆ = 2 and for graphs of diameter at most 2. Theyalso proved that determining λ2,1(G) is NP-
omplete. The 
onje
ture is stillopen for ∆ ≥ 3 and for various families of graphs. In (9), Kang proved it forHamiltonian 
ubi
 graphs. The results in (1; 8; 14) prove the 
onje
ture forplanar graphs with maximum degree ∆ 6= 3.In (2) the authors gave an algorithm for the L(2,1)-labelling and improvedthe upper bound of λ2,1 to ∆2 + ∆. In (3), with the same algorithm theyobtained that λp,1(G) ≤ ∆2 + (p − 1)∆. Let σ(S, ∆) be the fun
tion de�nedfor any sequen
e S = (α1, . . . , αk) by σ(S, ∆) =
∑k

i=1 αi∆(∆−1)i−1. With thealgorithm used in (2; 3), we 
an extend their result as follow:Proposition 2 For any sequen
e of non-negative integers S = (α1, α2, . . . , αk),with k ≥ 1, and any graph G with maximum degree ∆, we have that λS(G) ≤
σ(S, ∆).This is not the best known bound. In (10), Král and �krekovski had a resulton the list 
hannel assignement problem. As a 
orollary of their result we havethat:Theorem 3 (Král and �krekovski) For any sequen
e of non-negative in-tegers S = (α1, α2, . . . , αk), with k ≥ 2 and α1 > α2, and any graph G withmaximum degree ∆ ≥ 3, we have that λS(G) ≤ σ(S, ∆) − 1.We slightly improved this bound for some spe
i�
 sequen
es S.
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Theorem 4 For any sequen
e S = (α1, . . . , αk) su
h that k ≥ 2, α1 ≥ 2,
αk = 1 and 1 ≤ αi < α1 for 1 < i < k, and for any 
onne
ted graph G withmaximum degree ∆ ≥ 3, there is an ordering of the verti
es, v0, v1, . . . , vn andan L(α1, . . . , αk)-labelling l of G su
h that:(1) l(v0) ≤ σ(S, ∆) − 1,(2) l(vj) ≤ σ(S, ∆) − j for 1 ≤ j < k, and(3) l(vj) ≤ σ(S, ∆) − k for k ≤ j.This implies that just a 
onstant number of verti
es, k, may be labelled morethan σ(S, ∆) − k. We have a stronger result for k = 2.Theorem 5 For any sequen
e S = (p, 1) with p ≥ 2 and any graph G withmaximum degree ∆ ≥ 3, we have that λp,1(G) ≤ σ(S, ∆)−2 = ∆2+(p−1)∆−2.So, for the L(2,1)-labelling we obtain that λ2,1(G) ≤ ∆2 + ∆− 2 and we get alittle 
loser to Conje
ture 1. To prove Theorem 4 and Theorem 5 we need thefollowing stru
tural lemma.Lemma 6 Every graph G with maximum degree ∆ ≥ 3 has either:(i) a vertex v with degree less than ∆,(ii) a 
y
le of length three,(iii) two 
y
les of length four passing through the same vertex v,(iv) a vertex v with three neighbors u, x and y, su
h that there is a 
y
le oflength four passing through the edge uv and su
h that the graph G\{x, y}is 
onne
ted, or(v) a vertex u with two adja
ent verti
es v and w su
h that the graph G\Xis 
onne
ted, where X is the set (N1(v)

⋃
N1(u)) \{w}.In Se
tion 2, we extend the labelling algorithm presented in (2) and its analysisimplies Proposition 2. In Se
tion 3, we slightly modify this algorithm and weprove Theorem 4. In Se
tion 4, we prove Theorem 5 using Lemma 6. Finally,we prove Lemma 6 in Se
tion 5.2 The basi
 algorithmThe algorithm presented in (2) performs an L(2, 1)-labelling of a a graph Gwith maximum degree ∆. The analysis of the algorithm gives the followingbound, λ2,1(G) ≤ ∆2 + ∆. Here we present an extended version of this algo-rithm that performs an L(α1, . . . , αk)-labelling, for any sequen
e (α1, . . . , αk).The analysis of this algorithm establishes Proposition 2. Let v0, . . . , vn be anordering of the verti
es in V (G). 3



Algorithm 1
i = 0;WHILE there are unlabelled verti
es DOFOR vj = vn TO v0 DOIF vj is unlabelled AND vj 
an be labelled i THENLet vj be labelled i;

i = i + 1;In this algorithm a vertex vj �
an be labelled i� if it has no d-neighbor alreadylabelled x with i−αd < x < i+αd. Let us denote l(v) the label the algorithmassigns to the vertex v.Claim 7 The fa
t that a vertex v is not labelled i is not due to a d-neighbor
u whose label veri�es i < l(u) < i + αd.Indeed, when the algorithm �proposed� v to be labelled i, the vertex u wasstill unlabelled (sin
e l(u) > i). So, a vertex u 
an only �forbid� its d-neighbor
v to be labelled l(u), l(u) + 1, . . . , l(u) + αd − 1.Claim 8 A

ording to the order on the verti
es used by the algorithm, let vpand vq be two verti
es of G su
h that p < q. The fa
t that vq is not labelled
l(vp) is not due to vp.Indeed, when the algorithm �proposed� vq to be labelled l(vp), the vertex vpwas still unlabelled (sin
e p < q).De�nition 9 Denote F (u, v), the set of labels whi
h have been forbiden by uto v during the exe
ution of the algorithm. Let F (v) =

⋃
u∈V (G) F (u, v) be theset of all the labels that have been forbiden to v.By Claim 7 and Claim 8, we know the elements in F (u, v).Remark 10 Given two verti
es vp and vq with d(vp, vq) = d, we have either:- F (vp, vq) = ∅, if d > k, αd = 0 or l(vq) ≤ l(vp),- F (vp, vq) = {l(vp) + 1, . . . , l(vp) + αd − 1}, if d ≤ k, αd > 0, l(vq) > l(vp)and p < q, or- F (vp, vq) = {l(vp), l(vp) + 1, . . . , l(vp) + αd − 1}, if d ≤ k, αd > 0, l(vq) >

l(vp) and p > q.This implies that |F (vp, vq)| = 0 when d > k and that |F (vp, vq)| ≤ αd either.Claim 11 The set F (v) equals the interval [0, . . . , l(v)− 1], so l(v) = |F (v)|.Indeed, it is 
lear that (1) the algorithm labels a vertex v with the �rst valuenot in F (v) and that (2) hen
e v is labelled there is no more value forbidento v. 4



Finally, the set F (v) being a union of possibly disjoint sets we have |F (v)| ≤
∑

u∈V (G) |F (u, v)|. In a graph of maximum degree ∆, one 
an easily see byindu
tion on i that there are at most ∆(∆ − 1)i−1 verti
es in Ni(v). Sin
e forany vertex u with d(u, v) = d we have |F (u, v)| ≤ αd (with αd = 0 for d > k),we obtain that l(v) = |F (v)| ≤
∑k

i=1 αi∆(∆ − 1)i−1.3 The improved algorithm and proof of Theorem 4To improve the bound we have in Proposition 2, we have to be more 
arefullon the order the algorithm 
onsiders the verti
es. Indeed, a

ording to these
ond point of Remark 10, if for a given vertex vq there are x verti
es vpsu
h that d(vp, vq) = d ≤ k, αd > 0 and p < q, then |F (vp, vq)| ≤ αd − 1 and
l(vq) = |F (vq)| ≤

∑
u∈V (G) |F (u, vq)| ≤ σ(S, ∆) − x. It would be interesting ifthe algorithm 
ould use an order on the verti
es, v0, . . . , vn, su
h that manyverti
es vq have some d-neighbors vp su
h that d(vp, vq) = d ≤ k, αd > 0 and

p < q. Note that in any order the vertex v0 has no su
h d-neighbors.De�nition 12 Given a tree T rooted in a vertex r, a root-to-leaves order onthe verti
es of T is an order v0, v1, . . . , vn su
h that v0 = r and su
h that forany x ∈ [0 . . . n] the subgraph of T indu
ed by {v0, v1, . . . , vx} is 
onne
ted (i.e.is a tree).There are various possible root-to-leaves orders for a given tree. Note that ina root-to-leaves order any vertex v ∈ V (T ) appears after its �an
estors� in T .The following lemma gives interesting properties of those orders.Lemma 13 Given a 
onne
ted graph G, 
onsider any spanning tree T of Grooted in any vertex r ∈ V (G). Let v0, . . . , vn be a root-to-leaves ordering ofthe verti
es in T . For any integer t ≥ 0, we have that :(i) v0 = r.(ii) For any integers i and j su
h that i < j < t we have d(vi, vj) ≤ t.(iii) For any integer j su
h that j ≥ t, there are at least t verti
es vi su
h that
i < j and d(vi, vj) ≤ t.PROOF. (i) holds by de�nition of root-to-leaves orders. Sin
e the graph

T [v0, . . . , vt−1], the subgraph of T indu
ed by the verti
es v0, . . . , vt−1, is atree with t verti
es, its diameter is at most t−1. So (ii) 
learly holds. For (iii),sin
e the graph T [v0, . . . , vj] is a tree, we 
onsider two 
ases. If all the verti
esare at distan
e at most t from vj in this subtree, there are j verti
es (from v0to vj−1) at distan
e at most t from vj and sin
e j ≥ t (iii) holds. If there isa vertex at distan
e t + 1 from vj in this subtree, the t verti
es of the path5



linking vj to this vertex are at distan
e at most t from vj , so (iii) holds.Given any spanning tree T of a 
onne
ted graph G rooted in any vertex
r ∈ V (G), let v0, . . . , vn be any root-to-leaves ordering of the verti
es in T .Now assume that Algorithm 1 performs an L(α1, . . . , αk)-labelling of G usingthis order of the verti
es. Lemma 13 (with t = k) and Remark 10 imply thatthe points (2) and (3) of Theorem 4 hold:(2) For any vertex vj with 1 ≤ j < k, there are j verti
es vi (from v0 to vj−1)su
h that i < j and d(vi, vj) ≤ k. Sin
e αl ≥ 1 for all l ≤ k, Remark 10implies that the algorithm labels vj at most σ(∆, S) − j.(3) For any vertex vj with j ≥ k, there are k verti
es vi su
h that i < jand d(vi, vj) ≤ k. Sin
e αl ≥ 1 for all l ≤ k, Remark 10 implies that thealgorithm labels vj at most σ(∆, S) − k.We prove now that appropriately 
hoosing T , r and the root-to-leaves order,the point (1) of Theorem 4 also holds. The following stru
tural lemma is easilydedu
ed from Lemma 6 or from Lemma 1.15 in (13).Lemma 14 Every graph G with maximum degree ∆ ≥ 3 has either:(a) a vertex v with degree less than ∆,(b) a 
y
le of length l ≤ 4, or(
) a vertex v with two neighbors x and y su
h that the graph G\{x, y} is
onne
ted.We 
onsider three 
ases a

ording to whi
h 
ase of Lemma 14 the graph G
orresponds.Case (a): If there is a vertex of degree less than ∆, let the root r be this ver-tex. Then, 
onsider any spanning tree T of G and any root-to-leaves orderingof T . In this 
ase, sin
e there are at most ∆ − 1 verti
es in N1(v0), |F (v0)| isbounded by σ(S, ∆)−α1. Sin
e α1 ≥ 2, we have that l(v0) < σ(S, ∆)− 2 and(1) holds.Case (b): If there is a 
y
le of length l ≤ 4, let the root r be any vertexof this 
y
le. Then, 
onsider any spanning tree T of G and any root-to-leavesordering of T . In this 
ase, sin
e there are at most ∆(∆ − 1) − 1 verti
esin N2(v0), |F (v0)| is bounded by σ(S, ∆) − α2. Sin
e α2 ≥ 1, we have that
l(v0) ≤ σ(S, ∆) − 1 and (1) holds.Case (
): If there is a vertex with two neigbors x and y su
h that the graph
G\{x, y} is 
onne
ted, let the root r be this vertex. Let T ′ be any spanningtree of the 
onne
ted graph G\{x, y}. Let T be the tree T ′ ∪ {rx, ry}. Sin
e
T ′ is a spanning tree of G\{x, y}, it is 
lear that T is a spanning tree of G.6



Sin
e x and y are leaves in T , there is a root-to-leaves ordering of T su
h that
v0 = r (by de�nition), vn−1 = x and vn = y. Note that vn is the �rst vertex
onsidered by the algorithm (the loop goes from vn to v0) when i = 0. At thismoment all the verti
es are unlabelled, so the vertex vn is ne
essarily labelled
0. Sin
e vn and vn−1 have a 
ommon neighbor, v0, we have d(vn, vn−1) ≤ 2. If
d(vn, vn−1) = 1, G has a 
y
le of length three, (v0, vn, vn−1), and this 
ase wasproved in Case (b). So, let d(vn, vn−1) = 2. This implies (sin
e l(vn) = 0) that
vn−1 
annot be labelled less than α2. Let us 
onsider two 
ases:(1) If l(vn−1) = α2, sin
e α1 > α2, the value α2 is in both F (vn−1, v0) and

F (vn, v0). This implies that |F (vn−1, v0) ∪ F (vn, v0)| ≤ 2α1 − 1, and sothat l(v0) = |F (v0)| is bounded by σ(S, ∆) − 1. So (1) holds.(2) If l(vn−1) > α2, sin
e F (vn, vn−1) = {0, . . . , α2−1}, there is a vertex vt 6=
vn su
h that α2 ∈ F (vt, vn−1). This vertex vt is su
h that d(vt, vn−1) = d ≤
k and α2 < l(vt) + αd. Furthermore, sin
e vn−1 was the �rst unlabelledvertex �o�ered� to be labelled α2 (vn was already labelled 0), we have
l(vt) < α2. If vt = v0, sin
e l(vt) < α2 ≤ σ(S, ∆) − 1, we are done, so let
vt 6= v0. Sin
e α2 ∈ F (vt, vn−1) = {l(vt), . . . , l(vt)+αd−1}, l(vt) < α2 and
αk = 1, we have that d < k. This implies that d(vt, v0) = d′ ≤ d + 1 ≤ kand that the value l(vt) is in both F (vt, v0) and F (vn, v0). This impliesthat |F (vt, v0) ∪ F (vn, v0)| ≤ αd′ + α1 − 1 and so that l(v0) = |F (v0)| isbounded by σ(S, ∆) − 1. So (1) holds.4 Proof of Theorem 5We prove Theorem 5 for a sequen
e S = (p, 1), with p ≥ 2, and a 
onne
tedgraph G (if G is dis
onne
ted we 
onsider ea
h of its 
onne
ted 
omponents).Let v0, . . . , vn be any root-to-leaves ordering of any spanning tree T of G rootedin any vertex r ∈ V (G). We have seen in the previous se
tion that, using thisorder on the verti
es of G, Algorithm 1 does a L(p, 1)-labelling of G su
h thatthe verti
es vi, with i ≥ 2, are labelled at most σ(S, ∆)−2. Furthermore, withsu
h order on the verti
es we have that |F (v0, v1)| ≤ p−1. This means that theset F (v0) (resp. F (v1)) has at most σ(S, ∆) (resp. σ(S, ∆)− 1) elements, andthat we should �save� two (resp. one) elements. We prove that, appropriately
hoosing T , r and the root-to-leaves ordering, we 
an bound l(v0) = |F (v0)|and l(v1) = |F (v1)| by σ(S, ∆) − 2. We 
onsider distin
t 
ases a

ording towhi
h 
ase of Lemma 6 the graph G 
orresponds.Case (i): If there is a vertex of degree less than ∆, let the root r be this vertex.Then, 
onsider any spanning tree T of G and any root-to-leaves ordering of T .Sin
e v0 = r has at most ∆− 1 neighbors and (∆− 1)2 verti
es at distan
e 2,we bound |F (v0)| by (∆−1)2 + p(∆−1) whi
h is less than ∆2 +(p−1)∆−2.The vertex v1 has at most ∆ neighbors, in
luding v0, and at most ∆(∆−1)−17



verti
es at distan
e 2. With the fa
t that |F (v0, v1)| ≤ p − 1, we have that
|F (v1)| ≤ ∆(∆ − 1) − 1 + p(∆ − 1) + p − 1, whi
h equals ∆2 + (p − 1)∆ − 2.Case (ii): If there is a 
y
le of length three passing through the edge uv,
onsider a spanning tree T rooted in v that uses the edge uv. Then let this treebe rooted in v (v0 = v ) and 
onsider a root-to-leaves ordering of T su
h that
v1 = u. Sin
e the verti
es in a 
y
le of length three have at most ∆(∆−1)−2verti
es at distan
e 2, we 
an bound |F (v0)| and |F (v1)| by ∆2 +(p−1)∆−2.Case (iii): If there are two 
y
les of length four passing through the samevertex v, let u be a neighbor of v in one of these 
y
les. Consider a spanning tree
T rooted in v that uses the edge uv. Then 
onsider a root-to-leaves orderingof T su
h that v0 = v and v1 = u. Sin
e v0 has at most ∆(∆ − 1)− 2 verti
esat distan
e 2, we 
an bound |F (v0)| by ∆2 +(p−1)∆−2. The vertex v1 has atmost ∆(∆−1)−1 verti
es at distan
e 2. With the fa
t that |F (v0, v1)| ≤ p−1,we have that |F (v1)| is bounded by ∆2 + (p − 1)∆ − 2.Case (iv): If there is a 
y
le of length four passing through an edge uv andtwo verti
es x and y ∈ N1(v)\{u} su
h that G\{x, y} is 
onne
ted, let T ′ beany spanning tree of G\{x, y}. Let T be the tree T ′ ∪ {vx, vy} rooted in v.Sin
e T ′ is a spanning tree of G\{x, y}, it is 
lear that T is a spanning tree of
G. Sin
e x and y are leaves in T , let v0, . . . , vn be a root-to-leaves ordering of
T that �nishes with x and y (i.e. vn−1 = x and vn = y).The vertex v1 has at most ∆(∆ − 1) − 1 verti
es at distan
e 2. With the fa
tthat |F (v0, v1)| ≤ p−1, we have that |F (v1)| is bounded by ∆2 +(p−1)∆−2.Note that vn is the �rst vertex 
onsidered by the algorithm (the loop goesfrom vn to v0) when i = 0. At this moment all the verti
es are unlabelled,so the vertex vn is labelled 0. Sin
e vn and vn−1 have a 
ommon neighbor,
v0, we have d(vn, vn−1) ≤ 2. If d(vn, vn−1) = 1, G has a 
y
le of length three,
(v0, vn, vn−1), and this 
ase was proved in Case (ii). So, let d(vn, vn−1) = 2.This implies (sin
e l(vn) = 0) that vn−1 
annot be labelled 0. We 
onsider two
ases a

ording to l(vn−1):(1) If l(vn−1) = 1, sin
e p ≥ 2, the value 1 is in both F (vn−1, v0) and F (vn, v0).This implies that |F (vn−1, v0) ∪ F (vn, v0)| ≤ 2p − 1. With the fa
t that

v0 has at most ∆(∆ − 1)− 1 verti
es at distan
e 2, we have that |F (v0)|is bounded by ∆2 + (p − 1)∆ − 2.(2) If l(vn−1) > 1, there is a vertex vt ∈ N1(vn−1) labelled 0. Indeed, sin
e
F (vn, vn−1) = {0}, there is a vertex vt 6= vn su
h that 1 ∈ F (vt, vn−1).Furthermore, sin
e vn−1 was the �rst unlabelled vertex �o�ered� to belabelled 1 (vn was already labelled 0), we have l(vt) = 0 and d(vt, vn−1) =
1. If vt = v0, sin
e 0 ≤ σ(S, ∆)−2, we are done, so let vt 6= v0. Sin
e v0 and
vt are adja
ent to vn−1 and sin
e there is no 
y
le (v0, vt, vn−1) (we wouldbe in Case (ii)), we have d(v0, vt) = 2. This implies that the value 0 is in8



both F (vt, v0) and F (vn, v0) and so that |F (vt, v0)∪F (vn, v0)| ≤ 1+p−1.With the fa
t that v0 has at most ∆(∆ − 1) − 1 verti
es at distan
e 2,we have that |F (v0)| is bounded by ∆2 + (p − 1)∆ − 2.Case (v): If there is a vertex u with two neighbors v and w su
h that, for
X = N1(v)

⋃
N1(u)\{w}, the graph G\X is 
onne
ted, let T ′ be any spanningtree of G\X. Note that the vertex v, the neighbors of v (in
luding u) and theneighbors of u ex
ept w are not in G\X. So let T be the tree rooted in vwhi
h is the union of T ′, all the edges in
ident to u and all the edges in
identto v. Sin
e T ′ is a spanning tree of G\X, it is 
lear that T is a spanning treeof G su
h that the neighbors of u and v, ex
ept u, v and w, are leaves. Thisimplies that there are root-to-leaves orderings of T that �nish with the verti
esin L = N1(v) ∪ N1(u)\{u, v, w}. In these orderings, sin
e the subgraphs of Tindu
ed by {v0, v1} or {v0, v1, v2} are 
onne
ted, sin
e N1(v) \ L = {u} andsin
e N1(u) \ L = {v, w}, we have that v0 = v, v1 = u and v2 = w. So, let

v0, . . . , vn be a root-to-leaves ordering of T su
h that v0 = v, v1 = u, v2 = w,
N1(v0) = {v1, vn−∆+2, . . . , vn} and N1(v1) = {v0, v2, vn−2∆+4, . . . , vn−∆+1}. We
onsider two sub
ases a

ording to the maximum degree ∆ of the graph G.Case (v) with ∆ ≥ 4: For v1, let us 
onsider the labels the algorithm assignsto two neighbors of v1, vn−∆ and vn−∆+1. Sin
e d(vn−∆, vn−∆+1) ≤ 2 we have
l(vn−∆) 6= l(vn−∆+1). Let a and b be su
h that {a, b} = {n − ∆, n − ∆ + 1}and l(va) < l(vb). We 
onsider two 
ases a

ording to l(vb):(1) If l(vb) < l(va) + p then the value l(vb) belongs to both F (vb, v1) and

F (va, v1), and we have |F (vb, v1)∪F (va, v1)| ≤ 2p−1. With the fa
t that
|F (v0, v1)| ≤ p−1, we have that |F (v1)| is bounded by ∆2 +(p−1)∆−2.(2) If l(vb) ≥ l(va) + p, we wonder why vb has not been labelled l(va) + p− 1when the algorithm proposed it this value. There are two possible reasons.The vertex vb had either (1) a neighbor vx su
h that l(va) ≤ l(vx) ≤
l(va) + p − 1, or (2) a 2-neighbor vy labelled l(va) + p − 1 and su
h that
y > b. In the �rst 
ase, vx would be at distan
e 2 from v1 (if there wasa 
y
le (v1, vb, vx) we would be in Case (ii)) and the value l(vx) wouldbe in both F (vx, v1) and F (va, v1). In the se
ond 
ase, sin
e y > b and
y 6= a (by l(vy) = l(va) + p− 1), the vertex vy is a neighbor of v0 (indeed
y > n−∆+1) and a 2-neighbor of v1. So, the value l(va)+p−1 would be inboth F (vy, v1) and F (va, v1). In both 
ases, (1) or (2), with the fa
t that
|F (v0, v1)| ≤ p−1, we have that |F (v1)| is bounded by ∆2 +(p−1)∆−2.For v0, let us 
onsider the labels the algorithm assigns to vn, vn−1 and vn−2.Sin
e vn is the �rst vertex the algorithm proposes the value 0, it is labelled 0.These three verti
es are all at distan
e 2 from the others (if there was a 
y
leof length three we would be in Case (ii)), so they have di�erent labels. Let aand b be su
h that {a, b} = {n − 1, n − 2} and 0 = l(vn) < l(va) < l(vb). We
onsider three 
ases a

ording to l(va) and l(vb):9
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)Figure 1. The vertex v0 in the 
ase (v) with ∆ = 4.(1) If l(va) = 1 and l(vb) = 2 (see Figure 1.(a)), the values 1 and 2 areea
h forbiden twi
e to v0. Formally we have 1 ∈ F (vn, v0)
⋂

F (va, v0) and
2 ∈ F (va, v0)

⋂
F (vb, v0). This implies that |F (v0)| ≤ σ(S, ∆) − 2.(2) If l(va) = 1 and l(vb) > 2 (see Figure 1.(b)), there is a vertex vx ∈

N1(vb) labelled 0 or 1. Indeed, sin
e F (vn, vb) = {0} and F (va, vb) =
{1}, there is a vertex vx, with vx 6= vn and vx 6= va, su
h that 2 ∈
F (vx, vb). Furthermore, sin
e vb was the �rst unlabelled vertex �o�ered�to be labelled 2 (vn and va were already labelled), we have l(vx) ∈ {0, 1}and d(vx, vb) = 1. If vx = v0, sin
e 1 ≤ σ(S, ∆) − 2, we are done, solet vx 6= v0. The vertex vx is at distan
e 2 from v0 (if there was a 
y
le
(v0, vb, vx) we would be in Case (ii)), so we have 1 ∈ F (vn, v0)

⋂
F (va, v0)and l(vx) ∈ F (vn, v0)

⋂
F (vx, v0). This implies that |F (v0)| ≤ σ(S, ∆)−2.(3) If l(va) > 1 (see Figure 1.(
)), the verti
es va and vb are not labelled

1 (l(va) < l(vb)) there are two verti
es, vy ∈ N1(va) and vz ∈ N1(vb),labelled 0. Indeed, sin
e F (vn, va) = {0} (resp. F (vn, vb) = {0}), thereis a vertex vy 6= vn (resp. vz 6= vn), su
h that 1 ∈ F (vy, vb) (resp. 1 ∈
F (vz, vb)). Furthermore, sin
e va and vb were the �rst unlabelled verti
es�o�ered� to be labelled 1 (vn was already labelled), we have l(vy) = l(vz) =
0 and d(vy, va) = d(vz, vb) = 1. If v0 = vy or vz, sin
e 0 ≤ σ(S, ∆)− 2, weare done, so let v0 6= vy and vz. If vy = vz, there is a 
y
le (v0, va, vy, vb)and we would be in Case (iv), so let vy 6= vz. The vertex vy (resp. vz)is at distan
e 2 from v0 (if there was a 
y
le (v0, va, vy) or (v0, vb, vz) wewould be in Case (ii)), so we have 0 ∈ F (vn, v0)

⋂
F (vy, v0)

⋂
F (vz, v0).This implies that |F (v0)| ≤ σ(S, ∆) − 2.Case (v) with ∆ = 3: When ∆ = 3, we have N1(v0) = {v1, vn, vn−1},

N1(v1) = {v0, v2, vn−2} and X = {v0, v1, vn−2, vn−1, vn}. In this 
ase we haveto be more pre
ise on the stru
ture of G around v0 and v1. Let us 
onsiderthat we are in none of the 
ases (i), (ii), (iii) and (iv). Sin
e we are not in
on�guration (iv) d(vn, vn−2) ≥ 2 and d(vn−1, vn−2) ≥ 2.First we 
onsider that one of the verti
es vn or vn−1 is at distan
e at least 3from vn−2. Note that sin
e vn and vn−1 are both leaves in T , by permutingthem in the root-to-leaves order we still have a root-to-leaves order. So, w.l.o.g.10



let vn be su
h that d(vn, vn−2) ≥ 3. The order of the verti
es implies that both
vn and vn−2 are labelled 0. Indeed, when the algorithm proposes the label0, vn a

ept it, then vn−1 reje
t it (sin
e d(vn, vn−1) = 2) and then vn−2a

ept it (sin
e d(vn, vn−2) ≥ 3). So we have 0 ∈ F (vn, v0)

⋂
F (vn−2, v0) and

0 ∈ F (vn, v1)
⋂

F (vn−2, v1). If l(vn−1) = 1 we have 1 ∈ F (vn, v0)
⋂

F (vn−1, v0)and so, both |F (v0)| and |F (v1)| are bounded by ∆2+(p−1)∆−2. If l(vn−1) >

1, there is a vertex vx ∈ N1(vn−1) labelled 0. Indeed, sin
e F (vn, vn−1) =
{0}, there is a vertex vx 6= vn su
h that 1 ∈ F (vx, vn−1). Furthermore, sin
e
vn−1 was the �rst unlabelled vertex �o�ered� to be labelled 1 (vn was alreadylabelled), we have l(vx) = 0 and d(vx, vn−1) = 1. The vertex vx is at distan
e 2from v0 (if there was a 
y
le (v0, vn−1, vx) we would be in Case (ii)), so we have
0 ∈ F (vx, v0)

⋂
F (vn, v0)

⋂
F (vn−2, v0). With the fa
t that |F (v0, v1)| ≤ p − 1,we have that both |F (v0)| and |F (v1)| are bounded by ∆2 + (p − 1)∆ − 2.Now we 
onsider that d(vn, vn−2) = d(vn−1, vn−2) = 2. Let vx (resp. vy) be thevertex adja
ent to vn and vn−2 (resp. vn−1 and vn−2). The verti
es vx and vyare distin
t be
ause if there was a vertex with neighbors vn, vn−1 and vn−2 thegraph G\X would be dis
onne
ted, whi
h is impossible by de�nition of Case(v). By 
onstru
tion of T , the edges v0vn, v0vn−1 and v1vn−2 are the only edgesin T , adja
ent to vn, vn−1 or vn−2. So the edges vnvx, vn−2vx, vn−1vy and vn−2vyare not in T , and the verti
es vx and vy having just one adja
ent edge in T areleaves of T . This implies that the root-to-leaves order 
an also verify vn−3 = vxand vn−4 = vy. We know that d(vn, vn−4) > 1 and d(vn−1, vn−3) > 1, else G\Xwould be dis
onne
ted. We 
onsider di�erent 
ases a

ording to d(vn, vn−4)and d(vn−1, vn−3):- If one of these distan
es is greater than 2 (see Figure 2.(a)), w.l.o.g.
onsider that d(vn, vn−4) > 2 (we 
ould ex
hange vn and vn−3 with vn−1and vn−4 in the root-to-leaves ordering of T ). During its �rst iteration(when i = 0) the algorithm labels vn with 0. Sin
e d(vn, vn−1) = 2,

d(vn, vn−2) = 2 and d(vn, vn−3) = 1 the verti
es vn−1, vn−2 and vn−3 arenot labelled 0. Then, sin
e d(vn, vn−4) > 2, the algorithm labels vn−4 with0 and we have 0 ∈ F (vn, v0)
⋂

F (vn−4, v0) and 0 ∈ F (vn, v1)
⋂

F (vn−4, v1).Sin
e the verti
es vn−1, vn−2 and vn−3 are adja
ent to vn or vn−4, theirlabels are greater than p − 1. We 
onsider two 
ase a

ording to l(vn−1):- If l(vn−1) = p then, sin
e d(vn−1, v1) = d(vn−1, vn−2) = 2, we havethat l(v1) 6= p and l(vn−2) > p. If l(vn−2) = p + 1, we have p + 1 ∈
F (vn−1, v0)

⋂
F (vn−2, v0). If l(vn−2) > p + 1, sin
e vn−2 was the �rstunlabelled vertex o�ered to be labelled p+1, it implies that either thevertex vn−3 is labelled p, or the vertex v1 is labelled l(v1) ≤ p. In the�rst 
ase we would have p ∈ F (vn−1, v0)

⋂
F (vn−3, v0). In the other
ase we would have either l(v1) ∈ F (v1, v0)
⋂

F (vn, v0) (if l(v1) < p)or p ∈ F (v1, v0)
⋂

F (vn−1, v0) (if l(v1) = p).- If l(vn−1) > p it is be
ause the unique vertex vz ∈ N1(vn−1)\{v0, vn−4}is labelled less than p. In this 
ase we have l(vz) ∈ F (vz, v0)
⋂

F (vn, v0).11
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Figure 2. Case (v) with ∆ = 3 and d(vn, vn−2) = d(vn−1, vn−2) = 2.Whatever the sub
ase, with the fa
t that |F (v0, v1)| ≤ p − 1, we havethat |F (v0)| and |F (v1)| are bounded by ∆2 + (p − 1)∆ − 2.- If these two distan
es equal 2, d(vn, vn−4) = d(vn−1, vn−3) = 2, we have toslightly modify the order on the verti
es by permuting vn−1 with vn−2 (seeFigure 2.(b)). Sin
e these two verti
es are leaves in T , the order obtainedstill 
orresponds to a root-to-leaves ordering of T . With this order onthe verti
es, the algorithm labels the verti
es vn, vn−1, vn−2 and vn−3,respe
tively 0, 1, 2 and p + 1. Indeed:- The �rst unlabelled vertex �proposed� to be labelled 0 is vn and so
l(vn) = 0. This implies that none of the verti
es vn−1, vn−2, vn−3 andnone of their neighbors (ex
ept vn) are labelled 0.- The �rst unlabelled vertex �proposed� to be labelled 1 is vn−1 andsin
e none of its neighbors is labelled 0, we have l(vn−1) = 1. This im-plies that none of the verti
es vn−2, vn−3 and none of their neighbors(ex
ept vn−1) are labelled 1.- The �rst unlabelled vertex �proposed� to be labelled 2 is vn−2 andsin
e none of its neighbors is labelled 0 or 1, we have l(vn−2) = 2. Thisimplies that the neighbor of vn−3 distin
t from vn and vn−1 
annotbe labelled less than p + 2.- The vertex vn−3 
annot be labelled less than p+1 (sin
e l(vn−1) = 1).Furthermore, none of its neighbors is labelled l ∈ {2, . . . , p}. So, sin
e
vn−3 is the �rst unlabelled vertex �proposed� to be labelled p + 1, wehave l(vn−3) = p + 1.This implies that 1 ∈ F (vn, v0)

⋂
F (vn−1, v0), 2 ∈ F (vn−1, v1)

⋂
F (vn−2, v1)and p + 1 ∈ F (vn−2, v0)

⋂
F (vn−3, v0). With the fa
t that |F (v0, v1)| ≤

p−1, we have that |F (v0)| and |F (v1)| are bounded by ∆2 +(p−1)∆−2.This 
on
lude the proof of Theorem 5.5 Proof of Lemma 6Let G be a graph with maximum degree ∆ ≥ 3. We prove the lemma byshowing that if G has none of the 
on�gurations (i), (ii), (iii) and (iv), then12
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N(e)

Figure 3. e-bags.it 
ontains 
on�guration (v).De�nition 15 Given an edge e = uv ∈ E(G), the set of neighbors of e is
N(e) = (N1(u)

⋃
N1(v)) \{u, v}. Given e = uv ∈ E(G) an e-bag B is a maxi-mal subgraph of G\{u, v} su
h that, for any pair of verti
es x and y ∈ V (B),there is a path from x to y without internal verti
es in N(e) (see Figure 3).Note that two di�erent e-bags 
an only share verti
es of N(e), else their unionwould be a bigger e-bag, 
ontradi
ting their maximality. Given an e-bag B,let L(B) = V (B)
⋂

N(e) be the set of verti
es linking B to the rest of thegraph. The others verti
es of B form the set of inner verti
es of B, I(B) =
V (B)\L(B). Given a set Y ⊆ N(uv) ∪ {u, v}, the graph G\Y is dis
onne
tedif there is an e-bag B with L(B) ⊆ Y and |I(B)| > 0.Remark 16 An edge e ∈ E(G) 
orresponds to the edge uv of 
on�guration(v) i� there is a vertex w ∈ N(e) 
ontained by all the e-bags.We 
an found this edge uv of 
on�guration (v) by doing the following pro
ess:(1) Consider two non-in
ident edges e and f ∈ E(G).(2) Verify if e 
orresponds to the edge uv of the 
on�guration (v).(3) If not, let B0 be the e-bag 
ontaining f . Sin
e e does not 
orrespond tothe edge uv, there are e-bags Bi, with i > 0, su
h that L(B0)\L(Bi) 6= ∅(else with e = uv and any w ∈ L(B0) we would have 
on�guration(v)). Let B be the set of all these e-bags. Let B1 be an e-bag of B thatminimizes |L(B1)| and (if there are various e-bags Bi minimizing |L(Bi)|)then maximizes |I(B1)|. Finally sin
e |I(B1)| ≥ 2 (
.f. Lemma 17), let ebe an edge of B1 with its two ends in I(B1) and go to step (2).We 
an prove that this pro
ess terminates be
ause ea
h time we 
hange e, thesize of I(B0) in
reases. Indeed, sin
e none of the verti
es in L(B0) \L(B1) hasa neighbor in B1, all the verti
es of B0\L(B1) (i.e. I(B0) ∪ (L(B0) \ L(B1)))are in I(B0) in the next step. So if the following lemma holds, Lemma 6 holds.Lemma 17 If a graph G does not 
ontain 
on�gurations (i), (ii), (iii) and(iv), and if a given edge e = ab ∈ E(G) does not 
orrespond to the edge uv of
on�guration (v) then the e-bag B1 (de�ned before) is su
h that |I(B1)| ≥ 2.13
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(a) (b) (c) (d)Figure 4. Cases with |I(B1)| = 0 and |I(B1)| = 1.PROOF. If |I(B1)| = 0, let e′ = a′b′ be its unique edge and note that a′and b′ belong to N(e). This implies that |L(B1)| = 2 and that any e-bag
Bi ∈ B has either |L(Bi)| ≥ 3 or |L(Bi)| = 2 and |I(Bi)| = 0. If a′ and b′are both neighbors of a (resp. b) there is a 
y
le of length three and we are in
on�guration (ii), so let a′ ∈ N1(a) and b′ ∈ N1(b) (see Figure 4.(a)). Then we
onsider any vertex c ∈ L(B0)\L(B1) (so c 6= a′ and b′). W.l.o.g. let c ∈ N1(a).Sin
e {a′, b, c} ⊆ N1(a) and (a, b, b′, a′) is 
y
le, if G\{c, a′} is 
onne
ted, weare in 
on�guration (iv). So let G\{c, a′} be dis
onne
ted. This implies thatthere is a vertex d ∈ V (G)\{c, a′} su
h that all the paths from d to a passthrough c or a′. The e-bag Bi 
ontaining d is su
h that L(Bi) ⊆ {c, a′} and
d ∈ I(Bi). Sin
e b′ ∈ L(B0) \ L(Bi), we have Bi ∈ B. With the fa
t that
|L(Bi)| ≤ 2 and |I(Bi)| ≥ 1, this 
ontradi
ts the de�nition of B0 and we have
|I(B1)| ≥ 1.If |I(B1)| = 1, let c be the unique vertex in I(B1). Sin
e deg(c) = |L(B1)| =
∆ ≥ 3, any e-bag Bi ∈ B has either |L(Bi)| > ∆ or |L(Bi)| = ∆ and |I(Bi)| =
1 (when |I(Bi)| = 0 we have |L(Bi)| = 2 < ∆). If ∆ ≥ 4 there are at leasttwo 
y
les of length four passing through c, so we are in 
on�guration (iii)(see Figure 4.(b) and Figure 4.(
)). For ∆ = 3 (see Figure 4.(d)), let N1(a) =
{b, d1, d2} and N1(b) = {a, d3, d4}. W.l.o.g. let N1(c) = L(B1) = {d1, d2, d3}.Sin
e B1 ∈ B, we have L(B0)\L(B1) 6= ∅ and so d4 ∈ L(B0). Sin
e (a, d1, c, d2)is a 
y
le, if the graph G\{d2, d3} is 
onne
ted we are in 
on�guration (iv),so let G\{d2, d3} be dis
onne
ted. This implies, that there is a vertex z su
hthat all the paths from z to a pass through d2 or d3. The e-bag Bi 
ontaining
z is su
h that L(Bi) ⊆ {d2, d3}. Sin
e d4 ∈ L(B0) \ L(Bi), we have Bi ∈ B.With the fa
t that |L(Bi)| ≤ 2, this 
ontradi
ts the minimality of |L(B1)| = ∆(sin
e ∆ > 2). So we have |I(B1)| ≥ 2 and this 
ompletes the proof of Lemma17.Referen
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