
On the L(p, 1)-labelling of graphsD. GonçalvesLaBRI, U.M.R. 5800, Université Bordeaux I351, ours de la liberation 33405 Talene Cedex, Frane.AbstratThe L(p, q)-labelling of graphs, is a graph theoreti framework introdued by Griggsand Yeh (7) to model the hannel assignement problem. In this paper we improvethe best known upper bound for the L(p, 1)-labelling of graphs with given maximumdegree. We show that for any integer p ≥ 2, any graph G with maximum degree ∆admits an L(p, 1)-labelling suh that the labels range from 0 to ∆2 + (p − 1)∆ − 2.Key words: Channel assignement problem, L(p, q)-labelling
1 IntrodutionLet G be a onneted graph with maximum degree ∆. For a set of verties
S ⊂ V (G), the graph G\S is the graph indued by V (G)\S. The distane
d(u, v) between two verties u and v is the number of edges in the shortestpath from u to v. We say that v is a d-neighbor of u if d(u, v) = d. We generallyuse the ommon term neighbor instead of 1-neighbor. Let Nd(v) be the set of
d-neighbors of v. An L(α1, α2, . . . , αk)-labelling of a graph G is a funtion
l : V (G) → [0, λ] suh that for any pair of verties u and v if d(u, v) = d ≤ kthen |l(u) − l(v)| ≥ αd. The problem is to �nd an L(α1, α2, . . . , αk)-labellingof G that minimizes λ. We denote λα1,α2,...,αk

(G) the minimum value of λ.For a sequene of non-negative integers S = (α1, α2, . . . , αk), we will use thenotation λS(G) instead of λα1,α2,...,αk
(G).
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L(α1, . . . , αk)-labellings arise from the hannel assignement problem. The han-nel assignement problem is to assign a hannel to eah radio transmitter sothat lose transmitters do not interfer and suh that we use the minimum spanof frequeny. Roberts proposed to assign hannels suh that �lose� transmit-ters reeive di�erent hannels and �very lose� transmitters reeive hannelsthat are at least two hannels apart. This is an L(2,1)-labelling of a graph
G where the verties are the transmitters, the �very lose� transmitters areadjaent verties and the �lose� transmitters are verties at distane 2 in G.Sine the onstraints between transmitters disminish with the distane, theL(α1, α2, . . . , αk)-labelling of graph is interesting for this problem when thesequene α1, α2, . . . , αk is dereasing. Many work has been done on L(2,1)-labelling sine the �rst paper of Griggs and Yeh (7). Many papers deal withbounding λα1,α2

for some graph families (1; 4; 5; 8; 9; 11; 14; 15; 16) or givensome graph invariants suh as χ(G), ω(G) or ∆ (2; 3; 10; 12). In their paper(7), Griggs and Yeh proved that λ2,1(G) ≤ ∆2+2∆ and proposed the followingonjeture.Conjeture 1 For any graph G with maximum degree ∆ ≥ 2, λ2,1(G) ≤ ∆2.Atually they proved it for ∆ = 2 and for graphs of diameter at most 2. Theyalso proved that determining λ2,1(G) is NP-omplete. The onjeture is stillopen for ∆ ≥ 3 and for various families of graphs. In (9), Kang proved it forHamiltonian ubi graphs. The results in (1; 8; 14) prove the onjeture forplanar graphs with maximum degree ∆ 6= 3.In (2) the authors gave an algorithm for the L(2,1)-labelling and improvedthe upper bound of λ2,1 to ∆2 + ∆. In (3), with the same algorithm theyobtained that λp,1(G) ≤ ∆2 + (p − 1)∆. Let σ(S, ∆) be the funtion de�nedfor any sequene S = (α1, . . . , αk) by σ(S, ∆) =
∑k

i=1 αi∆(∆−1)i−1. With thealgorithm used in (2; 3), we an extend their result as follow:Proposition 2 For any sequene of non-negative integers S = (α1, α2, . . . , αk),with k ≥ 1, and any graph G with maximum degree ∆, we have that λS(G) ≤
σ(S, ∆).This is not the best known bound. In (10), Král and �krekovski had a resulton the list hannel assignement problem. As a orollary of their result we havethat:Theorem 3 (Král and �krekovski) For any sequene of non-negative in-tegers S = (α1, α2, . . . , αk), with k ≥ 2 and α1 > α2, and any graph G withmaximum degree ∆ ≥ 3, we have that λS(G) ≤ σ(S, ∆) − 1.We slightly improved this bound for some spei� sequenes S.
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Theorem 4 For any sequene S = (α1, . . . , αk) suh that k ≥ 2, α1 ≥ 2,
αk = 1 and 1 ≤ αi < α1 for 1 < i < k, and for any onneted graph G withmaximum degree ∆ ≥ 3, there is an ordering of the verties, v0, v1, . . . , vn andan L(α1, . . . , αk)-labelling l of G suh that:(1) l(v0) ≤ σ(S, ∆) − 1,(2) l(vj) ≤ σ(S, ∆) − j for 1 ≤ j < k, and(3) l(vj) ≤ σ(S, ∆) − k for k ≤ j.This implies that just a onstant number of verties, k, may be labelled morethan σ(S, ∆) − k. We have a stronger result for k = 2.Theorem 5 For any sequene S = (p, 1) with p ≥ 2 and any graph G withmaximum degree ∆ ≥ 3, we have that λp,1(G) ≤ σ(S, ∆)−2 = ∆2+(p−1)∆−2.So, for the L(2,1)-labelling we obtain that λ2,1(G) ≤ ∆2 + ∆− 2 and we get alittle loser to Conjeture 1. To prove Theorem 4 and Theorem 5 we need thefollowing strutural lemma.Lemma 6 Every graph G with maximum degree ∆ ≥ 3 has either:(i) a vertex v with degree less than ∆,(ii) a yle of length three,(iii) two yles of length four passing through the same vertex v,(iv) a vertex v with three neighbors u, x and y, suh that there is a yle oflength four passing through the edge uv and suh that the graph G\{x, y}is onneted, or(v) a vertex u with two adjaent verties v and w suh that the graph G\Xis onneted, where X is the set (N1(v)

⋃
N1(u)) \{w}.In Setion 2, we extend the labelling algorithm presented in (2) and its analysisimplies Proposition 2. In Setion 3, we slightly modify this algorithm and weprove Theorem 4. In Setion 4, we prove Theorem 5 using Lemma 6. Finally,we prove Lemma 6 in Setion 5.2 The basi algorithmThe algorithm presented in (2) performs an L(2, 1)-labelling of a a graph Gwith maximum degree ∆. The analysis of the algorithm gives the followingbound, λ2,1(G) ≤ ∆2 + ∆. Here we present an extended version of this algo-rithm that performs an L(α1, . . . , αk)-labelling, for any sequene (α1, . . . , αk).The analysis of this algorithm establishes Proposition 2. Let v0, . . . , vn be anordering of the verties in V (G). 3



Algorithm 1
i = 0;WHILE there are unlabelled verties DOFOR vj = vn TO v0 DOIF vj is unlabelled AND vj an be labelled i THENLet vj be labelled i;

i = i + 1;In this algorithm a vertex vj �an be labelled i� if it has no d-neighbor alreadylabelled x with i−αd < x < i+αd. Let us denote l(v) the label the algorithmassigns to the vertex v.Claim 7 The fat that a vertex v is not labelled i is not due to a d-neighbor
u whose label veri�es i < l(u) < i + αd.Indeed, when the algorithm �proposed� v to be labelled i, the vertex u wasstill unlabelled (sine l(u) > i). So, a vertex u an only �forbid� its d-neighbor
v to be labelled l(u), l(u) + 1, . . . , l(u) + αd − 1.Claim 8 Aording to the order on the verties used by the algorithm, let vpand vq be two verties of G suh that p < q. The fat that vq is not labelled
l(vp) is not due to vp.Indeed, when the algorithm �proposed� vq to be labelled l(vp), the vertex vpwas still unlabelled (sine p < q).De�nition 9 Denote F (u, v), the set of labels whih have been forbiden by uto v during the exeution of the algorithm. Let F (v) =

⋃
u∈V (G) F (u, v) be theset of all the labels that have been forbiden to v.By Claim 7 and Claim 8, we know the elements in F (u, v).Remark 10 Given two verties vp and vq with d(vp, vq) = d, we have either:- F (vp, vq) = ∅, if d > k, αd = 0 or l(vq) ≤ l(vp),- F (vp, vq) = {l(vp) + 1, . . . , l(vp) + αd − 1}, if d ≤ k, αd > 0, l(vq) > l(vp)and p < q, or- F (vp, vq) = {l(vp), l(vp) + 1, . . . , l(vp) + αd − 1}, if d ≤ k, αd > 0, l(vq) >

l(vp) and p > q.This implies that |F (vp, vq)| = 0 when d > k and that |F (vp, vq)| ≤ αd either.Claim 11 The set F (v) equals the interval [0, . . . , l(v)− 1], so l(v) = |F (v)|.Indeed, it is lear that (1) the algorithm labels a vertex v with the �rst valuenot in F (v) and that (2) hene v is labelled there is no more value forbidento v. 4



Finally, the set F (v) being a union of possibly disjoint sets we have |F (v)| ≤
∑

u∈V (G) |F (u, v)|. In a graph of maximum degree ∆, one an easily see byindution on i that there are at most ∆(∆ − 1)i−1 verties in Ni(v). Sine forany vertex u with d(u, v) = d we have |F (u, v)| ≤ αd (with αd = 0 for d > k),we obtain that l(v) = |F (v)| ≤
∑k

i=1 αi∆(∆ − 1)i−1.3 The improved algorithm and proof of Theorem 4To improve the bound we have in Proposition 2, we have to be more arefullon the order the algorithm onsiders the verties. Indeed, aording to theseond point of Remark 10, if for a given vertex vq there are x verties vpsuh that d(vp, vq) = d ≤ k, αd > 0 and p < q, then |F (vp, vq)| ≤ αd − 1 and
l(vq) = |F (vq)| ≤

∑
u∈V (G) |F (u, vq)| ≤ σ(S, ∆) − x. It would be interesting ifthe algorithm ould use an order on the verties, v0, . . . , vn, suh that manyverties vq have some d-neighbors vp suh that d(vp, vq) = d ≤ k, αd > 0 and

p < q. Note that in any order the vertex v0 has no suh d-neighbors.De�nition 12 Given a tree T rooted in a vertex r, a root-to-leaves order onthe verties of T is an order v0, v1, . . . , vn suh that v0 = r and suh that forany x ∈ [0 . . . n] the subgraph of T indued by {v0, v1, . . . , vx} is onneted (i.e.is a tree).There are various possible root-to-leaves orders for a given tree. Note that ina root-to-leaves order any vertex v ∈ V (T ) appears after its �anestors� in T .The following lemma gives interesting properties of those orders.Lemma 13 Given a onneted graph G, onsider any spanning tree T of Grooted in any vertex r ∈ V (G). Let v0, . . . , vn be a root-to-leaves ordering ofthe verties in T . For any integer t ≥ 0, we have that :(i) v0 = r.(ii) For any integers i and j suh that i < j < t we have d(vi, vj) ≤ t.(iii) For any integer j suh that j ≥ t, there are at least t verties vi suh that
i < j and d(vi, vj) ≤ t.PROOF. (i) holds by de�nition of root-to-leaves orders. Sine the graph

T [v0, . . . , vt−1], the subgraph of T indued by the verties v0, . . . , vt−1, is atree with t verties, its diameter is at most t−1. So (ii) learly holds. For (iii),sine the graph T [v0, . . . , vj] is a tree, we onsider two ases. If all the vertiesare at distane at most t from vj in this subtree, there are j verties (from v0to vj−1) at distane at most t from vj and sine j ≥ t (iii) holds. If there isa vertex at distane t + 1 from vj in this subtree, the t verties of the path5



linking vj to this vertex are at distane at most t from vj , so (iii) holds.Given any spanning tree T of a onneted graph G rooted in any vertex
r ∈ V (G), let v0, . . . , vn be any root-to-leaves ordering of the verties in T .Now assume that Algorithm 1 performs an L(α1, . . . , αk)-labelling of G usingthis order of the verties. Lemma 13 (with t = k) and Remark 10 imply thatthe points (2) and (3) of Theorem 4 hold:(2) For any vertex vj with 1 ≤ j < k, there are j verties vi (from v0 to vj−1)suh that i < j and d(vi, vj) ≤ k. Sine αl ≥ 1 for all l ≤ k, Remark 10implies that the algorithm labels vj at most σ(∆, S) − j.(3) For any vertex vj with j ≥ k, there are k verties vi suh that i < jand d(vi, vj) ≤ k. Sine αl ≥ 1 for all l ≤ k, Remark 10 implies that thealgorithm labels vj at most σ(∆, S) − k.We prove now that appropriately hoosing T , r and the root-to-leaves order,the point (1) of Theorem 4 also holds. The following strutural lemma is easilydedued from Lemma 6 or from Lemma 1.15 in (13).Lemma 14 Every graph G with maximum degree ∆ ≥ 3 has either:(a) a vertex v with degree less than ∆,(b) a yle of length l ≤ 4, or() a vertex v with two neighbors x and y suh that the graph G\{x, y} isonneted.We onsider three ases aording to whih ase of Lemma 14 the graph Gorresponds.Case (a): If there is a vertex of degree less than ∆, let the root r be this ver-tex. Then, onsider any spanning tree T of G and any root-to-leaves orderingof T . In this ase, sine there are at most ∆ − 1 verties in N1(v0), |F (v0)| isbounded by σ(S, ∆)−α1. Sine α1 ≥ 2, we have that l(v0) < σ(S, ∆)− 2 and(1) holds.Case (b): If there is a yle of length l ≤ 4, let the root r be any vertexof this yle. Then, onsider any spanning tree T of G and any root-to-leavesordering of T . In this ase, sine there are at most ∆(∆ − 1) − 1 vertiesin N2(v0), |F (v0)| is bounded by σ(S, ∆) − α2. Sine α2 ≥ 1, we have that
l(v0) ≤ σ(S, ∆) − 1 and (1) holds.Case (): If there is a vertex with two neigbors x and y suh that the graph
G\{x, y} is onneted, let the root r be this vertex. Let T ′ be any spanningtree of the onneted graph G\{x, y}. Let T be the tree T ′ ∪ {rx, ry}. Sine
T ′ is a spanning tree of G\{x, y}, it is lear that T is a spanning tree of G.6



Sine x and y are leaves in T , there is a root-to-leaves ordering of T suh that
v0 = r (by de�nition), vn−1 = x and vn = y. Note that vn is the �rst vertexonsidered by the algorithm (the loop goes from vn to v0) when i = 0. At thismoment all the verties are unlabelled, so the vertex vn is neessarily labelled
0. Sine vn and vn−1 have a ommon neighbor, v0, we have d(vn, vn−1) ≤ 2. If
d(vn, vn−1) = 1, G has a yle of length three, (v0, vn, vn−1), and this ase wasproved in Case (b). So, let d(vn, vn−1) = 2. This implies (sine l(vn) = 0) that
vn−1 annot be labelled less than α2. Let us onsider two ases:(1) If l(vn−1) = α2, sine α1 > α2, the value α2 is in both F (vn−1, v0) and

F (vn, v0). This implies that |F (vn−1, v0) ∪ F (vn, v0)| ≤ 2α1 − 1, and sothat l(v0) = |F (v0)| is bounded by σ(S, ∆) − 1. So (1) holds.(2) If l(vn−1) > α2, sine F (vn, vn−1) = {0, . . . , α2−1}, there is a vertex vt 6=
vn suh that α2 ∈ F (vt, vn−1). This vertex vt is suh that d(vt, vn−1) = d ≤
k and α2 < l(vt) + αd. Furthermore, sine vn−1 was the �rst unlabelledvertex �o�ered� to be labelled α2 (vn was already labelled 0), we have
l(vt) < α2. If vt = v0, sine l(vt) < α2 ≤ σ(S, ∆) − 1, we are done, so let
vt 6= v0. Sine α2 ∈ F (vt, vn−1) = {l(vt), . . . , l(vt)+αd−1}, l(vt) < α2 and
αk = 1, we have that d < k. This implies that d(vt, v0) = d′ ≤ d + 1 ≤ kand that the value l(vt) is in both F (vt, v0) and F (vn, v0). This impliesthat |F (vt, v0) ∪ F (vn, v0)| ≤ αd′ + α1 − 1 and so that l(v0) = |F (v0)| isbounded by σ(S, ∆) − 1. So (1) holds.4 Proof of Theorem 5We prove Theorem 5 for a sequene S = (p, 1), with p ≥ 2, and a onnetedgraph G (if G is disonneted we onsider eah of its onneted omponents).Let v0, . . . , vn be any root-to-leaves ordering of any spanning tree T of G rootedin any vertex r ∈ V (G). We have seen in the previous setion that, using thisorder on the verties of G, Algorithm 1 does a L(p, 1)-labelling of G suh thatthe verties vi, with i ≥ 2, are labelled at most σ(S, ∆)−2. Furthermore, withsuh order on the verties we have that |F (v0, v1)| ≤ p−1. This means that theset F (v0) (resp. F (v1)) has at most σ(S, ∆) (resp. σ(S, ∆)− 1) elements, andthat we should �save� two (resp. one) elements. We prove that, appropriatelyhoosing T , r and the root-to-leaves ordering, we an bound l(v0) = |F (v0)|and l(v1) = |F (v1)| by σ(S, ∆) − 2. We onsider distint ases aording towhih ase of Lemma 6 the graph G orresponds.Case (i): If there is a vertex of degree less than ∆, let the root r be this vertex.Then, onsider any spanning tree T of G and any root-to-leaves ordering of T .Sine v0 = r has at most ∆− 1 neighbors and (∆− 1)2 verties at distane 2,we bound |F (v0)| by (∆−1)2 + p(∆−1) whih is less than ∆2 +(p−1)∆−2.The vertex v1 has at most ∆ neighbors, inluding v0, and at most ∆(∆−1)−17



verties at distane 2. With the fat that |F (v0, v1)| ≤ p − 1, we have that
|F (v1)| ≤ ∆(∆ − 1) − 1 + p(∆ − 1) + p − 1, whih equals ∆2 + (p − 1)∆ − 2.Case (ii): If there is a yle of length three passing through the edge uv,onsider a spanning tree T rooted in v that uses the edge uv. Then let this treebe rooted in v (v0 = v ) and onsider a root-to-leaves ordering of T suh that
v1 = u. Sine the verties in a yle of length three have at most ∆(∆−1)−2verties at distane 2, we an bound |F (v0)| and |F (v1)| by ∆2 +(p−1)∆−2.Case (iii): If there are two yles of length four passing through the samevertex v, let u be a neighbor of v in one of these yles. Consider a spanning tree
T rooted in v that uses the edge uv. Then onsider a root-to-leaves orderingof T suh that v0 = v and v1 = u. Sine v0 has at most ∆(∆ − 1)− 2 vertiesat distane 2, we an bound |F (v0)| by ∆2 +(p−1)∆−2. The vertex v1 has atmost ∆(∆−1)−1 verties at distane 2. With the fat that |F (v0, v1)| ≤ p−1,we have that |F (v1)| is bounded by ∆2 + (p − 1)∆ − 2.Case (iv): If there is a yle of length four passing through an edge uv andtwo verties x and y ∈ N1(v)\{u} suh that G\{x, y} is onneted, let T ′ beany spanning tree of G\{x, y}. Let T be the tree T ′ ∪ {vx, vy} rooted in v.Sine T ′ is a spanning tree of G\{x, y}, it is lear that T is a spanning tree of
G. Sine x and y are leaves in T , let v0, . . . , vn be a root-to-leaves ordering of
T that �nishes with x and y (i.e. vn−1 = x and vn = y).The vertex v1 has at most ∆(∆ − 1) − 1 verties at distane 2. With the fatthat |F (v0, v1)| ≤ p−1, we have that |F (v1)| is bounded by ∆2 +(p−1)∆−2.Note that vn is the �rst vertex onsidered by the algorithm (the loop goesfrom vn to v0) when i = 0. At this moment all the verties are unlabelled,so the vertex vn is labelled 0. Sine vn and vn−1 have a ommon neighbor,
v0, we have d(vn, vn−1) ≤ 2. If d(vn, vn−1) = 1, G has a yle of length three,
(v0, vn, vn−1), and this ase was proved in Case (ii). So, let d(vn, vn−1) = 2.This implies (sine l(vn) = 0) that vn−1 annot be labelled 0. We onsider twoases aording to l(vn−1):(1) If l(vn−1) = 1, sine p ≥ 2, the value 1 is in both F (vn−1, v0) and F (vn, v0).This implies that |F (vn−1, v0) ∪ F (vn, v0)| ≤ 2p − 1. With the fat that

v0 has at most ∆(∆ − 1)− 1 verties at distane 2, we have that |F (v0)|is bounded by ∆2 + (p − 1)∆ − 2.(2) If l(vn−1) > 1, there is a vertex vt ∈ N1(vn−1) labelled 0. Indeed, sine
F (vn, vn−1) = {0}, there is a vertex vt 6= vn suh that 1 ∈ F (vt, vn−1).Furthermore, sine vn−1 was the �rst unlabelled vertex �o�ered� to belabelled 1 (vn was already labelled 0), we have l(vt) = 0 and d(vt, vn−1) =
1. If vt = v0, sine 0 ≤ σ(S, ∆)−2, we are done, so let vt 6= v0. Sine v0 and
vt are adjaent to vn−1 and sine there is no yle (v0, vt, vn−1) (we wouldbe in Case (ii)), we have d(v0, vt) = 2. This implies that the value 0 is in8



both F (vt, v0) and F (vn, v0) and so that |F (vt, v0)∪F (vn, v0)| ≤ 1+p−1.With the fat that v0 has at most ∆(∆ − 1) − 1 verties at distane 2,we have that |F (v0)| is bounded by ∆2 + (p − 1)∆ − 2.Case (v): If there is a vertex u with two neighbors v and w suh that, for
X = N1(v)

⋃
N1(u)\{w}, the graph G\X is onneted, let T ′ be any spanningtree of G\X. Note that the vertex v, the neighbors of v (inluding u) and theneighbors of u exept w are not in G\X. So let T be the tree rooted in vwhih is the union of T ′, all the edges inident to u and all the edges inidentto v. Sine T ′ is a spanning tree of G\X, it is lear that T is a spanning treeof G suh that the neighbors of u and v, exept u, v and w, are leaves. Thisimplies that there are root-to-leaves orderings of T that �nish with the vertiesin L = N1(v) ∪ N1(u)\{u, v, w}. In these orderings, sine the subgraphs of Tindued by {v0, v1} or {v0, v1, v2} are onneted, sine N1(v) \ L = {u} andsine N1(u) \ L = {v, w}, we have that v0 = v, v1 = u and v2 = w. So, let

v0, . . . , vn be a root-to-leaves ordering of T suh that v0 = v, v1 = u, v2 = w,
N1(v0) = {v1, vn−∆+2, . . . , vn} and N1(v1) = {v0, v2, vn−2∆+4, . . . , vn−∆+1}. Weonsider two subases aording to the maximum degree ∆ of the graph G.Case (v) with ∆ ≥ 4: For v1, let us onsider the labels the algorithm assignsto two neighbors of v1, vn−∆ and vn−∆+1. Sine d(vn−∆, vn−∆+1) ≤ 2 we have
l(vn−∆) 6= l(vn−∆+1). Let a and b be suh that {a, b} = {n − ∆, n − ∆ + 1}and l(va) < l(vb). We onsider two ases aording to l(vb):(1) If l(vb) < l(va) + p then the value l(vb) belongs to both F (vb, v1) and

F (va, v1), and we have |F (vb, v1)∪F (va, v1)| ≤ 2p−1. With the fat that
|F (v0, v1)| ≤ p−1, we have that |F (v1)| is bounded by ∆2 +(p−1)∆−2.(2) If l(vb) ≥ l(va) + p, we wonder why vb has not been labelled l(va) + p− 1when the algorithm proposed it this value. There are two possible reasons.The vertex vb had either (1) a neighbor vx suh that l(va) ≤ l(vx) ≤
l(va) + p − 1, or (2) a 2-neighbor vy labelled l(va) + p − 1 and suh that
y > b. In the �rst ase, vx would be at distane 2 from v1 (if there wasa yle (v1, vb, vx) we would be in Case (ii)) and the value l(vx) wouldbe in both F (vx, v1) and F (va, v1). In the seond ase, sine y > b and
y 6= a (by l(vy) = l(va) + p− 1), the vertex vy is a neighbor of v0 (indeed
y > n−∆+1) and a 2-neighbor of v1. So, the value l(va)+p−1 would be inboth F (vy, v1) and F (va, v1). In both ases, (1) or (2), with the fat that
|F (v0, v1)| ≤ p−1, we have that |F (v1)| is bounded by ∆2 +(p−1)∆−2.For v0, let us onsider the labels the algorithm assigns to vn, vn−1 and vn−2.Sine vn is the �rst vertex the algorithm proposes the value 0, it is labelled 0.These three verties are all at distane 2 from the others (if there was a yleof length three we would be in Case (ii)), so they have di�erent labels. Let aand b be suh that {a, b} = {n − 1, n − 2} and 0 = l(vn) < l(va) < l(vb). Weonsider three ases aording to l(va) and l(vb):9
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(a) (b) ()Figure 1. The vertex v0 in the ase (v) with ∆ = 4.(1) If l(va) = 1 and l(vb) = 2 (see Figure 1.(a)), the values 1 and 2 areeah forbiden twie to v0. Formally we have 1 ∈ F (vn, v0)
⋂

F (va, v0) and
2 ∈ F (va, v0)

⋂
F (vb, v0). This implies that |F (v0)| ≤ σ(S, ∆) − 2.(2) If l(va) = 1 and l(vb) > 2 (see Figure 1.(b)), there is a vertex vx ∈

N1(vb) labelled 0 or 1. Indeed, sine F (vn, vb) = {0} and F (va, vb) =
{1}, there is a vertex vx, with vx 6= vn and vx 6= va, suh that 2 ∈
F (vx, vb). Furthermore, sine vb was the �rst unlabelled vertex �o�ered�to be labelled 2 (vn and va were already labelled), we have l(vx) ∈ {0, 1}and d(vx, vb) = 1. If vx = v0, sine 1 ≤ σ(S, ∆) − 2, we are done, solet vx 6= v0. The vertex vx is at distane 2 from v0 (if there was a yle
(v0, vb, vx) we would be in Case (ii)), so we have 1 ∈ F (vn, v0)

⋂
F (va, v0)and l(vx) ∈ F (vn, v0)

⋂
F (vx, v0). This implies that |F (v0)| ≤ σ(S, ∆)−2.(3) If l(va) > 1 (see Figure 1.()), the verties va and vb are not labelled

1 (l(va) < l(vb)) there are two verties, vy ∈ N1(va) and vz ∈ N1(vb),labelled 0. Indeed, sine F (vn, va) = {0} (resp. F (vn, vb) = {0}), thereis a vertex vy 6= vn (resp. vz 6= vn), suh that 1 ∈ F (vy, vb) (resp. 1 ∈
F (vz, vb)). Furthermore, sine va and vb were the �rst unlabelled verties�o�ered� to be labelled 1 (vn was already labelled), we have l(vy) = l(vz) =
0 and d(vy, va) = d(vz, vb) = 1. If v0 = vy or vz, sine 0 ≤ σ(S, ∆)− 2, weare done, so let v0 6= vy and vz. If vy = vz, there is a yle (v0, va, vy, vb)and we would be in Case (iv), so let vy 6= vz. The vertex vy (resp. vz)is at distane 2 from v0 (if there was a yle (v0, va, vy) or (v0, vb, vz) wewould be in Case (ii)), so we have 0 ∈ F (vn, v0)

⋂
F (vy, v0)

⋂
F (vz, v0).This implies that |F (v0)| ≤ σ(S, ∆) − 2.Case (v) with ∆ = 3: When ∆ = 3, we have N1(v0) = {v1, vn, vn−1},

N1(v1) = {v0, v2, vn−2} and X = {v0, v1, vn−2, vn−1, vn}. In this ase we haveto be more preise on the struture of G around v0 and v1. Let us onsiderthat we are in none of the ases (i), (ii), (iii) and (iv). Sine we are not inon�guration (iv) d(vn, vn−2) ≥ 2 and d(vn−1, vn−2) ≥ 2.First we onsider that one of the verties vn or vn−1 is at distane at least 3from vn−2. Note that sine vn and vn−1 are both leaves in T , by permutingthem in the root-to-leaves order we still have a root-to-leaves order. So, w.l.o.g.10



let vn be suh that d(vn, vn−2) ≥ 3. The order of the verties implies that both
vn and vn−2 are labelled 0. Indeed, when the algorithm proposes the label0, vn aept it, then vn−1 rejet it (sine d(vn, vn−1) = 2) and then vn−2aept it (sine d(vn, vn−2) ≥ 3). So we have 0 ∈ F (vn, v0)

⋂
F (vn−2, v0) and

0 ∈ F (vn, v1)
⋂

F (vn−2, v1). If l(vn−1) = 1 we have 1 ∈ F (vn, v0)
⋂

F (vn−1, v0)and so, both |F (v0)| and |F (v1)| are bounded by ∆2+(p−1)∆−2. If l(vn−1) >

1, there is a vertex vx ∈ N1(vn−1) labelled 0. Indeed, sine F (vn, vn−1) =
{0}, there is a vertex vx 6= vn suh that 1 ∈ F (vx, vn−1). Furthermore, sine
vn−1 was the �rst unlabelled vertex �o�ered� to be labelled 1 (vn was alreadylabelled), we have l(vx) = 0 and d(vx, vn−1) = 1. The vertex vx is at distane 2from v0 (if there was a yle (v0, vn−1, vx) we would be in Case (ii)), so we have
0 ∈ F (vx, v0)

⋂
F (vn, v0)

⋂
F (vn−2, v0). With the fat that |F (v0, v1)| ≤ p − 1,we have that both |F (v0)| and |F (v1)| are bounded by ∆2 + (p − 1)∆ − 2.Now we onsider that d(vn, vn−2) = d(vn−1, vn−2) = 2. Let vx (resp. vy) be thevertex adjaent to vn and vn−2 (resp. vn−1 and vn−2). The verties vx and vyare distint beause if there was a vertex with neighbors vn, vn−1 and vn−2 thegraph G\X would be disonneted, whih is impossible by de�nition of Case(v). By onstrution of T , the edges v0vn, v0vn−1 and v1vn−2 are the only edgesin T , adjaent to vn, vn−1 or vn−2. So the edges vnvx, vn−2vx, vn−1vy and vn−2vyare not in T , and the verties vx and vy having just one adjaent edge in T areleaves of T . This implies that the root-to-leaves order an also verify vn−3 = vxand vn−4 = vy. We know that d(vn, vn−4) > 1 and d(vn−1, vn−3) > 1, else G\Xwould be disonneted. We onsider di�erent ases aording to d(vn, vn−4)and d(vn−1, vn−3):- If one of these distanes is greater than 2 (see Figure 2.(a)), w.l.o.g.onsider that d(vn, vn−4) > 2 (we ould exhange vn and vn−3 with vn−1and vn−4 in the root-to-leaves ordering of T ). During its �rst iteration(when i = 0) the algorithm labels vn with 0. Sine d(vn, vn−1) = 2,

d(vn, vn−2) = 2 and d(vn, vn−3) = 1 the verties vn−1, vn−2 and vn−3 arenot labelled 0. Then, sine d(vn, vn−4) > 2, the algorithm labels vn−4 with0 and we have 0 ∈ F (vn, v0)
⋂

F (vn−4, v0) and 0 ∈ F (vn, v1)
⋂

F (vn−4, v1).Sine the verties vn−1, vn−2 and vn−3 are adjaent to vn or vn−4, theirlabels are greater than p − 1. We onsider two ase aording to l(vn−1):- If l(vn−1) = p then, sine d(vn−1, v1) = d(vn−1, vn−2) = 2, we havethat l(v1) 6= p and l(vn−2) > p. If l(vn−2) = p + 1, we have p + 1 ∈
F (vn−1, v0)

⋂
F (vn−2, v0). If l(vn−2) > p + 1, sine vn−2 was the �rstunlabelled vertex o�ered to be labelled p+1, it implies that either thevertex vn−3 is labelled p, or the vertex v1 is labelled l(v1) ≤ p. In the�rst ase we would have p ∈ F (vn−1, v0)

⋂
F (vn−3, v0). In the otherase we would have either l(v1) ∈ F (v1, v0)
⋂

F (vn, v0) (if l(v1) < p)or p ∈ F (v1, v0)
⋂

F (vn−1, v0) (if l(v1) = p).- If l(vn−1) > p it is beause the unique vertex vz ∈ N1(vn−1)\{v0, vn−4}is labelled less than p. In this ase we have l(vz) ∈ F (vz, v0)
⋂

F (vn, v0).11
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Figure 2. Case (v) with ∆ = 3 and d(vn, vn−2) = d(vn−1, vn−2) = 2.Whatever the subase, with the fat that |F (v0, v1)| ≤ p − 1, we havethat |F (v0)| and |F (v1)| are bounded by ∆2 + (p − 1)∆ − 2.- If these two distanes equal 2, d(vn, vn−4) = d(vn−1, vn−3) = 2, we have toslightly modify the order on the verties by permuting vn−1 with vn−2 (seeFigure 2.(b)). Sine these two verties are leaves in T , the order obtainedstill orresponds to a root-to-leaves ordering of T . With this order onthe verties, the algorithm labels the verties vn, vn−1, vn−2 and vn−3,respetively 0, 1, 2 and p + 1. Indeed:- The �rst unlabelled vertex �proposed� to be labelled 0 is vn and so
l(vn) = 0. This implies that none of the verties vn−1, vn−2, vn−3 andnone of their neighbors (exept vn) are labelled 0.- The �rst unlabelled vertex �proposed� to be labelled 1 is vn−1 andsine none of its neighbors is labelled 0, we have l(vn−1) = 1. This im-plies that none of the verties vn−2, vn−3 and none of their neighbors(exept vn−1) are labelled 1.- The �rst unlabelled vertex �proposed� to be labelled 2 is vn−2 andsine none of its neighbors is labelled 0 or 1, we have l(vn−2) = 2. Thisimplies that the neighbor of vn−3 distint from vn and vn−1 annotbe labelled less than p + 2.- The vertex vn−3 annot be labelled less than p+1 (sine l(vn−1) = 1).Furthermore, none of its neighbors is labelled l ∈ {2, . . . , p}. So, sine
vn−3 is the �rst unlabelled vertex �proposed� to be labelled p + 1, wehave l(vn−3) = p + 1.This implies that 1 ∈ F (vn, v0)

⋂
F (vn−1, v0), 2 ∈ F (vn−1, v1)

⋂
F (vn−2, v1)and p + 1 ∈ F (vn−2, v0)

⋂
F (vn−3, v0). With the fat that |F (v0, v1)| ≤

p−1, we have that |F (v0)| and |F (v1)| are bounded by ∆2 +(p−1)∆−2.This onlude the proof of Theorem 5.5 Proof of Lemma 6Let G be a graph with maximum degree ∆ ≥ 3. We prove the lemma byshowing that if G has none of the on�gurations (i), (ii), (iii) and (iv), then12
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N(e)

Figure 3. e-bags.it ontains on�guration (v).De�nition 15 Given an edge e = uv ∈ E(G), the set of neighbors of e is
N(e) = (N1(u)

⋃
N1(v)) \{u, v}. Given e = uv ∈ E(G) an e-bag B is a maxi-mal subgraph of G\{u, v} suh that, for any pair of verties x and y ∈ V (B),there is a path from x to y without internal verties in N(e) (see Figure 3).Note that two di�erent e-bags an only share verties of N(e), else their unionwould be a bigger e-bag, ontraditing their maximality. Given an e-bag B,let L(B) = V (B)
⋂

N(e) be the set of verties linking B to the rest of thegraph. The others verties of B form the set of inner verties of B, I(B) =
V (B)\L(B). Given a set Y ⊆ N(uv) ∪ {u, v}, the graph G\Y is disonnetedif there is an e-bag B with L(B) ⊆ Y and |I(B)| > 0.Remark 16 An edge e ∈ E(G) orresponds to the edge uv of on�guration(v) i� there is a vertex w ∈ N(e) ontained by all the e-bags.We an found this edge uv of on�guration (v) by doing the following proess:(1) Consider two non-inident edges e and f ∈ E(G).(2) Verify if e orresponds to the edge uv of the on�guration (v).(3) If not, let B0 be the e-bag ontaining f . Sine e does not orrespond tothe edge uv, there are e-bags Bi, with i > 0, suh that L(B0)\L(Bi) 6= ∅(else with e = uv and any w ∈ L(B0) we would have on�guration(v)). Let B be the set of all these e-bags. Let B1 be an e-bag of B thatminimizes |L(B1)| and (if there are various e-bags Bi minimizing |L(Bi)|)then maximizes |I(B1)|. Finally sine |I(B1)| ≥ 2 (.f. Lemma 17), let ebe an edge of B1 with its two ends in I(B1) and go to step (2).We an prove that this proess terminates beause eah time we hange e, thesize of I(B0) inreases. Indeed, sine none of the verties in L(B0) \L(B1) hasa neighbor in B1, all the verties of B0\L(B1) (i.e. I(B0) ∪ (L(B0) \ L(B1)))are in I(B0) in the next step. So if the following lemma holds, Lemma 6 holds.Lemma 17 If a graph G does not ontain on�gurations (i), (ii), (iii) and(iv), and if a given edge e = ab ∈ E(G) does not orrespond to the edge uv ofon�guration (v) then the e-bag B1 (de�ned before) is suh that |I(B1)| ≥ 2.13
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(a) (b) (c) (d)Figure 4. Cases with |I(B1)| = 0 and |I(B1)| = 1.PROOF. If |I(B1)| = 0, let e′ = a′b′ be its unique edge and note that a′and b′ belong to N(e). This implies that |L(B1)| = 2 and that any e-bag
Bi ∈ B has either |L(Bi)| ≥ 3 or |L(Bi)| = 2 and |I(Bi)| = 0. If a′ and b′are both neighbors of a (resp. b) there is a yle of length three and we are inon�guration (ii), so let a′ ∈ N1(a) and b′ ∈ N1(b) (see Figure 4.(a)). Then weonsider any vertex c ∈ L(B0)\L(B1) (so c 6= a′ and b′). W.l.o.g. let c ∈ N1(a).Sine {a′, b, c} ⊆ N1(a) and (a, b, b′, a′) is yle, if G\{c, a′} is onneted, weare in on�guration (iv). So let G\{c, a′} be disonneted. This implies thatthere is a vertex d ∈ V (G)\{c, a′} suh that all the paths from d to a passthrough c or a′. The e-bag Bi ontaining d is suh that L(Bi) ⊆ {c, a′} and
d ∈ I(Bi). Sine b′ ∈ L(B0) \ L(Bi), we have Bi ∈ B. With the fat that
|L(Bi)| ≤ 2 and |I(Bi)| ≥ 1, this ontradits the de�nition of B0 and we have
|I(B1)| ≥ 1.If |I(B1)| = 1, let c be the unique vertex in I(B1). Sine deg(c) = |L(B1)| =
∆ ≥ 3, any e-bag Bi ∈ B has either |L(Bi)| > ∆ or |L(Bi)| = ∆ and |I(Bi)| =
1 (when |I(Bi)| = 0 we have |L(Bi)| = 2 < ∆). If ∆ ≥ 4 there are at leasttwo yles of length four passing through c, so we are in on�guration (iii)(see Figure 4.(b) and Figure 4.()). For ∆ = 3 (see Figure 4.(d)), let N1(a) =
{b, d1, d2} and N1(b) = {a, d3, d4}. W.l.o.g. let N1(c) = L(B1) = {d1, d2, d3}.Sine B1 ∈ B, we have L(B0)\L(B1) 6= ∅ and so d4 ∈ L(B0). Sine (a, d1, c, d2)is a yle, if the graph G\{d2, d3} is onneted we are in on�guration (iv),so let G\{d2, d3} be disonneted. This implies, that there is a vertex z suhthat all the paths from z to a pass through d2 or d3. The e-bag Bi ontaining
z is suh that L(Bi) ⊆ {d2, d3}. Sine d4 ∈ L(B0) \ L(Bi), we have Bi ∈ B.With the fat that |L(Bi)| ≤ 2, this ontradits the minimality of |L(B1)| = ∆(sine ∆ > 2). So we have |I(B1)| ≥ 2 and this ompletes the proof of Lemma17.Referenes[1℄ P. Bella, D. Král, B. Mohar and K. Quittnerová, Labeling planargraphs with a ondition at distane two, European J. Combin., toappear. 14
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